
THE CLAUSIUS–MOSSOTTI FORMULA

MITIA DUERINCKX AND ANTOINE GLORIA

Abstract. In this note, we provide a short and robust proof of the Clausius–Mossotti
formula for the effective conductivity in the dilute regime, together with an optimal error
estimate. The proof makes no assumption on the underlying point process besides sta-
tionarity and ergodicity, and it can be applied to dilute systems in many other contexts.

1. Effective conductivity problem

We start by recalling the notion of effective conductivity in the sense of stochastic
homogenization theory for an heterogeneous material made of inclusions in a given matrix
of homogeneous conductivity. Let d ≥ 1 denote the space dimension.

1.1. Stochastic setting. We shall use a statistical description for the set of inclusions in
the material. Restricting to spherical inclusions for notational simplicity, we let

B(P) :=
⋃
x∈P B(x), (1.1)

where B(x) = B + x stands for the unit ball centered at x in Rd, and where P is the set
of centers of the inclusions. It remains to define statistical ensembles for the latter. We
call point set any countable subset P ⊂ Rd that is locally finite in the sense that for any
bounded E ⊂ Rd the number of points of P in E is finite, P(E) := ]{P ∩ E} < ∞. A
point set P can be represented by the associated locally finite measure

∑
x∈P δx, which acts

on the space of compactly supported continuous functions via f 7→ P(f) :=
∑

x∈P f(x).
We endow the space Ω of point sets with the smallest σ-algebra that makes all evaluation
maps P 7→ P(f) measurable. A random point process is then defined as a probability
measure P on Ω, and we denote by E [·] the associated expectation. We further define
stationarity and ergodicity with respect to translations P + z := {x+ z : x ∈ P} of point
sets: The point process is said to be stationary (or statistically translation-invariant) if for
any measurable set A ⊂ Ω we have P [A+ z] = P [A] for all z ∈ Rd, where we use the
notation A+ z := {P + z : P ∈ A}. The process is said to be ergodic if any measurable set
A ⊂ Ω that is translation-invariant, in the sense that P [A \ (A+ z)] = P [(A+ z) \A] = 0
for all z ∈ Rd, satisfies P [A] = 0 or 1. In the sequel, the set of inclusions in the material is
modeled by (1.1) with P sampled according to some stationary and ergodic random point
process. Note that the inclusions are allowed to overlap in general.

1.2. Effective conductivity. Given a stationary ergodic random point process as defined
above, we consider the associated coefficient field

A(y) := A1 + (A2 −A1)1B(P)(y), y ∈ Rd, (1.2)

where A1, A2 ∈ Rd×d are two strongly elliptic matrices and where P is sampled according
to the point process. This models a homogeneous material of conductivity A1 that is
perturbed by disordered spherical inclusions of another material of conductivity A2. On
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large scales, in the sense of homogenization theory, this two-phase heterogeneous material
behaves like a homogeneous material with some effective conductivity Ā defined by

Āe = E [A(∇φe + e)] , (1.3)

where φe is the so-called corrector defined as the unique weak solution of the whole-space
equation

−∇ ·A(∇φe + e) = 0, in Rd, (1.4)

in the following class: φe is almost surely in H1
loc(Rd), satisfies the anchoring condi-

tion
ffl
B(0) φe = 0, and its gradient ∇φe is a stationary random field with vanishing ex-

pectation E [∇φe] = 0 and finite second moments E
[
|∇φe|2

]
< ∞; see [26, 35, 25]. Note

that Ā is not explicit in general.

2. Dilute homogenization

2.1. The Clausius–Mossotti formula. Homogenization was neither born in the math-
ematical community in the 1970s, nor in the engineering community the decade before:
it emerged much earlier, in the second half of the 19th century, in the physics commu-
nity, in the context of two-phase dispersed media. Motivated by the works of Poisson [37]
and Faraday [14], Mossotti and Clausius were the first to investigate the question of the
effective dielectric constant of a homogeneous background material perturbed by sparse
spherical inclusions [31, 32, 8]. The problem was largely revisited by Maxwell [30] for the
effective conductivity of two-phase media; we refer to [29] for a detailed account of the
historical context. In modern language, these authors argued that the effective conductiv-
ity (1.3) associated with the two-phase model (1.2) takes on the following guise, in space
dimension d ≥ 1, in case of isotropic conductivities A1 = α Id and A2 = β Id,

Ā = α Id +ϕ
αd(β − α)

β + α(d− 1)
Id +o(ϕ), as ϕ ↓ 0, (2.1)

where ϕ stands for the volume fraction of the inclusions, that is, by the ergodic theorem,

ϕ := E
[
1B(P)

]
= lim

R↑∞
|B(P)∩RB|
|RB| , for P-almost all P. (2.2)

In case of disjoint inclusions, we have ϕ = λ|B| where λ is the intensity of the point
process (defined by λ|E| = E [P(E)] for any Borel set E ⊂ Rd), while in general only the
inequality ϕ ≤ λ|B| holds. The dilute approximation (2.1) for the effective medium is
known as the Clausius–Mossotti formula and was soon adapted to various other physical
settings, in particular by Lorenz and Lorentz for the effective refractive index of two-phase
media in optics [28, 27], and by Einstein for the effective viscosity of a Stokes fluid with
a dilute suspension of rigid particles [12, 13]. Einstein’s result was actually part of his
PhD thesis, where he used it to design a celebrated experiment to measure the Avogadro
number; see e.g. the inspiring historical account in [38].

We start by describing a heuristic argument for (2.1). Recalling that E [∇φe] = 0, the
effective conductivity (1.3) can be decomposed as

e · Āe = E [e ·A(∇φe + e)]

= E
[
e ·
(
α+ (β − α)1B(P)

)
(∇φe + e)

]
= α|e|2 + (β − α)E

[
1B(P) e · (∇φe + e)

]
,
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and thus, by the ergodic theorem, assuming for simplicity that inclusions are almost surely
disjoint,

e · Āe = α|e|2 + (β − α) lim
R↑∞

1
|RB|

∑
x∈P∩RB

e ·
ˆ
B(x)

(∇φe + e). (2.3)

In the dilute regime ϕ� 1, inclusions are typically far from one another and therefore do
not ‘interact’ much when solving the corrector equation (1.4). More precisely, for all x ∈ P,
we may heuristically approximate the corrector in the inclusion B(x) by the solution of a
corresponding single-inclusion problem,

∇φe|B(x) ' ∇ψe(· − x), (2.4)

where ψe is the unique weak solution in Ḣ1(Rd) of the single-inclusion equation

−∇ ·
(
α+ (β − α)1B(0)

)
(∇ψe + e) = 0, in Rd.

In the present case of spherical inclusions and isotropic conductivity, this equation is ex-
plicitly solvable in form of

∇ψe(x) =

{
Ke, for |x| < 1;
K
|x|d

(
e− dx·e|x|

x
|x|

)
, for |x| > 1;

(2.5)

with
K =

α− β
β + α(d− 1)

.

Inserting this form into (2.4) and (2.3), the Clausius–Mossotti formula (2.1) heuristically
follows.

2.2. Main result. The aim of the present note is to prove the Clausius–Mossotti for-
mula (2.1) in the most general setting possible and to establish a sharp error bound. The
above heuristic argument indicates that the error mostly comes from ‘interactions’ between
inclusions, as it amounts to locally replacing the corrector by solutions of single-inclusion
problems, cf. (2.4). To quantify this error, we need to recall the notion of second-order
intensity λ2 of the point process, which we introduced in [11]. For that purpose, we first
define the minimal lengthscale ` ≥ 0 of the point process,

` := inf
x,y∈P
x 6=y

|x− y|∞, (2.6)

which is (almost surely) deterministic by ergodicity. In case ` > 0 (that is, if the point
process is hardcore), the second-order intensity is defined as

λ2 := sup
z1,z2∈Rd

E
[ ∑
x1,x2∈P
x1 6=x2

`−d 1Q`(z1)(x1) `
−d 1Q`(z2)(x2)

]
, (2.7)

where Qr(z) := rQ + z is the cube of sidelength r centered at z. Note that, by defini-
tion (2.6), each cubeQ`(z) contains at most one point of P almost surely. In other words, λ2
is the maximum expected number of couples of points that lie in the `-neighborhood of a
given element of (Rd)2, properly normalized by `. Alternatively, recalling that the 2-point
density is the non-negative function f2 defined by the following relation,

E
[ ∑
x1,x2∈P
x1 6=x2

ζ(x1, x2)

]
=

ˆ
(Rd)2

ζf2, for all ζ ∈ Cc((Rd)2),
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the definition (2.7) of 2-point intensity can be reformulated as

λ2 = sup
z1,z2∈Rd

 
Q`(z1)×Q`(z2)

f2. (2.8)

In case ` = 0 (that is, if the point process is not hardcore), this definition is naturally
extended to λ2 := ‖f2‖L∞((Rd)2). For a Poisson point process, due to the tensor structure,
the 2-point intensity is simply the square of the intensity, λ2 = λ2, but for a general
strongly-mixing point process it can be anything in the interval [λ2, `−dλ] and its smallness
describes some form of local independence.

We can now state the main result of this note, which is an adaptation of our recent work
on Einstein’s formula [11, Theorem 1] to the effective conductivity problem. It proves the
validity of the Clausius–Mossotti formula (2.1) for the first time in the setting of general
point processes. The error bound (2.9) below is new and is sharp in general, cf. [11,
Theorem 7]. As ϕ ≤ λ|B|, it entails that the approximation (2.1) is only valid in general
provided that

λ2 log
(
2 + λ

λ2(1+`)d

)
= o(ϕ),

which we interpret as a local independence condition. In the specific case of a Poisson
point process, this result follows from [10] with the improved error bound O(λ2) = O(λ2)
(without logarithmic correction). The particular case of dilute point processes obtained
by Bernoulli deletion or by dilation of a given process was already treated in [9, 36]. Note
that inclusions here are allowed to overlap and that no upper bound is assumed on the
number of points per unit volume.

Theorem 2.1. Consider a stationary and ergodic point process and the associated set
of unit spherical inclusions, cf. (1.1). Given α, β > 0, the effective conductivity (1.3)
associated with the two-phase model (1.2) with isotropic conductivities A1 = α Id and
A2 = β Id then satisfies the following quantitative version of (2.1),∣∣∣Ā− (α Id +ϕ

αd(β − α)

β + α(d− 1)
Id
)∣∣∣ . λ2 log

(
2 + λ

λ2(1+`)d

)
. (2.9)

♦

We shall prove this result in the following slightly more general form, where conductivi-
ties A1 and A2 are no longer assumed to be isotropic (not even symmetric) and where A2

may itself be heterogeneous. We consider spherical inclusions for notational convenience,
but we emphasize that, as in [9, 11], this is not essential (only the above explicit form of
the Clausius–Mossotti formula then needs to be changed). Note that the argument also
applies to the case of strongly elliptic systems as in [9, Corollary 2.5].

Theorem 2.2. Let A1 ∈ Rd×d be a strictly elliptic (non-necessarily symmetric) matrix,
and let A2 be a stationary and ergodic random field of uniformly elliptic and uniformly
bounded (non-necessarily symmetric) matrices. Consider a stationary and ergodic point
process that is independent of A2, consider the associated set of unit spherical inclusions,
cf. (1.1), and the associated coefficient field

A(y) := A1 + (A2(y)−A1)1B(P)(y), y ∈ Rd, (2.10)

where P is sampled according to the point process. Then, the effective coefficient Ā associ-
ated via (1.3) satisfies the following expansion,∣∣Ā− (A1 + ϕÂ2)

∣∣ . λ2 log
(
2 + λ

λ2(1+`)d

)
, (2.11)
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where the first-order effective correction Â2 is given by

Â2e := E
[ 

B
(A2 −A1)(∇ψe + e)

]
, (2.12)

where ψe is the unique weak solution in Ḣ1(Rd) of the single-inclusion problem

−∇ ·
(
A1 + 1B(A2 −A1)

)
(∇ψe + e) = 0, in Rd. (2.13)

♦

2.3. Previous contributions. The asymptotic analysis of the effective conductivity in
case of a periodic array of inclusions with a small volume fraction was first addressed by
Berdichevskĭı [7]; see also [25, Section 1.7]. The first justification of the Clausius–Mossotti
formula in a random setting is due to Almog in dimension d = 3, whose results in [1, 2]
precisely yield (2.1) when combined with elementary homogenization theory. The proof is
based on (scalar) potential theory and crucially relies on the facts that the space dimension
is d = 3, that A is everywhere isotropic, and that the inclusions are spherical and disjoint.
Another contribution is due to Mourrat [33], who studied for all d ≥ 2 a discrete elliptic
equation (instead of a continuum one) with sparse i.i.d. perturbations of the conductivity,
proving (2.1) in that setting by strongly relying on quantitative stochastic homogenization
results of [21, 22]. We also highlight the inspiring work [4, 5] by Anantharaman and Le Bris,
who obtained related results on sparse i.i.d. perturbations of a periodic array of inclusions;
see also [3]. Those different previous results were improved in [9], where we studied the case
of a general stationary and ergodic inclusion process, focusing on a dilute regime obtained
by a Bernoulli deletion procedure where each inclusion is preserved independently with
low probability, and where we established real analyticity with respect to the Bernoulli
parameter — only assuming that the number of inclusions per unit volume be uniformly
bounded. This was recently extended in [20, 10] to prove Gevrey regularity when starting
from a Poisson point process (for which the uniform boundedness assumption fails). In a
different vein, partly inspired by Berdichevskĭı’s approach in the periodic setting, Pertinand
addressed in [36] the case when the dilution of the point process is obtained by dilating a
given hardcore process, and he proved the real analyticity with respect to the inverse of
the dilation parameter. Very recently, Gérard-Varet [16] proposed an alternative approach
where he bypasses homogenization theory and directly quantifies in terms of the volume
fraction ϕ the distance between the solution of a problem with sparse inclusions and that
of an effective problem with conductivity given by the Clausius–Mossotti formula. Various
related contributions concern the validity of Einstein’s formula for the effective viscosity
of a Stokes fluid with a dilute suspension of rigid particles; see [23, 24, 34, 18, 11]. Our
approach in the present note is an adaptation of the recent short proof that we obtained
in [11] for Einstein’s formula: it allows to justify the Clausius–Mossotti formula for the first
time in the setting of general point processes and to determine the optimal error estimate.
Note that several points of the proof simplify in the present setting. In particular we
manage to fully bypass the variational formulation of [11].

While the Clausius–Mossotti formula is universal in the sense that it only depends on the
set of inclusions via its volume fraction (and on the shape of the inclusions, here assumed
to be spherical), the next-order correction further depends on the two-point correlation
function. The identification of this correction was first discussed in [9], and it has been
the object of many recent contributions in the context of Einstein’s formula [6, 17, 15, 19,
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11]; we refer in particular to our recent work [11] where all higher-order corrections are
systematically described in form of a cluster expansion.

3. Proof of Theorem 2.2

We denote by P = {xn}n the point set sampled according to the underlying random
point process. In order to justify the approximation (2.4) of the corrector in terms of
single-inclusion problems, we start by singling out clusters of intersecting inclusions: as we
focus here on spherical inclusions with unit radius, cf. (1.1), we note that the inclusion at
a point xn ∈ P does not intersect any other inclusion if and only if

ρn := 1
2 inf
m:m6=n

|xn − xm| ≥ 1.

Let then S := {n : ρn ≥ 1} be the set of indices corresponding to non-intersecting in-
clusions. Note that S or its complement can be empty. We shall also use the short-hand
notation

B̃(P) :=
⋃
n∈S B(xn)

for the union of non-intersecting inclusions, while we recall that the union of all inclu-
sions is denoted by B(P) =

⋃
nB(xn). Next, in order to define suitable neighborhoods

of the inclusions, we consider the Voronoi tessellation {Vn}n associated with the point
set P = {xn}n, that is,

Vn :=
{
z ∈ Rd : |z − xn| < inf

m:m6=n
|z − xm|

}
, (3.1)

and we then partition the whole space as

Rd = W ∪
⋃
n∈S

Vn, W := Rd \
⋃
n∈S

Vn.

We shall repeatedly use the following elementary property of Voronoi tessellations, which
allows to split expectations into integrals over the different Voronoi cells, see [11, proof
of Lemma 2.5]: for all stationary random fields ζ with E [|ζ|] < ∞ (where stationarity is
understood to hold jointly with the point process), we have

E [ζ] = E
[∑
n∈S

10∈B(xn)

|B|

ˆ
Vn

ζ

]
+ E

[
1W ζ

]
. (3.2)

With this notation at hand, we now turn to the proof of Theorem 2.2, which we split
into six steps. In the spirit of the heuristic argument in Section 2.1, we start by reducing
the problem to estimating in each inclusion the difference between the corrector (1.4)
and the solution of the corresponding single-inclusion corrector problem. When inclusions
are well-separated, which is typically the case in the dilute regime, we naturally expect
this difference to be small. As an intermediate step in the estimate, it is convenient to
first replace single-inclusion corrector problems by the corresponding Dirichlet problems in
each Voronoi cell. The estimate relies on elliptic regularity theory in form of a mean-value
property for the single-particle problem, and is quantified in terms of the distance to other
particles — or equivalently, in terms of the inner radius of the Voronoi cell. Let e ∈ Rd be
fixed with |e| = 1.
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Step 1. Representation formula for the error: proof that∣∣Āe− (A1e+ ϕÂ2e)
∣∣ . E

[∑
n∈S

1B(xn)|∇(φe − ψe,n)|
]

+ E
[
1B(P)\B̃(P)

(
1 + |∇φe|

)]
, (3.3)

where Â2 is given by (2.12) in the statement, and where for all n we define ψe,n as the
unique weak solution in Ḣ1(Rd) of the whole-space single-inclusion problem centered at xn,
that is,

−∇ ·
(
A1 + 1B(xn)(A2 −A1)

)
(∇ψe,n + e) = 0, in Rd.

Recall that, as in the statement, we also denote by ψe the solution of the corresponding
single-inclusion problem with center xn replaced by the origin 0, cf. (2.13).

By definition of the two-phase coefficient field A, cf. (2.10), and of the associated effective
conductivity Ā, cf. (1.3), we find

Āe = E [A(∇φe + e)]

= E [A1(∇φe + e)] + E
[
1B(P)(A2 −A1)(∇φe + e)

]
= A1e+ E

[
1B(P)(A2 −A1)(∇φe + e)

]
,

where the last identity follows from the fact that A1 is constant and E [∇φe] = 0. Focussing
on the contribution of non-intersecting inclusions and comparing the corrector φe to single-
inclusion solutions {ψe,n}n, we can decompose

Āe = A1e+ E
[∑
n∈S

1B(xn)(A2 −A1)(∇ψe,n + e)

]
+ E

[∑
n∈S

1B(xn)(A2 −A1)∇(φe − ψe,n)

]
+ E

[
1B(P)\B̃(P)(A2 −A1)(∇φe + e)

]
. (3.4)

In order to reformulate the second right-hand side term, we appeal to (3.2), to the effect
of

E
[∑
n∈S

1B(xn)(A2 −A1)(∇ψe,n + e)

]
= E

[∑
n∈S

10∈B(xn)

|B|

ˆ
B(xn)

(A2 −A1)(∇ψe,n + e)

]
,

which can be further rewritten as follows, recalling that A2 is stationary and independent
of the point process,

E
[∑
n∈S

1B(xn)(A2 −A1)(∇ψe,n + e)

]
= E

[∑
n∈S

10∈B(xn)

|B|

]
E
[ˆ

B
(A2 −A1)(∇ψe + e)

]
= E

[
1B̃(P)

]
E
[ 

B
(A2 −A1)(∇ψe + e)

]
.

Recognizing the definition (2.12) of Â2e, noting that the definition (2.2) of the volume
fraction yields

E
[
1B̃(P)

]
= ϕ− E

[
1B(P)\B̃(P)

]
,

and using the energy estimate
´
Rd |∇ψe|

2 . 1 for the solution of (2.13), we deduce∣∣∣∣E[∑
n∈S

1B(xn)(A2 −A1)(∇ψe,n + e)

]
− ϕÂ2e

∣∣∣∣ . E
[
1B(P)\B̃(P)

]
.

Combined with (3.4), this yields the claim (3.3).
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Step 2. Approximation of the corrector by local Dirichlet problems.
Instead of directly comparing the corrector φe to whole-space single-inclusion solutions
{ψe,n}n as in (3.3), we start by comparing to solutions of single-inclusion Dirichlet problems
in each Voronoi cell. More precisely, for all n ∈ S, we define ψ◦e,n as the unique weak solution
in H1

0 (Vn) of the single-inclusion problem

−∇ ·A(∇ψ◦e,n + e) = 0, in Vn. (3.5)

Implicitly extending ψ◦e,n by zero outside Vn, we then set

ψ◦e :=
∑
n∈S

ψ◦e,n.

By definition, ∇ψ◦e is stationary and we claim that it has vanishing expectation and finite
second moments,

E [∇ψ◦e ] = 0, E
[
|∇ψ◦e |2

]
. 1. (3.6)

Indeed, for all R > 0, applying (3.2) to |∇ψ◦e |2 ∧R, we find

E
[
|∇ψ◦e |2 ∧R

]
≤ E

[∑
n∈S

10∈B(xn)

|B|

ˆ
Vn

|∇ψ◦e |2
]
,

and thus, using energy estimates for ψ◦e in Voronoi cells, and further applying (3.2) to the
constant function 1,

E
[
|∇ψ◦e |2 ∧R

]
. E

[∑
n∈S

10∈B(xn)

|B|
|Vn|

]
≤ 1.

By the monotone convergence theorem, this proves the claim E
[
|∇ψ◦e |2

]
. 1. Next, we

can apply (3.2) to ∇ψ◦e , to the effect of

E [∇ψ◦e ] = E
[∑
n∈S

10∈B(xn)

|B|

ˆ
Vn

∇ψ◦e
]
.

The right-hand side vanishes due to homogeneous Dirichlet boundary conditions, and the
claim (3.6) follows.

Step 3. Approximation error estimate: proof that

E
[
|∇(φe − ψ◦e)|2

]
+E
[
1B(P)|∇(φe−ψ◦e)|

]
. E

[∑
n∈S

10∈B(xn)

|B|
ρ−dn

]
+E
[
1B(P)\B̃(P)

]
. (3.7)

We start by proving the estimate on E
[
|∇(φe − ψ◦e)|2

]
. Using the corrector equation (1.4)

for φe in form of
E [∇(φe − ψ◦e) ·A(∇φe + e)] = 0,

we find

E
[
|∇(φe − ψ◦e)|2

]
. E [∇(φe − ψ◦e) ·A∇(φe − ψ◦e)]
= −E [∇(φe − ψ◦e) ·A(∇ψ◦e + e)] ,

which we can further decompose into

E
[
|∇(φe − ψ◦e)|2

]
. −E

[
∇(φe − ψ◦e) ·Ae

]
+ E

[
(∇ψ◦e + e) ·A∇ψ◦e

]
− E

[
(∇φe + e) ·A∇ψ◦e

]
.
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As A1 is constant and as E [∇(φe − ψ◦e)] = 0, the first right-hand side term is equal to

E
[
∇(φe − ψ◦e) ·Ae

]
= E

[
∇(φe − ψ◦e) · 1B(P)(A2 −A1)e

]
,

hence

E
[
|∇(φe − ψ◦e)|2

]
. −E

[
∇(φe − ψ◦e) · 1B(P)(A2 −A1)e

]
+ E

[
(∇ψ◦e + e) ·A∇ψ◦e

]
− E

[
(∇φe + e) ·A∇ψ◦e

]
. (3.8)

If A was symmetric, then the corrector equation (1.4) would ensure that the last right-hand
side term vanishes. Using that A1 is constant, we shall show that, even though this term
does not vanish in the general non-symmetric case, it can be localized inside inclusions.
For that purpose, we rewrite the corrector equation as

−∇ ·A1∇φe = ∇ ·Ae+∇ · 1B(P)(A2 −A1)∇φe, in Rd,

and we note that, as the coefficient A1 is constant, it can be replaced by its transpose AT1
in the left-hand side,

−∇ ·AT1∇φe = ∇ ·Ae+∇ · 1B(P)(A2 −A1)∇φe, in Rd.

Testing this equation with ψ◦e then yields

E
[
∇ψ◦e ·AT1∇φe

]
= −E

[
∇ψ◦e ·Ae

]
− E

[
∇ψ◦e · 1B(P)(A2 −A1)∇φe

]
,

or equivalently, adding and subtracting several terms,

E
[
(∇φe + e) ·A∇ψ◦e

]
= E

[
e ·A∇ψ◦e

]
− E

[
∇ψ◦e ·Ae

]
+ E

[
∇(φe − ψ◦e) · 1B(P)(A2 −A1)∇ψ◦e

]
− E

[
∇ψ◦e · 1B(P)(A2 −A1)∇(φe − ψ◦e)

]
.

Inserting this into (3.8), we get

E
[
|∇(φe − ψ◦e)|2

]
. E

[
∇ψ◦e ·A(∇ψ◦e + e)

]
− E

[
∇(φe − ψ◦e) · 1B(P)(A2 −A1)e

]
+ E

[
∇ψ◦e · 1B(P)(A2 −A1)∇(φe − ψ◦e)

]
− E

[
∇(φe − ψ◦e) · 1B(P)(A2 −A1)∇ψ◦e

]
. (3.9)

We note that the first right-hand side term vanishes: indeed, appealing to (3.2), we find

E
[
∇ψ◦e ·A(∇ψ◦e + e)

]
= E

[∑
n∈S

10∈B(xn)

|B|

ˆ
Vn

∇ψ◦e ·A(∇ψ◦e + e)

]
,

where for all n ∈ S the defining equation (3.5) for ψ◦e |Vn = ψ◦e,n precisely givesˆ
Vn

∇ψ◦e ·A(∇ψ◦e + e) = 0.

The estimate (3.9) then leads us to

E
[
|∇(φe − ψ◦e)|2

]
. E

[
1B(P)

(
1 + |∇ψ◦e |

)
|∇(φe − ψ◦e)|

]
.

Appealing to (3.2), together with the Cauchy–Schwarz inequality, this entails

E
[
|∇(φe − ψ◦e)|2

]
. E

[∑
n∈S

10∈B(xn)

|B|

(
1 +

ˆ
B(xn)

|∇ψ◦e |2
) 1

2
(ˆ

B(xn)
|∇(φe − ψ◦e)|2

) 1
2

]
+ E

[
1B(P)\B̃(P)|∇(φe − ψ◦e)|

]
. (3.10)
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For all n ∈ S, the equation (3.5) for ψ◦e |Vn = ψ◦e,n ∈ H1
0 (Vn) yieldsˆ

Vn

|∇ψ◦e |2 .
ˆ
Vn

∇ψ◦e,n ·A∇ψ◦e,n = −
ˆ
Vn

∇ψ◦e,n ·Ae,

and thus, as A1 is constant, writing A = A1 + (A2 −A1)1B(xn) in Vn,ˆ
Vn

|∇ψ◦e |2 . −
ˆ
B(xn)

∇ψ◦e,n · (A2 −A1)e,

which leads to the energy estimate ˆ
Vn

|∇ψ◦e |2 . 1.

Inserting this into (3.10), we deduce

E
[
|∇(φe − ψ◦e)|2

]
. E

[∑
n∈S

10∈B(xn)

|B|

( ˆ
B(xn)

|∇(φe − ψ◦e)|2
) 1

2

]
+ E

[
1B(P)\B̃(P)|∇(φe − ψ◦e)|

]
. (3.11)

We now appeal to the following mean-value property, which we shall prove in Step 4 below,ˆ
B(xn)

|∇(φe − ψ◦e)|2 . ρ−dn

ˆ
Vn

|∇(φe − ψ◦e)|2. (3.12)

By Young’s inequality, we then get for any R > 0,

E
[
|∇(φe − ψ◦e)|2

]
. RE

[∑
n∈S

10∈B(xn)

|B|
ρ−dn

]
+RE

[
1B(P)\B̃(P)

]
+ 1

RE
[∑
n∈S

10∈B(xn)

|B|

ˆ
Vn

|∇(φe − ψ◦e)|2
]

+ 1
RE
[
1W |∇(φe − ψ◦e)|2

]
.

As (3.2) implies that the last two right-hand side terms are equal to 1
RE
[
|∇(φe − ψ◦e)|2

]
,

choosing R ' 1 large enough to absorb it in the left-hand side, we obtain

E
[
|∇(φe − ψ◦e)|2

]
. E

[∑
n∈S

10∈B(xn)

|B|
ρ−dn

]
+ E

[
1B(P)\B̃(P)

]
. (3.13)

To conclude the proof of the claim (3.7), it remains to establish the corresponding estimate
on E

[
1B(P)|∇(φe − ψ◦e)|

]
. For that purpose, we start by appealing to (3.2) in form of

E
[
1B(P)|∇(φe − ψ◦e)|

]
= E

[∑
n∈S

10∈B(xn)

|B|

ˆ
B(xn)

|∇(φe − ψ◦e)|
]

+ E
[
1B(P)\B̃(P)|∇(φe − ψ◦e)|

]
.

By the Cauchy–Schwarz inequality, this can be bounded by same right-hand side as
in (3.11), and the claim (3.7) then follows similarly as (3.13).

Step 4. Proof of the mean-value property (3.12).
We reformulate (3.12) in the following form: for all r ≥ 1, for all v ∈ H1(rB) that satisfies
in the weak sense,

−∇ ·
(
A1 + 1B(A2 −A1)

)
∇v = 0, in rB,
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we have ˆ
B
|∇v|2 . r−d

ˆ
rB
|∇v|2. (3.14)

This kind of mean-value property is well-known to hold for harmonic functions, but it is
not standard in the present non-homogeneous setting. To prove this result, we appeal to
a perturbative argument and decompose the solution v as v = v1 + v2, where v1 is the
unique weak solution in v +H1

0 (rB) of

−∇ ·A1∇v1 = 0, in rB,

and where v2 is the unique weak solution in H1
0 (rB) of

−∇ ·
(
A1 + 1B(A2 −A1)

)
∇v2 = ∇ · 1B(A2 −A1)∇v1, in rB.

As A1 is constant, we can apply to v1 the standard mean-value property for harmonic
functions, to the effect of ˆ

B
|∇v1|2 . r−d

ˆ
rB
|∇v1|2.

As the defining Dirichlet problem for v1 yields the energy estimateˆ
rB
|∇v1|2 .

ˆ
rB
|∇v|2,

we deduce ˆ
B
|∇v1|2 . r−d

ˆ
rB
|∇v|2. (3.15)

In order to estimate v2, we start from the corresponding energy estimateˆ
rB
|∇v2|2 .

ˆ
B
|∇v1|2.

Combined with (3.15), this yields the claim (3.14) by the triangle inequality.

Step 5. Comparison of whole-space and of Dirichlet single-inclusion problems: proof that
for all n ∈ S we have ˆ

B(xn)
|∇(ψe,n − ψ◦e)|2 . ρ−2dn . (3.16)

For n ∈ S, the difference δψe,n := ψe,n−ψ◦e,n satisfies δψe,n|Vn ∈ ψe,n +H1
0 (Vn) and, in the

weak sense,
−∇ ·A∇δψe,n = 0, in Vn. (3.17)

The mean-value property (3.14) on Bρn(xn) ⊂ Vn then yieldsˆ
B(xn)

|∇δψe,n|2 . ρ−dn

ˆ
Bρn (xn)

|∇δψe,n|2 ≤ ρ−dn

ˆ
Vn

|∇δψe,n|2. (3.18)

Given a smooth cut-off χn such that

χn|B 1
2 ρn

(xn) = 0, χn|Rd\Bρn (xn) = 1, |∇χn| . ρ−1n ,

the Dirichlet problem (3.17) for δψe,n implies the energy estimateˆ
Vn

|∇δψe,n|2 .
ˆ
Vn

|∇(χnψe,n)|2,
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and thus, as the single-inclusion solution ψe,n enjoys the same decay properties as in (2.5),
we deduce ˆ

Vn

|∇δψe,n|2 . ρ−dn .

Combined with (3.18), this proves the claim (3.16).

Step 6. Conclusion.
Starting from (3.3) and comparing single-inclusion solutions to their Dirichlet version ψ◦e ,
we have∣∣Āe− (A1e+ ϕÂ2e)

∣∣ . E
[
1B(P)|∇(φe − ψ◦e)|

]
+ E

[
1B(P)\B̃(P)

]
+ E

[∑
n∈S

1B(xn)|∇(ψe,n − ψ◦e)|
]
.

Using (3.7) to estimate the first right-hand side term, appealing to (3.2) together with (3.16)
in form of

E
[∑
n∈S

1B(xn)|∇(ψe,n − ψ◦e)|
]

= E
[∑
n∈S

10∈B(xn)

|B|

ˆ
B(xn)

|∇(ψe,n − ψ◦e)|
]

. E
[∑
n∈S

10∈B(xn)

|B|
ρ−dn

]
,

and recalling ρn ≥ 1 for n ∈ S, we deduce∣∣Āe− (A1e+ ϕÂ2e)
∣∣ . E

[∑
n

10∈B(xn)(1 + ρn)−d
]

+ E
[
1B(P)\B̃(P)

]
. (3.19)

It remains to evaluate the two right-hand side terms. For that purpose, we appeal to the
following observation that we first made in [11], for which a short proof is included below:
for any non-increasing function g ∈ L∞(R+) with g(r) ↓ 0 as r ↑ ∞, there holds

E
[∑

n

10∈B(xn)g(ρn)

]
.

ˆ ∞
1
2
`
|g′(r)|

(
(λ2r

d) ∧ λ
)
dr. (3.20)

Applying this to g(r) = (1 + r)−d, we find

E
[∑

n

10∈B(xn)(1 + ρn)−d
]
.

ˆ ∞
1
2
`

(1 + r)−d−1
(
(λ2r

d) ∧ λ
)
dr

. (λ2 ∧ λ) log
(
2 + λ

λ2(1+`)d

)
.

Applying it to g(r) = 1r<1, we further get

E
[
1B(P)\B̃(P)

]
= E

[∑
n

10∈B(xn)1ρn<1

]
. λ2 ∧ λ.

Combined with (3.19), this concludes the proof of (2.11).

Finally, for completeness, we include a short proof of (3.20). For that purpose, we start
by rewriting the left-hand side as

E
[∑

n

10∈B(xn)g(ρn)

]
=

ˆ ∞
0

g(r) dΛ(r), (3.21)
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where the positive measure Λ on R+ is defined by its distribution function

Λ([0, r]) := E
[∑

n

10∈B(xn)1ρn≤r

]
= E

[∑
n

1|xn|<1 1∃m6=n: |xm−xn|≤2r

]
.

By definition of the minimal length ` of the point process, cf. (2.6), note that Λ([0, r]) = 0
for r < 1

2`. Moreover, we can bound

Λ([0, r]) ≤ E
[∑

n

1|xn|<1

]
= λ|B|,

and alternatively, for r ≥ 1
2`, by definition of the second-order intensity, cf. (2.8),

Λ([0, r]) ≤ E
[ ∑
n6=m

1|xn|<1 1|xm−xn|≤2r

]
=

¨
B×B2r

f2(x, x+ y) dxdy

= (2r)−d
¨
B2r×B2r

f2(x, x+ y) dxdy . λ2r
d.

Combining these estimates yields for all r ≥ 0,

Λ([0, r]) . (λ2r
d) ∧ λ. (3.22)

Under our assumptions on g, an integration by parts yieldsˆ ∞
0

g(r) dΛ(r) = −g(0)Λ({0}) +

ˆ ∞
0
|g′(r)|Λ([0, r]) dr.

As g is nonnegative, the first right-hand side term can be dropped and the claim (3.20)
follows in combination with (3.21) and (3.22). �
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