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Abstract. Consider the wave equation with heterogeneous coefficients in the
homogenization regime. At large times, the wave interacts in a nontrivial way
with the heterogeneities, giving rise to effective dispersive effects. The main
achievement of the present work is a new ansatz for the long-time two-scale ex-
pansion inspired by spectral analysis. Based on this spectral ansatz, we extend
and refine all previous results in the field, proving homogenization up to optimal
timescales with optimal error estimates, and covering all the standard assump-
tions on heterogeneities (both periodic and stationary random settings).
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1. Introduction

1.1. General overview. Let d ≥ 1 be the space dimension and let a be a symmetric
coefficient field on Rd that satisfies the boundedness and ellipticity properties

|a(x)ξ| ≤ |ξ|, ξ · a(x)ξ ≥ λ|ξ|2, for all x, ξ ∈ Rd, (1.1)

for some λ > 0. We shall consider both the case when a is periodic and the case when
a is a stationary ergodic random field (in the latter case, we restrict to a Gaussian
model for illustration, cf. Definition 1.3). Given an impulse f ∈ C∞c ((0,∞); L2(Rd)),
we consider the ancient solution of the associated linear wave equation{

(∂2
t −∇ · a( ·ε )∇)uε = f, in R× Rd,

uε = f = 0, for t < 0, (1.2)

in the homogenization regime 0 < ε � 1, and we are interested in the accurate
description of the long-time behavior of the flow. The reason why we focus on ancient
solutions (with uε = f = 0 for t < 0) is to ensure the well-preparedness of the wave
and to avoid propagating time oscillations; see the discussion in Section 1.6. Note that
we can also consider the case of strongly elliptic systems up to obvious modifications.
It is however crucial that coefficients be symmetric (to avoid exponentially growing
modes in the Floquet-Bloch theory).

1



2 M. DUERINCKX, A. GLORIA, AND M. RUF

On short timescales t = O(1), standard theory [7] ensures that the flow can be ap-
proximated to leading order by the ancient solution of a homogenized wave equation,{

(∂2
t −∇ · ā∇)ū = f, in R× Rd,

ū = f = 0, for t < 0, (1.3)

where the (constant) effective coefficient ā is the same as for the homogenization
of the corresponding steady-state problem. This means that homogenization and
time evolution decouple to leading order on short timescales. As first understood
by Santosa and Symes [25], this is however no longer the case on longer timescales:
more precisely, a non-trivial interaction between homogenization and time evolution
appears as soon as t ≥ O(ε−2) in the periodic setting, leading to a dispersive correction
to the naïvely homogenized wave equation (1.3).

In the periodic setting, the first rigorous analysis of this phenomenon is based on
spectral theory, more specifically on Floquet–Bloch theory, and is due to Lamacz [23]
in one space dimension, and to Dohmal, Lamacz, and Schweizer [9, 10] in higher di-
mension. They proved the convergence to some suitable dispersive homogenized wave
equation up to times t� ε−3. Due to the use of the Floquet–Bloch theory, it was
not clear that this approach could be applied beyond the periodic setting to other
standard frameworks for homogenization (such as quasi-periodic or random coeffi-
cient fields). To treat such cases, Benoit and the second author developed in [5] an
approximate version of the Floquet–Bloch theory, which was inspired by [2] and by
the observation that the derivative of the Bloch wave with respect to the wave number
at 0 is a multiple of the standard corrector in homogenization. Extending this to all
orders, [5] introduced a notion of ‘Taylor–Bloch waves’, which approximately diago-
nalize the elliptic operator −∇ · a∇ at low wavenumber. In contrast to the standard
Floquet–Bloch analysis, this approximate spectral approach is easily transferred to
the random setting as it does not rely on the existence of exact Bloch waves (see [14]
for an extension of these ideas to other regimes). In the periodic case, this allowed
the authors of [5] to derive a whole hierarchy of higher-order homogenized equations
that are valid to leading order up to times t ≤ O(ε−`) for any ` ≥ 0. These higher-
order homogenized equations are well-posed up to truncating high-frequencies. In the
random case, they also managed to cover the case of random coefficient fields, for
which a homogenized description can only be found up to some maximal timescale
t = O(ε−`∗). Although this analysis allows reaching long timescales, it does not pro-
vide approximations with optimal accuracy. There is indeed a strong limitation in the
analysis: since the impulse f in equation (1.2) is not adapted to O(ε) oscillations of
the coefficients, Bloch waves at low wave number only describe the solution to leading
order, and Bloch waves at higher wave number should further be taken into account
for a finer description. The main difficulty is that Bloch waves at higher wave number
are not easily related to “correctors” in homogenization, so that it was unclear how
to improve the accuracy in [5].

Shortly after [5], following a variant of classical two-scale expansion methods [6],
Allaire, Lamacz, and Rauch [3] and Abdulle and Pouchon [24, 1] obtained similar
results in the periodic setting and did improve the accuracy in the description of the
wave flow on long timescales in terms of some two-scale expansion. Interestingly, and
as opposed to the equations obtained by approximate spectral theory, the homog-
enized equations obtained in [3, 24, 1] have to be significantly reformulated several
times before they give rise to a well-posed problem (this is called the “criminal ap-
proximation” in [3]). Because the number of such reformulations increases with the
order of accuracy, and although arbitrarily long times and optimal accuracy can be
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reached, the “infinite-order” homogenized operator they implicitly define cannot be
inverted even for very smooth functions.

On the one hand, approaches inspired by spectral theory are physically-motivated
(for waves equations, the spectrum is of the essence), yield well-posed equations valid
for long times, but so far were limited in terms of accuracy. On the other hand,
approaches based on systematic two-scale expansions allow reaching both long times
and optimal accuracy, but essentially require as many reformulations as the order
of accuracy to obtain a well-posed equation, which prevents one from inverting the
associated “infinite-order” homogenized operator (in other words, the bound on the
homogenization error is not sharp). To sum up, a physically-motivated two-scale
expansion to reach long times and optimal accuracy was still missing.

The main aim of this paper is to introduce a full spectral two-scale expansion for
(1.2), that extends [5] to any order and allows us to invert the “infinite-order” homog-
enized operator for smooth enough impulses f . This spectral two-scale expansion is
defined in Theorem 1, whereas the infinite-order result is given in Corollary 1. This
infinite-order result shows that the analysis we do here is indeed paying off (it cannot
be obtained using the systematic two-scale expansions of [3, 24, 1]). The main in-
sight of this work is encapsulated in Proposition 1.5, which reformulates the explicit
formula for the solution of (1.2) based on Floquet–Bloch theory in a way that lever-
ages an intrinsic two-scale expansion (which we call spectral two-scale expansion).
A fundamental physical feature of this spectral two-scale expansion is the following:
corrections due to the fact that the impulse f is not adapted to O(ε) oscillations of the
coefficients are local with respect to f , see Remark 1.1. This original feature should be
of interest to the engineering community, as it means in particular that the expansion
actually reduces (essentially) to the much simpler one used in [5] outside the support
of the impulse. The main merit of this work is to work out this spectral two-scale
expansion and its combinatorial structure. The adaptation from the periodic to the
random setting is essentially routine to the expert in stochastic homogenization. It is
however important and shows the limitation of homogenization techniques for waves
in random media — which is why a detailed statement is included in Theorem 3.

Last, we also thoroughly discuss the two-scale approach of [3, 24, 1] (which we call
geometric two-scale expansion, cf. Section 1.5), and we relate it to the new spectral
two-scale expansion. This essentially amounts to comparing redundant hierarchies of
corrector equations, which we do in an algorithmic way. As an output, we improve
the error analysis of [3, 24, 1], cf. (1.12).

The rest of this introduction is organized as follows: In Section 1.2, we state our
main results on long-time homogenization, both in the periodic and in the random set-
tings, comparing the results obtained with the spectral and the geometric approaches.
Next, in Section 1.3, we comment on the important question of the well-posedness
of the formal homogenized equations (cf. (1.5) and (1.10) below). In Sections 1.4
and 1.5, we motivate the special form of the spectral and the geometric two-scale
expansions. We conclude in Section 1.6 with a discussion of the well-preparedness
assumption for (1.2), going beyond the framework of ancient solutions.
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Notation.

• We write ∇ = (∇j)1≤j≤d for the gradient with respect to the space variable, ∂t for
the time derivative, and (Dj)0≤j≤d for the space-time gradient with D0 = ∂t and
Dj = ∇j for 1 ≤ j ≤ d. Given n ∈ N, we denote by ∇n = (∇ni1...in)1≤i1,...,in≤d the
nth-order spatial derivative.

• For a vector field F and a matrix fieldG, we set (∇F )jl = ∇lFj and (∇·G)j = ∇lGjl
(we systematically use Einstein’s summation convention for repeated indices). We
also denote by (∇F )T the pointwise transposed field, (∇F )Tjl = (∇F )lj .

• Given to matrices A,B ∈ Rm×n, we denote by A : B their inner product de-
fined by A : B = AijBij (again using Einstein’s summation convention). For
ξ ∈ Rd and an nth-order tensor T = (Tj1...jn)1≤j1,...,jn≤d, we use the notation
T � ξ⊗n = Tj1...jnξj1 . . . ξjn for the contraction. For two symmetric tensors T =
(Tj1...jn)j1,...,jn and S = (Sj1...jm)j1,...,jm , we define their symmetric tensor prod-
uct T ⊗s S as the (n + m)th-order symmetric tensor characterized by (T ⊗s S) �
ξ⊗(n+m) = (T � ξ⊗n)(S � ξ⊗m) for all ξ ∈ Rd.

• The spatial Fourier transform of a function f defined on Rd is denoted by f̂(ξ) =´
Rd e

−iξ·xu(x) dx, and the inverse Fourier transform by f(x) =
´
Rd e

iξ·xf̂(ξ) d∗ξ

with d∗ξ = (2π)−ddξ.
• We set 〈s〉 := (1 + |s|2)1/2, and we similarly define the pseudo-differential operator
〈∇〉 with Fourier symbol (1 + |ξ|2)

1
2 . More generally, given a continuous map

χ : Rd → R, we define the pseudo-differential operator χ(∇) with Fourier-symbol
χ(ξ). Moreover, given an nth-order tensor T = (Tj1...jn)1≤j1,...,jn≤d we define the
differential operator T �∇n = Tj1...jn∇nj1...jn .
• N stands for the set of nonnegative integers. For a multi-index n = (n1, . . . , nk) ∈
Nk, we let |n| = n1 + . . .+ nk.
• E [·] stands for expectation in the random setting, and is also used in the periodic

setting as a short-hand notation for averaging on the unit cellQ = (− 1
2 ,

1
2 )d, E [X] =ffl

Q
X.

• We denote by C ≥ 1 any constant that only depends on the dimension d and on
the ellipticity constant λ in (1.1). We use the notation . (resp. &) for ≤ C×
(resp. ≥ 1

C×) up to such a multiplicative constant C. We write � (resp. �) for
≤ 1

C× (resp. ≥ C×) up to a sufficiently large multiplicative constant C. We add
subscripts to indicate dependence on other parameters. We use Landau’s big-O
notation in a less rigorous way to indicate the scaling behavior of quantities, where
the precise bounds can depend on many parameters.

• The ball centered at x of radius r in Rd is denoted by Br(x), and we set B(x) =
B1(x), Br = Br(0), and B = B1(0).

• When defining hierarchies of correctors and of homogenized coefficients, we take
the convention that all quantities that are not defined are implicitly set to zero:
e.g. ψn = 0 for n < 0 and b̄n = 0 for n ≤ 0 in Definition 2.1, etc.

1.2. Main results: long-time homogenization. Our main results yield long-time
error estimates for the two-scale expansion of the heterogeneous wave equation (1.2)
with optimal accuracy up to the optimal maximal timescale, with optimal norms (see
below the statements for a precise discussion of optimality). We separately consider
the periodic and the random settings; the case of quasi-periodic coefficient fields could
be treated as well but is skipped for shortness.
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1.2.1. Periodic setting. We start with the case when the coefficient field a is periodic
on the unit cell Q = (− 1

2 ,
1
2 )d. The main result of this contribution provides a two-

scale expansion with optimal error estimate up to times t ≤ O(ε−`) for any ` ≥ 0. This
is obtained by extending the spectral approach of [5] to higher-order accuracy in form
of a suitable two-scale expansion: while the error estimate in [5] saturated at O(ε), we
now reach accuracy O(ε`t), cf. (1.6). The formal homogenized equation (1.5) takes
the form of a dispersive correction of (1.3) and the discussion of its well-posedness
is postponed to Section 1.3; note that the homogenized differential operator in (1.5)
below is necessarily symmetric in the sense that b̄k = 0 for all k even.1 The proof
of this main result is displayed in Section 2, together with the definition of spectral
correctors.

Theorem 1. Let a be Q-periodic. There exist sequences of spectral correctors {ψn}n
and {ζn,m}n,m obtained as solutions of elliptic problems on the periodic cell Q, a
sequence of homogenized tensors {b̄n}n, and a sequence of Fourier multiplier {γn}n
with |γn(ξ)| ≤ 1, cf. Definition 2.1, such that the following holds. For all ` ≥ 1 and
for any impulse f ∈ C∞(R;H∞(Rd)) with f = 0 for t < 0, the ancient solution uε of
the heterogeneous wave equation (1.2) is accurately described by the ‘spectral two-scale
expansion’

S`ε[ū
`
ε, f ] :=

∑̀
n=0

εnψn( ·ε )� γ`(ε∇)∇nū`ε

+ ε3
`−3∑

2m=0

(−1)mε2m
`−3−2m∑
n=0

εnζn,m( ·ε )� γ`(ε∇)∇n+1∂2m
t f, (1.4)

where ū`ε is an ancient solution of the following formal homogenized equation on
R× Rd, in one of the meanings provided in Lemma 2.10,

∂2
t ū

`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇ū`ε = f +O(ε`). (1.5)

(Here, ψn is an nth-order tensor field, ζn,m is an (n+ 1)th-order tensor field, and b̄k

is a matrix-valued (k−1)th-order tensor — see the notation section for the contraction
� of tensors of the same order.) More precisely, we have the following error estimate:
for all ` ≥ 1 and t ≥ 0,

‖utε − S`ε[ū`;tε , f t]‖L2(Rd) + ‖D(utε − S`ε[ū`;tε , f t])‖L2(Rd) (1.6)

≤ (εC)`〈t〉 ‖〈D〉C`f‖L1((0,t);L2(Rd)). ♦

Remark 1.1. The spectral two-scale expansion (1.4) has an important property of
physical interest: the second sum contains a series of terms that are all local with
respect to the impulse f , and this local contribution vanishes outside the support of f .
This specific form for the expansion owes to the Bloch wave analysis of Section 1.4.
It also illustrates the superiority of the present analysis over [5]: although outside the
support of the impulse the expansion in [5] has essentially the same form as (1.4) (up
to the pseudo-differential operator γ`(ε∇)), it does not reach accuracy beyond the
order O(ε). ♦

1This is a consequence of the fact this operator appears as the homogenization of the self-adjoint
wave operator; see [5, Proposition 1] or our direct proof of Proposition 3.5 below.
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Remark 1.2. The above two-scale expansion (1.4) involves the pseudo-differential
operator γ`(ε∇). Although convenient in the analysis, it might not be so in practice
(e.g. for numerical purposes). As shown in (2.6), we can expand γ`(ε∇) = 1 +∑∞
k=2 ε

kγk` �∇k for some explicit tensors {γk` }k, so that for the purpose of (1.6) it can
be approximated to the required accuracy O(ε`) by a finite-order differential operator.
Note that the pseudo-differential operator has some intrinsic spectral interpretation,
playing the role of a normalization of Bloch waves, cf. Section 1.4. ♦

The scaling ε`〈t〉 of the error (1.6) is optimal. This can be seen in this periodic
setting on the explicit spectral formula (1.24) for the solution (with a first order
Taylor expansion of the time integrand) for a forcing term f compactly supported
in time. The scaling of the error with respect to the norm of f involves the optimal
order of derivatives wrt to ` (we indeed need at least ` derivatives to define ū` – we
have not tried to optimize the multiplicative constant C). In particular it implies
the summability of the two-scale expansion (or the invertibility of the associated
“infinite-order homogenized operator” as pointed out in the introduction) in form of
the following corollary.

Corollary 1. Let a be Q-periodic. Given an impulse f ∈ C∞(R;H∞(Rd)) that decays
as t ↓ −∞ in the sense of

´ 0

−∞ |t|‖〈D〉
kf t‖L2(Rd) dt < ∞ for any k ≥ 0, consider the

unique solution of the associated heterogeneous wave equation{
(∂2
t −∇ · a( ·ε )∇)uε = f, in R× Rd,

limt↓−∞ utε ≡ 0, in Rd.

Then, in terms of the two-scale expansion (1.4), with ū`ε now denoting the correspond-
ing solution of the formal homogenized equation (1.5) in the sense of Lemma 2.10,
we have for all t ∈ R,

‖D(utε − S`ε[ū`;tε , f t])‖L2(Rd) ≤ (εC)`
ˆ t

−∞
(t− s)‖〈D〉C`fs‖L2(Rd) ds. (1.7)

In particular, if for instance the impulse takes the form f t(x) = f1(t)f2(x), where f1

has a smooth and compactly supported Fourier transform on R and where f2 has a
compactly supported Fourier transform on Rd, then the two-scale expansion is summa-
ble in the following sense: for 0 < ε �f 1 small enough (only depending on d, λ, f),
for all T ∈ R,

lim
`↑∞

sup
t≤T
‖D(utε − S`ε[ū`;tε , f t])‖L2(Rd) = 0. (1.8)

♦

For comparison, we display the corresponding result that can be obtained instead
of Theorem 1 when using a more standard “geometric” approach to devise a two-
scale expansion as in [3, 24, 1] (see Section 1.5 for an explanation of the naming
“geometric”). We slightly improve the error estimates of [3] thanks to the use of
suitable flux correctors (see Remark 3.7). Yet, the scaling with respect to ` in the
error estimate (1.11) is much worse than the one in Theorem 1 by a factor ``, thus
showing the advantage of the spectral approach. (In particular, Corollary 1 does
not follow from Theorem 2.) The proof is displayed in Section 3, together with the
definition of hyperbolic correctors.

Theorem 2. Let a be Q-periodic. There exists a sequence of hyperbolic correctors
{φn,m}n,m obtained as solutions of elliptic problems on the periodic cell Q, and there
exists a sequence of homogenized coefficients {ān,m}n,m, cf. Definition 3.1, such that
the following holds. For all ` ≥ 1 and for any impulse f ∈ C∞(R;H∞(Rd)) with
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f = 0 for t < 0, the ancient solution uε of the heterogeneous wave equation (1.2) is
accurately described by the ‘hyperbolic two-scale expansion’

H`
ε [v̄

`
ε] :=

∑̀
n=0

`−n∑
m=0

εn+mφn,m( ·ε )�∇n∂mt v̄`ε, (1.9)

where v̄`ε is an ancient solution of the following formal homogenized equation on
R × Rd, up to a suitable revamping, cf. (3.7), in one of the meanings provided in
Lemma 2.10,

∂2
t v̄
`
ε −∇ ·

(∑̀
n=1

`−n∑
m=0

ān,m � (ε∇)n−1(ε∂t)
m
)
∇v̄`ε = f +O(ε`). (1.10)

(Here, φn,m is an nth-order tensor and ān,m is a matrix-valued (n−1)th-order tensor.)
More precisely, we have the following error estimate: for all ` ≥ 1 and t ≥ 0,

‖utε −H`
ε [v̄

`;t
ε ]‖L2(Rd) + ‖D(utε −H`

ε [v̄
`;t
ε ])‖L2(Rd) (1.11)

≤ (εC`)`〈t〉 ‖〈D〉C`〈εCD〉`
2

f‖L1((0,t);L2(Rd)). ♦

It is instructive to compare spectral and geometric two-scale expansions (1.4)
and (1.9). Outside the support of f , (1.4) provides an approximation of uε to order
O(ε`) by a sum of `+ 1 terms, whereas (1.9) reaches a similar order of approximation
with a sum of 1

4 (` + 1)(` + 4) terms (note that φn,m vanishes for m odd, cf. Defini-
tion 3.1). This difference between O(`) and O(`2) terms in the expansions illustrates
the more intrinsic character of the spectral two-scale expansion and its superiority
in terms of estimates. There is obviously a link between spectral and hyperbolic
correctors, and spectral correctors {ψn, ζn,m}n,m can indeed be recovered as linear
combinations of hyperbolic correctors {φn,m}n,m with coefficients that are nonlin-
ear functions of hyperbolic homogenized coefficients {ān,m}n,m. Working out the
precise algorithmic relation between the spectral and geometric approaches is quite
involved and necessarily algorithmic. This is the subject of Section 4. In particular,
in combination with Theorem 1, one can improve (1.11) a posteriori to

‖utε −H`
ε [v̄

`;t
ε ]‖L2(Rd) + ‖D(utε −H`

ε [v̄
`;t
ε ])‖L2(Rd) ≤ (εC)`〈t〉 ‖〈D〉C`f‖L1((0,t);L2(Rd)),

(1.12)
thus removing the spurious factor ``. This constitutes a significant strengthening
of the error analysis of [3] and could not be obtained from the geometric two-scale
expansion approach only.

1.2.2. Random setting. We turn to the case of a stationary ergodic random coefficient
field a. For simplicity and illustration, we shall focus on the following Gaussian model.

Definition 1.3. The coefficient field a is said to be Gaussian with parameter β > 0 if
it has the form a = h(G) for some h ∈ Lip(Rk)d×d with k ≥ 1 and for some Rk-valued
centered stationary Gaussian random field G such that the covariance function

c(x) := E [G(x)⊗G(0)] , c : Rd → Rk×k,
has β-algebraic decay at infinity, |c(x)| ≤ (1 + |x|)−β . ♦

The analysis of Theorem 1 can be repeated in this Gaussian setting, and leads to
the following two-scale expansion result with optimal error estimate up to the optimal
maximal timescale. Note that the maximal timescale depends on the decay rate β
for correlations and saturates in case of integrable decay β > d (which corresponds
to the strongest mixing possible in the Gaussian setting and yields the central limit
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theorem scaling for large-scale averages of the coefficients). This result extends [5]
to higher-order accuracy. The proof is displayed in Section 2.8. Exactly as in the
periodic case above, a corresponding result could also be obtained in terms of the
geometric two-scale expansion; we skip the detail for shortness.

Theorem 3. Let a be Gaussian with parameter β > 0 in the above sense, and define

`∗ := dβ∧d2 e.

We can construct spectral correctors {ψn}n≤`∗ and {ζn,m}n+2m≤`∗−3 as well-behaved
solutions of some hierarchy of elliptic problems on the probability space, homogenized
tensors {b̄n}n≤`∗ , and a Fourier multiplier γ` with |γ`(ξ)| ≤ 1, cf. Appendix A, such
that the following holds. For any impulse f ∈ C∞(R;H∞(Rd)) with f = 0 for t < 0,
the ancient solution uε of the heterogeneous wave equation (1.2) is accurately described
by the corresponding spectral two-scale expansion S`ε[ū`ε, f ] given in (1.4), where ū`ε is
an ancient solution of the corresponding formal homogenized equation (1.5) in one of
the meanings provided in Lemma 2.10. More precisely, we have the following error
estimate: for all t ≥ 0 and q <∞,

‖utε − S`∗ε [ū`∗;tε , f t]‖Lq(Ω;L2(Rd)) + ‖D(utε − S`∗ε [ū`∗;tε , f t])‖Lq(Ω;L2(Rd))

.q ‖〈·〉〈D〉C`f‖L1(R;L2(Rd)) ×



〈t〉ε d2 |log ε| 12 : β > d, d even,
〈t〉ε d2

(
〈t〉 12 ∧ ε− 1

2

)
: β > d, d odd,

〈t〉ε d2 |log ε| : β = d, d even,
〈t〉ε d2

(
(〈t〉|log ε|) 1

2 ∧ ε− 1
2

)
: β = d, d odd,

〈t〉ε
β
2 |log ε| 12 : β < d, β ∈ 2N,

〈t〉ε
β
2

(
〈t〉1−{

β
2 } ∧ ε−{

β
2 }
)

: β < d, β /∈ 2N,

with the short-hand notation {β2 } = β
2 − b

β
2 c ∈ [0, 1) for the fractional part of β2 . ♦

For short times t = O(1), in the setting of integrable covariance β > d, the above
two-scale expansion error estimate is O(εd/2) (up to a logarithmic correction in even
dimensions). This is optimal and random fluctuations of uε become dominant beyond
this scaling since fluctuations naturally have the scaling O(εd/2) of the central limit
theorem, cf. e.g. [13]. For longer times, the two-scale expansion error further depends
on whether the dimension is odd or even due to the growth of correctors: For β > d,
the two-scale expansion error remains negligible � 1, in the sense that the wave can
be accurately described in terms of some homogenized equation, only provided that

t�


ε−

1
3 : d = 1,

ε−
d
2 |log ε|− 1

2 : d even,
ε−

d−1
2 : d odd > 1.

(1.13)

Up to such timescales, the above result can be used in particular to derive ballistic
transport properties of the wave, see [5, 14], as well as to derive spectral information
in a suitable low-energy regime, see [12]. Although the two-scale expansion cannot be
pushed further in general (except in the case of very specific structure of the coefficient
field, see e.g. the remark above Corollary 1.3 in [12]), ballistic transport could hold
for longer times (see e.g. the case of matched impedance in [26]).

Remarks 1.4 (Extensions).
• Nontrivial initial data: In Theorems 1 and 3, we focus on well-prepared data, or

equivalently, on ancient solutions of the heterogeneous wave equation, cf. (1.2). If
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we rather consider the initial-value problem (∂2
t −∇ · a( ·ε )∇)zε = f, in R+ × Rd,

zε|t=0 = u◦, in Rd,
∂tzε|t=0 = v◦, in Rd,

with initial data u◦, v◦ ∈ L2(Rd), then, because of ill-preparedness, an O(ε) contri-
bution with almost-periodic time oscillations with O(ε−1) frequency is expected to
appear and to maintain forever: this is formally described in Section 1.6 below and
shows that a two-scale description cannot hold beyond accuracy O(ε). This issue
is naturally by-passed by rather considering the time-averaged solution

ztε,θ(x) :=

ˆ ∞
0

θ(t− s) zsε(x) ds, for some θ ∈ C∞c (R).

Indeed, setting t0 := inf(supp θ), an integration by parts ensures that zε,θ is the
ancient solution of{

(∂2
t −∇ · a( ·ε )∇)zε,θ = θ′(t)u◦ + θ(t)v◦ + fθ, in R× Rd,

ztε,θ = 0, for t < t0,
(1.14)

in terms of the time-averaged impulse f tθ(x) :=
´∞

0
θ(t − s) fs(x) ds. Hence, an

effective approximation for the time-averaged solution zε,θ is obtained as a direct
consequence of Theorems 1 and 3 for ancient solutions. Another way to solve this
issue is to consider oscillating initial data (u◦ε, v

◦
ε ) in form of a spectral two-scale

expansion.

• Heterogeneous mass density: As in [3], we may replace ∂2
t by ρ(xε )∂2

t in the wave
equation (1.2). Provided that the weight function ρ satisfies the uniform non-
degeneracy condition 1

C0
≤ ρ(x) ≤ C0 for some constant C0 > 0, it does not change

much in the analysis once the definitions of correctors are suitably adapted. The
necessary changes are transparent and we skip the detail for shortness ♦

1.3. Well-posedness of homogenized equations. We start by discussing the for-
mal homogenized equation (1.5) obtained with the spectral approach, where we recall
that b̄k = 0 for all k even. The obstacle to the well-posedness of this equation is the
lack of ellipticity of the operator

−∇ ·
(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇, (1.15)

because of dispersive corrections. Indeed, the next-order homogenized coefficient b̄3

can be proved to be non-negative, cf. [25], so that equation (1.5) is ill-posed in general.
This is not new to homogenization, and a similar difficulty occurs in the elliptic setting
when studying higher-order two-scale expansions, see e.g. [6, 15]. In this case, one
typically uses an inductive method, which, for the wave equation, would read as
follows: for ` ≥ 1, set w̄`ε :=

∑`
k=1 ε

k−1w̃k, where w̃1 is the solution of{
(∂2
t −∇ · ā∇)w̃1 = f, in R× Rd,

w̃1 = f = 0, for t < 0,

and where for 2 ≤ k ≤ ` we inductively define w̃k as the unique solution of{
(∂2
t −∇ · ā∇)w̃k =

∑k
j=2∇ · (b̄

j �∇j−1)∇w̃k+1−j , in R× Rd
w̃k = 0, for t < 0.

(1.16)
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It is easily checked that this w̄`ε indeed satisfies (1.5). However, as originally observed
in [3] (in the similar setting of (1.10)), this notion of solution displays an immoderate
growth in time, which destroys any hope of using it for an accurate description of (1.2)
on long timescales. More precisely, the energy norm ‖∇w̄`;tε ‖L2(Rd) is expected to
behave like O(〈εt〉`−1), which would make the approximation uε ∼ S`ε[w̄`ε, f ] trivially
false on long timescales t � ε−1. This time growth (also called secular growth)
appears as a snowball effect as corrector terms in the above hierarchy of equations for
{w̃k}k≥1 have the preceding profiles as sources.

Instead of this naïve inductive method, one must look for another way to rearrange
equation (1.5). In fact, as ā ≥ λ Id, we note that the Fourier symbol of the opera-
tor (1.15) remains positive in a fixed Fourier support for ε small enough. Therefore,
if the spatial Fourier transform of the impulse f is compactly supported (uniformly
in time), then for ε small enough the Duhamel formula allows us to define a unique
solution that keeps the same compact support in Fourier space at all times. Without
this additional assumption on f , the operator (1.15) needs to be modified at high
frequencies O( 1

ε ) to ensure ellipticity, and there are different ways to proceed. In the
following we discuss the three different regularizing terms that we consider in The-
orem 1. The resulting solutions satisfy (1.5) up to an error of the order O(ε`). We
briefly describe high-frequency filtering, higher-order regularization, and the so-called
Boussinesq trick: these three approaches happen to be essentially equivalent up to
higher-order O(ε`) errors, and we refer to Section 2.3 for the details.

(I) High-frequency filtering:
In [3], the authors proposed to use a low-pass truncation, which amounts to
filtering out high frequencies of the impulse: equation (1.5) is then replaced by

∂2
t ū

(I),`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇ū(I),`

ε = χ(εα∇)f,

for some α ∈ (0, 1) and some χ ∈ C∞c (Rd) with χ| 1
2B

= 1 and χ|Rd\B = 0.

(II) Higher-order regularization:
The alternative method used in [5] amounts to regularizing the operator (1.15) by
adding a higher-order positive operator κ`(ε|∇|)`(−4), where the factor κ` > 0
is chosen for instance as the smallest value that ensures the following uniform
positivity,

ξ ·
(
ā +

∑̀
k=2

b̄k � (iξ)⊗(k−1) + κ`|ξ|`
)
ξ ≥ 1

2λ|ξ|
2, for all ξ ∈ Rd.

(III) Boussinesq trick:
This last method proceeds by rearranging the ill-posed equation (1.5) and is in-
spired by the standard perturbative procedure to rearrange the ill-posed Boussi-
nesq equation in the theory of water waves, see e.g. [8]. This so-called Boussinesq
trick was first adapted to the present setting by Lamacz [23] in one space dimen-
sion for ` = 3. It was extended in [9] to higher dimension for ` = 3, and further
extended to all orders ` ≥ 3 by Abdulle and Pouchon [1]. It is somehow of
the same spirit as the higher-order regularization above, but with the additional
twist that it further uses the wave equation itself. This approach is slightly
more intrinsic than the previous two ones, but it also has the disadvantage of
involving derivatives of the impulse. Let us illustrate the main idea for ` = 3.
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We first choose κ3 > 0 as the smallest value such that

ξ · (b̄3 � (iξ)⊗2)ξ + κ3|ξ|2(ξ · āξ) ≥ 0, for all ξ ∈ Rd.

We then decompose the operator (1.15) as

−∇ ·
(
ā + b̄3 � (ε∇)2

)
∇

= −∇ ·
(
ā(1− κ3ε

24) + b̄3 � (ε∇)2
)
∇− κ3ε

24(∇ · ā∇),

and we use that at leading order the equation (1.5) yields

∇ · ā∇ū3
ε = ∂2

t ū
3
ε − f +O(ε2),

to the effect that one may reformulate (1.5) as

∂2
t (1− ε2κ34)ū(III),3

ε −∇·
(
ā(1−κ3ε

24) + b̄3� (ε∇)2
)
∇ū(III),3

ε = (1− ε2κ34)f,

up to an error of order O(ε4). By our choice of κ3, this equation is well-posed.
This method extends to arbitrary order and we refer to Section 2.3 for the
details.

Next, we turn to the well-posedness of the corresponding formal homogenized equa-
tion (1.10) obtained for the geometric two-scale expansion. While for equation (1.5)
the difficulty only came from the lack of ellipticity of the spatial differential opera-
tor (1.15), the existence theory for equation (1.10) is much more delicate as this equa-
tion involves higher-order mixed space-time derivatives. Just as for equation (1.5),
the inductive method (1.16) used in the elliptic setting leads to secular growth of the
approximate solution and is of no use in the present situation. Before being able to
use high-frequency filtering, higher-order regularization, or the Boussinesq trick, we
need to get rid of higher-order mixed space-time derivatives in (1.10), which can be
done by iteratively using the equation itself (quite in the spirit of the above presen-
tation of the Boussinesq trick for ` = 3). This is called the criminal approximation
in [3]. The thorough revisiting of this idea is the object of Section 3.3: more precisely,
if v̄`ε solves (1.10), then it is shown to satisfy an equation of the form

∂2
t v̄
`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇v̄`ε = f + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f +O(ε`),

where {b̄n}n coincides with the spectral homogenized coefficients and where {c̄n}n is
some family of nonlinear combinations of the hyperbolic coefficients {ān,m}n,m; see
Lemma 3.8 for a precise statement. Now the differential operator in the left-hand
side of this equation is the same as in (1.5): it displays a lack of ellipticity, but the
same approach to well-posedness can be repeated, using either high-frequency filter-
ing, higher-order regularization, or the Boussinesq trick. Note that the right-hand
side in the above reformulation of the homogenized equation (1.10) differs from the
homogenized equation (1.5) obtained with the spectral approach, but there is no con-
tradiction as the spectral and hyperbolic two-scale expansions also differ: this demon-
strates the actual complexity of the link between spectral and hyperbolic correctors;
see Section 4.
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1.4. Spectral approach and two-scale expansion. This section constitutes the
main insight of this contribution: the form of the spectral two-scale ansatz (1.4),

uε ∼ S∞ε [ūε, f ] :=
∑
n≥0

εnψn( ·ε )� γ(ε∇)∇nūε

+ ε3
∑
n,m≥0

(−1)mεn+2mζn,m( ·ε )� γ(ε∇)∇n+1∂2m
t f. (1.17)

For that purpose, we focus on the periodic setting and first proceed to a fine Floquet–
Bloch analysis of the solution uε of the heterogeneous wave equation (1.2). Starting
point is an application of the Floquet transform, which is known to transform the
heterogeneous wave operator −∇ · a( ·ε )∇ on L2(Rd) into a family of fibered wave
operators on the periodic Bloch space L2(Q).

When embedding the periodic cell into the physical space Rd, there is an indeter-
minacy related to the choice of the origin (q ∈ Q), which we consider as an additional
variable. Averaging over this variable in Q allows us to place ourselves in the set-
ting of continuum stationarity – thus unifying the notation with the random setting.
(All the upcoming results actually hold for q fixed in the periodic setting.) Hence,
as in [5, 14, 16], we enrich the structure by considering shifts of the periodic coeffi-
cient field and by augmenting the physical space Rd to include such shifts: we define
ũε ∈ L∞loc(R+; L2(Rd ×Q)) such that, for all q ∈ Q, ũε(·, q) is the ancient solution of
the following shifted wave equation,{ (

∂2
t −∇ · a( ·ε + q)∇

)
ũε(·, q) = f, in R× Rd,

ũε(·, q) = f = 0, for t < 0.
(1.18)

In this augmented setting, the ε-Floquet transform [14, 16] of an element w̃ ∈ L2(Rd×
Q) is formally defined as

(Vεξ w̃)(q) :=

ˆ
Rd
e−iξ·y w̃(y, q − y

ε ) dy,

which is Q-periodic with respect to q. The Fourier inversion formula takes on the
following guise, cf. [14, Lemma 2.2],

w̃(x, q) =

ˆ
Rd
eiξ·x (Vεξ w̃)(xε + q) d∗ξ. (1.19)

This leads to a direct integral decomposition2

L2(Rd ×Q) =

ˆ ⊕
Rd

L2(Q) eξ d
∗ξ

via Fourier modes eξ(x) := eiξ·x. Under this decomposition, the above wave equa-
tion (1.18) is equivalent to the following family of wave equations on the unit cell Q:
for all ξ ∈ Rd,{ (

∂2
t − 1

ε2 (∇+ iεξ) · a(∇+ iεξ)
)
Vεξ ũε = f̂(ξ), in R×Q,

Vεξ ũε = f̂(ξ) = 0, for t < 0,

where we recall that f̂ stands for the spatial Fourier transform of f . Solving this equa-
tion by means of Duhamel’s formula and using (1.19) to invert the Floquet transform,

2Or, more precisely, a family of direct integral decompositions parameterized by ε, which changes
the way the unit cell Q is embedded in Rd.
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we get

ũtε(x, q) =

ˆ t

0

ˆ
Rd
eiξ·x

(
sin
(

1
ε (t− s)(Lεξ)1/2

)
1
ε (Lεξ)1/2

1

)
(xε + q) f̂s(ξ) d∗ξ ds, (1.20)

with the short-hand notation

Lξ := −(∇+ iξ) · a(∇+ iξ). (1.21)

In other words, the solution can be decomposed as a superposition of fibered evolutions
on L2(Q), and, since the force f is not oscillating, only the fibered spectral measures
associated with the constant function 1 matter. It remains to evaluate the space-time
oscillating factor in formula (1.20) and to extract an effective behavior as ε� 1.

Proposition 1.5. Let a be Q-periodic, let the impulse f ∈ C∞(R;H∞(Rd)) satisfy
f = 0 for t < 0, and assume for simplicity that the spatial Fourier transform f̂ is
compactly supported uniformly in time. For all ξ, the self-adjoint operator Lξ on
L2(Q) defined in (1.21) has discrete spectrum and we denote its smallest eigenvalue
by λξ ≥ 0. For |ξ| � 1, this eigenvalue is simple and we denote by wξ a corresponding
normalized eigenfunction. We then set

πξ1 := E [wξ]wξ, and π⊥ξ 1 := 1− πξ1, (1.22)

we note that the map Rd → R+ × L2(Q) : ξ 7→ (λξ, πξ1) is analytic for |ξ| � 1, and
that for |ξ| . 1 and ε� 1 it holds that

| 1
ε2λεξ| . |ξ|

2, and ‖πεξ1− 1‖L2(Q) . ε|ξ|. (1.23)

With this notation, for ε �f 1 (depending on the Fourier support of f), the above
formula (1.20) for ũε can be expanded as follows: for all n ≥ 1,

ũtε(x, q) =

ˆ
Rd
eiξ·x (πεξ1)(xε + q)

(ˆ t

0

sin
(
(t− s)( 1

ε2λεξ)
1/2
)

( 1
ε2λεξ)

1/2
f̂s(ξ) ds

)
d∗ξ

+ ε3
n−1∑
m=0

(−1)mε2m

ˆ
Rd
eiξ·x Ψm

ξ,ε(
x
ε + q) ∂2m

t f̂ t(ξ) d∗ξ

+O(ε2(n+1)) ‖〈∂t〉2n+1f̂‖L1 ∩L∞(R;L1(Rd)), (1.24)

in terms of
Ψm
ξ,ε := (Lεξ)−m−1 1

επ
⊥
εξ1, (1.25)

which for |ξ| . 1 is analytic with respect to ε� 1 and satisfies ‖Ψm
ξ,ε‖L2(Q) .m |ξ|. ♦

We emphasize the structure of the above expansion (1.24). Since in (1.20) only
the fibered spectral measures associated with the constant function w0 ≡ 1 (which is
the ground state of L0) matter, the main contribution in (1.24) is naturally given by
the perturbed ground state wεξ ∝ πεξ1. However, as the impulse f is not oscillating,
hence is not adapted to oscillations of the ground state wεξ, higher modes also create
another non-vanishing contribution. In other words:
— The first term in (1.24) corresponds to the contribution of the ground state of the

fibered operators {Lξ}ξ and the time dependence is expressed by some effective
evolution determined by the fibered ground eigenvalues {λξ}ξ.

— The second term in (1.24) is only of order O(ε3) and is induced by higher modes.
More precisely, the ill-preparedness of the impulse f creates a non-trivial oscilla-
tory contribution in Duhamel’s formula due to higher modes, which amounts after
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time integration to a contribution that is local with respect to f . In particular,
note that this term vanishes outside the support of f .

For comparison, the Bloch wave approach in [23, 9, 10, 5] rather focused on the first
term in (1.24), thus neglecting the O(ε3) contribution of higher modes, and further
replaced the oscillating factor πεξ1 by a simpler (not normalized) proxy that is easier
to characterize but that yields an additional O(ε) error.

Proof of Proposition 1.5. To evaluate the space-time oscillating factor in (1.20), we
must investigate the spectrum of Lξ in the perturbative regime |ξ| � 1. As this
self-adjoint operator has compact resolvent by Rellich’s theorem, it has discrete spec-
trum. We denote by λξ its smallest eigenvalue, which is nonnegative as Lξ is. Note
that for ξ = 0 the smallest eigenvalue of L0 is λ0 = 0 and is simple (with constant
eigenfunction). Since the perturbation Lξ − L0 is L0-bounded with relative norm
. 1 + |ξ|2, standard perturbation theory [22] together with the discreteness of the
spectrum of L0 ensures that the smallest eigenvalue λξ remains simple for |ξ| � 1
small enough. Moreover, the branch of eigenvalues ξ 7→ λξ is analytic for |ξ| � 1,
and there is a corresponding analytic branch of eigenfunctions. Recall the definition
of the corresponding projectors πξ, π⊥ξ in the statement, and note that π01 = 1, so
that (1.23) follows. Now expanding the constant function 1 with respect to those
projectors, identity (1.20) turns into

ũtε(x, q) =

ˆ
Rd
eiξ·x(πεξ1)(xε + q)

(ˆ t

0

sin
(
(t− s)( 1

ε2λεξ)
1/2
)

( 1
ε2λεξ)

1/2
f̂s(ξ) ds

)
d∗ξ

+

ˆ t

0

ˆ
Rd
eiξ·x

(
sin
(

1
ε (t− s)(Lεξ)1/2

)
1
ε (Lεξ)1/2

π⊥εξ1

)
(xε + q) f̂s(ξ) d∗ξ ds. (1.26)

The first right-hand side term is already of the desired form, cf. (1.24). We turn to the
second term, which captures the contribution of higher modes. Due to the discreteness
of the spectrum, for |ξ| � 1, the operator Lξ has a spectral gap Lξ|=π⊥ξ & 1.
Combined with (1.23), this yields the following bound for (1.25),

‖Ψm
ξ,ε‖L2(Q) .m |ξ|.

For n ≥ 1, noting that iterated integration by parts in the time integral yields for all
λ > 0,

ˆ t

0

sin
(

1
ε (t− s)λ1/2

)
1
ελ

1/2
f̂s(ξ) ds =

n∑
m=0

(
ε2

λ

)m+1
(−∂2

t )mf̂ t(ξ)

−
(
ε2

λ

)n+1
ˆ t

0

cos
(

1
ε (t− s)λ1/2

)
∂s(−∂2

s )nf̂s(ξ) ds,

where we used the vanishing assumption for the impulse at initial time s = 0, it then
follows from functional calculus that

ˆ t

0

ˆ
Rd
eiξ·x

(
sin
(

1
ε (t− s)(Lεξ)1/2

)
1
ε (Lεξ)1/2

π⊥εξ1

)
(xε + q) f̂s(ξ) d∗ξ ds

= ε3
n−1∑
m=0

(−1)mε2m

ˆ
Rd
eiξ·x Ψm

ξ,ε(
x
ε + q) ∂2m

t f̂ t(ξ) d∗ξ

+O(ε2(n+1)) ‖〈∂t〉2n+1f̂‖L1 ∩L∞(R;L1(Rd)).

Inserting this into (1.26) yields the conclusion (1.24). �
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We turn to the applicability of this spectral computation beyond the periodic set-
ting. In case of a stationary ergodic random coefficient field a, a similar Floquet
decomposition (1.20) can be justified, cf. [14, 16], but the corresponding fibered oper-
ators {Lξ}ξ are then defined on L2(Ω), where Ω is the underlying probability space,
and typically have non-discrete spectrum. For instance, the spectrum of L0 = −∇·a∇
on L2(Ω) is expected to be made of a simple eigenvalue at 0 embedded at the bottom
of an absolutely continuous spectrum, cf. [16]. In this setting, the Floquet–Bloch
theory fails and the above perturbative spectral computation cannot be adapted. As
shown in [5, 14], however, an ‘approximate spectral theory’ can be developed: for-
mal Rayleigh–Schrödinger series can be approximately constructed up to a certain
accuracy, leading to approximate Bloch waves that can be used to approximately di-
agonalize the heterogeneous wave operator and describe the flow on long timescales.
Equivalently, we may start from a two-scale ansatz given by the formal ε-expansion
of the spectral formula (1.24), and then use PDE techniques to show that it indeed
provides a good approximation of the flow to a certain accuracy. This approach is
the one we use for the proof of Theorems 1 and 3: it allows us to forget about the
underlying spectral interpretation, which is only used to devise an educated guess for
a two-scale ansatz.

Finally, let us describe the ε-expansion of the spectral formula (1.24), showing
that it takes the form of the spectral two-scale ansatz (1.17), and let us derive the
relevant hierarchy of PDEs for its coefficients. For that purpose, following [5], we
first consider the (not normalized) ground state ψεξ of Lεξ satisfying E [ψεξ] = 1.
Expanding formally

ψεξ ∼
∑
n≥0

εnψ̌nξ , λεξ ∼
∑
n≥1

εnλ̌nξ , (1.27)

and separating powers of ε in the eigenvalue relation Lεξψεξ = λεξψεξ, we find that
the maps ψ̌nξ : Q → C and coefficients λ̌nξ ∈ C are defined inductively by ψ̌0

ξ = 1,
λ̌0
ξ = 0, and for all n ≥ 1,

−∇ · a∇ψ̌nξ = ∇ · (aiξψ̌n−1
ξ ) + iξ · a(∇ψ̌n−1

ξ + iξψ̌n−2
ξ ) +

n∑
k=1

λ̌kξ ψ̌
n−k
ξ , (1.28)

E
[
ψ̌nξ
]

= 0, λ̌nξ = −E
[
iξ · (a∇ψ̌n−1

ξ + aiξψ̌n−2
ξ )

]
.

(Recall that by convention we implicitly set ψ̌nξ ≡ 0 for n < 0.) This hierarchy of
equations uniquely defines {ψ̌nξ , λ̌nξ }n by the Fredholm alternative since by induction
the periodic average of the right-hand side of (1.28) vanishes; cf. Section 2.1. Note that
we find λ̌1

ξ = 0 in agreement with (1.23). Next, we normalize ψεξ to get a normalized
ground state wεξ and we define the corresponding projections πεξ, cf. (1.22),

wεξ =
ψεξ

E [|ψεξ|2]
1/2

, E [wεξ] =
1

E [|ψεξ|2]
1/2

, πεξ1 =
ψεξ

E [|ψεξ|2]
, (1.29)

and, in terms of (1.27),

1
επ
⊥
εξ1 =

1

E [|ψεξ|2]
1
ε

(
− ψεξ + E

[
|ψεξ|2

] )
=

1

E [|ψεξ|2]

∑
n≥0

εn
(
− ψ̌n+1

ξ +

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌kξ

] )
. (1.30)
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We turn to the ε-expansion of {Ψm
ξ,ε}m, cf. (1.25): we write their expansions as

Ψm
ξ,ε ∼

1

E [|ψεξ|2]

∑
n≥0

εnζ̌n,mξ , (1.31)

and it remains to write PDEs to characterize the coefficients {ζ̌n,mξ }n,m. For m = 0,
inserting (1.30) and separating powers of ε in the defining equation

LεξΨ0
ξ,ε = 1

επ
⊥
εξ1,

we find that the maps ζ̌n,0ξ : Q→ C are defined inductively for all n ≥ 0 by

−∇·a∇ζ̌n,0ξ = ∇·(aiξζ̌n−1,0
ξ )+iξ ·a

(
∇ζ̌n−1,0

ξ +iξζ̌n−2,0
ξ

)
−ψ̌n+1

ξ +

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌kξ

]
,

(1.32)
with nontrivial integration constant fixed as

E
[
ζ̌n,0ξ

]
:= −

n∑
k=1

k+2∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+2−l
ξ ζ̌n−k,0ξ

]
. (1.33)

(Recall again that by convention we implicitly set ζ̌n,0ξ ≡ 0 for n < 0.) Again,
these objects are well-defined by induction and the Fredholm alternative since our
choice (1.33) precisely ensures that the right-hand side of (1.32) has vanishing periodic
average; cf. Section 2.1. Next, we argue iteratively for m ≥ 1: starting from the
defining equation

LεξΨm
ξ,ε = Ψm−1

ξ,ε ,

we find that the maps ζ̌n,mξ : Q→ C are defined inductively for all n ≥ 0 by

−∇ · a∇ζ̌n,mξ = ∇ · (aiξζ̌n−1,m
ξ ) + iξ · a

(
∇ζ̌n−1,m

ξ + iξζ̌n−2,m
ξ

)
+ ζ̌n,m−1

ξ , (1.34)

with nontrivial integration constant fixed as

E
[
ζ̌n,mξ

]
:= −(1/λ̌2

ξ)

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ζ̌k,m−1

ξ

]
−

n∑
k=2

k+1∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+1−l
ξ ζ̌n−k,mξ

]
.

(1.35)
Putting all this together, using expansions (1.27) and (1.31), and extracting the

polynomial ξ-dependence of the coefficients in the notation,

ψ̌nξ = ψn� (iξ)⊗n, λ̌n+1
ξ = ξ · (b̄n� (iξ)⊗(n−1))ξ, ζ̌n,mξ = ζn,m� (iξ)⊗(n+1),

the spectral formula (1.24) appears to be precisely equivalent to the spectral two-scale
ansatz (1.17), with Fourier multiplier γ given by

γ(ξ) := E
[
|ψξ|2

]−1
,

and with ūε satisfying the associated formal homogenized equation, cf. (1.5),

∂2
t ūε −∇ ·

(
ā +

∑
n≥2

b̄n � (ε∇)n−1
)
∇ūε ∼ f,

where dispersive corrections correspond to derivatives of the fibered ground states
{λξ}ξ at ξ = 0. We have also derived the PDE hierarchies defining correctors
{ψn, ζn,m}n,m, cf. (1.28), (1.32), and (1.34). For the proof of Theorems 1 and 3,
we replace infinite series by finite sums and show by PDE techniques that these are
still good approximations for the wave flow. In the random setting, just as in the
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elliptic case [18, 4, 21, 15], we can only solve a finite number of the above correc-
tor equations, which is why a homogenized description is only obtained up to some
maximal timescale and accuracy, depending both on space dimension and on mixing
properties of the coefficient field.

1.5. Geometric approach and hyperbolic two-scale expansion. Instead of star-
ting from the above spectral analysis, another way to describe oscillations of the
solution uε of the heterogeneous wave equation (1.2) is to appeal more directly to
two-scale expansion techniques [6] and rather postulate the following natural hyper-
bolic two-scale ansatz,

uε ∼ H∞ε [v̄ε] :=
∑
n,m≥0

εn+mφn,m( ·ε )�∇n∂mt v̄ε, (1.36)

where time and space play essentially symmetric roles and where v̄ε should satisfy
some effective (constant-coefficient) hyperbolic equation. Inserting this ansatz into
the heterogeneous wave equation (1.2) and separating powers of ε, we are led to
defining hyperbolic correctors as Allaire, Lamacz, and Rauch in [3, Definition 2.2].
These correctors can be viewed as a refinement of usual elliptic correctors: for all
n ≥ 0, the nth-order hyperbolic corrector φn,0 and homogenized tensor ān,0 defined
in Section 3 indeed coincide with their elliptic counterparts [6, 21, 15].

As in the elliptic setting, hyperbolic correctors have a natural geometric interpre-
tation. We focus on the periodic case to simplify the presentation. The first corrector
φ1,0, which is the same as in the elliptic setting, is defined to correct Euclidean co-
ordinates x 7→ xi into a-harmonic ones x 7→ xi + φ1,0

i (x): indeed, φ1,0
i is the unique

periodic solution of
−∇ · a(∇φ1,0

i + ei) = 0,

with E
[
φ1,0

]
= 0. The corresponding two-scale expansion H1

ε [v̄] := v̄ + εφ1,0
i ( ·ε )∇iv̄

is then viewed as an intrinsic Taylor expansion of the limiting profile v̄ in terms of
a-harmonic coordinates. In order to describe oscillations with finer accuracy, higher-
order correctors are iteratively defined to correct higher-order polynomials and make
them adapted to the heterogeneous wave operator. More precisely, higher-order cor-
rectors {φn,m}n,m are defined in such a way that, for any polynomial p̄ in space-time
variables x, t, the corrected polynomial

H∞[p̄] :=
∑
n,m≥0

φn,m �∇n∂mt p̄ (1.37)

captures oscillations of the heterogeneous wave operator in the sense that

(∂2
t −∇ · a∇)H∞[p̄]

has no periodic oscillations any longer. In that case, this quantity can automatically
be written as

(∂2
t −∇ · a∇)H∞[p̄] =

(
∂2
t −∇ ·

(∑
n≥1

∑
m≥0

ān,m �∇n−1∂mt

)
∇
)
p̄, (1.38)

for some suitable family {ān,m}n,m of constant tensors; see Proposition 3.6. This
reflects the fact that on large scales the heterogeneous constitutive relation∇u 7→ a∇u
is replaced by the effective relation ∇ū 7→ ā∇ū at leading order, while additional
corrective terms must be included when looking for finer accuracy,

∇ū 7→
(∑
n≥1

∑
m≥0

ān,m �∇n−1∂mt

)
∇ū. (1.39)
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The difference with the elliptic setting is that in the present hyperbolic setting both
space and time variables need to be corrected alike. Comparing to the spectral ap-
proach, note that the presence of mixed space-time derivatives in the resulting ho-
mogenized equation (1.10) leads to additional well-posedness issues: naïve notions of
solution display a secular growth, which was first avoided in [3] as explained at the
end of Section 1.3.

1.6. Ill-prepared data. Up to now, we have focused on well-prepared data, or equiv-
alently, on ancient solutions of the heterogeneous wave equation (1.2). We now briefly
discuss the effect of ill-prepared data by means of Floquet–Bloch theory, which pro-
vides further insight on the claims of Remark 1.4. For that purpose, as in Proposi-
tion 1.5, we assume that the coefficient field a is periodic and that the impulse f has
compactly supported spatial Fourier transform: in this setting, for ε small enough,
the operator Lεξ has discrete spectrum and its lowest eigenvalue λεξ is simple for
all ξ in the Fourier support of f . We then show that, if initial data do not fit spa-
tial oscillations of the ground state, their projection on higher modes propagates and
maintains forever, leading to an O(ε) contribution that consists of a superposition
of typically incommensurate time oscillations with O(ε−1) frequency. This almost-
periodic structure prohibits any approximate description by a two-scale expansion
beyond accuracy O(ε). More precisely, we consider the initial-value problem

(
∂2
t −∇ · a( ·ε + q)∇

)
zε(·, q) = 0, in R+ × Rd,

zε(·, q)|t=0 = u◦, in Rd,
∂tzε(·, q)|t=0 = v◦, in Rd.

By Floquet–Bloch theory, arguing as for (1.26), we now get

zε(x, q)

=

ˆ
Rd
eix·ξ(πεξ1)(xε + q)

(
cos
(
t( 1
ε2λεξ)

1/2
)
û◦(ξ) +

sin
(
t( 1
ε2λεξ)

1/2
)

( 1
ε2λεξ)

1/2
v̂◦(ξ)

)
d∗ξ

+ rε(x, q),

where the remainder rε contains all the effects of initial ill-preparedness,

rε(x, q) :=

ˆ
Rd
eix·ξ

(
cos
(
t( 1
ε2Lεξ)

1/2
)
π⊥εξ1

)
(xε + q) û◦(ξ) d∗ξ

+

ˆ
Rd
eix·ξ

(
sin
(
t( 1
ε2Lεξ)

1/2
)

( 1
ε2Lεξ)1/2

π⊥εξ1

)
(xε + q) v̂◦(ξ) d∗ξ.

Denoting by {νnεξ}n≥0 the non-decreasing sequence of eigenvalues of Lεξ on L2(Q)

(repeated according to multiplicity, with ν1
εξ > ν0

εξ = λεξ), and denoting by {γnεξ}n≥0

a corresponding sequence of normalized eigenfunctions, the above remainder can be
written as

rε(x, q)

=

∞∑
n=1

ˆ
Rd
eix·ξκnεξγ

n
εξ(

x
ε + q)

(
cos
(
t
ε (νnεξ)

1/2
)
û◦(ξ) +

ε sin
(
t
ε (νnεξ)

1/2
)

(νnεξ)
1/2

v̂◦(ξ)

)
d∗ξ,

in terms of κnεξ := E
[
γnεξ
]

= O(εξ). As claimed, this shows that the remainder rε is of
order O(ε) and oscillates both in space and time with O(ε−1) frequency. Moreover,
at a fixed Fourier mode ξ, the time dependence is (typically) almost-periodic, which
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prohibits any approximate description by means of a two-scale expansion beyond
accuracy O(ε).

As explained in Remark 1.4, these complicated oscillations are naturally removed
by taking time averages. In terms of the above remainder rε, this amounts to noting
that, given θ ∈ C∞c (R), we formally have for all λ > 0,

ˆ ∞
0

θ(t− s) cos( sελ
1/2) ds = ε2

∞∑
k=0

ε2k(−1)k+1λ−k−1θ(2k+1)(t),

ˆ ∞
0

θ(t− s)
ε sin( sελ

1/2)

λ1/2
ds = ε2

∞∑
k=0

ε2k(−1)k+1λ−k−1θ(2k)(t),

so that the above flow decomposition is precisely turned into an expansion of the
form (1.24) for the time-averaged flow (1.14).

2. Spectral approach and two-scale expansion

This section is devoted to the definition of spectral correctors and to the proof
of Theorems 1 and 3 and of Corollary 1, including the well-posedness of the formal
homogenized equation (1.5).

2.1. Definition of spectral correctors. We start by recalling the definition of
the spectral correctors {ψn}n and homogenized tensors {b̄n}n, as first introduced
in [5, Definition 2.1] and motivated in Section 1.4, cf. (1.28). We further introduce
Fourier multipliers {γ`}`, which are proxies for the factor E

[
|ψεξ|2

]−1 in (1.29), (1.30),
and (1.31).

Definition 2.1 (Spectral correctors). For all ξ ∈ Rd, we define {ψ̌nξ , λ̌nξ }n≥0 induc-
tively via ψ̌0

ξ = 1, λ̌0
ξ = 0, and for all n ≥ 1 we define ψ̌nξ ∈ H1

per(Q) as the periodic
scalar field that has vanishing average E

[
ψ̌nξ
]

= 0 and satisfies

−∇ · a∇ψ̌nξ = ∇ · (aiξψ̌n−1
ξ ) + iξ · a(∇ψ̌n−1

ξ + iξψ̌n−2
ξ ) +

n∑
k=2

λ̌kξ ψ̌
n−k
ξ , (2.1)

where we have defined

λ̌nξ = −E
[
iξ · a(∇ψ̌n−1

ξ + iξψ̌n−2
ξ )

]
, (2.2)

recalling that we implicitly set ψ̌nξ ≡ 0 for n < 0 for notational convenience. Factoring
out powers of iξ in the above, we may then define the real-valued symmetric tensor
fields {ψn}n and symmetric tensors {b̄n}n via

ψn � (iξ)⊗n = ψ̌nξ , ξ · (b̄n � (iξ)⊗(n−1))ξ = λ̌n+1
ξ . (2.3)

We shall also use the notation ā := b̄1 as the latter coincides with the homogenized
coefficient for the associated elliptic equation. Next, for all ` ≥ 1, we can define the
following Fourier multiplier,

γ`(ξ) := E
[
|
∑`
n=0 ψ

n � (iξ)⊗n|2
]−1

. (2.4)
♦

Remarks 2.2.
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• As the choice (2.2) precisely ensures that the right-hand side of (2.1) has vanishing
average, an iterative use of the Poincaré inequality on the unit cell Q easily yields
the following estimates: for all n,

|b̄n|+ ‖ψn‖H1(Q) ≤ Cn. (2.5)

This ensures in particular the well-posedness of equations (2.1) & (2.2).
• Since by definition we have

E
[∑`

n=0 ψ
n � (iξ)⊗n

]
= 1,

Jensen’s inequality yields

E
[
|
∑`
n=0 ψ

n � (iξ)⊗n|2
]
≥ 1,

which ensures that the definition (2.4) of the Fourier multiplier γ`(ξ) indeed makes
sense and satisfies γ`(ξ) ≤ 1 for all ξ. In addition, in view of (2.5), we can expand,
for |ξ| � 1 small enough,

γ`(ξ) = 1 +

∞∑
k=2

γk` � ξ⊗k, (2.6)

for some coefficients {γk` }k. In addition, this can be truncated to any order n ≥ 0,∣∣∣γ`(ξ)− n∑
k=0

γk` � ξ⊗k
∣∣∣ ≤ (C|ξ|)n+1. (2.7)

♦

• The uniform ellipticity of a, cf. (1.1), ensures that ā = b̄1 is elliptic, and therefore
we have λ̌2

ξ = ξ · āξ ≥ λ|ξ|2 for all ξ ∈ Rd.

As a consequence of the self-adjointness of fibered operators {Lξ}ξ in Section 1.4,
their first eigenvalues {λξ}ξ are real, hence, in view of (1.27) and (2.3), we deduce
that b̄n must vanish for all n even. Equivalently, λ̌nξ vanishes for n odd. This can
alternatively be proven by a direct computation starting from definition (2.2), cf. [5,
Proposition 1]; a similar (more involved) argument will be provided in Proposition 3.5,
so we skip the detail for now.

Proposition 2.3. We have b̄n = 0 for all n even. ♦

As is common in the elliptic setting, it is useful to further introduce suitable flux
correctors, which will allow us to refine error estimates by directly exploiting cancel-
lations due to fluxes having vanishing average.

Definition 2.4 (Spectral flux correctors and auxiliary correctors). For n ≥ 0, we
define the spectral flux correctors σn := (σni1...in)1≤i1,...,in≤d by

σni1...in = (∇Φni1...in)T ,

where Φni1...in ∈ H
1
per(Q)d is the periodic vector field that satisfies E

[
Φni1...in

]
= 0 and

−4(Φni1...in)in+1
= ein+1

·a(∇ψni1...in+ψn−1
i1...in−1

ein)−
n+1∑
k=2

(eik ·b̄
k−1
i1...ik−2

eik−1
)ψn+1−k
ik+1...in+1

.

For n ≥ 2, we also define the auxiliary correctors ρn := (ρni1...in)1≤i1,...,in≤d by

ρni1...in = ∇inΨn
i1...in−1

,

where Ψn
i1...in−1

∈ H1
per(Q) is the periodic vector field that satisfies E

[
Ψn
i1...in−1

]
= 0

and
−4Ψn

i1...in−1
= ψn−1

i1...in−1
. ♦
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Next, we turn to the definition of the correctors {ζn,m}n,m, as motivated in Sec-
tion 1.4, cf. (1.32) and (1.34), and we start with the case m = 0.

Lemma 2.5. For all n ≥ 0 and ξ ∈ Rd, we recursively define ζ̌n,0ξ ∈ H1
per(Q) as the

unique periodic scalar field that satisfies

−∇ · a∇ζ̌n,0ξ = ∇ · (aiξζ̌n−1,0
ξ ) + iξ · a

(
∇ζ̌n−1,0

ξ + iξζ̌n−2,0
ξ

)
− ψ̌n+1

ξ +

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌kξ

]
, (2.8)

with integration constant

E
[
ζ̌n,0ξ

]
:= −

n∑
k=1

k+2∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+2−l
ξ ζ̌n−k,0ξ

]
. (2.9)

With this choice of the constant, the above equation for ζ̌n,0ξ is indeed well-posed by the
Fredholm alternative as it iteratively ensures that the right-hand side has vanishing
average,

E
[
iξ · a

(
∇ζ̌n−1,0

ξ + iξζ̌n−2,0
ξ

)]
+

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌kξ

]
= 0. (2.10)

Factoring out powers of iξ, we may then define the real-valued symmetric tensor
field ζn,0 such that

ζn,0 � (iξ)⊗(n+1) := ζ̌n,0ξ . ♦

Proof. It suffices to show by induction that (2.10) holds for all n ≥ 0. For k ≥ 0,
testing the defining equation (2.1) for ψ̌k+1

ξ with ζ̌n,0ξ , we get after averaging and
integrating by parts,

E
[
ψ̌k+1
ξ (−∇ · a∇ζ̌n,0ξ )

]
= E

[
ψ̌kξ

(
∇ · (aiξζ̌n,0ξ ) + iξ · a∇ζ̌n,0ξ

)
+ ψ̌k−1

ξ (iξ · aiξ)ζ̌n,0ξ

]
+

k+1∑
l=2

λ̌lξ E
[
ψ̌k+1−l
ξ ζ̌n,0ξ

]
.

Now inserting the defining equation (2.8) for ζ̌n,0ξ , and reorganizing the terms, this
becomes

E
[
ψ̌k+1
ξ

(
∇ · (aiξζ̌n−1,0

ξ ) + iξ · a(∇ζ̌n−1,0
ξ + iξζ̌n−2,0

ξ )
)

+ ψ̌kξ (iξ · aiξ)ζ̌n−1,0
ξ

]
= E

[
ψ̌kξ

(
∇ · (aiξζ̌n,0ξ ) + iξ · a(∇ζ̌n,0ξ + iξζ̌n−1,0

ξ )
)

+ ψ̌k−1
ξ (iξ · aiξ)ζ̌n,0ξ

]
+ E

[
ψ̌k+1
ξ ψ̌n+1

ξ

]
+

k+1∑
l=2

λ̌lξ E
[
ψ̌k+1−l
ξ ζ̌n,0ξ

]
.

Iterating this identity (n+ 1)-times, starting from k = 0, and using that ψ0 = 1 and
that E [ψm] = 0 for all m ≥ 1, we deduce after straightforward simplifications

E
[
iξ · a(∇ζ̌n,0ξ + iξζ̌n−1,0

ξ )
]

+

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ψ̌kξ

]
= −

n+1∑
k=2

k∑
l=2

λ̌lξ E
[
ψ̌k−lξ ζ̌n+1−k,0

ξ

]
,
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or equivalently,

E
[
iξ · a(∇ζ̌n,0ξ + iξζ̌n−1,0

ξ )
]

+

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ψ̌kξ

]
= −λ̌2

ξ E
[
ζ̌n−1,0
ξ

]
−
n−1∑
k=1

k+2∑
l=2

λ̌lξ E
[
ψ̌k+2−l
ξ ζ̌n−k−1,0

ξ

]
.

Now the choice (2.9) of the integration constant for ζ̌n−1,0
ξ precisely ensures that the

right-hand side vanishes, which proves that the identity (2.10) holds with n replaced
by n+ 1. �

Next, we turn to the construction of corresponding correctors {ζn,m}n for m ≥ 1,
as motivated in (1.34). The proof of this lemma is analogous to the one above and is
skipped for shortness.

Lemma 2.6. Given m ≥ 1, for all n ≥ 0 and ξ ∈ Rd, we recursively define ζ̌n,mξ ∈
H1

per(Q) as the unique periodic scalar field that satisfies

−∇ · a∇ζ̌n,mξ = ∇ · (aiξζ̌n−1,m
ξ ) + iξ · a(∇ζ̌n−1,m

ξ + iξζ̌n−2,m
ξ ) + ζ̌n,m−1

ξ , (2.11)

with integration constant

E
[
ζ̌n,mξ

]
:= (1/λ̌2

ξ)

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ζ̌k,m−1

ξ

]
−

n∑
k=1

k+2∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+2−l
ξ ζ̌n−k,mξ

]
.

With this choice of the integration constants, the above equation for ζ̌n,m+1
ξ is indeed

well-posed by the Fredholm alternative as it iteratively ensures that the right-hand side
has vanishing average,

E
[
iξ · a

(
∇ζ̌n−1,m

ξ + iξζ̌n−2,m
ξ

)
+ ζ̌n,m−1

ξ

]
= 0. (2.12)

In particular, E
[
ζ̌0,m
ξ

]
= 0 for all m ≥ 0. Factoring out powers of iξ, we may then

define the real-valued symmetric tensor field ζn,m such that

ζn,m � (iξ)⊗(n+1) := ζ̌n,mξ . ♦

Again, it is useful to further introduce associated flux correctors, which allow us
to refine error estimates by directly exploiting cancellations due to fluxes having
vanishing average.

Definition 2.7 (Spectral flux correctors). For n ≥ 0, we define the spectral flux
corrector τn,0 := (τn,0i1...in+1

)1≤i1,...,in+1≤d by

τn,0i1...in+1
= (∇Φn,0i1...in+1

)T ,

where Φn,0i1...in+1
∈ H1

per(Q)d is the periodic vector field that satisfies E
[
Φn,0i1...in+1

]
= 0

and

−4Φn,0i1...in+1
= a

(
∇ζn,0i1...in+1

+ ζn−1,0
i1...in

ein+1

)
− E

[
a
(
∇ζn,0i1...in+1

+ ζn−1,0
i1...in

ein+1

)]
.

We define the spectral flux corrector τn,m := (τn,mi1...in+1
)1≤i1,...,in+1≤d for n ≥ −1 and

m ≥ 1 by
τn,mi1...in+1

= (∇Φn,mi1...in+1
)T ,
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where Φn,mi1...in+1
∈ H1

per(Q)d is the periodic vector field that satisfies E
[
Φn,mi1...in+1

]
= 0

and
−4Φn,mi1...in+1

= a
(
∇ζn,mi1...in+1

+ ζn−1,m
i1...in

ein+1

)
+ ζn+1,m−1

i1...in+2
ein+2

.

(Note that the definition of the ζn,m’s ensures that the expression in the right-hand
side has vanishing average.) ♦

Based on the above definitions, as for (2.5), an iterative use of the Poincaré in-
equality on the unit cell Q easily yields the following estimates.

Lemma 2.8. For all m,n ≥ 0,

‖(ψn, σn, ρn)‖H1(Q) + |b̄n| ≤ Cn, ‖(ζn,m, τn,m)‖H1(Q) . C
n+m. (2.13)

♦

2.2. Spectral two-scale expansion. Given a smooth function w̄, we consider its
two-scale expansion of order ` ≥ 0 associated with the above-defined spectral correc-
tors, as motivated by spectral considerations in Section 1.4,

S`ε[w̄, f ] :=
∑̀
n=0

εnψn( ·ε )� γ`(ε∇)∇nw̄

+ ε3
`−3∑

2m=0

(−1)mε2m
`−3−2m∑
n=0

εnζn,m( ·ε )� γ`(ε∇)∇n+1∂2m
t f. (2.14)

We show by PDE techniques that this expansion is indeed well-adapted to describe
the local behavior of the solution to the hyperbolic equation in the following sense:
the heterogeneous hyperbolic operator applied to S`ε[w̄, f ] is equivalent to a higher-
order effective operator applied to w̄, up to error terms of formal order O(ε`). The
proof is postponed to Section 2.4.

Proposition 2.9 (Spectral two-scale expansion). Let ` ≥ 1, ε > 0, and let w̄, f be
smooth functions satisfying

∂2
t w̄ −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇w̄ = f. (2.15)

Then, the associated spectral two-scale expansion of order `, defined in (2.14), satisfies
the following relation in the distributional sense in R× Rd,
(∂2
t −∇ · a∇)S`ε[w̄, f ] = f

−
2∑̀
n=`

εn
`∧(n−1)∑
k=(n−`)∨1

(−1)n−kE
[
ψn−kik+1...in

ψki1...ik

]
γ`(ε∇)∇ni1...inf

− ε`∇ ·
(
ρ`i1...i`(

·
ε )ei`γ`(ε∇)∇`−1

i1...i`−1
f
)

− ε`∇ ·
(

(aψ`i1...i` − σ
`
i1...i`

)( ·ε ) γ`(ε∇)∇∇`i1...i`w̄
)

+ ε`(ψ` + ρ`)( ·ε )� γ`(ε∇)∇`f − ε`σ`i1...i`(
·
ε ) : γ`(ε∇)∇2∇`i1...i`w̄

+
∑̀
n=1

`+1∑
k=`+2−n

εn+k−2ψni1...in( ·ε )b̄k−1
in+1...in+k−2

: γ`(ε∇)∇2∇n+k−2
i1...in+k−2

w̄

− ε`
`−2∑

2m=0

(−1)m∇ ·
((

aζ`−3−2m,m
i1...i`−2−2m

− τ `−3−2m,m
i1...i`−2−2m

)
( ·ε )γ`(ε∇)∇∇`−2−2m

i1...i`−2−2m
∂2m
t f

)
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− ε`
`−2∑

2m=0

(−1)mτ `−3−2m,m
i1...i`−2−2m

( ·ε ) : γ`(ε∇)∇2∇`−2−2m
i1...i`−2−2m

∂2m
t f

+ ε`∂2
t

`−3∑
2m=0

(−1)mζ`−3−2m,m( ·ε )� γ`(ε∇)∇`−2−2m∂2m
t f. ♦

2.3. Well-posedness of homogenized equation. As motivated in Proposition 2.9,
cf. (2.15), we consider the following formal homogenized equation, for ` ≥ 1,{

∂2
t Ū

`
ε −∇ ·

(
ā +

∑`
k=2 b̄

k � (ε∇)k−1
)
∇Ū `ε = f, in R× Rd,

Ū `ε = f = 0, for t < 0.
(2.16)

However, as explained in the introduction, the symbol of the operator

−∇ ·
(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇ (2.17)

may vanish, so equation (2.16) is ill-posed in general. As described in Section 1.3,
several higher-order modifications of this equation can then be used to ensure well-
posedness: high-frequency filtering as in [3], higher-order regularization as in [5], or
the Boussinesq trick as in [1]. Let us precisely define each of them:
(I) High-frequency filtering.

Let α ∈ (0, 1), and let χ ∈ C∞c (Rd) be a cut-off function with

χ| 1
2B

= 1, χ|Rd\B = 0.

Provided that 0 < ε �α 1 is small enough, the Fourier symbol of the oper-
ator (2.17) is strictly positive on ε−αB, and we may then define ū(I),`

ε as the
unique solution in R× Rd of

∂2
t ū

(I),`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)n−1
)
∇ū(I),`

ε = χ(εα∇)f, (2.18)

with ū(I),`
ε = f = 0 for t < 0, such that the spatial Fourier transform of ū(I),`

ε is
supported in R× ε−αB.

(II) Higher-order regularization.
Choose κ` ≥ 0 as the smallest real number such that for all ξ ∈ Rd,

ξ ·
(
ā +

∑̀
k=2

b̄k � (iξ)⊗(k−1) + κ`|ξ|`
)
ξ ≥ 1

2λ|ξ|
2. (2.19)

Note that (2.5) entails κ` ≤ C`. Then, for all ε > 0, we can define ū(II),`
ε as the

unique solution in R× Rd of

∂2
t ū

(II),`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1 + κ`(ε|∇|)`
)
∇ū(II),`

ε = f, (2.20)

with ū(II),`
ε = f = 0 for t < 0.

(III) Boussinesq trick.
Set κ1 = 1, κ2j = 0 for all j, and for j > 0 we define inductively κ2j+1 ≥ 0 as
the smallest value such that for all ξ ∈ Rd,

ξ ·
(
κ2j+1ā +

2j∑
l=1

κl b̄
2j+2−l � (i ξ|ξ| )

2j+1−l
)
ξ ≥ 0. (2.21)
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Note that (2.5) entails |κl| ≤ Cl for all l. Then, for all ε > 0, we can define
ū

(III),`
ε as the unique solution in R× Rd of

∂2
t

(
1 +

∑̀
l=2

κl(ε|∇|)l−1
)
ū(III),`
ε

−∇ ·
(∑̀
n=1

(
κnā +

n−1∑
l=1

κlb̄
n+1−l � ( ∇|∇| )

n−l
)

(ε|∇|)n−1

)
∇ū(III),`

ε

=
(

1 +
∑̀
l=2

κl(ε|∇|)l−1
)
f, (2.22)

with ū(III),`
ε = f = 0 for t < 0.

We analyze these three modifications of the formal homogenized equation (2.16) and
show that they are well-posed and all equivalent up to higher-order errors. The proof
is postponed to Section 2.5.

Lemma 2.10 (Well-posedness of effective equation). Let f ∈ C∞(R;H∞(Rd)) and
let ` ≥ 1.

(i) If the spatial Fourier transform of f is supported in R × BR for some R ≥ 1,
and provided that εR� 1 is small enough (independently of `), then the formal
effective equation (2.16) admits a unique ancient solution Ū `ε ∈ L∞loc(R; L2(Rd))
with spatial Fourier transform supported in R × BR. Moreover, it satisfies for
all r, t ≥ 0,

‖〈D〉rDŪ `;tε ‖L2(Rd) . ‖〈D〉rf‖L1((0,t),L2(Rd)),

‖Ū `;tε ‖L2(Rd) . 〈t〉‖f‖L1((0,t);L2(Rd)).

(ii) The modified equations (2.18), (2.20), and (2.22) are well-posed in L∞loc(R; L2(Rd))
in their respective sense, and their solutions satisfy for all r ≥ 0, for (?) = (I)
or (II),

‖〈D〉rDū(?),`;t
ε ‖L2(Rd) . ‖〈D〉rf‖L1((0,t);L2(Rd)),

‖ū(?),`;t
ε ‖L2(Rd) . 〈t〉‖f‖L1((0,t);L2(Rd)),

and for (?) = (III),

‖〈D〉rDū(III),`;t
ε ‖L2(Rd) ≤ C`‖〈D〉r〈ε∇〉b

`−1
2 cf‖L1((0,t);L2(Rd)),

‖ū(III),`;t
ε ‖L2(Rd) ≤ C`〈t〉‖〈ε∇〉b

`−1
2 cf‖L1((0,t);L2(Rd)).

(iii) If the spatial Fourier transform of f is supported in R × BR for some R ≥ 1,
and provided that εR� 1 is small enough (independently of `), we have for all
r, t ≥ 0,

‖〈D〉r(ū(I),`;t
ε − Ū `;tε )‖L2(Rd) ≤ (εC)`‖〈D〉Kα`+rf‖L1((0,t);L2(Rd)),

‖〈D〉r(ū(II),`;t
ε − Ū `;tε )‖L2(Rd) ≤ (εC)`〈t〉‖〈D〉`+rf‖L1((0,t);L2(Rd)),

‖〈D〉r(ū(III),`;t
ε − Ū `;tε )‖L2(Rd) ≤ (εC)`〈t〉‖〈D〉2`+r−2f‖L1((0,t);L2(Rd),

with Kα ≤ 1/α in the first estimate. ♦
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2.4. Proof of Proposition 2.9. By scaling, it suffices to consider the case ε = 1
and we omit the subscript ε = 1 for notational convenience. The two-scale expan-
sion (2.14) can be decomposed as S`[w̄, f ] = S`1[w̄] + S`2[f ], in terms of

S`1[w̄] :=
∑̀
n=0

ψn � γ`(∇)∇nw̄,

S`2[f ] :=

`−3∑
2m=0

`−3−2m∑
n=0

(−1)mζn,m � γ`(∇)∇n+1∂2m
t f.

We split the proof into three steps, separately deriving equations for each part.

Step 1. Equation for S`1[w̄]: we show that

(∂2
t −∇ · a∇)S`1[w̄] =

∑̀
n=0

ψn � γ`(∇)∇n
(
∂2
t w̄ −∇ ·

(
ā +

∑̀
k=2

b̄k �∇k−1
)
∇w̄
)

−∇ ·
(

(aψ`i1...i` − σ
`
i1...i`

) γ`(∇)∇∇`i1...i`w̄
)
− σ`i1...i` : γ`(∇)∇2∇`i1...i`w̄

+
∑̀
n=1

`+1∑
k=`+2−n

ψni1...in b̄
k−1
in+1...in+k−2

: γ`(∇)∇2∇n+k−2
i1...in+k−2

w̄. (2.23)

A direct calculation based on the general formula −∇ · a∇(hg) = (−∇ · a∇h)g −∇ ·
(ah) · ∇g − a∇h · ∇g − ha : ∇2g yields, for all n ≥ 0,

−∇ · a∇
(
ψn � γ`(∇)∇nw̄

)
= (−∇ · a∇ψni1...in)γ`(∇)∇ni1...inw̄ −∇ · (aψ

n
i1...inein+1

)γ`(∇)∇n+1
i1...in+1

w̄

− (ein+1
· a∇ψni1...in)γ`(∇)∇n+1

i1...in+1
w̄ − (ein+2 · aψni1...inein+1)γ`(∇)∇n+2

i1...in+2
w̄.

Combined with the defining equation (2.1) for ψn, this entails

−∇ · a∇
(
ψn � γ`(∇)∇nw̄

)
= ∇ · (aψn−1

i1...in−1
ein)γ`(∇)∇ni1...inw̄ −∇ · (aψ

n
i1...inein+1

)γ`(∇)∇n+1
i1...in+1

w̄

+ (ein · a∇ψn−1
i1...in−1

)γ`(∇)∇ni1...inw̄ − (ein+1 · a∇ψni1...in)γ`(∇)∇n+1
i1...in+1

w̄

+ (ein · aψn−2
i1...in−2

ein−1
)γ`(∇)∇ni1...inw̄ − (ein+2

· aψni1...inein+1
)γ`(∇)∇n+2

i1...in+2
w̄

−
n∑
k=2

(eik · b̄
k−1
i1...ik−2

eik−1
)ψn−kik+1...in

γ`(∇)∇ni1...inw̄,

and thus, after summation over 0 ≤ n ≤ `, taking into account the telescoping sum
we obtain that

(∂2
t −∇ · a∇)S`1[w̄] =

∑̀
n=0

ψni1...inγ`(∇)∇ni1...in
(
∂2
t −

`−n∑
k=2

b̄k−1
j1...jk−2

: ∇2∇k−2
j1...jk−2

)
w̄

−∇· (aψ`i1...i`ei`+1
)γ`(∇)∇`+1

i1...i`+1
w̄− ei`+1

·a(∇ψ`i1...i` +ψ`−1
i1...i`−1

ei`)γ`(∇)∇`+1
i1...i`+1

w̄

− (ei`+2
· aψ`i1...i`ei`+1

)γ`(∇)∇`+2
i1...i`+2

w̄,

which we can rewrite as

(∂2
t −∇·a∇)S`1[w̄] =

∑̀
n=0

ψni1...inγ`(∇)∇ni1...in
(
∂2
t −

`+1−n∑
k=2

b̄k−1
j1...jk−2

: ∇2∇k−2
j1...jk−2

)
w̄
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−∇ · (aψ`i1...i`ei`+1
)γ`(∇)∇`+1

i1...i`+1
w̄ − (ei`+2

· aψ`i1...i`ei`+1
)γ`(∇)∇`+2

i1...i`+2
w̄

−
(
ei`+1

·a(∇ψ`i1...i`+ψ
`−1
i1...i`−1

ei`
)
−
`+1∑
k=2

(eik ·b̄
k−1
i1...ik−2

eik−1
)ψ`+1−k
ik+1...i`+1

)
γ`(∇)∇`+1

i1...i`+1
w̄.

Recalling the definition of flux correctors, cf. Definition 2.4, this means

(∂2
t −∇·a∇)S`1[w̄] =

∑̀
n=0

ψni1...inγ`(∇)∇ni1...in
(
∂2
t −

`+1−n∑
k=2

b̄k−1
j1...jk−2

: ∇2∇k−2
j1...jk−2

)
w̄

−∇ ·
(
(aψ`i1...i` − σ

`
i1...i`

)ei`+1

)
γ`(∇)∇`+1

i1...i`+1
w̄

− (ei`+2
· aψ`i1...i`ei`+1

)γ`(∇)∇`+2
i1...i`+2

w̄,

and the claim (2.23) follows.

Step 2. Equation for S`2[f ]: we show that

(∂2
t −∇ · a∇)S`2[f ] = −

`−2∑
n=1

ψn � γ`(∇)∇nf

−
`−2∑

2m=0

(−1)m∇ ·
((

aζ`−3−2m,m
i1...i`−2−2m

− τ `−3−2m,m
i1...i`−2−2m

)
γ`(∇)∇∇`−2−2m

i1...i`−2−2m
∂2m
t f

)
−

`−2∑
2m=0

(−1)mτ `−3−2m,m
i1...i`−2−2m

: γ`(∇)∇2∇`−2−2m
i1...i`−2−2m

∂2m
t f

+

`−2∑
n=0

n+1∑
k=0

(−1)n+1−kE
[
ψn+1−k
ik+1...in+1

ψki1...ik

]
γ`(∇)∇n+1

i1...in+1
f

+ ∂2
t

`−3∑
2m=0

(−1)mζ`−3−2m,m � γ`(∇)∇`−2−2m∂2m
t f. (2.24)

A direct calculation yields for all m,n,

−∇ · a∇
(
ζn,m � γ`(∇)∇n+1∂2m

t f
)

= (−∇ · a∇ζn,mi1...in+1
)γ`(∇)∇n+1

i1...in+1
∂2m
t f −∇ · (aζn,mi1...in+1

ein+2)γ`(∇)∇n+2
i1...in+2

∂2m
t f

−(ein+2
·a∇ζn,mi1...in+1

)γ`(∇)∇n+2
i1...in+2

∂2m
t f−(ein+3

·aζn,mi1...in+1
ein+2

)γ`(∇)∇n+3
i1...in+3

∂2m
t f.

For m = 0, inserting the defining equation for ζn,0, cf. (2.8), this entails

−∇ · a∇
(
ζn,0 � γ`(∇)∇n+1f

)
= ∇ ·

(
aζn−1,0

i1...in
ein+1

)
γ`(∇)∇n+1

i1...in+1
f −∇ ·

(
aζn,0i1...in+1

ein+2

)
γ`(∇)∇n+2

i1...in+2
f

+
(
ein+1

· a∇ζn−1,0
i1...in

)
γ`(∇)∇n+1

i1...in+1
f −

(
ein+2

· a∇ζn,0i1...in+1

)
γ`(∇)∇n+2

i1...in+2
f

+
(
ein+1 · aζ

n−2,0
i1...in−1

ein
)
γ`(∇)∇n+1

i1...in+1
f −

(
ein+3 · aζ

n,0
i1...in+1

ein+2

)
γ`(∇)∇n+3

i1...in+3
f

−ψn+1
i1...in+1

γ`(∇)∇n+1
i1...in+1

f +

n+1∑
k=0

(−1)n+1−k E
[
ψn+1−k
ik+1...in+1

ψki1...ik

]
γ`(∇)∇n+1

i1...in+1
f,

and thus, after summation over 0 ≤ n ≤ `− 3,

−∇ · a∇
`−3∑
n=0

ζn,0 � γ`(∇)∇n+1f = −∇ ·
(
aζ`−3,0

i1...i`−2
ei`−1

)
γ`(∇)∇`−1

i1...i`−1
f
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− ei`−1
· a
(
∇ζ`−3,0

i1...i`−2
+ ζ`−4,0

i1...i`−3
ei`−2

)
γ`(∇)∇`−1

i1...i`−1
f

−
(
ei` · aζ

`−3,0
i1...i`−2

ei`−1

)
γ`(∇)∇`i1...i`f

−
`−2∑
n=1

ψni1...inγ`(∇)∇ni1...inf+

`−3∑
n=0

n+1∑
k=0

(−1)n+1−k E
[
ψn+1−k
ik+1...in+1

ψki1...ik

]
γ`(∇)∇n+1

i1...in+1
f.

Proceeding similarly for m > 0, we find

−∇ · a∇
`−3−2m∑
n=0

ζn,m � γ`(∇)∇n+1∂2m
t f

= −∇ ·
(
aζ`−3−2m,m

i1...i`−2−2m
ei`−1−2m

)
γ`(∇)∇`−1−2m

i1...i`−1−2m
∂2m
t f

− ei`−1−2m
· a
(
∇ζ`−3−2m,m

i1...i`−2−2m
+ ζ`−4−2m,m

i1...i`−3−2m
ei`−2−2m

)
γ`(∇)∇`−1−2m

i1...i`−1−2m
∂2m
t f

−
(
ei`−2m

· aζ`−3−2m,m
i1...i`−2−2m

ei`−1−2m

)
γ`(∇)∇`−2m

i1...i`−2m
∂2m
t f

+

`−3−2m∑
n=0

ζn,m−1
i1...in+1

γ`(∇)∇n+1
i1...in+1

∂2m
t f.

Combining the above two identities, we are led to

−∇ · a∇S`2[f ] = −
`−3∑

2m=0

(−1)m∇ ·
(
aζ`−3−2m,m

i1...i`−2−2m
ei`−1−2m

)
γ`(∇)∇`−1−2m

i1...i`−1−2m
∂2m
t f

−
`−3∑

2m=0

(−1)mei`−1−2m
·a
(
∇ζ`−3−2m,m

i1...i`−2−2m
+ ζ`−4−2m,m

i1...i`−3−2m
ei`−2−2m

)
γ`(∇)∇`−1−2m

i1...i`−1−2m
∂2m
t f

−
`−3∑

2m=0

(−1)m
(
ei`−2m

· aζ`−3−2m,m
i1...i`−2−2m

ei`−1−2m

)
γ`(∇)∇`−2m

i1...i`−2m
∂2m
t f

−
`−2∑
n=1

ψni1...inγ`(∇)∇ni1...inf+

`−3∑
n=0

n+1∑
k=0

(−1)n+1−k E
[
ψn+1−k
ik+1...in+1

ψki1...ik

]
γ`(∇)∇n+1

i1...in+1
f

+

`−3∑
2m=2

(−1)m
`−3−2m∑
n=0

ζn,m−1
i1...in+1

γ`(∇)∇n+1
i1...in+1

∂2m
t f.

Recalling the definition of flux correctors, cf. Definition 2.7, as well as (2.10) and (2.12),
and reorganizing the terms, the claim (2.24) follows. Note that the flux correctors
τn,m’s are nontrivial even for n = −1, but those appear only in the case when ` − 3
is odd.

Step 3. Conclusion.
Combining the results of the last two steps, reorganizing the terms, and recalling the
relation (2.15) between w̄, f , we are led to

(∂2
t −∇ · a∇)S`[w̄, f ] = f

−
(
γ`(∇)−1 − 1−

`−2∑
n=0

n+1∑
k=0

(−1)n+1−kE
[
ψn+1−k
ik+1...in+1

ψki1...ik

]
∇n+1
i1...in+1

)
γ`(∇)f

−∇ ·
(

(aψ`i1...i` − σ
`
i1...i`

) γ`(∇)∇∇`i1...i`w̄
)
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+
∑̀

n=(`−1)∨1

ψni1...inγ`(∇)∇ni1...inf − σ
`
i1...i`

: γ`(∇)∇2∇`i1...i`w̄

+
∑̀
n=1

`+1∑
k=`+2−n

ψni1...in b̄
k−1
in+1...in+k−2

: γ`(∇)∇2∇n+k−2
i1...in+k−2

w̄

−
`−2∑

2m=0

(−1)m∇ ·
((

aζ`−3−2m,m
i1...i`−2−2m

− τ `−3−2m,m
i1...i`−2−2m

)
γ`(∇)∇∇`−2−2m

i1...i`−2−2m
∂2m
t f

)
−

`−2∑
2m=0

(−1)mτ `−3−2m,m
i1...i`−2−2m

: γ`(∇)∇2∇`−2−2m
i1...i`−2−2m

∂2m
t f

+ ∂2
t

`−3∑
2m=0

(−1)mζ`−3−2m,m � γ`(∇)∇`−2−2m∂2m
t f, (2.25)

and it remains to reformulate the second and fourth right-hand side terms. For the
second right-hand side term, we recall the definition (2.4) of γ`, which yields

γ`(ξ)
−1 − 1−

`−2∑
n=0

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌kξ

]
= E

[∣∣∣ ∑̀
n=0

ψ̌nξ

∣∣∣2]− 1−
`−2∑
n=0

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌kξ

]
=

2∑̀
n=`

∑̀
k=n−`

E
[
ψ̌n−kξ ψ̌kξ

]
.

For the fourth right-hand side term in (2.25), we use the auxiliary correctors of Defi-
nition 2.4 to write for ` ≥ 2,

ψ`−1
i1...i`−1

γ`(∇)∇`−1
i1...i`−1

f = ρ`i1...i`γ`(∇)∇`i1...i`f −∇ ·
(
ρ`i1...i`ei`γ`(∇)∇`−1

i1...i`−1
f
)
.

Combining these identities yields the conclusion. �

2.5. Proof of Lemma 2.10. We split the proof into five steps.

Step 1. Proof of (i): well-posedness provided supp f̂ ⊂ R×BR.
In Fourier space, the operator −∇ · (ā +

∑`
k=2 b̄

k � (ε∇)k−1)∇ has symbol

µ`ε(ξ) := ξ ·
(
ā +

∑̀
k=2

b̄k � (iεξ)⊗(k−1)
)
ξ.

By Proposition 2.3, we know that µ`ε is real-valued. Recalling that the uniform ellip-
ticity condition (1.1) entails λ|ξ|2 ≤ ξ · āξ ≤ |ξ|2 after homogenization, and taking
advantage of (2.5), we find for |ξ| ≤ R,

µ`ε(ξ) ≥ |ξ|2
(
λ−

∑̀
k=2

(εC|ξ|)k−1
)
≥ |ξ|2

(
λ−

∑̀
k=2

(εCR)k−1
)
.

Provided that εR� 1 is small enough, we deduce for |ξ| ≤ R,
1
C |ξ|

2 ≤ µ`ε(ξ) ≤ C|ξ|2. (2.26)

We may thus define a solution of (2.16) in Fourier space via Duhamel’s formula, that
is,

F [Ū `;tε ](ξ) :=

ˆ t

0

sin
(
(t− s)µ`ε(ξ)1/2

)
µ`ε(ξ)

1/2
f̂s(ξ) ds,
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where Fg = ĝ stands for the spatial Fourier transform. This formula indeed satisfies
in R× Rd,

∂2
tF [Ū `ε ] + µ`εF [Ū `ε ] = f̂, (2.27)

and thus, upon inverse Fourier transformation, this provides a weak solution Ū `ε
of (2.16) in L∞loc(R; L2(Rd)). In addition, by construction, the spatial Fourier trans-
form is supported in R×BR as f̂ is.

We turn to the proof of a priori estimates. As the equation is linear and has constant
coefficients, derivatives of the solution satisfy the same equation up to replacing f
by its corresponding derivatives. It is therefore enough to prove the stated estimates
with r = 0,

‖DŪ `;tε ‖L2(Rd) . ‖f‖L1((0,t),L2(Rd)), (2.28)

‖Ū `;tε ‖L2(Rd) . 〈t〉‖f‖L1((0,t);L2(Rd)). (2.29)

Moreover, we note that the L2-estimate (2.29) directly follows from (2.28): recalling
that D = (∂t,∇), we indeed get from (2.28) and integration that

‖Ū `;tε ‖L2(Rd) ≤
ˆ t

0

‖∂tŪ `ε‖L2(Rd) .
ˆ t

0

‖f‖L1((0,s);L2(Rd)) ds ≤ 〈t〉‖f‖L1((0,t);L2(Rd)),

that is, (2.29). It remains to establish (2.28). For that purpose, multiplying both sides
of equation (2.27) by the complex conjugate of ∂tF [Ū `ε ] and taking the real part, we
get

1
2∂t

ˆ
Rd

(
|∂tF [Ū `ε ]|2 + µ`ε|F [Ū `ε ]|2

)
≤ ‖f̂ t‖L2(Rd)‖∂tF [Ū `ε ]‖L2(Rd),

which implies

∂t

(ˆ
Rd

(
|∂tF [Ū `ε ]|2 + µ`ε|F [Ū `ε ]|2

)) 1
2

. ‖f t‖L2(Rd).

Integrating in time and appealing to (2.26), this yields the claim (2.28). Note that
uniqueness follows from these a priori estimates by linearity.

For Step 5, we shall also need an a priori estimate for Ū `ε in terms of the Ḣ−1-norm
of the impulse. Multiplying (2.27) with the complex conjugate of (| · |2 + δ)−1∂tF [Ū `ε ]
and repeating the above argument, we infer that

∂t

( ˆ
Rd

(|ξ|2 + δ)−1µ`ε(ξ) |F [Ū `ε ](ξ)|2 dξ
) 1

2

≤
(ˆ

Rd
(|ξ|2 + δ)−1|f̂ t(ξ)|2 dξ

) 1
2

.

Integrating in time, using the monotone convergence theorem to pass to the limit
δ ↓ 0, and appealing again to (2.26), we deduce

‖Ū `;tε ‖L2(Rd) . ‖f‖L1((0,t);Ḣ−1(Rd)),

and similarly, due to the constant coefficients and linearity of the equation, we get for
all r ≥ 0,

‖〈D〉rŪ `;tε ‖L2(Rd) . ‖〈Dr〉f‖L1((0,t);Ḣ−1(Rd)). (2.30)

Step 2. Proof of (ii) for high-frequency filtering.
Let α, χ be fixed. We appeal to (2.26) with R = ε−α: provided that ε1−α � 1 is
small enough, we deduce for |ξ| ≤ ε−α,

1
C |ξ|

2 ≤ µ`ε(ξ) ≤ C|ξ|2. (2.31)
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Hence, as in Step 1, replacing f by χ(εα∇)f , there is a unique solution u(I),`
ε of (2.18)

in L∞loc(R; L2(Rd)) with spatial Fourier transform supported in R × ε−αB, and the
claimed a priori estimates similarly follow.

Step 3. Proof of (ii) for higher-order regularization.
In Fourier space, the regularized operator −∇·

(
ā+

∑`
k=2 b̄

k�(ε∇)k−1 +κ`(ε|∇|)`
)
∇

has symbol

µ(II),`
ε (ξ) := ξ ·

(
ā +

∑̀
k=2

b̄k � (iεξ)⊗k−1 + κ`(ε|ξ|)`
)
ξ.

Recall that by Proposition 2.3 this symbol is real-valued. Moreover, the lower bound ξ·
āξ ≥ λ|ξ|2 ensures that κ` can indeed be chosen as the smallest value satisfying (2.19),
while the bound (2.5) entails κ` ≤ C`. This choice of κ`, together with (2.5), yields

1
2λ|ξ|

2 ≤ µ(II),`
ε (ξ) ≤ C`|ξ|2〈εξ〉`.

We can then solve (2.20) in Fourier space again via Duhamel’s formula, and the stated
a priori estimates are deduced as in Step 1 using the above coercivity of the regularized
symbol. Uniqueness follows by linearity.

Step 4. Proof of (ii) for Boussinesq trick.
In terms of the symbol

µ(III),`
ε (ξ) :=

ξ ·
(∑`

n=1

(
κnā +

∑n−1
l=1 κlb̄

n+1−l � (i ξ|ξ| )
n−l)(ε|ξ|)n−1

)
ξ

1 +
∑`
l=2 κl(ε|ξ|)l−1

, (2.32)

equation (2.22) can be written in Fourier space as

∂2
tF [ū(III),`

ε ] + µ(III),`
ε F [ū(III),`

ε ] = f̂. (2.33)

Note that (2.32) makes sense as κl ≥ 0 for all l. In addition, the choice (2.21) of {κl}l
precisely ensures that all the terms of the sum over n in the numerator of (2.32) are
nonnegative (and actually vanish for n even due to Proposition 2.3). Only keeping
the term for n = 1, and recalling κ1 = 1 by definition, we deduce the lower bound

µ(III),`
ε (ξ) ≥ ξ · āξ

1 +
∑`
l=2 κl(ε|ξ|)l−1

≥ λ|ξ|2

1 +
∑`
l=2 κl(ε|ξ|)l−1

,

which is pointwise non-negative. We can then define a solution of (2.33) via Duhamel’s
formula

F [ū(III),`
ε ](ξ) =

ˆ t

0

sin
(
(t− s)µ(III),`

ε (ξ)1/2
)

µ
(III),`
ε (ξ)1/2

f̂s(ξ) ds,

and thus, upon inverse Fourier transformation, this provides a weak solution of (2.22)
in L∞loc(R; L2(Rd)).

We turn to the proof of a priori estimates. As in Step 1, it suffices to establish the
estimate in energy norm. For that purpose, we start from the following equivalent
formulation of (2.33),

β`ε∂
2
tF [ū(III),`

ε ] + γ`εF [ū(III),`
ε ] = β`εf̂, (2.34)

in terms of the symbols

β`ε(ξ) := 1 +
∑̀
l=2

κl(ε|ξ|)l−1,
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γ`ε(ξ) := ξ ·
(∑̀
n=1

(
κnā +

n−1∑
l=1

κlb̄
n+1−l � (i ξ|ξ| )

n−l
)

(ε|ξ|)n−1

)
ξ,

with γ`ε/β`ε = µ
(III),`
ε . Arguing as in Step 1, and using that β`ε(ξ) ≥ 1 and γ`ε(ξ) ≥ λ|ξ|2,

we find that any ancient solution of (2.34) satisfies

‖Dū(III),`;t
ε ‖L2(Rd) .

ˆ t

0

‖(β`ε)
1
2 f̂‖L2(Rd).

Inserting the upper bound

β`ε(ξ) ≤
∑̀
l=1

(εC|ξ|)l−11l odd ≤ C`〈εξ〉2b
`−1
2 c,

we are led to the claimed a priori estimate on the energy norm.

Step 5. Proof of (iii): comparison of modified equations.
We analyze the differences v̄(?),`

ε := ū
(?),`
ε − Ū `ε , and we start with (?) = (I). By

definition, it satisfies the equation

∂2
t v̄

(I),`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇v̄(I),`

ε = (χ(εα∇)− 1)f,

so that (2.30) yields for all r ≥ 0,

‖〈D〉rv̄(I),`;t
ε ‖L2(Rd) . ‖〈D〉r(χ(εα∇)− 1)f‖L1((0,t);Ḣ−1(Rd)).

By the properties of the cut-off function χ, we find for all ξ ∈ Rd and k ≥ 0,

|χ(εαξ)− 1| ≤ 1|εαξ|≥ 1
2
≤ (2εα|ξ|)k. (2.35)

Choosing k = b`/αc+ 1, we then get by Plancherel’s formula,

‖〈D〉rv̄(I),`;t
ε ‖L2(Rd) . (εC)`‖〈D〉Kα`+rf‖L1((0,t);L2(Rd))

with Kα ≤ 1/α, as claimed.

We turn to the case (?) = (II). By definition, the difference v̄
(II),`
ε satisfies the

following equation,

∂2
t v̄

(II),`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1 + κ`(ε|∇|)`
)
∇v̄(II),`

ε = κ`(ε|∇|)`4Ū `ε .

Hence, combining (2.30) and the a priori estimate of item (ii), together with the
bound κ` ≤ C`, we get

‖〈D〉rv(II),`;t
ε ‖L2(Rd) ≤ C`‖〈D〉r(ε|∇|)`∇Ū `ε‖L1((0,t);L2(Rd))

. (εC)`‖〈D〉`+r∇Ū `ε‖L1((0,t);L2(Rd))

. (εC)`〈t〉‖〈D〉`+rf‖L1((0,t);L2(Rd)).

It remains to treat the case (?) = (III). Starting from (2.16) and (2.22), and recalling
κ1 = 1, we get the following equation for the corresponding difference,

∂2
t

(
1 +

∑̀
l=2

κl(ε|∇|)l−1
)
v̄(III),`
ε

−∇ ·
(∑̀
n=1

(
κnā +

n−1∑
l=1

κlb̄
n+1−l � ( ∇|∇| )

n−l
)

(ε|∇|)n−1

)
∇v̄(III),`

ε
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=
∑̀
l=2

κl(ε|∇|)l−1(f − ∂2
t Ū

`
ε)

+∇ ·
(∑̀
n=2

(
κnā +

n−1∑
l=2

κlb̄
n+1−l � ( ∇|∇| )

n−l
)

(ε|∇|)n−1

)
∇Ū `ε ,

and thus, further using the equation for Ū `ε in the right-hand side, we get after reor-
ganizing the terms,

∂2
t

(
1 +

∑̀
l=2

κl(ε|∇|)l−1
)
v̄(III),`
ε

−∇ ·
(∑̀
n=1

(
κnā +

n−1∑
l=1

κlb̄
n+1−l � ( ∇|∇| )

n−l
)

(ε|∇|)n−1

)
∇v̄(III),`

ε

= −∇ ·
(∑̀
l=2

∑̀
k=`+2−l

κlb
k � (ε∇)k−1(ε|∇|)l−1

)
∇Ū `ε . (2.36)

Combining (2.30) and the a priori estimate of item (ii), together with the bounds
|bk| ≤ Ck and κ` ≤ C`, we get

‖〈D〉rv̄(III),`
ε ‖L2(Rd) ≤ (εC)`‖〈D〉2`+r−2∇Ū `ε‖L1((0,t);L2(Rd))

≤ (εC)`〈t〉‖〈D〉2`+r−2f‖L1((0,t);L2(Rd)),

and the conclusion follows. �

2.6. Proof of Theorem 1. Let a be Q-periodic. We split the proof into three steps.
We first establish (1.6) for the energy norm, before turning to the L2-estimate, which
requires some additional care. We start by assuming that supp f̂ ⊂ R×BR for some
R ≥ 1, and then conclude with the general case in the last step.

Step 1. Proof of (1.6) for the energy norm in case supp f̂ ⊂ R×BR with εR� 1.
For simplicity, we start by assuming momentarily that the corrector estimates in
Lemma 2.8 hold uniformly in the sense of

‖(ψn, σn)‖W 1,∞(Q) ≤ Cn,

and ‖(ζn,m, τn,m)‖W 1,∞(Q) ≤ Cn+m+1, for all n,m ≥ 0. (2.37)

As supp f̂ ⊂ R × BR with εR � 1, we can consider the solution Ū `ε of the for-
mal effective equation (2.16) as given by Lemma 2.10(i). From Proposition 2.9 and
Lemma B.1, using the assumed uniform corrector estimate (2.37), we then obtain

‖D(utε − S`ε[Ū `;tε , f t])‖L2(Rd)

≤ (εC)`‖〈D〉2`f‖L1((0,t);L2(Rd)) + (εC)`‖〈D〉2`DŪ `ε‖L1((0,t);L2(Rd)),

and thus, combining this with the a priori bounds of Lemma 2.10(i),

‖D(utε − S`ε[Ū `;tε , f t])‖L2(Rd) ≤ (εC)`〈t〉‖〈D〉2`f‖L1((0,t);L2(Rd)). (2.38)

It remains to replace Ū `ε by ū(?),`
ε in the left-hand side for (?) = (I), (II), or (III). For

that purpose, recalling the definition of the spectral two-scale expansion, cf. (2.14),
and using the assumed uniform corrector estimates (2.37), we note that

‖D(S`ε[ū
(?),`
ε , f ]− S`ε[Ū `ε , f ])‖L2(Rd) ≤ C`‖〈∇〉`D(ū(?),`

ε − Ū `ε)‖L2(Rd),
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hence, by Lemma 2.10(iii),

‖D(S`ε[ū
(?),`;t
ε , f t]− S`ε[Ū `;tε , f t])‖L2(Rd) ≤ (εC)`〈t〉‖〈D〉C`f‖L1((0,t);L2(Rd)).

Combined with (2.38), this proves the claim (1.6) for the energy norm in case supp f̂ ⊂
R×BR with εR� 1, provided that (2.37) holds.

It remains to treat the case when the uniform boundedness assumption (2.37) for
correctors is not satisfied. In that case, we rather appeal to the Sobolev embedding to
estimate products with correctors: for any periodic corrector or corrector gradient ϕ ∈
{ψn,∇ψn, σn,∇σn, ζn,m,∇ζn,m, τn,m,∇τn,m}n,m, we can estimate, for any function
g,

‖ϕ( ·ε )g‖2L2(Rd) ≤
ˆ
Rd

( 
Bε(x)

|ϕ( ·ε )|2
)(

sup
Bε(x)

|g|2
)
dx

. ‖ϕ‖2L2(Q)

ˆ
Rd

(
sup
Bε(x)

|g|2
)
dx

. ‖ϕ‖2L2(Q)‖g‖
2
Ha(Rd), (2.39)

provided a > d
2 . Up to a fixed loss of derivatives in the estimates, we may then

appeal to the L2 corrector estimates in Lemma 2.8, and the above proof of (1.6) for
the energy norm is adapted directly.

Step 2. Proof of (1.6) for the L2-norm in case supp f̂ ⊂ BR with εR� 1.
As in Step 1, we aim to apply Proposition 2.9 and Lemma B.1, together with corrector
estimates. However, the following terms are a priori problematic in the right-hand
side of the equation for the spectral two-scale expansion given by Proposition 2.9,

T `ε := −ε`σ`i1...i`(
·
ε ) : γ`(ε∇)∇2∇`i1...i`Ū

`
ε

+
∑̀
n=1

`+1∑
k=`+2−n

εn+k−2ψni1...in( ·ε )b̄k−1
in+1...in+k−2

: γ`(ε∇)∇2∇n+k−2
i1...in+k−2

Ū `ε . (2.40)

Indeed, these terms are not total derivatives and involve Ū `ε itself: when applying
Lemma B.1 to estimate the L2-norm of the two-scale expansion error, these terms
would therefore contribute like

(εC)`〈t〉2‖〈D〉C`f‖L1((0,t);L2(Rd))

with a prefactor 〈t〉2 instead of 〈t〉. In order to improve on this, we shall reformulate
T `ε as a total time-derivative up to terms that depend only locally on f . Using the
short-hand notation

L̄`ε := −∇ ·
(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇,

the effective equation for Ū `ε entails

L̄`ε∇2Ū `ε = −∂2
t∇2Ū `ε +∇2f.

As in the proof of Lemma 2.10(i), cf. (2.26), the assumption εR� 1 precisely ensures
that the operator L̄`ε : L2(Rd)→ Ḣ−2(Rd) can be inverted when restricted to functions
with spatial Fourier transform supported in BR. As by definition both Ū `ε and f have
spatial Fourier transform supported in BR, we may then write

∇2Ū `ε = −∂2
t (L̄`ε)−1∇2Ū `ε + (L̄`ε)−1∇2f. (2.41)
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By uniform ellipticity (2.26), we have for any function g with supp ĝ ⊂ BR,

‖(L̄`ε)−1∇2g‖L2(Rd) . ‖g‖L2(Rd). (2.42)

Now using (2.41) to reformulate T `ε , cf. (2.40), we get

T `ε = ε`∂2
t

(
σ`i1...i`(

·
ε ) : γ`(ε∇)∇`i1...i`(L̄

`
ε)
−1∇2Ū `ε

)
−
∑̀
n=1

`+1∑
k=`+2−n

εn+k−2∂2
t

(
ψni1...in( ·ε )b̄k−1

in+1...in+k−2
: γ`(ε∇)∇n+k−2

i1...in+k−2
(L̄`ε)−1∇2Ū `ε

)
− ε`σ`i1...i`(

·
ε ) : γ`(ε∇)∇`i1...i`(L̄

`
ε)
−1∇2f

+
∑̀
n=1

`+1∑
k=`+2−n

εn+k−2ψni1...in( ·ε )b̄k−1
in+1...in+k−2

: γ`(ε∇)∇n+k−2
i1...in+k−2

(L̄`ε)−1∇2f.

Using this to replace the corresponding terms in the equation for the two-scale ex-
pansion error in Proposition 2.9, appealing to Lemma B.1 to estimate its L2-norm,
using the corrector estimates of Lemma 2.8, using the Sobolev embedding to estimate
products with correctors as in (2.39), and using (2.42), we get for a > d

2 ,

‖utε − S`ε[Ū `;tε , f t]‖L2(Rd)

≤ (εC)`〈t〉‖〈D〉2`+af‖L1((0,t);L2(Rd)) + (εC)`‖〈D〉2`+aDŪ `ε‖L1((0,t);L2(Rd)),

and thus, by the a priori estimate of Lemma 2.10(i),

‖utε − S`ε[Ū `;tε , f t]‖L2(Rd) ≤ (εC)`〈t〉‖〈D〉2`+af‖L1((0,t);L2(Rd)). (2.43)

It remains to argue as in Step 1 to replace Ū `ε by ū
(?),`
ε in the left-hand side. For

that purpose, recalling the definition of the spectral two-scale expansion, cf. (2.14),
and using again the corrector estimates of Lemma 2.8 together with the Sobolev
embedding as in (2.39), we note that for a > d

2 ,

‖S`ε[ū(?),`
ε , f ]− S`ε[Ū `ε , f ]‖L2(Rd) ≤ C`‖〈∇〉`+a(ū(?),`

ε − Ū `ε)‖L2(Rd),

hence, by Lemma 2.10(iii),

‖S`ε[ū(?),`;t
ε , f t]− S`ε[Ū `;tε , f t]‖L2(Rd) ≤ (εC)`〈t〉‖〈D〉C`f‖L1((0,t);L2(Rd)).

Combined with (2.43), this proves the claim (1.6) for the L2-norm in case supp f̂ ⊂ BR
with εR� 1.

Step 3. Approximation argument: proof for general f .
For R ≥ 1, consider the truncated impulse

fR := χ( 1
R∇)f,

and let ū(?),`
ε,R be the solution of the modified effective equations given by Lemma 2.10(ii)

with impulse f replaced by fR. Recalling the definition of the spectral two-scale ex-
pansion, cf. (2.14), and using again corrector estimates, we then note that for a > d

2 ,

‖D(S`ε[ū
(?),`
ε,R , fR]− S`ε[ū(?),`

ε , f ])‖L2(Rd)

≤ C`‖〈∇〉`+aD(ū(?),`
ε − ū(?),`

ε,R )‖L2(Rd) + C`‖〈D〉`+a(f − fR)‖L2(Rd),

and thus, by linearity and by the a priori estimates of Lemma 2.10(ii),

‖D(S`ε[ū
(?),`;t
ε,R , f tR]− S`ε[ū(?),`;t

ε , f t])‖L2(Rd) ≤ C`‖〈D〉C`(f − fR)‖L1((0,t);L2(Rd)).
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By definition of fR, as in (2.35), the right-hand side can now be estimated as follows,
for any k ≥ 0,

‖D(S`ε[ū
(?),`;t
ε,R , f tR]− S`ε[ū(?),`;t

ε , f t])‖L2(Rd) ≤ R−kC`‖〈D〉C`+kf‖L1((0,t);L2(Rd)).

Combining this with the results of Steps 1 and 2, the conclusion follows for instance
with the choice R = ε−1/2 and k = 2`. �

2.7. Proof of Corollary 1. The bound (1.7) is obtained along the same line as
Theorem 1 (using a straightforward adaptation of Lemma B.1), and it remains to
deduce (1.8). For that purpose, we note that (1.8) would actually follow from (1.7)
together with the boundˆ t

−∞
(t− s)‖〈D〉C`fs‖L2(Rd) ds ≤ C`f , (2.44)

in favor of which we presently argue. Recall that we assume here f t(x) = f1(t)f2(x),
where f1 has a smooth and compactly supported Fourier transform on R and where f2

has a compactly supported Fourier transform on Rd. The assumption on f2 entails
‖〈∇〉C`f2‖L2(Rd) ≤ C`f2 , while the assumption on f1 yields for s ≤ 0,

‖〈∂t〉C`f1‖L1((−∞,s)) . 〈s〉−2‖〈·〉3〈∂t〉C`f1‖L∞((−∞,s))

≤ 〈s〉−2C`‖〈·〉C`〈∂〉3f̂1‖L∞((−∞,s))

≤ 〈s〉−2C`f1 ,

where f̂1 stands for the temporal Fourier transform of f1. The claim (2.44) follows. �

2.8. Proof of Theorem 3. We briefly explain how the above proof of Theorem 1 is
adapted to the random setting. As for Theorem 1, we may assume supp f̂ ⊂ R×BR
with εR � 1, and the general conclusion follows by approximation. As explained in
Appendix A, the only difference with respect to the periodic setting is that only a
finite number `∗ = dβ∧d2 e of correctors can be defined with stationary gradient, and
the highest-order corrector has a nontrivial sublinear growth. Using Proposition 2.9 in
combination with Lemma B.1 to estimate the energy norm of the two-scale expansion
error of order ` ≤ `∗, and using the corrector estimates of Appendix A and the Sobolev
embedding, we find for a > d

2 ,

‖D(utε − S`ε[Ū `;tε , f t])‖Lq(Ω;L2(Rd))

. ε`‖µ∗` ( ·ε )γ(ε∇)〈D〉2`+af‖L1((0,t);L2(Rd))

+ ε`‖µ∗` ( ·ε )γ(ε∇)〈D〉2`+aDŪ `ε‖L1((0,t);L2(Rd)),

where the weight µ∗` originates in the growth of correctors and is defined in (A.1). A
novelty with respect to the proof of Theorem 1 is that we now need weighted energy
estimates for Ū `ε with sublinear weight µ∗` . For that purpose, as the homogenized
equation (2.16) has constant coefficients, we note that Ū `ε displays ballistic transport,
and therefore

‖µ∗` ( ·ε )γ(ε∇)〈D〉2`+aDŪ `;tε ‖L2(Rd) . µ∗` (
1
ε 〈t〉) ‖〈·〉γ(ε∇)〈D〉Cf‖L1((0,t);L2(Rd))

. µ∗` (
1
ε 〈t〉) ‖〈·〉〈D〉

Cf‖L1((0,t);L2(Rd)).

This is easily obtained by interpolation, using that the weight x corresponds to a
derivative in Fourier space and using the Duhamel formula for Ū `ε ; see e.g. [5, Proof
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of Proposition 3] for the details. The above then becomes

‖D(utε − S`ε[Ū `;tε , f t])‖Lq(Ω;L2(Rd)) . ε`〈t〉µ∗` ( 1
ε 〈t〉) ‖〈·〉〈D〉

Cf‖L1((0,t);L2(Rd)).

Note that the error estimate for ` = `∗ − 1 is occasionally better than the one for
` = `∗. Optimizing between the results for ` = `∗ and for ` = `∗ − 1, we easily
conclude

‖D(utε − S`∗ε [Ū `∗;tε , f t])‖Lq(Ω;L2(Rd)) . ε`∗〈t〉
(
µ∗`∗(

1
ε 〈t〉)∧

1
ε

)
‖〈·〉〈D〉Cf‖L1((0,t);L2(Rd)).

As in the proof of Theorem 1, we can replace Ū `∗ε in the left-hand side by the solution
of any well-posed modification of the formal homogenized equation, and we can derive
a similar estimate for the L2-norm. �

3. Geometric approach and hyperbolic two-scale expansion

This section is devoted to the definition of hyperbolic correctors and to the proof of
Theorem 2, including the well-posedness of the formal homogenized equation (1.10).
This essentially constitutes a rewriting of [3, 24, 1] and is needed to rigorously relate
those works to the spectral two-scale expansion, cf. Section 4.

3.1. Definition of hyperbolic correctors. We start with the definition of the hy-
perbolic correctors {φn,m}n,m and of the homogenized tensors {ān,m}n,m, as moti-
vated in Section 1.5.

Definition 3.1 (Hyperbolic correctors). In the periodic setting, the hyperbolic cor-
rectors {φn,m}n,m≥0, homogenized tensors {ān,m}n≥1,m≥0, and fluxes {qn,m}n,m≥0

are inductively defined as follows:
• We set φ0,0 := 1 and φ0,m := 0 for m ≥ 1, while for n ≥ 1 and m ≥ 0 we define
φn,m := (φn,mj1...jn)1≤j1,...,jn≤d with φn,mj1...jn ∈ H

1
per(Q) the periodic scalar field that

has vanishing average E
[
φn,mj1...jn

]
= 0 and satisfies

−∇ · a∇φn,mj1...jn = ∇ ·
(
aφn−1,m

j1...jn−1
ejn
)

+ ejn · q
n−1,m
j1...jn−1

.

• For n ≥ 1 and m ≥ 0, we define ān,m := (ān,mj1...jn−1
)1≤j1,...,jn−1≤d as the matrix-

valued (n− 1)th-order tensor given by

ān,mj1...jn−1
ej := E

[
a
(
∇φn,mj1...jn−1j

+ φn−1,m
j1...jn−1

ej
)]
.

• For n,m ≥ 0, we define qn,m := (qn,mj1...jn)1≤j1,...,jn≤d with qn,mj1...jn ∈ L2
per(Q)d the

periodic vector field given by

qn,mj1...jn := a
(
∇φn,mj1...jn + φn−1,m

j1...jn−1
ejn
)
− φn+1,m−2

j1...jnj
ej − ān,mj1...jn−1

ejn ,

where the definition of ān,m ensures E [qn,m] = 0.
In particular, there holds φn,m = 0, ān,m = 0, and qn,m = 0 whenever m is an odd
integer.3 ♦

For all n, we note that φn,0 coincides with the elliptic corrector of order n, cf. [6].
As is common in the elliptic setting, it is useful to further introduce suitable flux
correctors, which indeed allow us to refine error estimates and slightly improve on
the result of [3]. More precisely, flux correctors are designed to allow a direct optimal
exploitation of cancellations due to fluxes having vanishing average E

[
qn,m

]
= 0. We

start with the definition of flux correctors for m ≥ 1.

3This is natural as time derivatives should always come in even numbers in view of equation (1.2).
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Definition 3.2 (Hyperbolic flux correctors). For n ≥ 0 and m ≥ 1, we define the
hyperbolic flux corrector σn,m := (σn,mj1...jn)1≤j1,...,jn≤d by

σn,mj1...jn = (∇Φn,mj1...jn)′,

where Φn,mj1...jn ∈ H
1
per(Q)d is the periodic vector field that satisfies E

[
Φn,mj1...jn

]
= 0 and

−4Φn,mj1...jn = qn,mj1...jn . ♦

In case m = 0, as correctors φn,0 coincide with elliptic correctors, they display
more structure than general hyperbolic correctors. We recall how this structure can
be exploited to construct a suitable flux corrector σn,0 that is skew-symmetric: the
following lemma is essentially borrowed from [15].

Lemma 3.3 (Elliptic correctors and flux correctors). Up to symmetrization of indices,
the elliptic correctors {φn,0}n≥0 and homogenized tensors {ān,0}n≥1 coincide with the
modified families {φ̃n,0}n≥0 and {ãn,0}n≥1 defined via the following cell problems:

• We set φ̃0,0 := 1 and for n ≥ 1 we define φ̃n,0 := (φ̃n,0j1...jn
)1≤j1,...jn,≤d with φ̃n,0j1...jn

∈
H1

per(Q) the periodic scalar field that has vanishing average E
[
φ̃n,0j1...jn

]
= 0 and

satisfies

−∇ · a∇φ̃n,0j1...jn
= ∇ ·

(
aφ̃n−1,0

j1...jn−1
ejn
)

+ ejn · q̃
n−1,0
j1...jn−1

.

• For n ≥ 1, we define ãn,0 := (ãn,0j1...jn−1
)1≤j1,...,jn−1≤d with ãn,0j1...jn−1

the matrix
given by

ãn,0j1...jn−1
ej := E

[
a
(
∇φ̃n,0j1...jn−1j

+ φ̃n−1,0
j1...jn−1

ej
)]
.

• For n ≥ 0, we define q̃n,0 := (q̃n,0j1...jn
)1≤j1,...,jn≤d with q̃

n,0
j1...jn

∈ L2
per(Q)d the periodic

vector field given by

q̃n,0j1...jn
:= a

(
∇φ̃n,0j1...jn

+ φ̃n−1,0
j1...jn−1

ejn
)
− ãn,0j1...jn−1

ejn − σ
n−1,0
j1...jn−1

ejn ,

where the definition of ãn,0 and σn−1,0 ensures E
[
q̃n,0

]
= 0 and ∇ · q̃n,0j1...jn

= 0.
• We set σ0,0 := 0 and we define the flux corrector σn,0 := (σn,0j1...jn

)1≤j1,...,jn≤d for
n ≥ 1 with σn,0j1...jn

∈ H1
per(Q)d×d the periodic skew-symmetric matrix field that has

vanishing average E
[
σn,0j1...jn

]
= 0 and satisfies

−4σn,0j1...jn
= ∇× q̃n,0j1...jn

, ∇ · σn,0j1...jn
= q̃n,0j1...jn

,

where we use the vectorial notation (∇×F )ij := ∇iFj −∇jFi for a vector field F .
More precisely, these modified correctors coincide with {φn,0}n≥0 in the sense that we
have for all n ≥ 0 and ξ ∈ Rd,

φn,0 � ξ⊗n = φ̃n,0 � ξn, (ān,0 � ξ⊗(n−1))ξ = (ãn,0 � ξ⊗(n−1))ξ. ♦

Proof. We refer to [17] or [15] for the construction of the skew-symmetric flux correc-
tor σn,0, based on the compatibility condition ∇· q̃n,0j1...jn

= 0, and we now turn to the
equivalence of φn,0 and φ̃n,0. Setting

q̂n,0j1...jn
:= a

(
∇φn,0j1...jn

+ φn−1,0
j1...jn−1

ejn
)
− ān,0j1...jn−1

ejn − σ
n−1,0
j1...jn−1

ejn , (3.1)

the equation for φn,0 in Definition 3.1 for n ≥ 1 can be written as

−∇ · a∇φn,0j1...jn
= ∇ ·

(
aφn−1,0

j1...jn−1
ejn
)

+ ejn ·
(
q̂n−1,0
j1...jn−1

+ σn−2,0
j1...jn−2

ejn−1

)
. (3.2)
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Symmetrizing indices j1, . . . , jn, the skew-symmetry of σn−2,0 allows us to drop the
corresponding right-hand side term, and we may conclude by induction that φn,0

coincides with its modified version φ̃n,0 up to symmetrization as stated. �

An iterative use of the Poincaré inequality on the unit cell Q ensures the well-
posedness of the above objects and further provides the following a priori estimates.

Lemma 3.4. In the periodic setting, the above quantities {φn,m, σn,m, ān,m)n,m are
uniquely defined and satisfy for all n,m ≥ 0,

‖(φn,m, σn,m)‖H1(Q) + |ān,m| ≤ Cn+m. ♦

We conclude this paragraph with some important vanishing property of the higher-
order hyperbolic homogenized coefficients, which extends the corresponding elliptic
result [15, Lemma 2.3]; see also [5, Proposition 1], [3, Theorem 2.13], and [1, Theo-
rem 3.5]. The proof is postponed to Section 3.5.

Proposition 3.5 (Symmetry of homogenized coefficients). For all n ≥ 1 and m ≥ 0,
there holds for any j1, . . . , jn+1,

ejn+1
· ān,mj1...jn−1

ejn = (−1)n+1ej1 · ā
n,m
jn+1...j3

ej2 .

In particular, whenever n is even, we have

ξ · (ān,m � ξ⊗(n−1))ξ = 0, for all ξ ∈ Rd. ♦

3.2. Geometric two-scale expansion. Given a smooth function w̄, we consider
its two-scale expansion associated with the above-defined hyperbolic correctors, as
in (1.36),

H`
ε [w̄] :=

∑̀
n=0

`−n∑
m=0

εn+mφn,m( ·ε )�∇n∂mt w̄, (3.3)

and we show that it is well-adapted to describe the local behavior of the solution
to the hyperbolic equation in the following sense: as explained in (1.38), the het-
erogeneous hyperbolic operator applied to H`

ε [w̄] is equivalent to some higher-order
effective operator applied to w̄ (up to O(ε`) error terms). The proof is postponed to
Section 3.6.

Proposition 3.6 (Geometric two-scale expansion). Let ` ≥ 1, ε > 0, and let w̄, f be
smooth functions satisfying

∂2
t w̄ −∇ ·

(∑̀
n=1

`−n∑
m=0

ān,m � (ε∇)n−1(ε∂t)
m
)
∇w̄ = f. (3.4)

Then, the associated geometric two-scale expansion of order `, defined in (3.3), satis-
fies the following relation in the distributional sense in R× Rd,(

∂2
t −∇ · a( ·ε )∇

)
H`
ε [w̄]

= f − ε`
∑̀
n=0

∇ ·
((

aφn,`−nj1...jn
− σn,`−nj1...jn

)
( ·ε )∇∇nj1...jn∂

`−n
t w̄

)
+ ε`

∑̀
n=1

∂t

(
φn,`−n( ·ε )�∇n∂`+1−n

t w̄ − σn−1,`+1−n
j1...jn−1

( ·ε ) : ∇2∇n−1
j1...jn−1

∂`−nt w̄
)
. ♦
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Remark 3.7. Note that the last two right-hand side terms in the above equation for
the two-scale expansion H`

ε [w̄] are total derivatives (with respect to time or space):
this is not a trivial fact for the last term, as it is based on the possibility of constructing
skew-symmetric flux correctors {σn,0}n. This happens to be crucial when applying
Lemma B.1 in order to deduce an optimal L2 error estimate. This slightly refines the
analysis of [3]. ♦

3.3. Homogenized equations and secular growth problem. As motivated in
Proposition 3.6, cf. (3.4), we consider the following formal homogenized equation, for
` ≥ 1,{

∂2
t W̄

`
ε −∇ ·

(∑`
n=1

∑`−n
m=0 ā

n,m � (ε∇)n−1(ε∂t)
m
)
∇W̄ `

ε = f, in R× Rd,
W̄ `
ε = f = 0, for t < 0.

(3.5)
However, this equation mixes higher-order space and time derivatives, and its well-
posedness is problematic. To avoid the secular growth problem described in Sec-
tion 1.3, we follow [3] and first show that the differential operator in (3.5) can be
rewritten in such a way that it does no longer mix space and time derivatives. This is
achieved by iteratively using the equation to eliminate time derivatives up to higher-
order terms, which is referred to as the ‘criminal method’ in [3]. The proof is post-
poned to Section 3.7. Note that the new homogenized coefficients {b̄n}n in this
reformulation automatically coincide with the coefficients given by the spectral ap-
proach: this can for instance be deduced a posteriori by comparing the corresponding
homogenization results, Theorems 1 and 2; this allows us to use already here the
same notation {b̄n}n as for spectral homogenized coefficients. Note that by definition
b̄1 = ā1,0 = ā.

Lemma 3.8 (Revamped homogenized equation). Given ` ≥ 1 and ε > 0, if W̄ `
ε , f

are smooth and satisfy the formal homogenized equation (3.5), then we have

∂2
t W̄

`
ε −∇ ·

(∑̀
n=1

b̄n � (ε∇)n−1
)
∇W̄ `

ε = f + ε2∇ ·
( `−2∑
n=1

c̄n � (εD)n−1
)
∇f +∇ ·E`ε,

where the coefficients {b̄n, c̄n}n and the remainder E`ε are as follows:
• We define the matrix-valued symmetric tensor b̄p := (b̄pj1...jp−1

)1≤j1,...,jp−1≤d for
p ≥ 1 such that for all ξ ∈ Rd,

ξ · (b̄p � ξ⊗(p−1))ξ :=
∑
k≥1

∑
(m1,...,mk)∈Ik

∑
n1,...,nk≥1

k+|n|=p+1

k∏
j=1

ξ ·
(
ānj ,mj � ξ⊗(nj−1)

)
ξ,

in terms of the index set

Ik :=
{
m = (m1, . . . ,mk) : mj ≥ 0 ∀j,

s∑
j=1

mj ≥ 2s ∀s < k, |m| = 2(k − 1)
}
.

• We define the matrix-valued symmetric tensor c̄p := (c̄pj1...jp−1
)0≤j1,...,jp−1≤d for all

p ≥ 1 such that for all ξ̂ = (ξ0, ξ) ∈ R× Rd,

ξ·(c̄p�ξ̂⊗(p−1))ξ :=
∑
k≥1

∑
(m1,...,mk)∈Jk

∑
n1,...,nk≥1

|n|+|m|=p+k+1

ξ
|m|−2k
0

k∏
j=1

ξ·
(
ānj ,mj�ξ⊗(nj−1)

)
ξ,
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in terms of the index set

Jk :=
{
m = (m1, . . . ,mk) : mj ≥ 0 ∀j,

s∑
j=1

mj ≥ 2s ∀s ≤ k
}
.

• For ε� 1 small enough, the error term E`ε satisfies pointwise, for all r ≥ 0,

|〈D〉rE`ε| ≤ (εC`)`
(∣∣〈D〉r+`〈εCD〉`2DW̄ `

ε

∣∣+
∣∣〈D〉r+`−1〈εCD〉`

2

f
∣∣).

In particular, Lemma 3.4 implies for all p ≥ 1,

|b̄p|+ |c̄p| ≤ Cp, (3.6)

and Proposition 3.5 entails, whenever p is an even integer,

ξ · (b̄p � ξ⊗(p−1))ξ = 0, for all ξ ∈ Rd. ♦

The above thus leads us to considering the following modified version of the formal
effective equation (3.5), ∂2

t V̄
`
ε −∇ ·

(
ā +

∑`
k=2 b̄

k � (ε∇)k−1
)
∇V̄ `ε

= f + ε2∇ ·
(∑`−2

k=1 c̄
k � (εD)k−1

)
∇f, in R× Rd,

V̄ `ε = f = 0, for t < 0.

(3.7)

As with the spectral approach, the symbol of the operator −∇ ·
(
ā +

∑`
k=2 b̄

k �
(ε∇)k−1

)
∇ lacks positivity, so this equation is ill-posed in general. To cure this

issue, we argue exactly as in Section 2.3: we can consider several well-posed higher-
order modifications of this equation, either by high-frequency filtering, by higher-order
regularization, or by the Boussinesq trick, and we denote by v̄(I),`

ε , v̄
(II),`
ε , v̄

(III),`
ε the

corresponding solutions, respectively. We refer to Lemma 2.10 for the details (up to
replacing the impulse f in (2.16) by the specific right-hand side in (3.7)).

Next, we show that the above modification procedure W̄ `
ε 7→ V̄ `ε for the formal

effective equation can be inverted: more precisely, the solution v̄
(?),`
ε of any of the

well-posed modifications of (3.7) is an approximate solution of the formal effective
equation (3.5) up to an O(ε`) error.

Lemma 3.9 (Inversion procedure). Given ` ≥ 1 and ε > 0, if v̄(?),`
ε is the solution

of one of the well-posed modifications of equation (3.7) as given by Lemma 2.10, then
we have

∂2
t v̄

(?),`
ε −∇ ·

(∑̀
n=1

`−n∑
m=0

ān,m � (ε∇)n−1(ε∂t)
m
)
∇v̄(?),`

ε = f +∇ · F (?),`
ε ,

where the error ∇ · F (?),`
ε satisfies for all r ≥ 0,

‖〈D〉rF (?),`;t
ε ‖L2(Rd) ≤ (εC`)`‖〈D〉r+C`〈εCD〉`

2

f‖L1((0,t);L2(Rd)),

where the constant C further depends on the choice of α in case (?) = (I). ♦

3.4. Proof of Theorem 2. Applying Proposition 3.6 with w̄ = v̄
(?),`
ε , appealing to

Lemma 3.9, and comparing with the solution uε of the heterogeneous wave equa-
tion (1.2), we find(

∂2
t −∇ · a( ·ε )∇

)
(uε −H`

ε [v̄
(?),`
ε ]) = −∇ · F (?),`

ε

+ ε`
`+1∑
n=1

∇ ·
((

aφn−1,`−n+1
j1...jn−1

− σn−1,`−n+1
j1...jn−1

)
( ·ε )∇∇n−1

j1...jn−1
∂`−n+1
t v̄(?),`

ε

)
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− ε`
∑̀
n=0

∂t

((
φn+1,`−n−1
j1...jn−1ji

ej ⊗ ei − σn−1,`−n+1
j1...jn−1

)
( ·ε ) : ∇2∇n−1

j1...jn−1
∂`−nt v̄(?),`

ε

)
.

By the a priori estimates of Lemma B.1, using corrector estimates of Lemma 3.4, and
using the Sobolev embedding to estimate products with correctors as in (2.39), we
get for a > d

2 ,

‖utε −H`
ε [v̄

(?),`;t
ε ]‖L2(Rd) + ‖D(utε −H`

ε [v̄
(?),`;t
ε ])‖L2(Rd)

. ‖〈D〉F (?),`
ε ‖L1((0,t);L2(Rd)) + (εC)`‖〈D〉`+a+1Dv̄(?),`

ε ‖L1((0,t);L2(Rd)).

Combining this bound with the estimate of Lemma 3.9 on the remainder F `ε , and
with the a priori estimates of Lemma 2.10(ii) for v̄(?),`

ε , the conclusion follows. �

3.5. Proof of Proposition 3.5. We split the proof into two steps.

Step 1. Migration process: proof that for all n,m, p, q ≥ 0,

E
[(
∇φp,qj1...jp · a∇φ

n,m
i1...in

− φp−1,q
j1...jp−1

ejp · aφ
n−1,m
i1...in−1

ein
)]

= −E
[(
∇φp+1,q

j1...jpin
· a∇φn−1,m

i1...in−1
− φp,qj1...jpein · aφ

n−2,m
i1...in−2

ein−1

)]
− E

[(
φp,qj1...jpφ

n,m−2
i1...in

+ φp+1,q−2
j1...jpin

φn−1,m
i1...in−1

)]
, (3.8)

and in addition, for all n,m, q ≥ 0,
n∑
k=1

(−1)kE
[
φk,qjin...in−k+2

φn−k+1,m
i1...in−k+1

]
=

n∑
k=1

(−1)kE
[
φk,q+2
jin...in−k+2

φn−k+1,m−2
i1...in−k+1

]
+ (−1)nE

[
∇φn,q+2

jin...i2
· a∇φ0,mei1 + φn−1,q+2

jin...i3
ei2 · aφ0,mei1

]
. (3.9)

The equation for φn,m in Definition 3.1 yields

E
[
∇φp,qj1...jp · a∇φ

n,m
i1...in

]
= −E

[
∇φp,qj1...jp · aφ

n−1,m
i1...in−1

ein

]
+ E

[
φp,qj1...jpein · a

(
∇φn−1,m

i1...in−1
+ φn−2,m

i1...in−2
ein−1

)]
− E

[
φp,qj1...jpφ

n,m−2
i1...in

]
,

while the equation for φp+1,q leads to

E
[
φp,qj1...jpein · a∇φ

n−1,m
i1...in−1

]
= −E

[
∇φp+1,q

j1...jpin
· a∇φn−1,m

i1...in−1

]
+ E

[(
∇φp,qj1...jp + φp−1,q

j1...jp−1
ejp
)
· aφn−1,m

i1...in−1
ein

]
− E

[
φp+1,q−2
j1...jpin

φn−1,m
i1...in−1

]
.

Summing these two identities, the claim (3.8) easily follows. Next, using (3.8) in form
of

E
[
φk,qjin...in−k+2

φn−k+1,m
i1...in−k+1

]
= −E

[
φk−1,q+2
jin...in−k+3

φn−k+2,m−2
i1...in−k+2

]
− E

[(
∇φk−1,q+2

jin...in−k+3
· a∇φn−k+2,m

i1...in−k+2
− φk−2,q+2

jin...jn−k+4
ejn−k+3

· aφn−k+1,m
i1...in−k+1

ein−k+2

)]
− E

[(
∇φk,q+2

jin...in−k+2
· a∇φn−k+1,m

i1...in−k+1
− φk−1,q+2

jin...in−k+3
ein−k+2

· aφn−k,mi1...in−k
ein−k+1

)]
,

and summing this identity for 1 ≤ k ≤ n, we find after straightforward simplifications
n∑
k=1

(−1)kE
[
φk,qjin...in−k+2

φn−k+1,m
i1...in−k+1

]
= −

n∑
k=1

(−1)kE
[
φk−1,q+2
jin...in−k+3

φn−k+2,m−2
i1...in−k+2

]
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− (−1)nE
[(
∇φn,q+2

jin...i2
· a∇φ1,m

i1
− φn−1,q+2

jin...i3
ei2 · aφ0,mei1

)]
.

Using the equation for φ1,m, the second claim (3.9) easily follows.

Step 2. Conclusion.
For n ≥ 1 and m ≥ 0, the definition of ān,m and the equation for φ1,0 yield

ej · ān,mi1...in−1
ein = −E

[(
∇φ1,0

j · a∇φ
n,m
i1...in

− ej · aφn−1,m
i1...in−1

ein
)]
.

Iterating identity (3.8) then leads to

ej · ān,mi1...in−1
ein = (−1)nE

[(
∇φn,0jin...i2

· a∇φ1,m
i1
− φn−1,0

jin...i3
ei2 · aφ0,mei1

)]
−
n−1∑
k=1

(−1)kE
[
φk,0jin...in−k+2

φn−k+1,m−2
i1...in−k+1

]
,

hence, using the equation for φ1,m,

ej · ān,mi1...in−1
ein = (−1)n+1E

[(
∇φn,0jin...i2

+ φn−1,0
jin...i3

ei2
)
· aφ0,mei1

]
−

n∑
k=1

(−1)kE
[
φk,0jin...in−k+2

φn−k+1,m−2
i1...in−k+1

]
. (3.10)

For m = 0, this already yields the conclusion

ej ·ān,0i1...in−1
ein = (−1)n+1E

[(
∇φn,0jin...i2

+ φn−1,0
jin...i3

ei2
)
· aei1

]
= (−1)n+1ei1 ·ā

n,0
jin...i3

ei2 .

For m ≥ 2, identity (3.10) rather takes the form

ej · ān,mi1...in−1
ein = −

n∑
k=1

(−1)kE
[
φk,0jin...in−k+2

φn−k+1,m−2
i1...in−k+1

]
, (3.11)

which we shall combine with an iterative use of identity (3.9). More precisely, in case
m = 4m′ + 2 with an integer m′ ≥ 0, iterating identity (3.9) (starting from q = 0
with m replaced by m− 2 = 4m′), and recalling φ0,l = 0 for l ≥ 1, we find

n∑
k=1

(−1)kE
[
φk,0jin...in−k+2

φn−k+1,m−2
i1...in−k+1

]
=

n∑
k=1

(−1)kE
[
φk,2m

′

jin...in−k+2
φn−k+1,2m′

i1...in−k+1

]
,

and thus, combining this with (3.11), and replacing k by n− k + 1 in the sum,

ej · ān,mi1...in−1
ein = −

n∑
k=1

(−1)kE
[
φk,2m

′

jin...in−k+2
φn−k+1,2m′

i1...in−k+1

]
= (−1)n+1ei1 · ā

n,m
jin...i3

ei2 .

Similarly, in the case m = 4m′ with integer m′ ≥ 1, we find

ej · ān,mi1...in−1
ein = −

n∑
k=1

(−1)kE
[
φk,2m

′

jin...in−k+2
φn−k+1,2m′−2
i1...in−k+1

]
= −

n∑
k=1

(−1)kE
[
φk,2m

′−2
jin...in−k+2

φn−k+1,2m′

i1...in−k+1

]
= (−1)n+1ei1 · ā

n,m
jin...i3

ei2 ,

and the conclusion follows. �
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3.6. Proof of Proposition 3.6. We focus on the case ε = 1 and drop it from all
subscripts in the notation, while the final result is obtained after ε-rescaling. Since the
correctors φn,mj1...jn do not depend on time, a direct calculation yields for all n,m ≥ 0,

(∂2
t −∇ · a∇)

(
φn,m �∇n∂mt w̄

)
= φn,m �∇n∂m+2

t w̄

+ (−∇ · a∇φn,mj1...jn)∇nj1...jn∂
m
t w̄ −∇ · (aφ

n,m
j1...jn

ejn+1)∇n+1
j1...jn+1

∂mt w̄

− (ejn+1
· a∇φn,mj1...jn)∇n+1

j1...jn+1
∂mt w̄ − (ejn+2

· aφn,mj1...jnejn+1
)∇n+2

j1...jn+2
∂mt w̄.

Inserting the defining equation for the hyperbolic corrector φn,m, cf. Definition 3.1,
we get for all n ≥ 1 and m ≥ 0,

(∂2
t −∇ · a∇)

(
φn,m �∇n∂mt w̄

)
= φn,m �∇n∂m+2

t w̄ − φn,m−2 �∇n∂mt w̄

+∇ · (aφn−1,m
j1...jn−1

ejn)∇nj1...jn∂
m
t w̄ −∇ · (aφ

n,m
j1...jn

ejn+1
)∇n+1

j1...jn+1
∂mt w̄

+ (ejn · a∇φ
n−1,m
j1...jn−1

)∇nj1...jn∂
m
t w̄ − (ejn+1

· a∇φn,mj1...jn)∇n+1
j1...jn+1

∂mt w̄

+ (ejn · aφ
n−2,m
j1...jn−2

ejn−1
)∇nj1...jn∂

m
t w̄ − (ejn+2

· aφn,mj1...jnejn+1
)∇n+2

j1...jn+2
∂mt w̄

− ān−1,m
j1...jn−2

: ∇2∇n−2
j1...jn−2

∂mt w̄,

and thus, after summation over 1 ≤ n ≤ ` and 0 ≤ m ≤ ` − n, recalling the defini-
tion (3.3) of the geometric two-scale expansion, and using φ0,0 = 1 and φ0,m = 0 for
m > 0,

(∂2
t −∇ · a∇)H`[w̄] = ∂2

t w̄ −
∑̀
n=1

`−n∑
m=0

ān−1,m
j1...jn−2

: ∇2∇n−2
j1...jn−2

∂mt w̄

+
∑̀
n=1

(
φn,`−n−1 �∇n∂`+1−n

t w̄ + φn,`−n �∇n∂`+2−n
t w̄

)
−
∑̀
n=1

(
∇ · (aφn,`−nj1...jn

ejn+1
) + ejn+1

· a∇φn,`−nj1...jn

)
∇n+1
j1...jn+1

∂`−nt w̄

−
∑̀
n=1

(
(ejn+1

·aφn−1,`−n
j1...jn−1

ejn)∇n+1
j1...jn+1

∂`−nt w̄+(ejn+2
·aφn,`−nj1...jn

ejn+1
)∇n+2

j1...jn+2
∂`−nt w̄

)
.

As ā0,m = 0 for all m ≥ 0, the second right-hand side term can be rewritten as

∑̀
n=1

`−n∑
m=0

ān−1,m
j1...jn−2

: ∇2∇n−2
j1...jn−2

∂mt w̄ =

`−1∑
n=1

`−1−n∑
m=0

ān,mj1...jn−1
: ∇2∇n−1

j1...jn−1
∂mt w̄

=
∑̀
n=1

`−n∑
m=0

∇ · (ān,m �∇n−1∂mt )∇w̄ −
∑̀
n=1

ān,`−nj1...jn−1
: ∇2∇n−1

j1...jn−1
∂`−nt w̄.

Further rearranging the terms, and noting that

∇ · (aφn,`−nj1...jn
ejn+1

)∇n+1
j1...jn+1

∂`−nt w̄ + (ejn+2
· aφn,`−nj1...jn

ejn+1
)∇n+2

j1...jn+2
∂`−nt w̄

= ∇ ·
(
aφn,`−nj1...jn

∇∇nj1...jn∂
`−n
t w̄

)
,

we are led to

(∂2
t −∇ · a∇)H`[w̄] = ∂2

t w̄ −
∑̀
n=1

`−n∑
m=0

∇ · (ān,m �∇n−1∂mt )∇w̄
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+
∑̀
n=1

(
φn,`−n−1 �∇n∂`+1−n

t w̄ + φn,`−n �∇n∂`+2−n
t w̄

)
−
∑̀
n=1

∇ ·
(
aφn,`−nj1...jn

∇∇nj1...jn∂
`−n
t w̄

)
−
∑̀
n=1

(
a
(
∇φn,`−nj1...jn

+ φn−1,`−n
j1...jn−1

ejn
)
− ān,`−nj1...jn−1

ejn

)
· ∇∇nj1...jn∂

`−n
t w̄. (3.12)

The last right-hand side terms can be reformulated in terms of fluxes, cf. Definition 3.1,

∑̀
n=1

(
a
(
∇φn,`−nj1...jn

+ φn−1,`−n
j1...jn−1

ejn
)
− ān,`−nj1...jn−1

ejn

)
· ∇∇nj1...jn∂

`−n
t w̄

=
∑̀
n=1

qn,`−nj1...jn
· ∇∇nj1...jn∂

`−n
t w̄ +

`−1∑
n=1

φn+1,`−n−2 �∇n+1∂`−nt w̄.

Further noting that we can write

q`,0j1...j` · ∇∇
`
j1...j`

w̄ = q̃`,0j1...j` · ∇∇
`
j1...j`

w̄,

in terms of the modified fluxes of Lemma 3.3, and then inserting the definition of
hyperbolic flux correctors and using the skew-symmetry of σ`,0j1...j` , cf. Definition 3.2
and Lemma 3.3, we deduce

∑̀
n=1

(
a
(
∇φn,`−nj1...jn

+ φn−1,`−n
j1...jn−1

ejn
)
− ān,`−nj1...jn−1

ejn

)
· ∇∇nj1...jn∂

`−n
t w̄

= −
∑̀
n=0

∇j(σn,`−nj1...jn
)jjn+1

∇n+1
j1...jn+1

∂`−nt w̄ +

`−1∑
n=0

φn+1,`−n−2 �∇n+1∂`−nt w̄.

Rearranging the terms and further using the skew-symmetry of σ`,0j1...j` , we get

∑̀
n=1

(
a
(
∇φn,`−nj1...jn

+ φn−1,`−n
j1...jn−1

ejn
)
− ān,`−nj1...jn−1

ejn

)
· ∇∇nj1...jn∂

`−n
t w̄

= −
∑̀
n=0

∇ ·
(
σn,`−nj1...jn

∇∇nj1...jn∂
`−n
t w̄

)
+

`−1∑
n=0

σn,`−nj1...jn
: ∇2∇nj1...jn∂

`−n
t w̄

+

`−1∑
n=0

φn+1,`−n−2 �∇n+1∂`−nt w̄.

Inserting this into (3.12) yields the conclusion. �

3.7. Proof of Lemma 3.8. We split the proof into three steps.

Step 1. Proof that for all p ≥ 1 there holds

∂2
t W̄

`
ε −

p∑
k=1

ε2(k−1)
∑
n∈[`]k

∑
m∈Ink

( k∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
W̄ `
ε

= f +

p−1∑
k=1

∑
n∈[`]k

∑
m∈Jnk

ε|m|
( k∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2k
t f
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+
∑
n∈[`]p

∑
m∈Jnp

ε|m|
( p∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2(p−1)
t W̄ `

ε , (3.13)

where we have defined the following sets of indices, for all k ≥ 1 and n = (n1, . . . , nk) ∈
[`]k := {1, . . . , `}k,

Ink =
{
m = (m1, . . . ,mk) : 0 ≤ mj ≤ `− nj ∀j,

s∑
j=1

mj ≥ 2s ∀s < k, |m| = 2(k − 1)
}
,

Jnk =
{
m = (m1, . . . ,mk) : 0 ≤ mj ≤ `− nj ∀j,

s∑
j=1

mj ≥ 2s ∀s ≤ k
}
.

We argue by induction. For p = 1, the stated identity (3.13) reduces to

∂2
t W̄

`
ε−∇·

(∑̀
n=1

ān,0�(ε∇)n−1
)
∇W̄ `

ε = f+∇·
(∑̀
n=1

`−n∑
m=2

ān,m�(ε∇)n−1(ε∂t)
m
)
∇W̄ `

ε ,

which is a simple reformulation of (3.5), keeping in mind that ān,m = 0 whenever
m is odd, cf. Definition 3.1. Next, we assume that the claim (3.13) holds for some
p ≥ 1 and we prove that it then also holds at level p+ 1. Let n ∈ [`]p and m ∈ Jnp be
momentarily fixed. As by definition |m| ≥ 2p, we may use (3.5) in the form

∂
|m|−2(p−1)
t W̄ `

ε = ∂
|m|−2p
t

(
f +∇ ·

( ∑̀
n′=1

`−n′∑
m′=0

ān
′,m′ � (ε∇)n

′−1(ε∂t)
m′
)
∇W̄ `

ε

)
.

Note that for 1 ≤ n′ ≤ ` and 0 ≤ m′ ≤ `− n′ we have the equivalences

(m,m′) ∈

{
I

(n,n′)
p+1 ⇐⇒ |m| = 2p, m′ = 0,

J
(n,n′)
p+1 ⇐⇒ |m|+m′ ≥ 2(p+ 1).

Using these observations, the last term in (3.13) can be decomposed as

∑
n∈[`]p

∑
m∈Jnp

ε|m|
( p∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2(p−1)
t W̄ `

ε

=
∑
n∈[`]p

∑
m∈Jnp

ε|m|
( p∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2p
t f

+ ε2p
∑

n∈[`]p+1

∑
m∈Inp+1

( p+1∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
W̄ `
ε

+
∑

n∈[`]p+1

∑
m∈Jnp+1

ε|m|
( p+1∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2p
t W̄ `

ε .

Inserting this expression into the induction assumption (3.13) yields the conclusion.

Step 2. Reformulation.
The definition of the coefficients {b̄n}n in the statement leads to

∇ ·
(∑̀
n=1

b̄n � (ε∇)n−1
)
∇
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=
∑̀
r=1

dr/2e∑
k=1

ε2(k−1)
∑
n∈[`]k

k+|n|=r+1

∑
m∈Ink

k∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇

=

d`/2e∑
k=1

ε2(k−1)
∑
n∈[`]k

|n|≤`−k+1

∑
m∈Ink

k∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇.

(Here we have used the following observation: for m = (m1, . . . ,mk) and n =
(n1, . . . , nk) with mj ≥ 0 and nj ≥ 1 for all j, the restrictions |m| = 2(k − 1)
and k + |n| = r + 1 entail mj + nj ≤ r, thus showing that the index set Ik in the
definition of the coefficients {b̄n}n is indeed interchangeable with Ink here.) Choosing
p := d `2e in (3.13) and inserting the above, we find

∂2
t W̄

`
ε −∇ ·

(∑̀
n=1

b̄n � (ε∇)n−1
)
∇W̄ `

ε = ∇ ·Q`ε

+ f +

p−1∑
k=1

∑
n∈[`]k

∑
m∈Jnk

ε|m|
( k∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2k
t f, (3.14)

where the remainder ∇ ·Q`ε is given by

Q`ε :=∑
n∈[`]p

∑
m∈Jnp

ε|m|
(
ān1,m1 � (ε∇)n1−1

)
∇
( p∏
j=2

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2(p−1)
t W̄ `

ε

+

p∑
k=1

ε2(k−1)
∑
n∈[`]k

|n|≥`−k+2

∑
m∈Ink

(
ān1,m1�(ε∇)n1−1

)
∇
( k∏
j=2

∇·
(
ānj ,mj�(ε∇)nj−1

)
∇
)
W̄ `
ε .

(We use the standard convention
∏k
j=l = 1 if l > k.) In order to estimate the

remainder Q`ε, let us first examine the ε-scaling and the number of derivatives of W̄ `
ε

appearing in each of the two contributions in its definition:
— In the first contribution in the definition of Q`ε, the terms have scaling ε|n|+|m|−p

and involve |n|+ |m| − p+ 1 space-time derivatives of W̄ `
ε , while the condition on

m,n in the sum ensures the lower bound |n| + |m| − p ≥ |m| ≥ 2p ≥ ` and the
upper bound |n|+ |m| − p ≤ |n|+ p`− |n| − p = p(`− 1) = d `2e(`− 1) ≤ `2.

— In the second contribution in the definition of Q`ε, the terms have scaling ε|n|+k−2

and involve |n|+ k− 1 derivatives, while the condition on n,m in the sum ensures
the lower bound |n|+ k − 2 ≥ ` and the upper bound |n|+ k − 2 ≤ k`+ k − 2 =
d `2e(`+ 1)− 2 ≤ `2.

Hence, in view of Lemma 3.4, we deduce for ε� 1, for all r ≥ 0,

|〈D〉rQ`ε| . (εC`)`|〈D〉r+`〈εCD〉`
2

DW̄ `
ε |.

Likewise, the definition of {c̄n}n in the statement leads to

ε2∇ ·
( `−2∑
n=1

c̄n � (εD)n−1
)
∇
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=

d`/2e−1∑
k=1

∑
n∈[`]k

∑
m∈Jn

k
|n|+|m|≤`+k−1

ε|m|
( k∏
j=1

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2k
t ,

which, inserted into (3.14), yields

∂2
t W̄

`
ε−∇·

(∑̀
n=1

b̄n�(ε∇)n−1
)
∇W̄ `

ε = f+ε2∇·
( `−2∑
n=1

c̄n�(εD)n−1
)
∇f+∇·(Q`ε+R`ε),

where the additional remainder ∇ ·R`ε (which is not zero only for ` ≥ 3) is given by

R`ε =

p−1∑
k=1

∑
n∈[`]k

∑
m∈Jn

k
|n|+|m|≥`+k

ε|m|
(
ān1,m1 � (ε∇)n1−1

)

×∇
( k∏
j=2

∇ ·
(
ānj ,mj � (ε∇)nj−1

)
∇
)
∂
|m|−2k
t f.

Again, in order to estimate this remainder, we first check the ε-scaling and the number
of derivatives of f : the terms have scaling ε|n|+|m|−k and involve |n| + |m| − k − 1
derivatives, while the condition on n,m in the sum ensures the lower bound |n| +
|m| − k ≥ ` and the upper bound |n| + |m| − k ≤ k(` − 1) ≤ (d `2e − 1)(` − 1) ≤ `2.
Hence, in view of Lemma 3.4, we deduce for ε� 1, for all r ≥ 0,

|〈D〉rR`ε| . (εC`)`|〈D〉r+`−1〈εCD〉`
2

f |.

The conclusion with the remainder estimate follows upon setting E`ε = Q`ε +R`ε.

Step 3. Growth of the revamped coefficients: proof of (3.6).
We focus on b̄p, while the estimation of c̄p is obtained similarly. By definition of b̄p

in the statement, together with Lemma 3.4, we find

|b̄p| ≤
∑
k≥1

∑
(m1,...,mk)∈Ik

∑
n1,...,nk≥1

k+|n|=p+1

C |n|+|m|.

For all admissible indices in the above sum, we have |n| ≥ k, and thus p + 1 =
k + |n| ≥ 2k, hence k ≤ p+1

2 . Moreover, any m ∈ Ik satisfies |m| = 2(k − 1), hence
p+1 = k+ |n| = |n|+ |m|−k+2. The upper bound for k then yields |n|+ |m| ≤ 3p−1

2 ,
which leads us to the bound

|b̄p| ≤ Cp ]
{
r ∈ Np+1 : |r| ≤ 3p−1

2

}
,

and the conclusion |b̄p| ≤ Cp follows from a simple counting argument with the balls
in bins formula. �

3.8. Proof of Lemma 3.9. Let v̄(?),`
ε be the solution of a well-posed modification

of (3.7). In terms of

f (?),`
ε (x) := ∂2

t v̄
(?),`
ε −∇ ·

(∑̀
n=1

`−n∑
m=0

ān,m � (ε∇)n−1(ε∂t)
m
)
∇v̄(?),`

ε , (3.15)

we aim to decompose f (?),`
ε = f +∇ · F (?),`

ε for some remainder F (?),`
ε satisfying the

claimed estimates. We split the proof into three steps, separately considering the
cases (?) = (I), (II), (III).
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Step 1. High-order filtering: (?) = (I).
Applying Lemma 3.8 to (3.15), we find

∂2
t v̄

(I),`
ε −∇ ·

(
ā +

∑̀
k=2

b̄k � (ε∇)k−1
)
∇v̄(I),`

ε

= f (I),`
ε + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f (I),`

ε +∇ · E(I),`
ε ,

where the remainder satisfies for ε� 1, for all r ≥ 0,

|〈D〉rE(I),`
ε | ≤ (εC`)`

(
|〈D〉r+`〈εCD〉`

2

Dv̄(I),`
ε |+ |〈D〉r+`−1〈εCD〉`

2

f (I),`
ε |

)
. (3.16)

As v̄(I),`
ε is the solution of the well-posed modification of (3.7) obtained by high-order

filtering in the sense of Lemma 2.10, we deduce

χ(εα∇)

(
f + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f
)

= f (I),`
ε + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f (I),`

ε +∇ · E(I),`
ε ,

or equivalently,

f (I),`
ε + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f (I),`

ε

= f + ε2∇ ·
( `−2∑
n=1

c̄n � (εD)n−1
)
∇f +∇ · Ê(I),`

ε , (3.17)

with modified remainder

Ê(I),`
ε := −E(I),`

ε − (1− χ(εα∇))4−1∇
(
f + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f
)
. (3.18)

In order to estimate f (I),`
ε , it remains to invert the differential operator

1 + ε2∇ ·
( `−2∑
n=1

c̄n � (εD)n−1
)
∇ (3.19)

in the left-hand side of (3.17). Although it is not invertible in general, we may invert
it approximately using a Neumann series truncated at order O(ε`). More precisely,
we set

O`ε := 1 +

b`/2c∑
k=1

(−ε2)k
∑

n∈[`−2]k

|n|≤`−k

k∏
j=1

(
∇ ·
(
c̄nj � (εD)nj−1

)
∇
)
.

By a simple counting argument with the balls in bins formula, the number of terms
in this sum defining O`ε can be bounded by

b`/2c∑
k=1

]{n ∈ [`− 2]k : |n| ≤ `− k} ≤ C`,
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and therefore, combining this cardinality bound with the bound |c̄n| ≤ Cn, we easily
deduce for any function g, for all r ≥ 0,

|〈D〉rO`εg| ≤ C`|〈D〉r〈εCD〉`g|. (3.20)

Next, we check that O`ε is indeed an approximate inverse for the differential operator
in (3.19): by definition of O`ε, working out cancellations, we find for any function g,

O`ε
(

1 + ε2∇ ·
( `−2∑
n=1

c̄n � (εD)n−1
)
∇
)
g = g +∇ · H`εg,

where the remainder is explicitly given by

∇ · H`εg := −
b`/2c∑
k=2

(−ε2)k
∑

n∈[`−2]k

`+1−k≤|n|≤nk+`+1−k

k∏
j=1

(
∇ ·
(
c̄nj � (εD)nj−1

)
∇
)
g

− (−ε2)b`/2c+1
∑

n∈[`−2]b`/2c+1

|n|≤nk+`−b`/2c

b`/2c+1∏
j=1

(
∇ ·
(
c̄nj � (εD)nj−1

)
∇
)
g,

and can be estimated as follows: for all r ≥ 0, using |c̄n| ≤ Cn, we have that

|〈D〉rH`εg| ≤ (εC)`|〈D〉r+2`g|. (3.21)

Applying O`ε to both sides of (3.17), we then get

f (I),`
ε = f +∇ · F (I),`

ε , F (I),`
ε := H`ε(f − f (I),`

ε ) +O`εÊ(I),`
ε ,

and the desired remainder estimate follows by combining (3.15), (3.16), (3.18), (3.20),
and (3.21), together with the a priori estimate of Lemma 2.10(ii) for v̄(I),`

ε . Note that
the remainder term that is local with respect to f can also be bounded with an
L1(0, t)-norm instead of an L∞(0, t)-norm up to loosing a time derivative.

Step 2. Higher-order regularization: (?) = (II).
As v̄(II),`

ε is the solution of the well-posed modification of (3.7) obtained by higher-
order regularization in the sense of Lemma 2.10, we get instead of (3.17),

f (II),`
ε + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f (II),`

ε

= f + ε2∇ ·
( `−2∑
n=1

c̄n � (εD)n−1
)
∇f +∇ · Ê(II),`

ε ,

with remainder
Ê(II),`
ε := −E(II),`

ε + κ`(ε|∇|)`∇v̄(II),`
ε ,

where E(II),`
ε satisfies the corresponding estimate (3.16). Now applying the same

approximate inverse operator O`ε to both sides of this identity, we get

f (II),`
ε = f +∇ · F (II),`

ε , F (II),`
ε := H`ε(f − f (II),`

ε ) +O`εÊ(II),`
ε ,

and the desired remainder estimate follows similarly.

Step 3. Boussinesq trick: (?) = (III).
By definition, v̄(III),`

ε is the solution of the well-posed modification of (3.7) obtained
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by Boussinesq trick in the sense of Lemma 2.10, that is,

∂2
t

(
1 +

∑̀
l=2

κl(ε|∇|)l−1
)
v̄(III),`
ε

−∇ ·
(∑̀
n=1

(
κnā +

n−1∑
l=1

κlb̄
n+1−l � ( ∇|∇| )

n−l
)

(ε|∇|)n−1

)
∇v̄(III),`

ε

=
(

1 +
∑̀
l=2

κl(ε|∇|)l−1
)(

f + ε2∇ ·
( `−2∑
k=1

c̄k � (εD)k−1
)
∇f
)
, (3.22)

with v̄
(III),`
ε = f = 0 for t ≤ 0. We recall that the coefficients {κl}l are defined

in (2.21) and that well-posedness is indeed ensured by Lemma 2.10(ii). Using the
identity

∑̀
n=1

(
κnā +

n−1∑
l=1

κlb̄
n+1−l � ( ∇|∇| )

n−l
)

(ε|∇|)n−1

=
(

1 +
∑̀
l=2

κl(ε|∇|)l−1
)(

ā +
∑̀
k=2

b̄k � (ε∇)k−1
)

−
2`−1∑
n=`+1

( ∑̀
l=n+1−`

κlb̄
n+1−l � ( ∇|∇| )

n−l
)

(ε|∇|)n−1,

the above equation (3.22) can be alternatively written as

∂2
t v̄

(III),`
ε −∇·

(
ā+
∑̀
k=2

b̄k�(ε∇)k−1
)
∇v̄(III),`

ε = f+ε2∇·
( `−2∑
k=1

c̄k�(εD)k−1
)
∇f−∇·G`ε,

in terms of

G`ε :=

2`−1∑
n=`+1

( ∑̀
l=n+1−`

κlb̄
n+1−l�( ∇|∇| )

n−l
)

(ε|∇|)n−1
(

1+
∑̀
l=2

κl(ε|∇|)l−1
)−1

∇v̄(III),`
ε ,

where the inverse operator is obviously well-defined as κl ≥ 0 for all l. We then get,
instead of (3.17),

f (III),`
ε + ε2∇ ·

( `−2∑
n=1

c̄n � (εD)n−1
)
∇f (III),`

ε

= f + ε2∇ ·
( `−2∑
k=1

c̄k � (εD)k−1
)
∇f +∇ · Ê(III),`

ε ,

with remainder

Ê(III),`
ε := −E(III),`

ε −G`ε,

where E(III),`
ε satisfies the corresponding estimate (3.16). The conclusion then follows

similarly as in the first two steps. �
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4. Relating spectral to hyperbolic correctors

This last section is devoted to the proof of (1.12). It relies on an algorithmic
procedure to relate spectral and hyperbolic correctors. We split the proof into two
steps.

Step 1. Reformulation of the hyperbolic two-scale expansion: for ε� 1, we have for
all ` ≥ 1,∥∥∥∥H`

ε [v̄
(I),`;t
ε ]−

∑̀
n=0

εnψ̊n` ( ·ε )�∇nū(I),`;t
ε

− ε3
`−3∑
n=0

`−n−3∑
2m=0

εn+2mζ̊n,2m` ( ·ε )�∇n+1∂2m
t f t

∥∥∥∥
H1(Rd)

≤ (εC)`‖〈D〉C`f‖L1((0,t);L2(Rd)), (4.1)

where for each n,m the correctors ψ̊n` and ζ̊n,m` are suitable linear combinations of
hyperbolic correctors {φn′,m′}n′,m′ with coefficients involving ` and {b̄n

′
, c̄n

′}n′ .
Comparing the effective equation in the spectral and in the geometric approach,

cf. (2.16) and (3.7), and using the well-posed modification by high-order filtering, we
get

v̄(I),`
ε = ū(I),`

ε + ε2∇ ·
( `−2∑
k=1

c̄k � (εD)k−1
)
∇ū(I),`

ε . (4.2)

Inserting this into the definition (3.3) of the geometric two-scale expansion H`
ε [v̄

(I),`
ε ],

and rearranging terms, we get

H`
ε [v̄

(I),`
ε ] =

∑̀
n=0

`−n∑
m=0

εn+mzn,m` ( ·ε )�∇n∂mt ū(I),`
ε +R`ε,1[ū(I),`

ε ], (4.3)

where for each n,m the corrector zn,m` is some linear combination of hyperbolic correc-
tors {φn′,m′}n′,m′ with coefficients involving ` and {c̄n′}n′ , and where the remainder
term is given by

R`ε,1[ū(I),`
ε ] :=∑̀

n=0

`−n∑
m=0

`−2∑
k=1

1n+m+k≥` ε
n+m+k+1φn,mj1...jn( ·ε )(c̄k �Dk−1) : ∇2∇nj1...jn∂

m
t ū

(I),`
ε .

By construction, we note that z0,0
` = φ0,0 = 1, z0,m

` = φ0,m = 0 for all m ≥ 1, and
that zn,m` does not depend on ` provided n + m < `. We emphasize that the zn,m` ’s
do a priori not have vanishing average. Using Lemma 3.4 together with (3.6), and
using the Sobolev embedding in form of (2.39) to bound products with correctors,
the remainder can be estimated as follows, for a > d

2 ,

‖R`ε,1[ū(I),`
ε ]‖H1(Rd) ≤ (εC)`‖〈D〉2`+a−1Dū(I),`

ε ‖L2(Rd),

and thus, by the a priori estimate of Lemma 2.10(ii),

‖R`ε,1[ū(I),`;t
ε ]‖H1(Rd) ≤ (εC)`‖〈D〉2`+a−1f‖L1((0,t);L2(Rd)). (4.4)

Next, using the equation (2.16) for ū(I),`
ε , we shall proceed to remove the time

derivatives appearing in the geometric two-scale expansion (4.3). For that purpose,
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arguing by induction and successively separating terms of order ε`+1 or higher, we
show that the equation for ū(I),`

ε yields for all m ≥ 1,

∂2m
t ū(I),`

ε −
∑

1≤β1,...,βm≤`
|β|≤m+`

ε|β|−mB̄β(∇)ū(I),`
ε

= χ(εα∇)∂
2(m−1)
t f + χ(εα∇)

m−1∑
k=1

∑
1≤β1,...,βk≤`
|β|≤k+`

ε|β|−kB̄β(∇)∂
2(m−k−1)
t f

+

m∑
k=2

∑
β∈Lk

ε|β|−kB̄β(∇)∂
2(m−k)
t ū(I),`

ε , (4.5)

in terms of the index sets

Lk :=
{
β = (β1, . . . , βk) : 1 ≤ βj ≤ ` ∀j,

s∑
j=1

βj ≤ s+ ` ∀s < k, |β| > k + `
}
,

where for all k ≥ 1 and β = (β1, . . . , βk) we use the short-hand notation

B̄β(∇) :=

k∏
j=1

∇ · (b̄βj �∇βj−1)∇. (4.6)

We prove identity (4.5) by induction. First, for m = 1, it simply coincides with (the
filtered version of) equation (2.16) for ū(I),`

ε . Next, assuming that (4.5) holds for
some m ≥ 1, applying ∂2

t to both sides of the identity, and using the equation for
ū

(I),`
ε to replace ∂2

t ū
(I),`
ε in the left-hand side, we find

∂
2(m+1)
t ū`ε −

∑
1≤β1,...,βm≤`
|β|≤m+`

ε|β|−mB̄β(∇)
(∑̀
n=1

εn−1∇ · (b̄n �∇n−1)∇
)
ū`ε

= χ(εα∇)∂2m
t f + χ(εα∇)

m∑
k=1

∑
1≤β1,...,βk≤`
|β|≤k+`

ε|β|−kB̄β(∇)∂
2(m−k)
t f

+

m∑
k=2

∑
β∈Lk

ε|β|−kB̄β(∇)∂
2(m−k+1)
t ū`ε.

After suitably splitting powers of ε in the left-hand side, this indeed proves iden-
tity (4.5) with m replaced by m+ 1.

Now inserting (4.5) into the two-scale expansion (4.3) in order to replace time
derivatives, and again separating terms of order ε`+1 or higher, we are led to

H`
ε [v̄

(I),`
ε ] =

∑̀
n=0

εnzn,0` ( ·ε )�∇nū(I),`
ε

+
∑̀
n=0

`−n∑
2m=2

∑
1≤β1,...,βm≤`
n+m+|β|≤`

εn+m+|β|zn,2m` ( ·ε )� B̄β(∇)∇nū(I),`
ε

+
∑̀
n=0

`−n∑
2m=2

εn+2mzn,2m` ( ·ε )� χ(εα∇)∇n∂2(m−1)
t f
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+
∑̀
n=0

`−n∑
2m=2

m−1∑
j=1

∑
1≤β1,...,βj≤`
n+2m+|β|≤j+`

εn+2m+|β|−jzn,2m` ( ·ε )� χ(εα∇)B̄β(∇)∇n∂2(m−j−1)
t f

+R`ε,1[ū(I),`
ε ] +R`ε,2[ū(I),`

ε ] +R`ε,3[f ], (4.7)

where the last two remainder terms take the form

R`ε,2[ū(I),`
ε ] :=

∑̀
n=0

`−n∑
2m=2

m∑
j=2

∑
β∈Lj

εn+2m+|β|−jzn,2m`

( ·
ε

)
� B̄β(∇)∇n∂2(m−j)

t ū(I),`
ε

+
∑̀
n=0

`−n∑
2m=2

∑
1≤β1,...,βm≤`

|β|≤m+`,n+m+|β|>`

εn+m+|β|zn,2m`

( ·
ε

)
� B̄β(∇)∇nū(I),`

ε ,

R`ε,3[f ] :=
∑̀
n=0

`−n∑
2m=2

m−1∑
j=1

∑
1≤β1,...,βj≤`

|β|≤j+`, n+2m+|β|>j+`

εn+2m+|β|−jzn,2m` ( ·ε )

�χ(εα∇)B̄β(∇)∇n∂2(m−j−1)
t f.

Equivalently, in view of (4.6), this can be reformulated as

H`
ε [v̄

(I),`
ε ] =∑̀

n=0

εnψ̊n` ( ·ε )�∇nū(I),`
ε + ε3

`−3∑
n=0

`−n−3∑
2m=0

εn+2mζ̊n,2m` ( ·ε )� χ(εα∇)∇n+1∂2m
t f

+R`ε,1[ū`ε] +R`ε,2[ū`ε] +R`ε,3[f ], (4.8)

where for each n,m the correctors ψ̊n` and ζ̊n,2m` are suitable linear combinations of
{zn′,2m′}n′,m′ with coefficients involving ` and {b̄n

′
}n′ . We emphasize that ψ̊n` and

ζ̊n,2m` do a priori not have vanishing average.
We turn to the estimation of the last two remainder terms in (4.8). Recalling the

way that zn,2m depends on {φn′,m′}n′,m′ and on {cn′}n′ , using Lemma 3.4 together
with (3.6), and using again the Sobolev embedding in form of (2.39) to bound products
with correctors, we find for ε� 1 and a > d

2 ,

‖R`ε,2[ū(I),`
ε ]‖H1(Rd) ≤ (εC)`‖〈D〉3`+a−1Dū`ε‖L2(Rd),

and thus, further combining this with the a priori estimate of Lemma 2.10(ii),

‖R`ε,2[ū(I),`;t
ε ]‖H1(Rd) ≤ (εC)`‖〈D〉3`+a−1f‖L1((0,t);L2(Rd)).

Similarly, we find for ε� 1 and a > d
2 ,

‖R`ε,3[f ]‖H1(Rd) ≤ (εC)`‖〈D〉2`+a−1f‖L2(Rd).

Finally, we recall that the cut-off χ(εα∇) can be removed in the right-hand side
of (4.8) up to higher-order errors: for a > d

2 ,∥∥∥∥ε3
`−3∑
n=0

`−n−3∑
2m=0

εn+2mζ̊n,2m` ( ·ε )� (1− χ(εα∇))∇n+1∂2m
t f

∥∥∥∥
H1(Rd)

≤ ε3C`‖(1− χ(εα∇))〈D〉`+a−1f‖L2(Rd) ≤ (εC)`‖〈D〉`+d `α e+a−1f‖L2(Rd)

≤ (εC)`‖〈D〉`+d `α e+af‖L1((0,t);L2(Rd)).
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Inserting these bounds together with (4.4) into (4.8), the claim (4.1) follows.

Step 2. Conclusion.
In view of (4.1), the result of Theorem 2 yields∥∥∥∥utε − ∑̀

n=0

εnψ̊n` ( ·ε )�∇nū(I),`;t
ε − ε3

`−3∑
n=0

`−n−3∑
2m=0

εn+2mζ̊n,2m` ( ·ε )�∇n+1∂2m
t f t

∥∥∥∥
H1(Rd)

. (εC`)`〈t〉‖〈D〉C`
2

f‖L1((0,t);L2(Rd)).

Now we compare this with the result of Theorem 1: using (2.7) to expand γ`(ε∇)
in the spectral two-scale expansion (1.4), discarding terms of order O(ε`), and using
Lemma 2.10(ii) to estimate the latter, the result (1.6) of Theorem 1 leads us to∥∥∥∥ ∑̀

n=0

εnψ̃n` ( ·ε )�∇nū(I),`;t
ε + ε3

`−3∑
n=0

`−n−3∑
2m=0

εn+2mζ̃n,2m` ( ·ε )�∇n+1∂2m
t f t

∥∥∥∥
H1(Rd)

. (εC`)`〈t〉‖〈D〉C`
2

f‖L1((0,t);L2(Rd)), (4.9)

in terms of the corrector differences

ψ̃n` =

n∑
k=0

γk` ⊗s ψn−k − ψ̊n` , ζ̃n,2m` =

n∑
k=0

γk` ⊗s ζn−k,2m − ζ̊
n,2m
` ,

where ⊗s stands for symmetric tensor product. We claim that (4.9) entails ψ̃n` = 0

for all n ≤ `− 1, ζ̃n,2m` = 0 for all n+ 2m+ 3 ≤ `− 1, and ∇ψ̃`` = 0 and ∇ζ̃n,2m` = 0
for n+ 2m+ 3 = `. We argue by induction and prove:{

for all j ≤ `− 1 : ψ̃j` = 0 and ζ̃n,2m` = 0 for n+ 2m+ 3 = j,

for j = ` : ∇ψ̃`` = 0 and ∇ζ̃n,2m` = 0 for n+ 2m+ 3 = `.
(4.10)

Assume that this result is known to hold for j < j0, given some j0 ≤ ` − 1. Us-
ing the a priori estimates of Lemma 2.10(ii), first note that we have ū(I),`

ε → ū in
C∞loc(R;H∞(Rd)) as ε ↓ 0, where ū is the solution of the standard homogenized wave
equation (1.3). Given h ∈ C∞per(Q), multiplying the expression in the left-hand side
of (4.9) by ε−j0h( ·ε ), and passing to the limit ε ↓ 0 in the L2-norm, we then get

E
[
hψ̃j0`

]
�∇j0 ū+

∑
n+2m+3=j0

E
[
hζ̃n,2m`

]
�∇n+1∂2m

t f = 0.

As ū satisfies the homogenized wave equation (1.3), applying the wave operator ∂2
t −

∇ · ā∇ to this pointwise identity leads us to

E
[
hψ̃j0`

]
�∇j0f +

∑
n+2m+3=j0

E
[
hζ̃n,2m`

]
�∇n+1∂2m

t (∂2
t −∇ · ā∇)f = 0.

Choosing for instance f t(x) = exp(−(t2 + |x|2)) for t ≥ 1, it is easily deduced by
induction, by a linear independence argument, that E

[
hψ̃j0`

]
= 0 and E

[
hζ̃n,2m`

]
= 0

for all n,m with n+ 2m+ 3 = j0. As h ∈ C∞per(Q) is arbitrary, we deduce that
the claim (4.10) also holds for j = j0. The same argument can be adapted to the
case j0 = `, rather starting from the estimate on the H1-norm in (4.9). This ends the
proof of (4.10).
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In other words, we have thus proved that, given ` ≥ 1, for all j ≤ `− 1 and for all
n,m with n+m+ 3 ≤ `− 1, we have

ψ̊j` =

j∑
k=0

γk` ⊗s ψj−k, ζ̊n,2m` =

n∑
k=0

γk` ⊗s ζn−k,2m,

while for j = ` and for all n,m with n+m+ 3 = `,

∇iψ̊`` =
∑̀
k=0

γk` ⊗s ∇iψ`−k, ∇iζ̊n,2m` =

n∑
k=0

γk` ⊗s ∇iζn−k,2m.

Inserting this back into (4.1), using (2.7) to reconstruct γ`(ε∇), discarding terms of
order O(ε`), and using Lemma 2.10(ii) to estimate the latter, we may then recognize
the definition (1.4) of the spectral two-scale expansion, to the effect of

‖H`
ε [v̄

(I),`;t
ε ]− S`ε[ū(I),`;t

ε , f ]‖H1(Rd) . (εC)`‖〈D〉C`f‖L1((0,t);L2(Rd)).

Combined with the result (1.6) of Theorem 1, this yields the conclusion (1.12). �

Appendix A. Correctors in the random setting

This section is devoted to the definition and bounds on spectral and hyperbolic
correctors in the random setting. As in the elliptic case [18, 4, 21, 15], the main differ-
ence with the periodic setting is that only a finite number of correctors can be defined,
depending both on space dimension and on mixing properties of the coefficient field.
For simplicity, we focus on the Gaussian setting of Definition 1.3. The corrector es-
timates below were first obtained in [19, 20, 18] for the first corrector in the elliptic
setting. A proof of the present statement follows from applying iteratively the an-
nealed Calderón-Zygmund estimates of [15, 11]; see in particular a similar argument
in [15, Proof of Proposition 2.2]. Note that the present result corrects inaccuracies of
the corresponding statement given in [5, Proposition C.4] for spectral correctors.

Theorem A.1. Let a be Gaussian with parameter β > 0 in the sense of Defini-
tion 1.3. We then define `∗ := dβ∧d2 e and

µ∗n(x) :=



1 : n < `∗,

log(2 + |x|) 1
2 : n = `∗, β > d, d even,

or n = `∗, β < d, β ∈ 2N,
log(2 + |x|) : n = `∗, β = d, d even,
〈x〉 12 : n = `∗, β > d, d odd,
〈x〉 12 log(2 + |x|) 1

2 : n = `∗, β = d, d odd,
〈x〉n−

β
2 : n = `∗, β < d, β /∈ 2N.

(A.1)

(i) Spectral correctors: The correctors {ψn, σn}0≤n<`∗ and {ζn,m, τn,m}n+2m<`∗−3

can be uniquely defined by the corrector equations of Section 2.1 as centered sta-
tionary random fields, and in addition the correctors ψn, σn with n = `∗ and
ζn,m, τn,m with n + 2m = `∗ − 3 can be uniquely defined as (non-stationary)
random fields with centered stationary gradient. The homogenized coefficient b̄n

is well-defined for 0 ≤ n ≤ `∗. Moreover, the following moment bounds hold for
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all q <∞ and x ∈ Rd,∥∥∥(  
B(x)

|(ψn, σn)|2
) 1

2
∥∥∥

Lq(Ω)
.q µ∗n(x), for 0 ≤ n ≤ `∗,∥∥∥( 

B(x)

|(∇ψn,∇σn)|2
) 1

2
∥∥∥

Lq(Ω)
.q 1, for 0 ≤ n ≤ `∗,∥∥∥(  

B(x)

|(ζn,m, τn,m)|2
) 1

2
∥∥∥

Lq(Ω)
.q µ∗n+2m+3(x), for n+ 2m ≤ `∗ − 3,∥∥∥( 

B(x)

|(∇ζn,m,∇τn,m)|2
) 1

2
∥∥∥

Lq(Ω)
.q 1, for n+ 2m ≤ `∗ − 3.

(ii) Hyperbolic correctors: The correctors {φn,m, σn,m}n+m<`∗ can be uniquely de-
fined by the corrector equations of Section 3.1 as centered stationary random
fields, and in addition the correctors φn,m, σn,m with n+m = `∗ can be uniquely
defined as (non-stationary) random fields with centered stationary gradient. The
homogenized coefficient ān,m is well-defined for n + m ≤ `∗. Moreover, for
n+m ≤ `∗, the following moment bounds hold for all q <∞ and x ∈ Rd,∥∥∥( 

B(x)

|(φn,m, σn,m)|2
) 1

2
∥∥∥

Lq(Ω)
.q µ∗n+m(x),∥∥∥(  

B(x)

|(∇φn,m,∇σn,m)|2
) 1

2
∥∥∥

Lq(Ω)
.q 1. ♦

Appendix B. A priori estimates for the wave equation

We state the following general a priori estimates for linear wave equations, which
are used throughout; a short proof is included for convenience. In contrast with the
situation in the elliptic setting, we emphasize that putting the impulse in divergence
form essentially only brings an improvement when estimating the L2-norm, and not
the energy norm.

Lemma B.1 (A priori estimates). Let L be a self-adjoint operator on L2(Rd) sat-
isfying the bound −4 ≤ L ≤ −C04 for some constant C0 < ∞. Given F1 ∈
L1

loc(R+; L2(Rd)) and F2, F3 ∈ W 1,1
loc (R+; L2(Rd)) with F2|t=0 = F3|t=0 = 0, let z

be the solution of the wave equation{
(∂2
t + L)z = F1 +∇ · F2 + ∂tF3 in Rd,

z|t=0 = ∂tz|t=0 = 0.

Then, for all t ≥ 0, we have

‖zt‖L2(Rd) .C0
t‖F1‖L1((0,t);L2(Rd)) + ‖(F2, F3)‖L1((0,t);L2(Rd)),

and
‖Dzt‖L2(Rd) .C0

‖(F1, ∂tF2, ∂tF3)‖L1((0,t);L2(Rd)). ♦

Proof. The assumption −4 ≤ L ≤ −C04 entails that
√
L defines a bounded linear

operator L2(Rd)→ Ḣ−1(Rd) with bounded inverse. We may therefore define F̃2 as the
solution of

√
LF̃2 = ∇ ·F2, which satisfies ‖F̃2‖L2(Rd) .C0

‖F2‖L2(Rd). The solution z
of the wave equation can then be represented in terms of Duhamel’s formula,

zt =

ˆ t

0

sin((t− s)
√
L)√

L
(F s1 + ∂sF

s
3 ) ds+

ˆ t

0

sin((t− s)
√
L) F̃ s2 ds.
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Integrating by parts in the integral for F3, with F3|t=0 = 0, this can be rewritten as

zt =

ˆ t

0

sin((t− s)
√
L)√

L
F s1 ds+

ˆ t

0

sin((t− s)
√
L) F̃ s2 ds+

ˆ t

0

cos((t− s)
√
L)F s3 ds,

and the stated L2-estimate follows from spectral calculus. For the energy estimate,
we rather use energy conservation in form of

1
2∂t

ˆ
Rd

(
|∂tz|2 + zLz + 2F2 · ∇z

)
=

ˆ
Rd

(∂tz) (∂2
t + L)z + ∂t

ˆ
Rd
F2 · ∇z

=

ˆ
Rd

(∂tz)
(
F1 + ∂tF3 +∇ · F2

)
+ ∂t

ˆ
Rd
F2 · ∇z

=

ˆ
Rd

(∂tz)
(
F1 + ∂tF3

)
+

ˆ
Rd
∂tF2 · ∇z

≤ ‖Dz‖L2(Rd)‖(F1, ∂tF2, ∂tF3)‖L2(Rd),

and the conclusion follows. �
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