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ABSTRACT. This article is devoted to the long-time dynamics of point-vortex systems
near thermal equilibrium and to the possible emergence of collisional relaxation. More
precisely, we consider a tagged particle coupled to a large number of background particles
that are initially at equilibrium, and we analyze its resulting slow dynamics. On the one
hand, in the spirit of the Lenard-Balescu relaxation for plasmas, we establish in a generic
setting the outset of the slow thermalization of the tagged particle. On the other hand,
we show that a completely different phenomenology is also possible in some degenerate
regime: the slow dynamics of the tagged particle then remains conservative and the
thermalization no longer holds in a strict sense. We provide the first detailed description
of this degenerate regime and of its mixing properties. Note that it is particularly delicate
to handle due to statistical closure problems, which manifest themselves as a lack of self-
adjointness of the effective Hamiltonian.
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1.1. General overview. This article is devoted to the rigorous analysis of the long-time
dynamics of point-vortex systems near equilibrium. More precisely, we consider a tagged
particle coupled to a large number of background particles that are initially at thermal
equilibrium, and we analyze the resulting slow dynamics of the tagged particle. According

to the physics literature, two general types of behavior can occur:

— Relazation in the non-degenerate case.

Due to the slow correlation with the equilibrium background, the tagged particle is
generically expected to thermalize on the slow timescale t = O(N) — proportional to
the total number IV of background particles. This so-called “point-vortex diffusion” was
first described in the physics literature by Chavanis [5, 6, 7, 8, 9] and can be viewed
as the equivalent for point-vortex systems of the celebrated Lenard—Balescu collisional
relaxation for plasmas [1, 20, 16, 28]. In the present contribution, following the line
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of a previous joint work of the first author with Saint-Raymond [13] on the Lenard-
Balescu theory (see also [12]), and in spite of new difficulties for point-vortex systems,
we establish a partial result in this direction, proving the outset of thermalization on
some intermediate timescale.

— No relazation in the degenerate case.

In some situations, however, depending on the precise shape of the equilibrium, the
thermalization can fail: the slow dynamics of the tagged particle is then expected to be
of a different nature and to take place instead on the shorter timescale t = O(N'/2).
The simplest instance of this degenerate behavior occurs for uniformly distributed point-
vortex systems in a compact space. It seems to have been first discovered in [27] in the
context of plasmas in a strong external magnetic field. Another application concerns the
stellar dynamics in nuclear clusters dominated by a supermassive black hole: the slow
motion of orbital planes in that setting is given by a similar degenerate dynamics, which
is known as “vector resonant relaxation” |26, 18, 14, 22|. Systematic theoretical studies
are however lacking in the physics literature: in particular, due to statistical closure
problems in link with turbulence [19], no effective equation is known to describe the
degenerate dynamics of the tagged particle, and its properties are poorly understood.
We clarify this situation by establishing a well-posed effective description, although
with an effective Hamiltonian expected to lack self-adjointness, and by proving a RAGE
theorem. While this confirms the lack of thermalization in a strict sense, it shows the
presence of mixing over timescales of order O (NN 1/ 2) that could still drive the dynamics
to equilibrium in the absence of periodic solutions.

Our analysis provides a systematic explanation for this possible duality of behaviors for
the tagged particle, suggesting that it is in fact determined by the spectral nature of the
linearized mean-field operator at thermal equilibrium. In a nutshell, thermalization should
be expected when this operator has purely continuous spectrum close to 0 orthogonally to
its kernel, and degeneracy when it has instead eigenvalues accumulating at 0. This is easily
understood by a formal BBGKY analysis as explained in Section 1.2 below. By linear Lan-
dau damping, note that the linearized mean-field operator at thermal equilibrium is always
continuous orthogonally to its kernel in the case of plasmas without external magnetic field,
which is why the Lenard—Balescu thermalization is indeed always expected to hold in that
case, see e.g. [13]. In contrast, point-vortex systems have a richer phenomenology and we
shall see that thermalization fails precisely in the case of a Gaussian equilibrium.

1.2. Formal BBGKY analysis. We explain how the above duality of behaviors can be
predicted by a formal BBGKY analysis depending on the spectral nature of linearized
mean-field operators, and we formally derive effective equations for the slow dynamics
of the tagged particle. The starting point is the BBGKY hierarchy of equations for the
tagged particle density f}v coupled to the multi-particle correlation functions describing
fine correlations with background particles. In terms of the mean-field equilibrium pg, we
consider the ratio g]l\, = f}\,/,ug, and we denote by {g} }2<m<n multi-particle correlations
(see Section 2.2 for precise definitions). We shall view g]lv as belonging to the weighted
space L2(u15), while for all m > 2 the correlation g will be defined in

H™ = L2 (up) © L (ug) ™"V,

where the first factor stands for the tagged particle variable and where ®, stands for the
symmetrized tensor product for exchangeable background particles. In these terms, up
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to projecting gjlv to cancel its linearized mean-field evolution and to focus on the non-
trivial slow correction, the BBGKY hierarchy typically takes on the following guise (see
Lemma 2.1 below for a more precise s‘catemen‘u),1

{ 8159]1\[ = iSl’—’—g]z\[v

(9 +iL™)gl = iSmtgntl 4 Ligm—gm=l . 9 < < N, (L)

where ¢L™ : H™ — H™ stands for the (skew-adjoint) m-particle linearized mean-field
operator and where operators 7T : H™TL — H™ and S~ : H™L — H™ satisfy the
symmetry relation

(§mtyr = gmAl—) for all m > 1. (1.2)

As the correlation function 912\/ is expected to be small as NV > 1, we are led to a formal
timescale separation in (1.1): the tagged particle density g]lv has a slow dynamics, which is
coupled to a fast linear subdynamics for correlations {g}3} }o<m<n. Heuristically, we then
expect that the latter can be relaxed on the slow timescale of the tagged particle. As
the fast subdynamics is driven by linearized mean-field operators {iL"},,, its relaxation
depends on the spectral properties of the latter. We distinguish between two main cases.

(i) Non-degenerate case.
Assume that the operators {¢L™},, have purely absolutely continuous spectrum in a
neighborhood of 0.2 In that case, long-time propagators satisfy the following relax-
ation property:

(0 +iL™he =7, helimo=0 =  he 2% 0 4iL™) " (1.3)
Using this and assuming that correlations vanish initially, a formal analysis of the
hierarchy (1.1) leads to expect git™' = O(N~™) uniformly in time for all m. The

equation for the tagged particle density then yields gy, = SV g% = O(N™1),
showing that the natural timescale for its evolution is t = O(N). This leads us to
considering the following critically-rescaled quantities,

gn(7) = gh(N7T),  guti(r) == N"gpt(NT), 1<m<N.
In these terms, the rescaled hierarchy gets formally truncated into a closed system,

Orgy = iS" gy,
(N Or +iL)gy = iS*~ gy + O(x)-

From the relaxation property (1.3) for iL?, the pair (gk,ga;) is then expected to
converge to the solution (g',g?) of the limit system

0-g' =St g?,
g% = (0+4L?)~1is?— gt

Iwe emphasize the minor differences with the actual BBGKY hierarchy derived in Lemma 2.1: First,
the actual equation for gy may further involve gﬁ” on top of gﬁil. Second, the operators {Sm’i}m
should further depend on N and only satisfy the stated symmetry relation in the limit N 1 co. Finally,
the skew-adjointness of iL™ should only hold up to suitably deforming the underlying Hilbert structure.
We neglect these issues here as they do not substantially affect the present formal discussion.

2As we shall see, the operators {iL™},, typically have a nontrivial kernel and have purely absolutely
continuous spectrum only on the orthogonal complement. Provided that projections on orthogonal com-
plements can be smuggled in the hierarchy (1.1), this does not affect the present formal discussion.
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(i)

This yields a closed equation for g,
9-g' + SHH(0+iL?) (S =0, (1.4)

which should typically be thought of as a Fokker—Planck equation describing the
thermalization of the tagged particle on the critical timescale 7 ~ 1 (¢ ~ N) and the
convergence to thermal equilibrium for 7> 1 (¢ > N).

Degenerate case.

Assume that the linearized mean-field operators {iL™},, are compact: in that case,
they have eigenvalues accumulating at 0 and the resolvent (0 + iL?)~! in (1.4) no
longer makes sense. Long-time propagators then have a completely different scaling
and limiting behavior: instead of (1.3), we have

edhhe +iL™he =er, helimo=0 =  Ohhe 2w, (1.5)

where 7, stands for the orthogonal projection onto the kernel of iL™ (we also set
71 := Id for notational convenience). Using this, a formal analysis of the hierar-
chy (1.1) rather leads to expect gﬁ“ = O(N~"/2) uniformly in time for all m,
so that the natural timescale for the evolution of the tagged particle density is in-
stead t = O(N 1/ 2). This leads us to considering the following critically-rescaled

quantities,
_ 1 _ m 1
gn(r) = gn(N27),  guti(r) == N2 gt (Vo).

In these terms, the rescaled hierarchy is no longer truncated into a finite closed system,
and we find instead

Orgy = 1SV g%,

(0r + N2iL,,)ghn = iSm™+gntt 4 ism—gn=t . 2<m < N.
From (1.5), we deduce that the correlations {g}} }1<m<n should converge to a solu-
tion {g™ }m>1 of the following infinite hierarchy,

0:g' = iS™ g,
argm — ism,Jrngrl + ismﬁgmfl Com > 2,

(1.6)

where we have set S"% := 7,,8™%7,,41 for all m. Noting that (S™+)* = gm+l—
cf. (1.2), this hierarchy constitutes a (formally) unitary evolution for the limiting
tagged particle density g' coupled to the collection of limiting correlations {g™ },,>2
on the critical timescale 7 ~ 1 (t ~ N/2). Viewing correlations with the background
as a quantized field, this hierarchy can be understood as a (formally) unitary dynamics
on @, H™ = L?(ug) ® F(L*(ug)), where the symmetric Fock space Fy (L?(us))
is the state space for background correlations.

As we shall see in Section 5, we can typically prove well-posedness of the infinite
hierarchy (1.6), but we should expect unitarity to fail in link with statistical closure
problems. Despite the lack of unitarity, we can expect a version of the RAGE theorem
to hold: up to excluding pure point spectrum, we would get (¢, ' (7))| — 0 in Cesaro
mean as 7 T oo for any ¢ € L2(,u,3). This would describe mixing effects as 7 > 1
(t > N'/2), thus confirming the failure of thermalization in a strict sense, but still
possibly leading some type of weak convergence to equilibrium.
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Alternatively, intuition on the system can also be gained by noting that on relatively
short times 7 < 1 (t < N'/2) the infinite hierarchy (1.6) can be truncated and
reduces to a linear wave-type equation for the tagged particle density,

g+ 5MF(S) gt = o). (1.7)
The formal discussion above leads us to formulate the following general conjecture.

Conjecture 1. Consider the slow dynamics of a tagged particle in a conservative long-
range interacting particle system at thermal equiltbrium.
(i) Non-degenerate case:
If linearized mean-field operators at mean-field equilibrium have purely absolutely con-
tinuous spectrum close to 0 (orthogonally to a possibly nontrivial kernel), then ther-
malization of the tagged particle occurs on the slow timescale t = O(N) and is de-
scribed by a Fokker—Planck type equation.
(ii) Degenerate case:
If linearized mean-field operators at mean-field equilibrium have eigenvalues accu-
mulating at 0 (e.g., if these operators are compact), then thermalization fails and
the slow dynamics of the tagged particle rather takes place on the shorter timescale
t= O(N1/2). More precisely, it takes form of a well-posed conservartive hierarchical
evolution for the tagged particle density coupled to the infinite collection of limiting
correlation functions, which describes mizing effects for t > N1/2.

1.3. Point-vortex systems. To illustrate the above conjecture, we focus on the example
of 2D point-vortex systems. More precisely, in the 2-dimensional plane R?, we consider an
interaction force kernel K and an external force field F' that satisfy the incompressibility
conditions div(K) = div(F') = 0 and the action-reaction condition K(—x) = —K(z). The
incompressibility allows to represent K = —V+W and FF = —V+V for some potential
fields V, W, and we assume that they satisfy the following smoothness conditions,

We PR, VeCCRR?.

We consider the associated point-vortex dynamics
N
8txi:F(xi)+%ZK(xi—xj), .1‘2"15:0:.%;?, ISZSN
j=1
Equivalently, the Liouville equation for the N-point density fn reads
N N
Ofn+> (F(xi)Jr%ZK(%—xj)) Vifn =0,  fnl=0= - (1.8)
i=1 j=1

At inverse temperature 8 > 0, the Gibbs thermal equilibrium measure for this dynamics
is given by

N N
My g(z1,...,2N) = ZK,}B exp [— B(Z V(i) + 5% Z W(z; — xj)>], (1.9)
i=1 ij=1
where the constant Zy g > 0 ensures f(R2)N My = 1. If B||W]|pe g2y is small enough,
there is a unique associated mean-field invariant measure ug defined as the solution of the
fixed-point equation

pe = Zg" exp (= BV +W * pg)), (1.10)
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where the constant Zg > 0 ensures fRZ pg = 1. The first marginal of the Gibbs mea-
sure My g is then known to converge precisely to pug as N T oo, see e.g. [2]. Alternatively,
recall that pg can be constructed as the unique minimizer of the free energy functional

p / plogp+ﬁ/ (V+3W xp)p.
R2 R2

Now consider a tagged particle (labeled ‘1’) in a Gibbs equilibrium background: in other
words, we assume that initially the N-point density fn|i=o = fx takes on the following
guise,

fﬁ,(xl,...,xN) = fo<$1)MN”3(:L'2,...,xN), (111)

for some f° € PNC(R?), where My g is the restricted Gibbs measure for the background
particles,

N N
My g(z2, ... ,2N) = Z;Llﬁ exp [— ﬂ(ZV($Z) + 7k Z W(x; — azj))],
i=2 ij=2

where the constant Z ~,3 > 0 ensures f (R2)N—1 M ~,3 = 1. At later times, the tagged particle
density is given by the first marginal

f}v(t,xl) = / In(t,z1,zo,...,xN)dzy ... dey.
(R2)N-1

We focus on the axisymmetric setting, that is, we assume that the potentials V, W and
the initial tagged particle density f° are radial functions. In this setting, the mean-field
description of the tagged particle happens to be trivial, f(t) ~ f° for t = O(1), and
we are thus interested in the slow correction that is the leading non-trivial effect. More
precisely, in this axisymmetric setting, it is most natural to focus on the radial density of
the tagged particle,

) = o e dote)

where we use polar coordinates x = re. Note that for a radial function h we shall use the
notation A/(r) = \%l - Vh(z) for the radial derivative.

1.4. Main results. According to Conjecture 1, the behavior of the system (1.8)—(1.11)
depends on the spectral nature of linearized mean-field operators at mean-field equilib-
rium (1.10), and we shall show the following:

(i) If the mean-field equilibrium measure pg is not Gaussian, under a suitable non-
degeneracy assumption, the linearized mean-field operators have purely absolutely
continuous spectrum orthogonally to their kernel, c¢f. Lemma 3.3. We then expect
that the tagged particle displays thermalization on the slow timescale t = O(N), in
line with the generic prediction of point-vortex diffusion.

(ii) If the mean-field equilibrium measure pg is precisely Gaussian, that is, if it takes
the form pg(z) o exp(—C|z|?) for some C' > 0, the linearized mean-field operators
are compact, cf. Lemma 4.2. We then expect that the tagged particle displays no
thermalization in a strict sense and satisfies instead a conservative hierarchical system
describing mixing effects on the different timescale t = O(N'/?).

Below we state our main results in both cases separately.



DYNAMICS OF POINT-VORTEX SYSTEMS NEAR EQUILIBRIUM 7

1.4.1. Non-degenerate (non-Gaussian) setting. The following result provides a description
of the outset of thermalization on relatively short times ¢ < N (for technical reasons, as
in [13|, we further restrict to t < N 1/20 which could be slightly improved by optimizing
our analysis). Our current analysis does not allow to describe the tagged particle density
on the thermalization timescale ¢t = O(N) itself, which is left as an open problem sim-
ilarly as in [13] due to the possibility of uncontrolled echoes. Yet, in this intermediate
regime, we justify the relevant form of the Fokker—Planck operator describing thermaliza-
tion, cf. (1.14). In contrast with [13|, the present situation is substantially more delicate
since we do not have a closed formula for the resolvent of linearized mean-field operators.
The proof is postponed to Section 3.

Theorem 1.1 (Non-Gaussian setting). Assume that the external potential V' further sat-
isfies V(V'/r) € Cs°(R?). In terms of the mean-field equilibrium pg, we define the angular
velocity Qg as the smooth radial function given by

(log ug)' = prids. (1.12)
Consider the non-Gaussian setting when Qg is nowhere constant: more precisely, we as-
sume for simplicity that Qg is monotone and satisfies the following non-degeneracy condi-
tion, for some R € (0,00),

Q(r)] > E(ral), 1Q5(0)] > £ for allr >0, (1.13)

and we also assume that 5 <K g 1 is small enough depending on V., W and on this constant R.
Then, for any o € (0 i), the subcritically-rescaled tagged particle density

» 20
fa(r) = N7 fy(N7T)

satisfies in the radial distributional sense on Rt x R?,

On(F) % 10, (ras(r) (0, — (log a) (1) £°) (1.14)

for some explicit positive scalar coefficient field ag (see Theorem 3.1).

The non-degeneracy assumption (1.13) implies the radial monotonicity of the angular
velocity Q. According to [10], this is predicted to lead to a kinetic blocking, hence to the
validity of (nonlinear) point-vortex diffusion only on the even slower timescale t = O(N?)
for initially chaotic systems. However, this blocking does not affect the validity of ther-
malization of a tagged particle on the timescale t = O(N) as studied here. Instead of
the non-degeneracy assumption (1.13), we believe that our analysis should essentially hold
true more generally whenever €)g is a Morse function, but the analysis would become quite
delicate close to critical points (see in particular the needed adaptation of Lemma 3.3 in
that case), and we skip it for brevity.

This kind of fast angular scale is also somewhat reminiscent of gyrokinetic approxima-
tions, especially in the case of finite Larmor radius as in [15]; see also for example [4].

1.4.2. Degenerate (Gaussian) setting. We turn to the special case when the equilibrium
measure (g is Gaussian, that is, when potentials V, W satisfy for some R € (0, 00),

_1 2
(V+Wxpg)(z) = iRzf?,  psla) = GEe 2Rl (1.15)

Note that for any given interaction potential W we can always construct some external
potential V' that leads to this special case. In this setting, the angular velocity €15 defined
in (1.12) is constant and linearized mean-field operators reduce to compact operators,
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cf. Lemma 4.2 below. By Conjecture 1, the thermalization of the tagged particle is thus
expected to fail and to be replaced by a nontrivial conservative dynamics on the shorter
timescale t = O(N'/2). In accordance with (1.7), we first show that to leading order the
tagged particle density satisfies a linear wave equation for relatively short times t < N1/2,
which is in agreement with the expected lack of thermalization. The proof is postponed to
Section 4.

Theorem 1.2 (Gaussian case). Assume that the interaction potential W is nonzero and
belongs to L' (R?), and that the mean-field equilibrium pg is Gaussian in the sense of (1.15)
for some R € (0,00). Then, for any o € (0, %), the subcritically-rescaled tagged particle
density

fa(r) == N2 fy(N7T)
satisfies in the distributional sense on Rt x R?,

2fk 1% div(AV[°),
where the diffusion coefficient field A is explicitly given by

Alz) = 27 /OOO( [ K@ —ro da(e)>®2 ug(r)rdr. (1.16)

Note that the latter satisfies A(0) =0 and A(Ox) = OA(x)O" for all O € O(2).

The expected hierarchical description (1.6) on the critical timescale t = O(N'/?) is not
reachable at the moment by our techniques and is left as an open problem in general. To
get further in this direction, we focus on the extreme case 8 = 0, which corresponds to
the simplest setting of a tagged particle in a uniform equilibrium background g = cst, say
on the torus T2. More precisely, instead of (1.8)—(1.11), let us now consider a translation-
invariant point-vortex system on T? with vanishing external force F = 0 and with initial
condition f§(z1,...,2n) = f°(z1) for some f° € PN CX(T?). In this uniform setting,
linearized mean-field operators happen to vanish identically, which allows to push our rig-
orous analysis further and to describe the degenerate slow dynamics of the tagged particle
on the relevant timescale t = O(N'/2). We refer to Section 5 for a more detailed statement
and for the proof.

Theorem 1.3. Consider the above uniform setting, describing a tagged particle coupled to
an initially uniformly distributed background on the torus T? (see more precisely (5.1)—(5.2)
below). Then, the critically-rescaled tagged particle density

Fh(r) == N2 fi(N27)
converges weakly-* in L™ (RY;L2(T?)) to the unique solution f' of an effective equation
coupled to the set g = {g" }m>2 of limiting rescaled background correlations: more precisely,

on the Hilbert space H := L2(T?)®F, (L*(T?)), where Fy (L*(T?)) is the bosonic Fock space
for background correlations, we have in the strong sense

o-(f,9) = iS*(fL.9).,  (FL.9)l=0 = (f°,0), (1.17)

where S* is the adjoint of some explicit densely-defined symmetric operator S on H (see
Theorem 5.2). Although the limiting Hamiltonian S is expected to lack self-adjointness
and might not even generate a semigroup, equation (1.17) is well-posed in C’g(R‘*‘;’H)
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(see Proposition 5.3) and its solution satisfies the following RAGE theorem (see Propo-
sition 5.4): denoting by {\r}r the set of real eigenvalues of S*, there exists a family of
positive contractions {Qy}r on L2(T?) such that we can decompose

Fi(r) =D ™ Quf* + R(7),
k

where the series converges in the weak operator topology and where the remainder satisfies
for all h € L*(T?),

1T
lim / [y R(7)) 23y 2 dr = 0,
0

Note in particular that f*(7) = R(7) if S* has no point spectrum on the real azis.

2. Ricorous BBGKY ANALYSIS

The starting point of our analysis is the BBGKY hierarchy of equations for correlation
functions, combined with rigorous a priori estimates on the latter.

2.1. BBGKY hierarchy. We denote by {f§}i<m<n the marginals of the N-point den-
sity fn, that is,

Nz, ... o) ::/(2)N In(t,xr, o Ty Tt 1y - -+ TN) dTipt1 - - - AT N (2.1)
R —m

As background particles with labels 2,..., N are exchangeable initially, cf. (1.11), they
remain so over time, hence the marginal fy/ is symmetric in its last m — 1 variables. Upon
partial integration, the Liouville equation (1.8) yields the following BBGKY hierarchy of
equations for marginals,

oL+ Y (Fla)+ & > K(wi—aj)) - Vif§
=1 j

Jj=1

m
+Ngm Y- y Kz —2) - Vifm (@1, .o @, ) dae = 0. (2.2)
Z‘_

We recall that the mean-field approximation is obtained formally by assuming that the
tagged particle remains approximately independent of the background particles and that
the latter remain approximately at equilibrium. As the first marginal of the Gibbs ensemble
converges to pg as N 1 0o, this means that we expect to approximate

X~ I @ pp (2:3)

Inserting this in the above BBGKY equation for f}v, we find that f le should stay close to
the solution f! of the linearized mean-field equation

Ofr 4+ (F+ K xpug) -V =0, im0 = f°. (2.4)

In the axisymmetric setting, as f°, ug are radial and as F, K are orthogonal gradients of
radial functions, this mean-field evolution is trivial: f!(t) = f° for all ¢ > 0.
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2.2. Correlation functions or cumulants. For notational convenience, we denote by
1 ._ 1 g1
IN = s In

the ratio of the tagged particle density by the mean-field equilibrium. As the linearized
mean-field evolution (2.4) is trivial in the axisymmetric setting, we aim to characterize
next-order correction, which amounts to the defect in the approximation (2.3). This leads
us to defining

g% = @(ﬁv—f}v@uﬁ),

which captures the correlation of the tagged particle with a typical background parti-
cle. Note that we take the convention to define correlation functions as divided by the
mean-field equilibrium. More generally, we introduce all higher-order correlation functions
{98 }i<m<n for the tagged particle with respect to the mean-field background equilib-
rium ;L?N ~1. these correlation functions are defined so as to satisfy the following cluster

expansions for marginals,

m
Rty om) = p§" @, m) Y Y gt anas),  1<m <N, (25)

n=1 UGPT’ZL:ll

where P! stands for the collection of subsets of {2,...,m} with cardinality n — 1 and
where for an index subset o := {i1,...,i,—1} we have set x, := (z4,,...,2;, ,). For all m,
the correlation function g%; is uniquely chosen to be symmetric in its last m — 1 variables
and to satisfy [po 9N (t,@1,...,%m) pg(x;) dzj = 0 for all 2 < j < m. More explicitly, the
above relations can be inverted and the correlation functions are given by

m
_ R
gRt a1, ) =Y (D)™ %%(t,xl,xa). (2.6)
n=1 aEPfffll
For instance,
3 _ X _ Ik _ Ik In
g]\[(tal‘lax2a$3) — T ®3 (tax17$27$3) ®2 (taxlale) ®2 (t7$17$3) + m (t,l'l).
Hg Mg Hg B

We may then reformulate the BBGKY hierarchy (2.2) as a hierarchy of equations on
correlation functions. We shall see in Lemma 4.1 that these equations get drastically
simplified in the specific case when the mean-field equilibrium is Gaussian.

Lemma 2.1 (BBGKY hierarchy for correlations). For all1 < m < N,
g +iLR 4gR = ST gt + L (isﬁ;;gﬁ S g z’S]’(;;;gyg—2), (2.7)

where we have set for notational convenience gy = 0 for r < 1 orr > N, and where we
have defined the operators

m

D (F+ K % pug)(xy) - V0™
j=1

+ NN (Viog pg) () - /R K(zj — 2.) K™ (@ (5} T) 13(74) das,
j=2

h
=3
@

>

3
Il
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Z'Sﬁ:;hm“ = — Nﬁm Z . K(z; — ) - Vj;ghmﬂ(x[m],:c*) pa(y) de.,
isxjghm = - Z ( - l’j — K % ,uﬁ(aci)> . Vz‘;ghm
t,j=1

+ Z Z / K i — Tx -Vzﬁh ( [ }\{j},x*),u,g(l‘*)dl‘*,

i=1 2<j<m
i#]

ISt = _Z > ( - (K *Mﬁ)(ﬂfz))‘vi;ﬂhm_l(fc[m]\{j})

1=1 2<5<m
i#j

_ ZZK i —aj) - (Viog pg) (i) B (@ giy)

=2 j=1
+
w3 [ K= ) (Tlog ) ) B el gy ) () o
2<i,57<m
#
iSyEhT T = = Y K — ) - (Viog g) () D™ (2 i)
2<ij<m

with the short-hand notations [m] := {1,...,m} and V;5 := V; + (Vlog ug)(z;).
Proof. By the definition (2.6) of correlation functions, the BBGKY equations (2.2) yield

dgn + F(z1) - vl;ﬁgy\} = _ZF(:CJ') Vi Z(_l Z ]ljea ®n I’l,xg)

o€eP™ L

m m
1ZKx1_$J) (Vi = Jﬁz Z ]160 uE xlvxa)

Jj= n=1 oeP" 1
m m
_% Z K(fi_ﬂfj)'vi;ﬂz:(_l Z ]lJEU us" 5517330)
i,j=2 n=1 sep™l
m
i
—Z( Z K (21— 24) - (Vl;ﬁw)(iﬂh%w*)Mﬁ(x*)dfﬁ*
n=1 o_er 1 B
m m
G
_ZZ( Z zEa K —:E* ' (vi;ﬁw>(mlaxmx*)uﬂ(‘r*) d'r*'
=2 n=1 O'GPm 1 B

(2.8)

Replacing the marginals in terms of cumulants, cf. (2.5), we get for the first two right-hand
side terms, for all j € [m] \ {1},

m

Z Z ]1]60 ®n xlva')

n=1 oeP" e
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= Z(_l)m—n Z ]ljécrz Z g}n\f(wl?wT)

n=1 UEP,TL"_EI r=1 TeP?

m
r=1

> gnlana)) ()" "o e P i jeo, T C o)
m—1 n=r
e =tjer (12 Hgr (210)
= g¥(@pm) + 98 @) (2.9)
where we used the combinatorial identity
p .
Z(—l)pﬁ (’?) = dp=0- (2.10)
j=0 J
Similarly, for the third right-hand side term in (2.8), we find for all 4,5 € [m] \ {1},

m
dopmr ]1z‘,jealf;%(9«’h%)

n=1 GGPTZ”:ll

T

= O @) + 8 @) + I8 @nGy) IV @ i)
For the fourth right-hand side term in (2.8), replacing again marginals in terms of cumu-

lants, we find

n+1
Z K (1 — x4) - <V1;5%)($1,$0,$*)M3(1‘*)d.’E*
n=1 EIg'm 1 B

NI [ Ko=) Vi (@, we, ) (o) da

n=1 UEPm Lr=171eP?_,

D> D (Kxpg)(@r)- Viggh(er,z). (2.11)

n=1 o.epgl—ll r=1 TEP:—l

Note that

m

> (1)

Y Z Z Kﬂfl—w*) Viggnt (w1, 27, 2.) pp(.) du.

n=1 cepmtr=lrep
m m
= Z Z (Z(—l)m_”N];" tloe Pt 7 C 0’}>
rent %)

x [ Ko = a.) - Vight @ ar,2.) (o) do
T

= / K(1 —22) - Vg (@), @) pp () do.

_% Z /Td K(z1 — m.) - Viggn (Tpmp iy T) 15(24) drs,  (2.12)
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where the last identity follows from the following computation, based on (2.10),

n=r
m—r
_ ( 1)m7n77“ N—n—r <m - T>
n=0 n
m—r m—r
— N]\—]r ( l)m—n—r <m - T> _ m];r (_1)m—n—r (m - 1_ 1)
n=0 n n=1 n-=
— %&‘:m - %&‘:mfl

Inserting (2.12) into (2.11), and arguing similarly for the last right-hand side term in (2.11),
we get
n+1

S S | K =) (Vi ) (o1 a0, ) () da

n=1 oepP" 1

= —N&m K(xp — zy) - Vl;/ggﬁﬂ(x[m], Ty) () da

R2

v /Rz K(z1 = 2:) - Viggh (m)\ (5, T+) g (@) dvs

+ SR ) (@) VasggR (@m) = 5 20K 1) (@1) - Visg ™ (@pm 5y
7j=2

Similarly, for the last right-hand side term in (2.8), we find

n+1
Z ’LEO’/ K _CC* : (vi;ﬂ%)(maﬁavx*)ﬂﬂ(m*) dx,

i=2 n=1 sepm!

- N;[m 2/2 K(xl - .’L'*) ’ vi?ﬁgﬁ—‘_l(x[m]v .’L'*) Mﬁ(-x*) dx,

- ¥ Z /K i = Tw) - Visgg N (Tm)\ {5} To) 1(24) dazs

2<i,57<m

¥ e Z / K (= ) - (V108 15) () G (3, 20) s )

4
N Z —2.) - (V1og up) (@) g8~ (T fi}» ) 16 () dits
J<m

m #
Z w ) (@) - VipgR @) = & D (K pp)(xi) - Viggyy (@ 5)

= 2<i,j<m
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MmN (K % pg) (i) - (Vog ug) (i) gy~ (@ g3y)
=2
#
¥ Z (K s pg) () - (V1og pg) (1) g8~ (] fi,})-

\ /\

Combining all the above identities into (2.8), and using various cancellations such as
F-Vlogusg = (K *pug)-Vlogug = 0,

which follow from the radial nature of V, W, the conclusion follows. O

2.3. A priori correlation estimates. We prove uniform-in-time propagation-of-chaos
estimates for the particle system in form of a priori bounds on correlation functions. This
is deduced from a symmetry argument inspired by the work of Bodineau, Gallagher, and
Saint-Raymond [3|, which is combined as in [13| with some classical large deviation esti-
mates to accommodate the fact that correlations are defined with respect to the mean-field
equilibrium M?N instead of the exact Gibbs measure My g. As formal BBGKY analysis
leads to expect gIQV = O(N~1), the present estimates may a priori seem quite suboptimal:
however, we will see that in some degenerate cases the present estimate g%, = O(N “1/2) s
in fact optimal on long timescales (see in particular Theorem 5.2).

Lemma 2.2. Provided that B||W ||y g2y < 1 is small enough, we have for all0 < m < N,
uniformly in time,

1 12 1 _m
lgn* ez (m2ymery = </(R2)m+1 gn P g™t ) Sam,ge N7z

Proof. Recall that correlations satisfy [po g (2[m)) us(z5) do; = 0 for all 2 < j < m. Com-
puting the L? norm of the N-point density fy and inserting the cluster expansion (2.5) in
terms of correlation functions, we then get

N
N -1
1 2 — § : 2 ®m
/(IR2)N My il (m - 1> /(R?) 98¢ g™

m=1

and thus, for all 0 < m < N,

/ lgr P S N / il (2.13)
(R2)m+1

It remains to estimate the norm of fx in the right-hand side. In order to obtain a uniform-
in-time estimate, we shall relate it to the conserved quantity

2
/(R) PN

Replacing u?N by My g requires to appeal to some classical large deviation estimates and
we split the proof into three steps.

Step 1. Proof that we have uniformly in time, for any 1 < ¢ < oo,

1_ 1 1
/(]R2) “?N|fN|2 < || f ||2 4/8||W||L00(R2>(Zﬁ)q 2(AN7ﬁ,q)l q(BN75)2 P, (214)
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where we have set

_ (75)7 Zy_ g \N Sy oxp(—LGEL SN W(ai—ay) 5N (1)
Angq = (Zg.0)7+1 ~ SR
, (I(RQ)N exp(f— ie1 W(mif:pj))duﬁ,o (xl,...,a:N))
B _ Zng w2y eXP(—mZLJ | W(zi—z;)) dvg f)v(ﬂvh STN)
Ng - ZN,8 Jm2yN—1exp(— s SN 2W($i_$j))dy “z2yzn)’

and for any x € R,
dvg x(x) = Z@}{e*ﬁ(wmwwza)(x)dx’ Zgp = /2€B(V+RW*y5).
R

These N-dependent factors Ay g4, Byg take the form of ratios of partition functions,
which we estimate in the next steps by means of large deviation theory.

We turn to the proof of (2.14). Hoélder’s inequality yields

[ e ([ B[ ey
(R2)N g (R2)N g™ e’ (R2)N [Mygl?a=t ) -

As My g is a global equilibrium for the Liouville equation (1.8), we note that the last
factor is a conserved quantity,

Recalling the initial condition (1.11), we deduce

2 2 |MNB|q+1
e B S G e ()"

2g—1 |My g(22,xn) | g
8 Srlillp (Mﬁ(wl) /(R2)N1 [My (@1, zn) 21~ rdry. . dry )

Inserting the definitions of ug, My g, M ~,3, we find that the last two factors in the right-

hand side satisfy
41
/ lMNé[J;V‘q/ - = ANgag
(R2)N lpg ™ 14 "
and

2¢—1 |My (22, xn) | 4gB||W ;00 m2y (_2N.8 \20—1
su T dzo...dx <e Loo®?) (b
:mp (MB( ) /(R2)N1 My g (@) Pr-T 002 N = (ZBZN,B) ’

1
Py

where Ay g4 is defined above. The claim (2.14) follows.

Step 2. Asymptotics of partition functions: given a probability measure vy on R, d > 1,
and given a bounded, continuous, even interaction potential Wy with [|[Wo || (ga) small
enough, there is a unique solution pg of the fixed-point equation

po = Zy e Voo, Zy = / e~ 2Worho (2.15)
R4

and the limit

]%[iTn;loeNmo/(RQ)Nexp<—ZWo —@)du?N(xl,...,mN)

1,j=1
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then exists and belongs to (0, 00), where myg is defined as

mo = —log Zo — //R L Wola ) duo(x)do(y) (2.16)

We briefly show how this can be deduced from the large deviation results summarized
in [2]. Appealing to [2, Theorem B(ii)], in terms of

mo= nt (fowoe ()5 [ Wi - au@dn). )

we find that the limit

N
]%i%loeN"O /(RQ)N exp < - % Z Wo(zi — xj)> dV(?N(xl, C TN
ij=1

exists and belongs to (0,00) provided that this minimization problem (2.17) admits a
unique minimizer pg and provided that the value 1 does not belong to the spectrum of
the operator X, f := —2Wp * (fuo) on L*(RY, 19). Provided that interactions are weak

in the sense of [[Wyl|peomay < %, we first note that for any probability measure p the

operator ¥, on L?(R?, 1) has operator norm < 1, so that the value 1 is indeed always
regular. In addition, for ||[Wl|e g4 small enough, we can easily check that the minimiza-
tion problem (2.17) has a unique solution pg, which is precisely given by the fixed-point
equation (2.15). The infimum value (2.17) is then equal to (2.16), ng = mg, and the claim
follows.

Step 3. Conclusion.

We turn to the asymptotic analysis of the two factors Ay g, and By g in (2.14) as N 1 oo.
On the one hand, appealing to the result of Step 2, provided that B||W{|jege2) is small
enough, we find after straightforward computations

/
(Zg)T Zg,_ o N exp(—=Nvg _,1)
(Zg0)7+1 exp(—=N(¢’+1)v,0)’

lim A ~ li
A}{go N.B,q =Byq A}&

where for any x € R we have set

Yo = —log (72) = 38(1 — k) //szRQ Wz —y) dug()dps(y)-

After simplifications, this entails
lim A ~g. 1.
NIT N,B,q =B.q

A similar computation shows limy+ts Byg ~g 1. Combining this with (2.13) and (2.14),
the conclusion follows. U

2.4. Weighted Sobolev spaces. As shown in Lemma 2.2 above, for 1 < m < N, the
correlation function g7} is an element of the following Hilbert space,

L)) o= {7 e (@)« [ g <o

and h'™ is symmetric in its last m — 1 entries},
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or equivalently, recalling the notation ®; for symmetrized tensor product,
L3((R%)™) = L(R?) ® L(R?)® ("D,

endowed with the norm

”hmHIZ_,QB((]RQ)m) = <hm,hm>L%((R2)m)’
(" 9" )z (weym) = /(RQ)mhm 9" ug"

We further define a sequence of Sobolev spaces with respect to ug: for s € N, we define
the Hilbert space HE((]RQ)m) as the subset of L3 ((RQ)’”) that is the domain of the norm

(- Z /R (VP2 2, (2.18)

and we denote by Hg *((R%)™) the dual of H 5((R )™) with respect to the scalar product

of L%((RQ)T”). Note that we only consider integer regularity s for simplicity. We shall
frequently use the following embeddings, for s > 0,

1™ [z meymy < ||hm||L°° (R2)m)>

IN

IN

HhmHH*S((R%m) H:UJ/BHLOO(R2 H émhmHH S((R2)m)" (2-19)

For the sake of completeness, we also give the proof of the following useful interpolation
result.

Lemma 2.3 (Interpolation). The following holds for all 0 < s < r and h € C(R?),

1—2 s
HhHHg(RQ) Sr,s HhHLg(TRz) Hh”IT{E(IW)’ (2'20)

i each of the following two cases:

(1) in the non-Gaussian setting with non-degenerate monotone angular velocity Qg in the
sense of (1.13) (in which case the multiplicative constant in (2.20) may further depend
on the constant R in (1.13) and on an upper bound on B and |[VQg|lyr—1.00(r2) );

(ii) in the Gaussian setting (1.15) (in which case the multiplicative constant in (2.20) is
independent of B, R).

Proof. We focus on the Gaussian setting (ii), while the proof in the non-Gaussian setting (i)
follows along the same lines using the specific properties of 25 in (1.13). Using that in the
Gaussian setting
1 _lgp. 1
Vim = PR
: _ 1
and decomposing h = ﬁ(h’ /It3), we first note that

12|y m2) S > I(BRx) IV (hy/15) 12 gy

§=0
and thus, by an interpolation inequality due to Lin [21],
1Pl g2y Ss 18R h/Bigll 2 ey + 1ha/msll e r2)-
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Standard interpolation then yields for r > s,

1-2 , -
1Pl g m2) s \!h\/uﬁHLz(@)(H(ﬁR@ hy/igll 2 w2y + Hh\/MﬁHHr(R?)) -
Further using V. /g = —%BRJU, /113 to estimate the H"-norm of h\/ﬁﬁ7 we deduce

Il ey Sor D I1y/7Bl ooy [{BREY I (VI R) /151 o g (221)
=0
As Vug = =Rz, an integr]ation by parts yields for any k > 1,
18Rl gy = [ | 18RaP i
= [ BRalBR N - (Vi)

S [ 18R NIVAs + [ 13RI b
R2 R2
Hence, by the Cauchy—Schwarz inequality,
l|8R2[*h /5|2 @2y Sk |BRz*H(Vh)/isll2@ey + 11BRz* ™ h /sl 2 ge),

which gives by induction,

k
[(BRz)Y b/l 2wy Sk D (V7 R) /i8]l L2 ey
=0

Using this to post-process (2.21), the conclusion (ii) follows. O

3. NON-DEGENERATE CASE: NON-(ZAUSSIAN EQUILIBRIUM

This section is devoted to the proof of Theorem 1.1. More precisely, we establish the
following more detailed result. Note that the positivity of the expression (3.3) is not
obvious and is part of the proof.

Theorem 3.1 (Non-Gaussian setting). Assume that the external potential V' further sat-
isfies V(V'/r) € C°(R?). In terms of the mean-field equilibrium pg, we define the angular
velocity Qg as the smooth radial function given by

(log,ug)/ = BTQQ.
Consider the non-Gaussian setting when Qg is nowhere constant: more precisely, we as-
sume for simplicity that Qg is monotone and satisfies the following non-degeneracy condi-
tion, for some R € (0,00),

()] > F(rAL),  |Q30)] > §,  forallr >0, (3.1)

and we also assume that B is small enough depending on V,W and on this constant R.
Then, for any o € (0, &), the subcritically-rescaled tagged particle density

20
fn(r) == N7 fy(N7T)
N\T) = N T
3Note that this strict monotonicity assumption implies a non-Gaussian decay, for r > 1,

1(0) exp (3260087 = CBr®) < pa(r) < ua(0)exp (3% +2s(0)81° — Ffr®).
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satisfies in the radial distributional sense on Rt x R2,
& Ntoo °
On(F) % 10, (ras(r) (0, — (log p) (1) £°). (3.2)
where the coefficient field ag is a positive scalar radial function that can be expressed as
ag(r) = /Sl ( - Hy(re,y) [%(zL% + 0)_1H5](re,y) 1s(y) dy) do(e), (3.3)

in terms of:

e the operator L% given by

L} = Ly @1d+1d@(Lg + BTp),

with
iLgh(z) = —B 'Vlogus(x) -V h(z),
iTgh(z) = B 'Vlogus(z)- /R2 K(z — z)h(xy) pg(z) das;
e the functions Hy, Hg given by
Ho(z,y) = 5 K(z—y), (3.4)
Hg(z,y) = - (=ViWs)(z,y),

where the ‘renormalized’ interaction potential Wg = W + O(B) is defined as a (-
erpansion,

[e.e]

Wa(z,y) == > (=B)"W*s " (z,y), (3.5)

n=0

and where so-called p1g-convolution powers are defined for alln > 1 by

< ﬁ W(xp—1 — xk))
k=1

X pg(x1) ... pg(Xn—1)dxy ... dxy—1. (3.6)

W™ (2o, xpn) 1= /

(Rd)nfl

Remark 3.2. In terms of the renormalized interaction potential W3, we can define the
corresponding renormalized force kernel

Koo,y) = gl (o + =520t ) (2 (-9 Wo) ().

Noting that we have by symmetry z - (V1 Wps)(z,y) = —y - (Vo Ws)(z,y), we find that this
choice of Kg satisfies

Kg(m,y) :—Kg(y,x), (a:—y)-Kg(x,y) =0.

The definition of Hg in the above statement is then equivalent to
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3.1. Preliminary BBGKY analysis. As V' and W are radial, the mean-field force can
be written as

(F+ K #ug)(x) = - Qu(x),  Vlog ua(z) = Bal(a), (3.7)
where (13 is the smooth radial function
Qp(a) = (log ) = —L(V +W # g) (r).

In these terms, the linearized mean-field operators {L’} 5}1§m§N in Lemma 2.1 can be
expressed as Kronecker sums

Lys = Lg® (IdLg(ﬂv))@(m_l)
+ Z(IdLg(RZ))QQ(jil) ® (Lg + BIF2Ts) ® (IdL%(R%)@(mﬁ')a (3.8)

where we have defined the following single-particle operators on L% (R?),

(iLgh)(z) = —aQg(x)-V*ih(z),
(1Tgh)(z) = 2Qp(x)- . K(z — xy) h(zy) pa(zy) doy. (3.9)
Note that in polar coordinates x = (r, ) the operator Lg takes the form
iLg = Qp(r)0p, (3.10)

thus showing that € indeed plays the role of an angular velocity. In the limit N 1 oo, the
linearized mean-field operators (3.8) are replaced by

LE = L ® (Idyz(ge)®" Y + Z (I (g2)“Y ™ @ (Lg + BT5) ® (dpz o)) " ).
=2

We start by studying the spectral propertles of these operators. For that purpose, we can
focus on the following single-particle operators on L%(RQ),

LB(’}/) = L,B =+ ’}/Tﬁ, for AS R.

The main difficulty is that we do not have a closed formula for the resolvent of Lg(v)
for v # 0, in contrast with the situation for the linearized Vlasov operators in [13]: for
that reason, the spectral analysis requires more care.* Note that in the proof of item (1)
below we further show that Lg(y) is actually self-adjoint when viewed as acting on a
suitably deformed Lipschitz-equivalent Hilbert space. In that deformed self-adjoint setting,
item (iii) then entails that the restriction of Lg(7) to the orthogonal complement of its
kernel has purely absolutely continuous spectrum.

Lemma 3.3 (Properties of linearized mean-field operators). Given 8 € (0, 1], assume that
the angular velocity Qg satisfies (3.1). Then, for all v <pg B2/3 small enough (hence
in particular for all v < B provided that 8 <g 1 is itself small enough), the following

properties hold:

s, cr that is uniformly bounded,

hlliz@ey S hllizgey,  for all b € LE(R?).

(i) The operator Lg(vy) generates a Cy-group {e
sup HeitLg(
teR

4See however explicit resolvent computations in [7, 8] in the specific Coulomb setting.



DYNAMICS OF POINT-VORTEX SYSTEMS NEAR EQUILIBRIUM 21

(it) The kernel of Lg(7y) coincides with the set of radial functions.
(i1i) On the orthogonal complement

Ep = ker(Lg(y))" = ker(Lg)"

=<h 2(R?) : h(re)do(e) =0 for almost all r )
{nerz@): [ nwodote) =0 or abmost it} 11

the restriction Lg(v)|E, satisfies the following limiting absorption principle: for all
g9.h € C&Z(R*) N Eg,
-1
sup (g, (Ls(7) —w) "h)pagey| Sk lalsllnlls, (3.12)
weC,Sw+#0 B
where we have set for abbreviation

lglls = IVallLs @) + 1(2)9lz @2y + 1(V1og )9z m2)- (3.13)

Remark 3.4. By definition, the operators LN,B and L,B are Kronecker sums of Lg(y) for
different values of 0 < v < B. As a direct consequence of the above result, provided that
B <g 1 is small enough, we deduce that for all m > 1 the kernels of L'y N3 and of Lm

on L%((]R2) ) are both given by the set of functions that are radial in each of their m
entries. Hence, we have

Ef = ker(LK},B)L = kelr(ng)L
= {h € L%((RZ)m) : /(Sl)m h(rie1,...,rmem)do(er)...do(em) =0

for almost all 1, . .. ,rm}.

Moreover, the proof of item (iii) is easily repeated in this multi-particle setting: provided
that B <pm 1 is small enough (further depending on m), the restriction of LT 4 (resp. I/ﬂ")
to B satisfies the following limiting absorption principle, for all g, h € C((R%H)™) N B,
su AL s —w) " h " h ,
5 s (LR =) g aaym| S olssmIhllsm

where we have set for abbreviation

m
lgllgm == (HVJQHL2 @ym + 1(25)9 0z (g2ymy + (V1og 1) (25)gllLz R2)m)>
j=1
Proof of Lemma 3.3. We split the proof into three steps: we start with the proof of item (i),
then we establish fine spectral properties of the unperturbed operator Lg, proving items (ii)
and (iii) with v = 0, before concluding perturbatively for |y| small enough.

Step 1. Proof of (i).
The operator Lg in (3.10) is clearly self-adjoint on its natural domain in L%(RQ). Next,
noting that
I Tshllia e < Neslua s K oo Il g
the assumptions on {23 ensure that Tz defines a bounded operator on L% (R?) with operator
norm ,
HTBHL%(RQ)HL%(RQ) Sk B3
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For all v € R, standard perturbation theory (e.g. [17, Theorem IX.2.1]) then ensures that
the perturbed operator Lg(y) = Lg+~T}3 generates a Cp-group on L% (R?), and it remains
to show that this Cp-group is uniformly bounded. For that purpose, we appeal to an energy
conservation argument. Consider the following deformed scalar product on L%(RQ),

(9, Mtz _(me) = {9 Mz ey +7 //]R - Wiz —y) g(@)h(y) pp(x)pp(y) dedy,  (3.14)

as well as the associated norm

2 _
HhHﬁ%ﬁ(Rz) = (h, h>L/23’W(R2)'
For [y[||W{|pec(m2y < 1, this norm is Lipschitz-equivalent to the standard norm on L%(R2),
2 2 2
(1= AW e ) 11 ey < B2, gy < (L4 AW ) Iy oy, (3:15)

and we denote by i% 7(]Rz) the Hilbert space L%(R2) endowed with this new structure.
From definition (3.9), a straightforward computation yields

@ALsOE_oy = B [ () (TR s

[, TG K@ =) (225 + v92(uD) 25 @it (0) dady
— 2Bt //R2><R2 mh(y) ( . KJ-(CC —2)-K(y — z) ps(z) dz> pa(@)ps(y) dedy,

which shows that Lg(v) is symmetric on the deformed space E% 7(]R2). As the generator
of a Cy-group, it is therefore self-adjoint on this space. Combining Stone’s theorem with
the Lipschitz property (3.15), we deduce for |y[||W ||y, g2y < 3,

itL itL —
e D hllg ez S 1€ Phllpy go) = IPlg; g2y S IPlizee),

which proves that the generated Cy-group is indeed uniformly bounded on L%(Rz).

Step 2. Proof of (ii) and (iii) for v = 0.

As by assumption the function €15 is absolutely continuous and nowhere constant, we
deduce from (3.10) that the kernel of Lg coincides with the set of radial functions and
that its restriction to the orthogonal complement Es := ker(Lg)! has purely absolutely
continuous spectrum,

O—ess(LIB‘Eﬁ) = Uac(Lﬁ’Eﬁ) = {k‘)\ ke Z\{O}, A € ess. im(Qg)},
GSC(L5|E5) = UPP(Lﬁ|E@) = 9.

Moreover, we shall show that the restriction Lg| E, satisfies the following limiting absorption
principle: for all g, h € C°(R?) N Eg,

(Lg—w)"th < hl| 5, 3.16
weé}gﬁﬂ'@( g —w) >L§(R2) Sk lglislinls (3.16)

where we recall that the norm || - || is defined in (3.13).
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Let g,h € C°(R?) N Ej be fixed. In order to prove (3.16), we start by using polar
coordinates x = (r, ) and Fourier series to write, for Sw 75 0,

(00 (Ly =) B = & Y [T HEEE D neyan @an

keZ\{0}

where we use the notation g(r, k) := [, e g(r, 6) d for Fourier coefficients with respect
to the angle in polar coordinates, and where we noticed that the condition g,h € Ejg is
equivalent to g(r,0) = iL(T, 0) = 0. To estimate this expression (3.17), we proceed to a local
analysis of the integral close to singularities kQg(r) —w ~ 0. We start with the following
two general estimates:

— for all p € C(R) and 1 < p < o0,

1
)
sp| [ #a] 5 el (3.18)
— for all ¢ € C(R),
sup [ 9 a5 1ol
e#0

1
The first estimate follows from the Sobolev embedding W»"*(—1,1) € L*°(—1, 1), combined
with the LP theory for the Hilbert transform. The second estimate is obvious.

Now using these bounds to estimate (3.17) close to singularities, using local deformations
to reduce to these model situations, recalling the non-degeneracy assumption (3.1) for 3,
we are led to

—1
st o0 (B =) ) oo

Se >0 K10 @0 VIRV + IR0 )y TB )

keZ\{0}
X (10 (b, )T Iz ey + | EVRCR) Tl e ) (3:19)

To obtain this bound and simplify the form of the right-hand side, we have used here
1
Holder’s inequality and the Sobolev embedding H'(R*) ¢ W»%(R*) for 1 < p,q < oo

with % = l + %, in form of

ladl| Spa Moll 30 g Pllize) + lalezes 1ol

P (RT) (RH)

Spa lallg @ Hb”LQ(R“') + ||a||L2(R+)||b||H1 (R+)-

From (3.19), the claim (3.16) follows by Plancherel’s theorem.

Step 3. Proof of (ii) and (iii).

With the above spectral properties of Lg at hand, we now turn to the corresponding prop-
erties of the perturbed operator Lg(y) = Lg +~Ts and we conclude the proof of items (ii)
and (iii). First note that by definition (3.9) the kernel of Lg(7y) clearly contains the set of
radial functions. By density, we then deduce that item (ii) would follow from item (iii), and
it thus remains to prove the latter. For that purpose, we shall argue perturbatively for ||
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small enough, combining the above limiting absorption principle (3.16) for Lg together
with regularizing properties of T3. By definition (3.9), we can write for Sw # 0,

(Ts(Lg —w)~'h)(x) = —izQp(x) - (K(z — ), (Lg — w)71h>L%(]R2)'

Taking the norm || - || defined in (3.13), appealing to the result (3.16) of Step 2, and using
the properties of (g, we deduce

sup O!!ITﬁ(Lﬁ—w)_lhll\ﬁ Sk (12 ez @) + BIC) iz g2)) I0lls

weC,Sw#
_2
Sk B7E|R]ls
Hence, for v <g 3 small enough,

sup  [[vTs(Ls —w) 'hllg < 3[Rl
weC,Sw#0

This allows us to construct the Neumann series
<g? (Lﬂ(’)/) - W)_1h>L%(R2) = Z <g7 (Lﬁ - w)_l [fyT/B(L,B - w)_l]nh>L%(R2)7 (32())
n=0

and the bound (3.12) follows. This ends the proof of item (iii). O

Next, we establish the following estimates on BBGKY operators in the weighted negative
Sobolev spaces defined in Section 2.4.

Lemma 3.5.

(i) Weak bounds on BBGKY operators:
Forall1 <m < N, s >0, and h™™" € C((R?*)™*7") forr € {—2,—1,0,1}, we have

LR 7™ Vot meymy Smes 0™ o (qgym):
IS8 A" ez =1 @ymy Sms IR zeoym,
Hsﬁghmﬂ”H[;S*((R?)m) Sms HhmHHHES((Rz)mH),
HSE:B_hm_lHH;S”((R?)m) Sm,s Hhm_lHHZ;S((Rz)m—ly
IS5 B Pl ey S IR e eymes).

(i1) Weak bounds on linearized mean-field evolutions:
Forall1 <m <N, s>0,8>0, and h™ € C((R?)™), we have

|e* N5 hmHHﬁ—rssm((Rz)m) Sepmss (O N g (@zymy:

Proof. By duality, item (i) follows from the following corresponding estimates on the adjoint
operators, for all s > 0 and h™ € C°((R?)™),

LR 8) " [y (m2ymy S

w

||hm||H;+1((R2)m)»

w

”(Sﬁ’o)*hmHHé((R%m) S,m ||hm||H;+1((R2)m)7
SN ™) B | rrs m2ymss) Soms 2™ Lz g2y

H(S]T\r;’_)*hmHHg((R%m*l) S_,m,s ||hmHH§+1((R2)m)7
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1SN T R s meym-—2) S 1h™ |rs(r2ym)-

Adjoints can be computed explicitly and these estimates easily follow; we omit the details.
We turn to the proof of (ii). By duality, it suffices to prove that, for all s > 0 and § > 0,

i(L

1€ RS s (2ymy SR (t>s+5|!hm||H35/2((R2)m)'

As by definition L 4 is a Kronecker sum of the perturbed operator Lg(y) = Lg +~Tp for
different values of 0 < v < B, cf. (3.8), it suffices to show that for all s >0, >0, v < 3,
and h € C°(R?),

e hll gy 2y Srp.s <t>sHhHHﬁgsw21(R2)7 (3.21)
HeiLﬂ(V)*thHHg(W) SR8,5.6 <t>5+5||hHHg3s/zw(R2)- (3.22)

We split the proof into two steps, separately proving these two estimates.

Step 1. Proof of (3.21).
Starting from the explicit expression for the flow

eleth(z) = h(z cos(tQa(x)) + at sin(tQg(2))),
we find for all s > 0,

/ Vot 2y <, (8)2° / (Y2 V) s, (3.23)
R2 R2

where the multiplicative constant depends on [|[VQg||yys,00(r2). Using assumption (3.1) in
form of

2
() "ps(x) Sk ps(z) — |:c| - Vg (),
an integration by parts gives for any s > 0,

/ (VY Pus Snss / (V22T h 2+ / (Y22 RV B
R2 R2 R2

Hence, by the Cauchy—Schwarz inequality,

[ 0PIV HPus Srpe [ ORI HRas+ [ 2V g,
R2 R2 R2

which yields by induction for all s > 0,

\2s8|x757 |2 < 2
L I9Rs San A e o
Combined with (3.23), we obtain the claim (3.21).

Step 2. Proof of (3.22).
Let 0 <y < 8. Decomposing Lg(7y)* = Lg +~1};, we start with Duhamel’s formula in the
form

t
eiLB(’\/)*th — eiLBth‘i"Y/ eiLB(tft/),iTgeiL@(’y)*t/hdt/‘
0
Taking the Sobolev norm and applying (3.21), we deduce for all » > 0,

t
HelLﬁ Nt elLﬁth} 5 (82) SJR,B,T <t>7“/0 nyTEelLﬁ(’Y) t hHHE(RQ) dt
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As the operator Tg satisfies the following regularizing property, for all r > 0,
VTRl g2y Sr l1Rlez we),
we deduce
t
WMW”%—é“%mWW)anaVAna%mtw%maﬁ
Now we combine this with the interpolation inequality of Lemma 2.3(i): for all » > s > 0,
we get
ZLB ) _ iLBt
e h—e hHHg(W)

S,R,ﬁ,r,s H@ZLB v)*t h— ZLBthHLZ HezLB v)*t h—e

H(R?)

S

Srar ([ 0 h — eiL’gthHL%fsz /0 e 20 Bl g ey dt')

By the triangle inequality and by the uniform boundedness of Lemma 3.3(i), we finally
arrive at

i * 7 s 1
s ™) th”Hg(R?) SRBrs € L’BthHH;(R?) + (t) (H—T)HhHL%(R?)'
Combined with (3.21), this yields the claim (3.22) after choosing r > 3. O

3.2. Proof of Theorem 3.1. We start by using the cumulant estimates of Lemma 2.2 to
truncate the BBGKY hierarchy and get a closed description of the tagged particle density.

Lemma 3.6. For allt >0 and 6 > 0, we have

t
. —i(t—8)L3; 45 a2 — )
HN@MQ}@ _/0 <ZS}\}I36 (t )LN,B@S]QVﬁ(if )>ds

¢ S . - / —
— / / (iSy e ) hp gt emilems >L?v,6isj”vvg(ﬁf°)>ds’ds‘
0 0 7 b b

1

HyT(R2)
Srps (t)

Proof. First, for the tagged particle density, the BBGKY hierarchy (2.7) in Lemma 2.1
yields

. ol,o
Orgn +iLly ggN = Sy 591\! + NZSJ\},ggzlv,

and thus, for the radial density, noting that the contributions of L}V 3 and S]l\;oﬁ disappear
when taking angular averages,

ol
Noygy) = (iSy5Nax)- (3.24)
The Duhamel formula for the above equation also yields

t
—1 o —i(t—s) L} .ol
gh(t) = e tLNB(Mf )—1—/0 e it=)ns <1511VJE;912V( )+ %ZS}Vﬂg}V(SU ds,

or equivalently, since ﬁ f¢ is radial and thus belongs to the kernel of L}\, 8

t )
(O = ot [ I (iS50 (6) + FiSkah(0) ds. (325)
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Next, the BBGKY hierarchy (2.7) for g% and g% yields

ONgy +iLy sNgy = iSYENGX +iSy 0% + 1S 59N
. 3,0 . a3,— . a3,=
GtNgN—i—zLN’BNgN = lSN’ﬁNgN—FZSNﬁgN+ZSN”3912\7+ZSNﬁg]1V,

and thus, combining the corresponding Duhamel formulas,
t .
N (w ¢m<>+u%@mw0ds
0 I

X (iS]\}ﬁNgN( )+ZSNBQN( )+zSNﬁgN( s') +i5§3\}29}v(5')) ds' ds.

Replacing g]lv in this expression by (3.25), and reorganizing the terms, we deduce

t .
Nah(t) = [ eI RS L ) ds
/ / —i(t—s) NﬂZS2+ —i(s— S)LNMS ( lﬁfo)dS,dS
+/0 7Z(t S)LNﬁ S2OgN( )ds
t s
+ / / e~ 8>LNMSQ+ —i(s—s )L?W(iSi;ENgN( §') + 1SN 59 (5 ')—i—iS’i}%g?\,(s’)) ds' ds

// siSy 2(S*s')L}W(zS n () + NSy (s )) ds' ds

/ / / —z(t S)LNBZS2+ —Z(S s) NﬁZS?) z(s —s) N3
SN 593 S ds" ds' d
X\t N@QN( "+ & NﬁgN( ")) ds" ds' ds.

Inserting this into (3.24) and appealing to Lemma 3.5 to estimate the different terms, the
conclusion follows. 0

We appeal to Laplace transform to express long-time linear evolutions more conveniently
in terms of associated resolvents. The representation is further simplified by noting that
the resolvent of iL:])’V 5 can be explicitly computed on some specific test functions. Before

stating the result, we introduce some notation: given Ry, Re € C°((R?)?), we define the
pg-convolution product

Rivy Ralw.9) o= [ Falo.2)Pole ) pol) d

Note that this product is in general not commutative, but is always associative. We define
corresponding pig-convolution powers of an element R € C5°((R?)?) iteratively by

R = Ry, R™",  R™'=R, foralln>1.
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For a function S € C*°(R?), identifying it with S(z,y) := S(x — y), we similarly define
with some mild abuse of notation,

S*uﬁn(gp,y) = (g)*u,gn(x,y), for all n > 1,

which coincides with the more explicit definition given in (3.6). In these terms, the following
result holds.

Lemma 3.7. For all 0 > 0 and ¢ € C°(R™), considering the subcritically time-rescaled
tagged particle density

gn(T) == N'727gn(N7T),
we have for all § > 0,

H/ ¢ Or( 9N>d7—/9¢ <ZS 5 ZLNB'{'WH) ZSJ2\55 Hp f°)) da

— / 9o (@) <7’SNﬁ(’LLNﬁ + w‘“) SJQVEHE °> do

o i 2, o 30
+/R Nt g0(a) (SN (LY 5 + 55) Sy B (LY, 5 + §5) T H da” "(R?)

Shps NOOHIT=3 (1040 ¢||L1(R+)a

where
Hg;o(acl,:cg,xg) = —ﬂ(ifo)(l'l)WNﬁ(aﬁg,(E?,), (3.26)
Wy g(@a, ) = > (=B)"(EF)" W (25, 3),
n=0

while gg(a) == 5= I e(zzrl)T ¢(7) dr belongs to Cp°(R) and satisfies

)] So () and [ g | "o

Proof. Appealing to the product formula for the Laplace transform, as e.g. [13, Lemma 5.2],
we can readily deduce from Lemma 3.6 that

| [~ 00ntah) — [ gotar (iSN3LR 5 + 550) is3s(it %) da
0 R
_/Rgd’(a) <Z"S’]1\;,J,E’(ZLNB+W+1) ZS2+(ZLNB+W+1) S?\}fg(ﬁfo»da

S5 NOOEDT=3 || (I0H0 )1 4 o, (3.27)

~

HHﬁ7(]R2)

where the transformation g4 is as in the statement.
By definition of S?\i? in Lemma 2.1, we have

iSN (s ) e w2, 03) = —BGLI) @) K (w2 — 23) - (2290(22) — 230p(x3)
—B(L 1) @1) YW (22 — 23) - (23 Qp(2) — 23 Qp(a)).
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Now compare this expression with the definition of L N for any radial f € C2° (R?) and
any h € C°((R?)?),

iL?\/,,B [(azl, X9, 333) — f(a:l)h(arg, xg)] (331, X9, 5173)
— f(xl)mé‘Qg(xg) - Vs (h(xg, x3) + 5% / W(ze — x4 )h(xy, x3) ,u/g(m)dm)
RQ
+ f($1)$§ﬂ/3($3) - V3 (h(:ng, x3) + B% /R2 h(zo, 2 )W (e — x3) uﬁ(w*)d:r*).

We deduce
3;0 3,=/,1 ro
ZL BH == SNB(MBf ),

where Hg;o € Cp°((R?)3) is the smooth function defined in (3.26). Using this identity in
form of

3,= o 3;0 ; 3;0
(LY 5 + S0 Sy (L ) = HE° — '{E LY + 55 7 H,
and inserting it into (3.27), the conclusion follows. O

It remains to pass to the limit in the different terms of the above representation of 9, (gh).
For that purpose, we use the fact that the resolvents of iL?V P and iL?V 5 can be computed
in form of explicit Neumann series, cf. (3.20).

Proof of Theorem 3.1. We split the proof into four steps, separately evaluating the limit
of the different terms in the representation of ;(g};) given in Lemma 3.7. The last step is
devoted to the proof of the positivity of the limiting coefficient field ag.

Step 1. Proof that, provided 8 < 1 is small enough, we have for all ¢ € C>°(R™), all radial
heCP(R?), and 0 < o < 3,

. ,+ za+1 2,—/1 po
}flglo Rg¢(a)<h (’LSNB(ZLN5+ ) ZSNﬂ(ﬁf)

1 2 3;0
+ ZSNE(ZLNB + fotl)= ZSNJ,E*}HN B) >L2 2 (k) do

- ([T Vhan) - K (w1~ a2) (T + 0) ' 73GE°) (w1, 2)
0 (R2)2

x pg(x1)ps(z2) dridzs, (3.28)

where we define

Gy (w1,2) i= G5V ) (1) - (= Vi W) (1, 72)
— (s [) (@) Viog pg(w2) - K (w1 — 22), (3.29)

and where the orthogonal projection Trg_i : L%((RQ)Q) — E% is given by

ﬂ%h(xl,azg) = h(x1,x2) ][7[ h(|z1]e1, |z2le2) do(e1)do(e2).
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By definition of S}\}E, 5’12\}; in Lemma 2.1, using that V, W, f° are radial, we can compute

1,+ 2 za—i—l 2,— 1,+ 2 za—i—l 2,4 g73;0
<h <ZSNB(ZL 5 W) SN (g f2) SN (LN 5 ) ZSNﬁHNﬁ>>L?3(R2)

- _/RQ Vh(z1) - K(x1 — ) (iL35 + 554) 7' GR5) (21, 22)

X pup (1) pp () drdrs,

Gy, m2) 1= s K (w1 — w2) - (V1 = Vo) (f°(a1) s (x2))

+ % Z K(z; — ) (Vj+ Vlogug(wj))ng\}?ﬁ(xl,xg,x*) pg () da.

As h and W are radial, we note that the map

(xl,xg) —= Vh(l'l) : K(l‘l — l’g) = —Vh(l‘l) : VLW(J:‘l — 3}2)

belongs to Eg Further noting that the map L%\, 3 leaves the subspace Eg invariant, the
orthogonal projection w% can be smuggled in the above identity, to the effect of

1 (Yo 2— 1 Q 2
<h <zSNE(zLN5+ a1yt SNg(Mf)+15NE(7JLNﬂ+ NSy NB>>L%(R2)

- /(]R2 V(1) - K (@ = w2) (L35 + 55 7 m3GR) (1, 22)

x pg(x1)pg(z2) deidrs.  (3.30)

Next, we proceed to a suitable reformulation of Gi}oﬁ. Recalling the definition of H}i]oﬁ in
Lemma 3.7, as well as K = —V1W, we find that

G?\fg(iﬁlaiﬂz) = mff(m —x2) - (V1 — Vo) (f°(z1)ps(z2))
+ BNV ) @) - V(W sk, Wivg) (a1, 22)

+ ﬂ¥(if0)(1’l) o VAW (22 — @) - (VoW g) (s, 2) g (@s) das

+ B2 (45 5 (1) V log g (w2) / VW (29 — 2) W (24, 02) g () dis.
From the definition of Wy g in Lemma 3.7, we note that

W(z1 — 22) — Wi (w1, 2) = BEB(W %, Wi g) (21, 22).
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This allows to reorganize the first two right-hand side terms above,

GRs(w1,02) = GEVI) (1) - (=i Whp)(a1,2)

- (if")(ifl)VlOguﬁ(ﬂh) - K (21 — x2)

- BEV@) - [ K = ) Waale) ps(e.) do.

+ AR w) [ THW (o= 2 (TaWans) @) (o) do.

+/B¥(ifo)(l‘1)vlogﬂﬂ($2) /]RQ VLW(xQ —x*)WN”B(x*,.%Q) Mﬁ(w*) dr.. (331)

In order to evaluate the last two terms in the right-hand side, we note that the very
definition of Wy g further lets us compute

. VAW (2 — 2) Wi 5(x, 22) pg () dzs
R

= 3L (AR W D 1, 00)), - (3.32)

n=0

together with

VW (s = @) - (VoW p) (e, 22) r(a.) das
R
d oo

- Z Z(_Bﬁ)n(viw *up wres' *up VaW) (72,72) = 0.

a=1n=0

As by symmetry the function x — W*™8™ (x, ) is radial for all n > 1, these two identities
ensure that the last two right-hand side terms in (3.31) actually vanish identically. We are
thus left with

Gis(ar,wa) = GEV ) (@) - (=ViWng) (@, w2)
— (L ) @)V log pg(w2) - K (21 — 25)

_ %(ﬁVfO)(xl) e K(x1 — ) Wh (s, ©2) pa(xs) da.
Comparing this with the definition of GZ;O in (3.29), and in particular comparing W g
to W3, we easily find that for g < %HWHE(}O(RQ),

2;0 2;0 o
”GN,ﬁ_G,B HL%((R2)2) S %Hﬁvf HL%(]}@)'

Further noting that

(iL% gh —iL3h) (21, 22) = — 2 22Qp(22) - / K (z9 — z)h(x1, 24) pg(s) da.,
R

we can estimate for all Rw # 0,

H(iL?\f,ﬁ +W)_1 - (ZL% +w)_lHL%((RQ)Q)*)L%((RQ)Q) N %“RW’_QHVIOgMﬁHL%(R?)'
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These error estimates allow to replace the representation formula (3.30) by the following
approximation, for § < %HWHI}IO(RQ) and 0 < o < 3,

(h, (1SN 55 + SED) 1SR 5G5S

S7+ L za+1 S2+ )>
+1 (z I )i N5 N,B L3 R2)

lim sup
NToo oeR

+ /( . Vh(zy) - K(z1 — x2) ((ZL% + i?‘vﬁl)flﬁgGé;o)(m,xQ)
R

x pg(z1)pp(z2) dridrs| = 0.

Finally, the limiting absorption principle of Remark 3.4 allows to pass to the limit in the
second left-hand side term. As [p g4 = [;° ¢ and [gs(@)] S ()2, the claim (3.28)
follows.

Step 2. Proof that for all ¢ € C°(R™1), all radial h € C2°(R?), and ¢ > 0,
,
Am | 9¢()

x IR <h,iS]1\},JEa(ZLNﬁ + )T ZS]Q\},—E@LNB + )T HE;O dor = 0. (3.33)

>L2 3(R?)

Let the radial test function h € C°(R?) be fixed. By the definition of S}VE,S N in
Lemma 2.1, we can compute for Rw # 0,

w<h,z’5}\;?g(iL?Vﬁ+w) iSAHGLY 5 +w)” 1H2;0>L2(R2)
B

2
= N2 Zw// K(z; —x3) - [Vj;g(ilﬁ’vﬁ + w)leE;o] (21,2, 23)

where we define H%"
by parts, this reads

x1,x2) := K(x1 —x2)-V1h(z1). Alternatively, by further integrating

SRRy ) SRR+ ) L
B

2
. — 3;0
=gy sk v e

x K(xj —x3)-V; [((ZL%V,B)* + @) HZM (21, 22) pa(@1) pp(ze) ps(2s) deidzodas.

As h is radial, we note that H*" belongs to Eg, Recalling that E% = ker(L?\,ﬁ)J—, cf. Re-
mark 3.4, we deduce that

((iL3 )" +w)'H*" € E3.
Now, for any g € E2, we note that for j = 1,2 the function

(1,22, 23) — K(x; — x3) - Vg(x1, x2)
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also belongs to Eg As Eg = ker(L?’\,rB)J—, cf. Remark 3.4, this allows to replace Hg;o
by W5H3 in (3.34),

w<h’iS]1\}E(ZLNB +w) NS (LY 5+ w) 1H2;O>L2 .
B

2
N_1N .r3 —1_3 77350
= -5 TZ: //(R2 zj —a3) - [Vjs(iliy p +w) maHg"] (1, 22, 73)

x [(GL3; p)* + @) TLHER (21, w2) pg(a1) pp (2) pp (a3) dridrades.
Now decomposing
2 2 N—272 3 3 N—373
Lypg = Ag+ 87515, Lng = Ag+ 67515,
in terms of

A% = Lg@ld+1d®Lg, T; = ldeTp,
A} = Lpold®? +1d@Ls @ [d+1d®* @Lg,  Tj := 1d®Tz @ Id+1d%° @Tj,

and further arguing as in the proof of Lemma 3.3(iii) to express the resolvents of L3 3
and L“;’V 53 as power series, we are led to

cal o 12,4+ /- - 350
w<h’ZSN,JEZ(ZL?V,B+“> NSy (L +w) T H >L2(R2)
B

2
= S K ) [Vis(ia) 4 07 G )
j=1 R

x [((1A2)* + @)~ G5 ] (21, m2) (1) s (w2) 1 (w3) dy dwadavs,

where we define the modified test functions

G = D (=BEGTE) ((143)" +@) ' B>,
n=0

G?\}f’ﬂ,w = Z(_BNT) [iT3 (1A% +w)™ 1]%}’;1{;”.
n=0

Using polar coordinates = = (7,6), noting that resolvents of A2,A3 are explicit using

Fourier series, and writing K (z) = —W'(|z|)% m , the above can be reformulated into
.ol + 2,4+ 3;0
w<h,zSN7B(zLN/3+oJ) iSy (zLNB—Hu) HB >L%(R2)
2
_ NTNT Z Z ///]R+ //0 i i(k1—k))01+i(ka—k))02+iks0; d01d92>

k1,k2 k3 k1 k)

" ‘ 5 © G50 (T k1572, k273 3
X ([ = 135" (rj,73)0r, + (ik; + BrjQa(r;)) R™ (rj, 73)] iklﬂa(ﬁ)‘imﬂa<r2>+iksne(rs>+w)

~2;h
GNLBw(rlkaTQ’kQ)

X T Qg(n)-ﬁ-zk’ Qg(rg)-i—w ,U/B(TI)MB(TQ)/JB(TB) 17273 dTldT’QdT'g,
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where we denote

2T 2 r2_op 1/2 .
RF(ri,r3) = i W((r(l+Zi2i::2;;zz()e))l)/2 )(1— %cos(@))e 0 g,
27 2 P2 1/2y .
Shrurs) = | e sin(6) e db.

Performing integrals over angles, this leads to

)w<h7z‘5}\{g(iL?\w +w)” 'SNQ(ZLN,B +w)” 1H§%o>

L3 (R?)
N 5 w(r1,k1+k35ra,k2)
R+ k:1+k23 QB(T1)+ZICQQB(T2)

k17k27k3

. G3ie w(T1,k15r2,k25m3,k3)
X ([_ ra 9" (r1,73)0p, + (ik1 + BT%Qﬁ(Tl))Rks (r1, 7"3)] z’kmﬁ(rfﬁikg;zﬁtr;);k;):(rs)w)

X pg(r1)pp(r2)pup(rs) rirers dridradrs + sym,

where “sym” stands for the corresponding expression obtained by exchanging variables
(r1,k1) and (re, k2) in the integrand.

We turn to the evaluation of the derivative J,, in the integrand. For that purpose, we
separately consider the cases k; = 0 and k3 = 0. Noting that $*3=C(ry, r3) = 0, using the
following identities,

) = — o dn )
iklﬂg(’rl)—l-ikzﬂg(’r‘g)—l-w ik’lﬂfg(rl) 1 ileg(T1)+ikQQg(7‘2)+w )
( 1 ) = s 1 )
1 ik1ﬂg(7’1)+ikgﬂg(7’2)+ikgﬂg(7’3)+w - k3Q’B('f‘3) T3 iklﬂﬁ(7‘1)-}—27629[5(TQ)-}—ingﬁ(Tg)-f—w )

and performing several integrations by parts, we are led to

‘w<h,iSjl\;L(iL?Vﬂ+w) iS%LGLY 5 +w)” 1Hg%°> (3.35)

L3(R?)

1 k1,k2
// Zklgg(rl +Zk295(T2)+W)A]\}ﬁ w(?"l, 7’2)/,6[3(7"1)/1;5(7’2) rir2 drler
kl ko

+ Z Tgs0|w

k1,k2,k3

1 1
/// ’LleB T1)+’Lk‘293 (7‘2)+lk‘393 (r3)+w) (l(kl +k3)QB(T’1)+ikQQB(T‘2)+w)

X B]]i,lgfi; (r1,72,13) g (1) g (r2) pa(rs) rirers dridradrs

+ Z Tgy0| 2|

k1,k2,k3

1 1
W lk‘lﬂﬁ T1)+lk‘2QB (T2)+lk‘3QB (r3)+w) (i(k1+k3)ﬂﬁ(7’1)+ik293(7’2)+w)

% Ckl’kQ’k3

N B (r1,7m2,m3) g (r1) pa(re) pa(rs) rirers dridradrs + sym,
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where we use the notations

AR m2) = (O + BriQs(r) + 2)

~2;h
X <Q’H%r1) (1+ 2riQp(r1)) GEE (r1, krs 7o, ko)

x| RO(r1,73) G2 (r1, ks ra, ks s, 0) () 73 d7“3>,
R

k1,ka,k ~2;h
B]\[lﬁij 3(7’1,7'2,7’3) = Gﬁyw(rlakl +k3;7’2,k2)

X (r38k3(r1,r3)8r1 — (’Lk‘l + ﬂT%QB(T‘l))Rk?’(Tl,Tg))
XG (Tl)klar2)k2a’r3)k3)

CNAzR (r1,ma,mg) = Qp(r)GEE (r1, by + kasra, k)
7353 (rq,r o
X (Ory + Br3Qp(r3) + %) (%G%w(m, k157, kasrs, k‘3)>

With this reformulation (3.35), we are now in position to use to direct estimates similarly
as in the proof of Lemma 3.3(iii). More precisely, instead of (3.18), we can use here the
following rougher model estimate: for any ¢ € C;°(—1,1) and € # 0,

‘/ t(z)JSE dt‘ ’/ t2+ze dt' N 10g(2—|— )||¢HL°°(—1,1)'

Using this bound to estimate (3.35) close to singularities, using local deformations to
reduce to these model situations, recalling the non-degeneracy assumption (3.1) for g,
and recalling |gy(a)| Sp (@) 72, the claim (3.33) easily follows. The key is the transversality
of singularities in (3.35) (cf. k3 # 0 in the last two terms).

Step 3. Proof of (3.2).
Combined with Lemma 3.7, for 0 < o < %, the results of the first two steps yield in the
distributional sense, for all radial h € C2°(R?), as N 1 oo,

(s 0rgN )12 2 = Ta(h),
where we denote
E S TR - —1_2 ~2;0
Tg(h) = — /( oy Vh(xl) . K(l’l — xg) ((ZLﬁ + 0) WBGB’ )(1’1,1’2)
R

x pg(@1)pp(z2) dridzs.  (3.36)

It remains to proceed to a slight reformulation of this limiting expression. For that purpose,
we note that by definition of L2,

iL% [(111,112) — ﬁ(ﬁfo)(ml)ﬂ@(xl,xg)] = —(/}Bf )(x1)V log pg(x1) - V%W/g(xl,xz)
— (L 1) (@) V1og jg(ws) - V3 (W + BW 5, W) (1, 22).
Using the definition of W3 in form of
Wi + BWs o, W = W,
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cf. (3.5), we deduce

iL3[ (21, 22) = B f0) (x1)Wa (a1, 22)] = (G5 ) (@1)Vlog pg(ar) - (—ViWp) (w1, 22)

= (s [ (@) Viog pg(w2) - K (21 — x2).

Recalling the definition of GZ;O in Step 1, this allows us to rewrite, after straightforward
simplifications, for € > 0,

. — 2;0 . — 2;0 2;0 . — 2;0
(ZL% +e¢) 17T%G5 = (ZL% +e) 17r%Rﬁ +7r%55 - s(zL% +e¢) 17%85 ,

where we take

R;;O(th) — V(if")(:nl)'(—V%Wﬁ)(wl,l‘z),
S5 m2) = B 1) (@) Wa(ar, z2).

Letting ¢ | 0, appealing to the limiting absorption principle for the restriction of L%
to ran(ﬂ%) = Eg = ker(L%)l, cf. Remark 3.4, we deduce

s 2 -1 2,250 _ /.72 —1_2 p2;0 2 a2;0

The limit (3.36) can then be reformulated as follows,

7yh) = - | ) TR Ky —a0) (3535°) a1, s o )

72 —1_2 p2o
- /(R2)2 Vh(z1) - K (21 — x2) ((iL3 + 0) TR ) (21, z2)

x pg(x1)pg(r2) drides.

Recalling that the test function (z1,z2) — Vh(x1)- K(x1,22) belongs to E2, and inserting
the definition of 5’;;0, the first right-hand side term takes on the following form,

Y, TH - Ko = 22) (35 st s(e) ds

- /]R 7)) - ( /R VAW — ) Wl a)us(a) do. ) da,

and thus, using the definition of W as in (3.32), noting that the function  — W*s" (x, z)
is radial for all n > 1,

/( 2y W . K(l’l - 1‘2) (W%SE;O)($17xZ)Mﬁ(l'l)M,B(l'Z) dxldl‘z = 0.
R

Further noting that R?O actually belongs to E%, hence W%RZ,;O = R?jo, we get that

Tg(h) = — /(R2)2 Vh(ajl) . K(ml — xg) ((lL% + 0)71RZ;0)(¢T1, xg) Nﬂ(xl)ﬂﬂ(xQ) dzidxs.

Using polar coordinates © = re, inserting the definition of Rz;o, noting that the operator L%
commutes with multiplication by radial functions of the first variable x1, and taking the
real part, this proves the conclusion (3.2).
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Step 4. Positivity of ag.
In the spirit of (3.14), consider the following deformed Hilbert structure on L%((R2)2): for
all G, H € L%((R2)2), define

(@G, H>i2((R2)2) = /(R2)2 G(x1,x2)H (x1,22) pg(z1)pp(xe) deides

+ /( - G(z1,2)H (w1, 23) W (22 — 23) pg(w1) pp(w2) pg(w3) drydradrs,
R

that is, using pg-convolution notation,

(G, H>g2((R2)2) = //(R2)2 (G + B(G #py W) (1, 2) H(w1, 29) pug(a1) pp(2) dary diza.

Noting that the definition of Hy, Hg in (3.4) yields
Hg + 6(HB *ug W) = Ho,
and recalling that L% commutes with multiplication by radial functions of the first vari-

able 71, we deduce for all nonnegative radial h € C2°(R?),

.72 -1
<\/EH5, (ZLﬁ + 0) \/EH5>E2((]R2)2)

= //(W)Q h(z1) Ho(x1,z2) [(ZL% + 0)_1[{5] (21, 22) g (1) p(w2) drrdes,

which means, by definition (3.3) of ag,

/R+ h(r) ag(r) pg(r)rdr = <\/EH5, §R(1L% + 0)_1\/EH5>E§ (3.37)

((R%)?)”

As L% is self-adjoint on the deformed Hilbert structure i%((R2)2), as shown in the proof
of Lemma 3.3(i), we deduce that the right-hand side of (3.37) is nonnegative. The non-
negativity of ag follows by the arbitrariness of h. (]

4. DEGENERATE CASE: (GAUSSIAN EQUILIBRIUM

This section is devoted to the case of a Gaussian mean-field equilibrium pg, that is, we
assume that potentials V, W satisfy for some R € (0, 00),

1 2
(V4 Worps)@) = SRIzf,  pgle) = LRem 307, (1)
and we shall then prove Theorem 1.2.

4.1. Preliminary BBGKY analysis. We start by noting that the BBGKY hierarchy
for correlations as derived in Lemma 2.1 simplifies drastically in the Gaussian setting.

Lemma 4.1 (BBGKY hierarchy for correlations). In the Gaussian setting (4.1), the cor-
relation functions satisfy the BBGKY hierarchy (2.7) where the defining operators are now
given for all1 <m < N by

il ggN = —N%Zﬁij- RQK(x]-—m*)gx}(:v[m]\{j},m*)ug(m*)daz*,
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ZS}?;Q?\}—H = ZVM K —x*)gﬁﬂ(x[m],x*) pp(@s) da.,
ISNBIN = Z Y. Vig: / K (i — ) g (Tpm)\ {5} T+) pp(2+) ds
=g
- Z ( - ) K*F‘B(%’)) - VisgN
1,j=1
iSNEIN = Z pRz; - K(ffi — ) g8 (T fi g} ) () ds
2<i,5<m

—Z 3 ( v — ) — (K *uﬁ)(wi))~Vi;ﬁgﬁ’1<x[m1\{j})

1=1 2<j<m

i#]
+> ) BRz; - K(wi — ) g8 (@ (1)),
i=2 j—1
iS¢ = 0
N3 IN : ;

with the short-hand notation V;3 = V; — SRx;.
Proof. As V, W, f° are radial, we first note that the initial data (1.11) satisfies
fn(Oxy,...,0zN) = fy(z1,...,2N), for all O € O(2),
which remains true over time by the Liouville equation. In particular, via (2.6), we deduce
gn(Oz1, ..., 0xy) = gh (21, .., Tm), forall1 <m < N and O € O(2),
which implies the differential identity

m
Za:j‘ -Vjgn = 0.
j=1

In the Gaussian setting (4.1), as we have F + K x ug = —Rat, we deduce
m
> (K xpg+ F)(x;) - Vgt = 0,
j=1

which yields the different simplifications in the definition of the relevant operators compared
to Lemma 2.1. OJ

The above shows that the linearized mean-field operators { L} }1<m<n can now be writ-
ten as Kronecker sums

= NF Y (dpape) ™ ™! © Tp @ (Idga ge)) ™7, (4.2)
j=2

involving the following single-particle operator on L%(RQ),

(iTgh)(x) == —PRx - o K(z — xy) h(zy) pa(zy) day. (4.3)
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The following result states that this operator is compact, and identifies its kernel.

Lemma 4.2. Consider the Gaussian setting (4.1) and assume that W does not vanish
identically. Then, for all 8 > 0, the above-defined operator Tz is compact and self-adjoint
on L%(R2). Moreover, its kernel coincides with the set of radial functions.

Proof. We split the proof into three steps.

Step 1. Proof that Tj is compact.
Given a weakly converging sequence h, — h in L% (R?), we find Tgh,, — Tgh a.e. By the
Cauchy—Schwarz inequality, the definition (4.3) of T can be bounded by

[Tshn ()| < |BR| | Kllie(re) (supy, [Anlliz @) € L3(R?),
so that the dominated convergence theorem entails Tgh, — Tsh strongly in L%(RQ). This
proves that T} is compact.

Step 2. Proof that Tjp is self-adjoint.
By Step 1, in order to show that T} is self-adjoint on L%(R2), it remains to check that it
is symmetric. Recalling that z - K(z) = 0, we can write

0 Tobyageey = R [| | o Ko=) W) hla) msle) s (o) dod.

= 3BR //szRz(x +a.) K(z — z,) W (2) h(zy) ps(a) pp(z.) dedz,.

As K satisfies K(—x) = —K (), this proves that T3 is symmetric.

Step 3. Identification of ker(Tj).
Recalling again that = - K(z) =0, as well as Vug = —fRzug and K = —V+iW, and
integrating by parts, we can rewrite the definition (4.3) of Tp as

(Toh)(w) = —BR [ K(x =) e h(e) pae) de.

= 2 [ K(r— ) (b)) l5(e) d.

R2

= -2 - W(x — l‘*)VL(h\/ATg)(w*) -V /1g(xs) day.

If h e L%(RQ) belongs to ker(7}3), we deduce from this identity that

H = F{VL(h\/,ug) Vy/B5} =0 ae. on the support of F{W},

where we use here the notation F{g} for the Fourier transform of a function g on R2.
As pp is Gaussian and as h, /g € L2(R9), we note that H is real analytic. Given that it
vanishes on the support of F{W}, and noting that the latter contains an open set as W' is
integrable and does not vanish identically, we deduce that H vanishes everywhere on R?.
Inverting the Fourier transform, this means

VE(hy/ig) - Vg =0 ae.,

or equivalently 1 - Vh(z) = 0 a.e., which precisely means that h is radial. O
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Next, we establish the following useful preliminary estimates on BBGKY operators
in the weighted negative Sobolev spaces defined in (2.18). We emphasize that item (ii)
establishes that linearized mean-field evolutions are almost uniformly bounded in negative
Sobolev spaces in sharp contrast with the non-Gaussian case of Lemma 3.5(ii).

Lemma 4.3.

(i) Weak bounds on BBGKY operators:
For all1 <m < N, s >0, and k™" € C((R?)™*") for r € {—1,0,1}, we have

HL%,ﬁhmHHgs((H@)m) Sm,s Hhm”HES((RQ)m)’
||Sx,’;hm||H[;S—1((R2)m) Sms ”hmHHB_S((R?)Tn),
||Sﬁ;hm+1||ggs—1((mz)m) Sm.s |’hm+1||H§S((R2)m+1),
HSJTVn:B_hM71‘|H6’571((R2)7ﬂ) Sms HhmilnHﬁ*S((RQ)m—l)'

(i) Weak bounds on linearized mean-field evolutions:
Forall1 <m <N, s>0,8>0, and h™ € C((R?)™), we have

||€iL?V1ﬁthm”HES((R2)m) §m7576 <t>5 ”hmHHﬁ_g((Rz)m)

Proof. Ttem (i) is obtained by duality, as in the proof of Lemma 3.5, and we skip the detail.
We turn to the proof of item (ii). By duality, recalling that the operator LY ; in (4.2) is

self-adjoint by Lemma 4.2, it suffices to prove for all s > 0, § > 0, and h™ € C°((R?)™),
HeiLan’ﬁthmHHg((R?)m) Simos,s <t>6”hm”H§((R2)m)-

As by definition L 5 is (a multiple of) the Kronecker sum of T over the last m — 1

directions on L%((R2)m), cf. (4.2), it suffices to show, for all s > 0, § > 0, and h € C°(R?),

||€iTﬁth||Hg(R2) Ss6 <t>5||h||H§(R2)- (4.4)

For that purpose, we first note that by definition (4.3) the operator T} satisfies the following
regularizing property: for all r > 0,

1Tl a2y Sr [1llez ey

Writing e!78th — h = fg iT[g(eiTﬁt/h) dt’ and using this regularizing property, we then get

. t . / t ; /
15 h — hllryzey < /O 1T 5 D)l gy ey dt” /O €5 3 ) '

Now we combine this with the interpolation inequality of Lemma 2.3(ii): for all » > s > 0,
we get

HeiTﬂth — hHH;(R% Ser ”eiTﬁth — Al Tsth — hH];'{E(]RQ

1—5
2 (2 He
L3 (R?)

)

t s
. 1—=2 . ’ =
e 1= Bl ([ 167 bl uay ')

By the triangle inequality and the self-adjointness of 73 on L%(R2), cf. Lemma 4.2, we
conclude that

HeiTﬁthHHg(W) Ssr hllas@e) + <t>$HhHL%(R2)’
and the claim (4.4) follows by choosing r > . O
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4.2. Proof of Theorem 1.2. We start by using the cumulant estimates of Lemma 2.2
to truncate the BBGKY hierarchy and get a closed description of the tagged particle
density. We manage to get arbitrarily close to the critical timescale ¢ = O(N 1/ %) by
considering multiple iterations of the hierarchy. This iteration procedure works precisely
thanks to the almost uniform bound on linearized mean-field evolutions that we proved
above, cf. Lemma 4.3(ii), in contrast with the non-Gaussian case where we could not avoid
a strong time restriction, cf. Lemma 3.6.

Lemma 4.4. Consider the Gaussian setting (4.1). For all o < %, there exist 5,5 > 0
(with § ~ 3 — o and s ~ §72) such that

sup N7

0<t<N©

NU

NaQ 1t—ZS]1\}:g (Id®T5)ZS /B(Mﬁfo)

Hy*(R2)

Proof. Recall that in the Gaussian setting the BBGKY hierarchy (2.7) holds with LY, Ng =0,

with Sy N =0forallm>1, and with LNﬁ = NZ2(1d ®7T}), where T is defined in (4.3),
cf. Lemma 4.1. For the tagged particle density, we then find

gy = ZSNﬁgN + NiS]\}?ﬂg}V, (4.5)
and thus, taking another time derivative and iterating,
2 1 .ol + 2 lo ol,+ 2 1 gl,o olo 1

Next, we further appeal to the BBGKY hierarchy to express the correlation function N0 912\/
in the left-hand side. For that purpose, we shall use the following version of the Duhamel
formula: if g, h satisfy an equation of the form

Btg + ng = h, g‘t:() = 0,

for a self-adjoint operator L, then we can write the solution as g* = fot e Lt=9)ps ds, from
which we can deduce for instance, taking a time derivative and integrating by parts,

t .
ogt = / (6(s—1) — e_’L(t_S)iL)hs ds
0
e~ Hthe 4 / e =) % ds. (4.7)
0

Now, as L% Ng = = 8=2(1d ®T}), the BBGKY equation (2.7) for the correlation function g%
takes the form

digx +i1(1d@Tp) g% = iSyH0% + & (z’Si}f’ﬁg?\f +iSy gon + 2i(1d ®Tﬁ)g%v>,

hence, using gi|t—o0 = éfo and g}/|i=o = 0 for all m > 2, the above Duhamel formula (4.7)
yields

t
N2t = e~ H148Ts) 62 (MﬁfO)Jr/ efz(tfs)(ld®T5)Z~S]2\}:gNasg?\;fs s
0

t
N / i S)(Id®TB)<1520 0.5 +i8%0ugls +2i(1d®T5)83912\}s)ds.
0 ,
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Further replacing dsg5 by (4.5) in the right-hand side, and integrating by parts as in (4.7)
to remove the time derivative on 912\77 we get

t ) )
Natg]Q\;[t _ e_lt(ld®Tﬁ)iS]2\}”_3(ulﬁfo)+/0 €_Z(t_8)(ld®Tﬂ)iS]2\}:gNasg?\}s ds
t i . .

+ /0 THmIMET) (i §3ISNLN + RiShiSN N’ ) ds
t - .

+ / (5(3 — 1) — ¢t Id@Th);(1q ®Tﬁ)) (iS]z\;oﬁ +2i(Id @Tp)) g5 ds.

O b

Appealing to Lemmas 2.2 and 4.3 to estimate the different right-hand side terms, we deduce
forall s >1and T, > 0,

. 1 .
sup [|NOGA! | =1 g2y Seo 1+ N72TYH 4 (T)F sup [[NOg' || s may,  (4.8)
0<t<T s 0<t<T 6

and similarly, further combining with (4.6),

Lt ol — o2,—
sup HN@?gN —ZSN;e ’tud@TB)zSNﬂ(ifo)
0<t<T

HB_S_Q(R2)

1 .
Ses N7UTYH 4+ (T)H sup [[NOwg! | s ray- (4.9)
0<t<T B

It remains to estimate the 3-particle correlation function d,g3;. In order to get an esti-
mate valid up to the critical timescale t = O(N'/2), some special care is needed and we
shall argue by iterations on the whole hierarchy. For any m > 3, applying the Duhamel
formula (4.7) to the BBGKY equation (2.7) for g3}, we get

t
Noyg™t = /0 IR =)o N, TS i
t
+ / e~ (t=s) (iSﬁ”E@sgﬁ;s + iSﬁ’/gasgﬁ*l;ﬂ ds,
0
and therefore, by Lemmas 2.2 and 4.3, we get for any s > 0 and 7,9 > 0,
sup HNatgjr\rfl;t”H*S*(RQ) Sso N71<T>1+6 sup HNatganHH*S(RZ)
0<t<T 8 0<t<T B
+ <T>1+(5 sup HNatngrl;t”H_S(Rz) + N—1<T>1+5 sup ”Natgjr{’flil;tHH—S(RQ)-
0<t<T B 0<t<T s

Denoting

m—1 .
A™T) == sup [[N"7 9gn" || yy—sm2rs (4.10)
0<t<T s (R%)

the above means for all m > 3, s > 0, and 71,6 > 0,

TA(T) Ses NTHD)YHAT(T) + N72(T)H (APHY(T) + APH(T)). (4.11)
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Further note that the BBGKY equation (2.7) for 0;¢}}, combined with Lemmas 2.2 and 4.3,
yields the following a priori estimates, for all m > 2, s > 1, and T' > 0,

AMT) < sw NPF (LR 0% ey + 1SN O e ey
0<t<T s
. o it 15t
+%HZS}’35973 HH *(R2) NHZSJTVnﬂgx HHES(RQ))
S L (4.12)

Now combining (4.11) and (4.12), we deduce by direct iteration, for all s > 1, k > 0,
and T, 6 > 0, provided that N~1/2(T)140 < 1,

1 1
AL (D) Ssks NTHDYMO + (N7 4 N72(T) O AX(T).
Noting that (4.8) means, with the notation (4.10), for s > 1,
AL(T) Sog N2 4 NTHTYH 4 NI AY(T), (4.13)

and inserting this into the above, we deduce for all s > 1, £ > 0, and T, > 0, provided
that N—V2(T)1+9 < 1,

A2 1 (T) Seps NTHTYH 4+ (N72(T) Ok 4 (N2 (1)) A3(T),

Now further iterating this inequality for A2, together with the a priori estimate (4.12), we
deduce for all k > 1, s > k?, and T > 0, provided that N~1/2(T)1+0 < 1,

; _1
sup ||N3tg?\}t”H75(R2) — A3( ) Seks N— < >1+5+(N 2<T>1+5)k.
0<t<T )

Combining this with (4.9) and optimizing in k yield the conclusion. O

In view of the compact nature of the linearized mean-field operator T, as formulated
in Lemma 4.2, we may now pass to the limit in the above closed description of the tagged
particle density and conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. By definition of BBGKY operators in Lemma 2.1, we have that
ZSJI\/‘—E —it(Id ®T5)ZS2 _B(#ﬁ fo)

= _NT_<V — BRzx) - K(z — z) (e—it(ld®Tﬂ)H)(w’x*> ps(2,) da,, (4.14)
R2

where H € L%((RQ)Z) is given by
H(wz.) = —(K(@—w.)— (K+pp)@)) - (V- BR2)(E L) (@)
- —K(@—a.)- (AV/)@).
Since T} is compact, cf. Lemma 4.2, we find as in (1.5), for all h € L2 3 (R?) and o > 0,

—iTNeTgp, N1

e — moh,

in the weak-* sense of LOO(RJF;L%(RZ)), where 7 stands for the orthogonal projection
of L%(RQ) onto the kernel of Tj, that is, by Lemma 4.2, onto the subspace of radial
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functions. Using this in (4.14) with ¢ = N?7, we deduce the following weak-* convergence
in L2(R+: H; | (R?)),

isjl\;Jre—iTN"(Id ®Tg)isj2v,* (if())

—(V = BRx) - - K(z —z,) (Id®@m)H)(z, z+) pp(xs) d..

By definition of H, the weak-* limit can be rewritten as

N1oo
—_—

iSy e N ETIST (G f°) S GLdiv(AVS?), in LR Hy (B2),

where the coefficient field A € L°(R?)%2*?2 is given by

Aw) = | K@-w)e ((1d@mo) (w1, 22) = K (w1 = 22)] ) (&, 2.) pra(2) da.
R

The projection mg onto the subspace of radial functions can be explicitly computed and we

recover formula (1.16) for A. Combining this convergence with the estimate of Lemma 4.4,

and using (2.19) in form of [|h| g—sm2) < HihHH;(RQ), the conclusion follows. O

5. SPECIAL DEGENERATE CASE: UNIFORM EQUILIBRIUM

This section is devoted to the special degenerate case of a tagged particle in a uniformly
distributed background on the torus T¢, say in arbitrary spatial dimension d > 1. More
precisely, given a smooth force kernel K € C®(T9)? that satisfies the incompressibility

condition div(K) = 0 and the action-reaction condition K(—xz) = —K(z), we now consider
the associated point-vortex dynamics
N
8753:1-:%2}((@—56]-), Zilt=0 = 7, 1<¢<N.
j=1

The Liouville equation for the N-point density fx € P((T%)") then reads

N
Ofn+ % Y Kwi—x;) Vifn =0,  fyl=o = fx. (5.1)
ij=1
Consider a tagged particle (labeled ‘1’) in a uniform equilibrium background: in other
words, we assume that initially the N-point density fx|—o = f5 takes the form

(e, ...,zn) = f2(z1), (5.2)

for some f© € PNC=(T?). At later times, the tagged particle density is given by the first
marginal

f}v(t,azl) = / fn(t,xi,xo, ... ,xN)dzy ... dey.
(Rd)Nfl

As linearized mean-field operators actually vanish at uniform equilibrium, Conjecture 1
leads us to expect a nontrivial slow conservative dynamics for the tagged particle on the
timescale ¢ = O(N 1/ 2), displaying no thermalization in the strict sense. In the spirit
of (1.7), we start by showing that the tagged particle density satisfies a linear wave equation
to leading order for relatively short times ¢ < N1/2 (that is, 7 < 1). This is analogous to
Theorem 1.2 in the Gaussian degenerate setting. The proof is displayed in Section 5.1.
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Proposition 5.1. The critically-rescaled tagged particle density fa (1) := f}V(N%T) satis-
fies

102 Fr () — div(AV )l 2pa) Spo 72+ 3,
with constant diffusion matriz A := de K® K.

For a description of the dynamics on the critical timescale t = O(N'/?), we need to
consider the tagged particle density together with the whole family of its correlation func-
tions with respect to background particles. We first recall some standard definitions. As
n (2.1), we denote by {fN\'}1<m<n the marginals of fy,

fﬁ(t,xl,...,xm) = /dN fN(t,xl,...,mm,xm+1,...,mN)dxm+1...de. (5.3)
(T)N=m

As background particles with labels 2,..., N are exchangeable initially, cf. (5.2), they re-
main so over time, hence fy is symmetric in its last m — 1 variables. The correlation
functions {g}} }1<m<n for the tagged particle with respect to the initially uniform back-
ground are defined so as to satisfy the following cluster expansions,

m
Rty om) =Y Y ghltana,),  1<m<N. (5.4)
n=1 UGP;ZZ_ll
For all m, the correlation function g7} is uniquely chosen to be symmetric in its last m —1

variables and to satisfy de g (21, ..., xm) dey = 0 for all 2 < j < m. More explicitly, the
above relations can be inverted and correlation functions are given by

m
gRE T, ) =Y (D)™ fR(t w1, w0). (5.5)
n=1 UGP:L':_ll

In these terms, we can now state the following result. In accordance with (1.6), the tagged
particle density does not satisfy a closed equation on the critical timescale t = O(N 1/ 3,
but its dynamics takes the form of a (formally) unitary evolution for an infinite hierarchy
of coupled equations describing limits of all rescaled correlation functions.

Theorem 5.2. The critically-rescaled correlation functions
g (1) = NmT_lgﬁ(N%T), 1<m<N, (5.6)
converge weakly-* in WH>(RT; L2((T4)™)) as N 1 oo,
aN—gn, m=1,
where the limit {g™ }, is the unique weak solution of the limit hierarchy

Org™ = iSmtgmtl L igmgm=l L om > 1,
§1|T=0 - foa (57)
g"r=0=0 :om > 1,

such that

supz = 1),|| A ||L2 (Taymy < 09, for all k >0, (5.8)
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and where the operators S™* are explicitly defined as follows,
-Sm7+—m+1 = K P — Ty - i—m—i—l . d .
t g lz_: T (JT z ) Vig (x[m]vx ) Ly
ST = = Y K(wi- ) Vig" T @ )
i=1 j=2

In addition, the limit hierarchy (5.7) has the following (formal) unitary structure: defin-
ing H™ as the Hilbert space of functions h'™ € L2((T%)™) that are symmetric in their last
m — 1 entries, and endowing this space with the norm

Hhm”%{m = ﬁ”hmuiz((w)m),
the operators S™1 : H™H — H™ and S™TLT  H™ — HTHL satisfy
(S = gmthm (g = gt (5.9)

Let us further describe the structure of the limit hierarchy (5.7)-(5.8) and investigate
its actual unitary structure. For that purpose, consider the Hilbert space

H o= Doy H (5.10)

that is, the Hilbert closure of the algebraic direct sum @mzl H™ with respect to the norm

1903 o= 30 1™ 3 = 3 Gt 12 gy
m=1 m=1

In other words, this means # = L?(T%) @ F, (L?(T¢)), where the bosonic Fock space
F(L*(T%)) is viewed as the state space for background correlations. In this setting, we
consider the operator S := ST + S~ on H given by

(Sh)™ .= §mtpmtl o gmempmel sy > (5.11)
which is well-defined for all h in the dense subset
C = @y Co((TH™) C H. (5.12)

(Note that the direct sum is understood in the algebraic sense.) The symmetry rela-
tions (5.9) precisely mean that this densely-defined operator S is symmetric on C. In these
terms, the fact that the limit g = {g"},, is a weak solution of the limit hierarchy (5.7)
and that it satisfies the a priori estimates (5.8) is equivalent to the following: the limit
G = {g™}m belongs to C;°(R™; 1) and satisfies

(h,0rg)n = —(1Sh, g), for all h € C,
with initial condition g|,—o = g° € C given by

ovm . | f°, form=1,

()" = { 0, form>1. (5.13)
This actually means that g is a strong solution of

0:g =15"g,  gl=0=7° (5.14)

in terms of the adjoint S* of S on H. The uniqueness of the solution to this limit equation
and the unitarity of the so-defined semigroup would amount to the essential self-adjointness
of the operator S on H, or equivalently to the symmetry of its adjoint S*. However, we
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do not expect S to be essentially self-adjoint: this operator can indeed be viewed as a
cubic expression in terms of canonical creation and annihilation operators on the Fock
space, and in dimension 1 nontrivial symmetric polynomials of order 3 in creation and
annihilation operators are known to be non-self-adjoint [25, 23]. This expected lack of
self-adjointness, leading to a lack of unitarity, is related to statistical closure problems in
link with turbulence [19]. In fact, it is not even clear whether S* generates a semigroup.

Leaving these delicate issues aside, we can at least show that the limit equation (5.14)
is well-posed in some sense. This explains the uniqueness of the limit in Theorem 5.2. The
proof is postponed to Section 5.4. Note that the proof of uniqueness only relies on the
symmetry of S on its core C and on the observation that SC C C.

Proposition 5.3 (Well-posedness of limiting hierarchy). For all ¢° € C, there is a unique
strong solution g € C°(R*;H) of the limit equation

0-g =1iS"g, glr=0 = ¢°. (5.15)
Moreover, it satisfies the following properties:
(i) Contraction: for all 7> 0 and k > 0,
1859 (T) |3 < 115" [l-

(i1) Approximate isometricity up to O(7°°): for all k > 0,
(K
. :
Y (j) 196113, < lg(m)I3, — llg°l3 < o.
=0

Finally, we establish the following RAGE theorem, which further describes the structure
and the mixing behavior of the limit dynamics. The proof is postponed to Section 5.5.

Proposition 5.4 (RAGE theorem). Let {\;} be the set of real eigenvalues of S* (if any).
There ezists a family of positive contractions {Py}r on H such that for all k the image
ran(Py) is a subset of the eigenspace of S* associated with Ak, such that the orthogonality
condition ran(Py) L ran(P;) holds for |\i| # ||, and such that the following RAGE theorem
holds: for all g° € C, the unique strong solution g of the limit equation (5.15) as given by
Proposition 5.8 can be decomposed as

g(r) = ™ Pug® + R(7),
k

where the remainder R satisfies for all h € H,

1T 2
im 7 [ |0 R = 0.

5.1. Proof of Proposition 5.1. Taking time derivatives in the Liouville equation (5.1),
and using that L2 norms are conserved, we find for all k£ > 0,

10F v llzrayny = 110F fvli=ollp2((raymy- (5.16)
From the Liouville equation (5.1) and the choice (5.2) of initial data, we find

N k
b fulica = | =4 3 Kl -2 - W] Foa) (517

,j=1
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By integration by parts, the norm of this quantity can be written as

N
10F Fvle=ollF 2 payy = (DN Y7 /(Td)N fo ) Koy (20 = 25) (Vi )on

01,01 5082k J2k =1
. ‘KOCQk (371’% - ijk)(viQk)O&kfo(xl) dry...dzy.

Taking advantage of cancellations when computing the derivatives, and recalling that
div(K) = 0, we find that the only non-vanishing contributions in this sum are those such
that for all 1 <1 < 2k the index i; belongs both to {1, j1,...,71-1} and to {ji41, ..., jor, 1 }.
Moreover, recalling that [, K = 0, we find that each value in {iy, jo, ..., %2k, jor } \ {1}
must be taken by at least two different indices. From these two restrictions in the above
summation, we can immediately conclude that

k

HaffN‘t:OHLQ((Td)N) ,Sk;,fo N 2.
Combining this with (5.16), we deduce for all & > 0,
_k
HaffNHLQ((qrd)N) Sk,pe N 72, (5.18)

A second-order Taylor expansion then yields in particular,

102 (I (N27)) = N(DF fvli=0) = N27 (0P fvli=0) | o rayv

1
N2t
_ HN/O (Nir =) @)@ ds| S T
Averaging over variables xs,...,xy, this entails
O2(FL (N2 7)) = N (D} Filim0) = N3 (0} F1i=0) |2 (pmayy Spo 72 (5.19)
Starting from (5.17), direct computations yield
N 2
ath]l\f’t:O = |:—]%, ZK(.TZ'—$]‘)‘VZ‘] fo(:cl)dxg...de
(Td)N-1 Py
N
= ﬁ Z / K(zi —zj) - ViK(z1 — k) - Vif°(z1)daa .. .day
Z,jJC:l (’]I‘d)Nfl
= 8 TdK@K) V2o,
and
a?fll\f’t=0 =0,
which concludes the proof of Proposition 5.1. O

Remark 5.5. The above proof can be pursued to capture higher-order corrections in a
similar perturbative way up to O(T° + %) For instance, the next-order Taylor expansion
yields, instead of (5.19),

|02k (VE)) = N (@2 flio) — TN E (B} S li=o)

— 1N (0 fwleco) — 37N H@F Fulico)|

<

~

L2(T4)
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Further computing Of fn =0, starting from (5.17), and noting that 07 fy|i=o = 0, we are
led to the following next-order version of Proposition 5.1,

( 2(fA(N27)) — div(AVf°) — 372(divAV)?f° — 172div(BV f°)
where the matriz B is explicitly given by

B = ([ (92 Ka) (Vl) (oK) = 2( [ Vst (9, 50)) ([ Kk
=2 [ (VoK) (VoK) 05 1)) =2( [ (VKo (9 K5) 0« K)).

where we implicitly sum over indices d,7y.

5.2. Rigorous BBGKY analysis. We start by reformulating the BBGKY hierarchy of
Lemma 2.1 in the present uniform setting, noting that it gets drastically simplified and
that in particular linearized mean-field operators vanish.

Lemma 5.6 (BBGKY hierarchy for cumulants). For all 1 <m < N,

DR = Sy Tgmtt + N(S””g +iSygn ), (5.20)

where we have set for notational convenience gy = 0 for r < 1 orr > N, and where we
have defined the operators

m
STt gmtl = —N;NmZ K (i = 22) - Vigy ™ (@, @) e,
st’ogﬁ = — Z K _:Uj lg]’r(fl
t,j=1

+Z Z / K(x; — x4 'VZgN(ZE[m]\{J},JJ*)dSL'*,

1=1 2<j<m
i#]

iSNTN T = —ZZK = ;) - Vigh ™ @i,
i=1 j=2
where we recall the short-hand notation [m] = {1,...,m}.

Proof. Upon partial integration, the Liouville equation (5.1) yields the following BBGKY
hierarchy of equations for the marginals,

OfR + % Y K(wi— ) VifR
ij—1

+ N]:/m Z K(xl - .CC*) v fm+1(xla cey .%'m,l'*) d.’L'* = 0. (521)
° Td

By definition (5.5) of correlatlon functions, we deduce

8,595\? = % ZK xl —.%'j (Vl - Vj)Z(—l)m_n Z ]ljegfﬁf<$1,l'g>
Jj=2

n=1 cepP™ 1

n—1
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m m

— % Z K(z; —xj) -V, Z(—l)m_n Z Lijeo fn(T1,70)

2,]=2 n=1 UGP:::l

=) (- K(z1 — x.) - Vifu (21, 20, 2.) das
Td

—ymenage sy ]lieo/ K(x; = 2.) - Vifi (@1, 20, 20) dae. (5.22)
Td

i=2 n=1 sep™!

M-
Pjs

Replacing marginals in terms of cumulants, cf. (5.4), and arguing as in (2.9), we get for
the first right-hand side term, for all j € [m]\ {1},

m

DED™T ST o (@1, w0) = g @) + 98 @mp )
n=1 oeP™ !
Similarly, for the second right-hand side term in (5.22), we find for all 4, j € [m] \ {1},

D™ Y LijeofR(@1,30)
n=1 UEP:L'L:Il
= R (@) + 98 @) F 9N @pgy) FIN @ gig)-

For the third right-hand side term in (5.22), arguing as in (2.12), replacing again marginals
by cumulants and using that [, K = 0, we find that

m

Sy S| Ko - ) - Vify (@ eg, ) da
n=1 Uep:zz:ll Td
m n
= Z(—l)m_”Nﬁn Z Z Z K(z1 — 24) - Vight Y (z1, 27, 24) dovs
n=1 oeptr=trepy /T

= N;Nm » K(x1 — x) - Vlg]’(}ﬂ(x[m],x*) dr,

_% Z /Td K(z1 — x:) - Vign (Tm)\ (5} T+) AT (5.23)
j=2

For the last right-hand side term in (5.22), we similarly get

Z Z(—l)m_”Nﬁn Z 1ico /W K(z; —xy) - Vif;f,ﬂ(xl,xg,x*) dxy

i=2 n=1 oeP™ !

N—m m-+1
= K 1 Lx) " Vg m7*d*
N;Td (i — @) - Vg™ (Tp)s @) dw

=l

£
— 4 Z /ﬂ‘d K(z; — ) - Vig (Tpm)\ g} T+) A

2<i,j<m
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Combining the above identities, the conclusion follows. U

Next, we prove uniform-in-time propagation-of-chaos estimates for the particle system in
form of a priori estimates on correlation functions. This is deduced from a straightforward
symmetry argument inspired by the work of Bodineau, Gallagher, and Saint-Raymond [3].
In contrast with the more delicate case of Lemma 2.2, no large deviation theory is needed
here. Note that in the present situation the N-scaling gR}H = O(N-™/?) is actually
optimal on long timescales, cf. Theorem 5.2, whereas the scaling g?\}‘ﬂ = O(N™™) that
can be heuristically guessed from the BBGKY hierarchy (5.20) is only valid on short
times ¢ = O(1). For later purposes, we also include estimates on time derivatives of corre-
lation functions.

Lemma 5.7 (A priori cumulant estimates). For all 0 < m < N and k > 0, we have

_m+k
"8t]€gﬁ+l”L2((Td)m+1) Smk,po N7 2

Proof. Recall that correlation functions satisfy [r4 In (T [m)) dxj = 0 for 2 < j < m. Com-

puting the L? norm of the N-point density fy and inserting the cluster expansion (5.4) in
terms of correlation functions, we then get

Y /N1
2 _ - m|2 24
Jo 5B = (0 05) [ e (5.21)

m=1

hence in particular, for all 0 < m < N,

||gJ7G+1HL2((Td)m+1) Sm N_% ”fN||L2(('JI‘d)N)

By linearity, we similarly find for all £ > 0,

N
o = S (N 0F g2 (5.25)
(Td)N tIN - m — 1 (’]I‘d)m th ’ '

m=1
hence
10F g% 2 raymery Sm N2 NOF fnllr2(erayny-

Combining this with the energy estimate (5.18) for the Liouville equation, the conclusion
follows. O

5.3. Proof of Theorem 5.2. For all m > 1, we deduce from Lemma 5.7 that the rescaled
correlation function g defined in (5.6) is bounded in W*°°(R*; L2((T4)™)), for any k > 0,
as N 1 oco. By weak-* compactness, up to a subsequence, we deduce that there exists a
limiting family g = {g" }mm>1 such that for all m, k we have

gw — g™, weakly-* in WH(RT; L2((TH)™)).
As the choice (5.2) of initial data yields gk |,—0 = f° and gt|;—o = 0 for m > 1, the
convergence implies in particular

G'lr—o = f° and 3"r=0 =0 for m > 1. (5.26)

Next, we note that, after rescaling, the BBGKY hierarchy for cumulants in Lemma 5.6
takes the form

O,g% =Sy gnt Sy T gn T + NTRSR R, 1<m <N
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Passing to the limit in the weak formulation of those equations, we deduce that the limit g
satisfies the following hierarchy of equations in the weak sense,

;" = iSmtgmtl 4 jsmm gl m > 1, (5.27)

where the limiting operators S ", iS™~ are defined in the statement. Moreover, refor-
mulating (5.25) in terms of rescaled correlations, truncating the sum, and combining with
the energy estimate (5.18), we find for any fixed M, k,

MAN

(N —
O M [ e
m=1
Passing to the limit N 1 oo, with N1~ (ﬁj) — (ml I We deduce by weak lower semi-
continuity,

M
> 1028 I aymy Shse 1
m=1

and thus, letting M 1 oo, we infer for all £ > 1,

o0

Z (m 1) l||ak7 Hi%(’ﬂ*d)m) Sk.pe 1. (5.28)

m=1
Finally, in order to get rid of the extraction of a subsequence in the above argument, it re-
mains to check that there is at most one g = {g™},,, that satisfies the limit hierarchy (5.27)
in the weak sense and such that the a priori estimates (5.28) hold. As explained, this is
equivalent to proving that there is at most one strong solution g € C;°(RT;H) of the
following equation,

aTg = ZS*gv §|T=0 = gov

where the Hilbert space H and the densely-defined symmetric operator S are defined
n (5.10)—(5.11), and where the initial condition g° is given by (5.13). Noting that g°
belongs to the core C of S and that the latter satisfies SC C C, the desired uniqueness is a
consequence of Lemma 5.8 below. This ends the proof of Theorem 5.2. O

5.4. Proof of Proposition 5.3. We start by proving the uniqueness of a solution of
the limit hierarchy in C’b2 (RT;H). We state it separately in form of the following general
abstract result.

Lemma 5.8. Let H be a Hilbert space, let S be a densely-defined symmetric operator,
defined on a dense subset C C H, and assume that SC C C. Then, for all g° € H, there is
at most one solution g € CZ(RT;H) of the following equation,

0rg = 1S%g, glr=0 =¢°. (5.29)

Proof. As SC C C, we note that the squared operator S? is well-defined, symmetric, and
positive on C. By Friedrichs’ theorem, it admits a canonical self-adjoint extension L.
Given a solution g € C?(R*;H) of equation (5.29), we may then compute for all h € C,

(h, 02g(T))n = —(S°h, g(7))1 = —(Loh, g(7)) 1
As g belongs to C?(R*;H), the left-hand side is bounded by [|02g(7)| ||k, hence so is
the right-hand side, which entails that g(7) belongs to the domain of Ly for all 7. This
implies that ¢ is a strong solution the following equation,

29+ Log=0,  gl—o=¢°,  Orglr—o =1iS"¢".
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By self-adjointness and non-negativity of Ly, the strong solution of this equation is unique.
(Note that equation (5.29) and the condition g € C?(R*;H) ensure g° € D(S*), so iS*g°
is indeed well-defined.) O

Remark 5.9. The proof of Lemma 5.8 is easily adapted to establish the following result:
given a Hilbert space H and a densely-defined symmetric operator S, defined on a dense
subset C C H, if S admits a self-adjoint extension Sy, then for all g° € D(Sy) there is a
unique strong solution g € CL(R*;H) of the equation

aTg:iS*ga g|'r:0:go>

and it coincides with the unitary group g(1) = €™0g°. It is however not clear to us
whether this result applies to our situation as we do not know how to prove the existence
of a self-adjoint extension for the operator S defined in (5.11).

With the above general uniqueness result at hand, we can now conclude the proof of
Proposition 5.3, establishing the well-posedness, contraction, and approximate isometricity
of solutions of the limit hierarchy.

Proof of Proposition 5.3. Let the Hilbert space H, the densely-defined symmetric opera-
tor S, and its core C C H be defined as in (5.10)—(5.12). We split the proof into two
steps.

Step 1. Proof that there exists a unique contraction-valued strongly-continuous map
U :R* — L(H), which might not be a semigroup, such that for all g° € C the evolution
g(7) :=U(7)g° is the unique strong solution in C;°(R™;H) of the equation

0rg =1S"g, glr=0 = ¢°. (5.30)
Moreover, we shall show that it satisfies the stability property
105U (T)g°le < 11S%°(l,  forall k > 0 and ¢° € C. (5.31)

To prove this result, we start by defining self-adjoint truncations of S: for all N > 1, we
consider the closed subspace H<n := @<,,«y H" C H, we let <y : H — H<py be the
associated orthogonal projection, and we define the truncated operator Sy := m<nyST<n
on C. Note that this truncation could be replaced by the original hierarchy (5.20) for
fixed N: it does not change the argument, but the present truncation is simpler to handle.
By definition of S, using the symmetry relations (5.9), we easily check that this truncated
operator Sy is essentially self-adjoint on C (self-adjointness poses no difficulty here thanks
to truncations). We may then consider the unitary semigroup Uy : Rt — L(H) given by

Un(1) := €N,

Up to extraction of a subsequence, as N 1 oo, the semigroup Uy converges pointwise in the
weak operator topology to some strongly-continuous map U : Rt — L(H) with U(0) = Id
and ||[U(7)]] <1 for all 7 > 0. Note that this weak limit map U might no longer be a
semigroup nor take its values among unitary operators.

Given ¢° € C, let us examine the properties of the limit evolution 7 — U(7)g°. For
all N > 1, as iSy is the generator of Uy and as SyC C C, the flow 7 — Un(7)g° belongs
to Cp°(R™; H) and satisfies

1OFUN(T)g% Il = 1SKa° I, for all k>0, (5.32)
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and

(h,0;:Un(T)g°) = (Snh,iUn(7)g°), for all h € C.
Note that the tridiagonal structure of S yields Sf‘”‘vh = S¥h for all h € m<n—;C and k > 1,
and therefore S]’%h — S*h strongly as N 1 oo for all h € C and k > 1. We may then

pass to the limit along the extracted subsequence in the above properties of Un(7)g°: we
deduce that the limit evolution 7 — U(7)g° also belongs to Cg°(R*; H) and satisfies

105U (T)g°ln < 119%9° 1%, for all k > 0, (5.33)
and
(h,0:U(1)g°) = (Sh,iU(7)g°), for all h € C.

The former is the desired contraction property (5.31) and the latter precisely means that
the limit evolution g(7) := U(7)g° satisfies equation (5.30) in the strong sense.

Now, by Lemma 5.8, the solution of equation (5.30) is necessarily unique in CZ(R™; H).
In particular, the limit evolution 7 +— U(7)g¢° is uniquely determined for all g° € C. As U is
contraction-valued and as C is dense in H, this entails that U is itself uniquely determined
as a contraction-valued strongly-continuous map Rt — L(H).

Step 2. Approximate unitarity: proof that for all k¥ > 0 and ¢g° € C,

— w7 kZ( )HSJg B < 1U(M)g° 5~ lg°ll3 < 0. (5.34)

The upper bound follows from (5.33) and it remains to prove the lower bound. Let ¢° € C
be fixed. For M, N > 1, consider

Eyn(r) o= |r<mUn(r)g°(l3 = Z 1UN(7)g° |3gm

and appeal to Taylor’s expansion

‘EM,N(T) - %TjaﬁEM,N(O)’ < HTNOE Er Nl (v

N
—

<.
I
o

Using (5.32), time derivatives of Ejsn can be estimated as follows, for all k£ > 1,

k

k i o -7 o
BNl < 3 (4)ImeadiUn (g almesiok 10y (el
j=0
Yk
] [e) k— o
<y (J.)us;vg Il S5 7l
j=0

By the symmetry in the sum and the trivial bound 2ab < a? + b?, the above becomes

Ea
—_

k
Bu(n) - X hroi )] < 4t (4) 15kl (5.35)
. 2

<
Il
o
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Now for M < N, recalling Sy = m<nyS7<n and the definition of S, we can compute the
first time derivative of Ejr n as follows: setting gy (7) := Un(7)g° and gn = {g}} }m>1,

O-EmnN(T) = 29‘32 9N (7), Or g (7)) 3m

- 2%2 gR (1), S g () +iS™ T g (7)) gy

and thus, using (8" 7)* = Sm_LJr and recognizing a telescoping sum,

M
O Eun(r) = 2R ((gR(T),iS™ g (M, — (S gR(r), gl (7))

= 2R(gN (1), iSM g T () ar-
Evaluating at 7 = 0, this means
0rEprn(0) = 2R%((g°)M, i (g%) M ) aey,

For ¢° € C, there is My(g°) < oo such that (¢g°)M = 0 for all M > My(g°). Hence,
we deduce 0;En n(0) = 0 for M > My(g°). Taking additional time derivatives of the
above expression and using the tridiagonal structure of S, we find & Ep n(0) = 0 for all
1<j<M+1-My(g°). By definition of Eps n, the estimate (5.35) then takes on the
following guise: for all M < N and k < M + 2 — My(g O),

Imeasn (7)1~ lrears?l| < k.TkZ (5 ot

Letting N 1 oo and then M 1 oo, using that Uy (7)g° converges weakly to U(7)g° in H,

and recalling that Sjj\,go converges strongly to S7¢° in H for all j > 0, the claimed lower
bound (5.34) follows. O

5.5. Proof of Proposition 5.4. We show that the RAGE theorem still applies to the weak
limit of a sequence of unitary groups, although the limit might no longer be a semigroup
nor take its values among unitary operators. Note however that we loose (part of) the
usual orthogonality property for periodic solutions. Proposition 5.4 is a direct consequence
of the following general abstract result.

Lemma 5.10. Let (Uy)n be a sequence of unitary semigroups Uy : RT — L(H) on a
Hilbert space H, and assume that their generators (Sy)n are essentially self-adjoint on a
common (dense) core C C H. As N 1 0o, assume that Sy converges in the strong operator
topology to some operator S on C (necessarily symmetric on C, but possibly not essentially
self-adjoint), and that Uy converges pointwise in the weak operator topology to a map
U:R"Y — L(H) (necessarily strongly-continuous and contraction-valued, but possibly not
unitary and not a semigroup). Then the following RAGE theorem holds for U: denoting
by { i} the set of real eigenvalues of S*, there exists a family of positive contractions { Py } i
on H such that for all k the image ran(Py) is a subset of the eigenspace of S* associated
with A\, and such that for all g° € H we can decompose the limit evolution as

U(r)g° = Z ™ Prg® + R(7)g°,
k
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where the remainder R(T)g° satisfies for all h € H,

1 T
lim — R(7)g%)u|*dr = 0.
TIT T/O ‘<h> (T)g >'H‘ dr 0

If in addition we have SNyC C C, SC C C, and if the squared operator SJQV also converges
in the strong operator topology to S? on C, then we have the following partial orthogonality
property: ran(Py)Lran(F)) for |\ # |\

Proof. For all N, we can consider the spectral measure Fy of the essentially self-adjoint
generator Sy and represent the unitary group Uy as

Un(r) = N7 = / eMdEN(N).
R

Under the considered assumptions, the spectral measure Fn converges weakly as N 1 oo
to some positive operator-valued measure F such that

U(r) = /Rei’\TdE()\),

and in addition for all ¢° € C we find that the limit evolution 7 +— U(7)g° belongs to
CL(RT;H) and is a strong solution of

0:U(1)g° = iS*U(1)g° = iU(7)Sg°, U(1)g°|r=0 = g°. (5.36)

Note that the limit measure F is a priori not projection-valued, hence is not a spectral
measure, in link with the fact that the limit operator S might not be essentially self-adjoint
and might not even generate a semigroup. By Naimark’s dilation theorem, see e. g [24,
Theorem 4.6], there exists an extended Hilbert space 7L, a bounded linear map V : H — H
with VV* = Id, and a spectral measure E on R such that dE(\) = VAE(A\)V*. In terms
of the self-adjoint operator S := Iz AdE(A) on 7, we then get

Ulr) = Vé™sv* = v / BNV
R
We may now appeal to the standard form of the RAGE theorem for S, see e. g [11 Sec-
tion 5.4]: denoting by {A;}r C R the set of eigenvalues of S and denoting by P, : H — H

the orthogonal projection onto the eigenspace of S associated with \j, we can decompose
for all ¢° € H,

U(r)g® = Y _ ™ VP V*g° + R(1)g°, (5.37)
k
where the remainder R(7)g° satisfies for all h € H,
1 T
lim / \(h, R(r)g°) s 2dr = 0. (5.38)
T1oo 0

Note that by definition the remainder can be written as

R(T)go _ V<ei7'§ o Zei’r/\kpk>v*go - Ve ZTSA Al o7 (539)
k

where 71, :=1-)", P, is the orthogonal projection onto the continuous subspace of S.
Next, we show that for all k£ the value A; is actually also an eigenvalue of the adjoint S*
on H and that the image of P, := V P,V* is a subset of the associated eigenspace in H.
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For that purpose, applying the operator 9, — iS* to (5.37) and using the equation (5.36)
satisfied by the limit evolution, we find in the weak sense

(0r —iS*)R(1)g° = —i Z e (A, — S*) VPV *gC.
k

Given some ko, multiplying both sides of this identity by e ""**0 and integrating over some
time interval [0, 7], with 7" > 0, we deduce in the weak sense

i —iT Ay, o ° l g —iTAg * o
T (TR = RO + 5 [0, = SR dr

( Vv GTOw=2kg) _ 1
= — (i — SN VD, VG — .

Now testing this identity with some h € C, and singling out the first right-hand side term,
we deduce

K(Ako - S)h7 VPkOV*gO>H|

T
< bl (IRl + HR<o>g°HH) w7 | 0w = 9 RE),
T(Ap— Ako -1
+ 2

k:ktko TN —

By (5.39), we have |R(7)g°|l% < ||¢°||%, and the first right-hand side term in (5.40) thus
converges to 0 as T'1 0. By (5.38) and Jensen’s inequality, the second right-hand side
term also converges to 0. For the last right-hand side term, using |¢"* — 1| < 2 A |z|, and

decomposing (A, — S)h = (A — Mgy )R + (Mg, — S)h, we find

Z T (M= )\ko 1

k:kko (A~

7 Z I\PkV*hIIHIIPkV*gOIIH

A\ — S*) VP, V*g°.

'nka* O — S| BV ¢t (5.40)

]nka O — Sl BV 6% e

+ Z (A i BV Oy = )| PV g° e
E:kAko
which converges to 0 as T" 1 oo by dominated convergence. Going back to (5.40), we
conclude for all h € C,
((Akg = S)h, VB Vig©),, = 0, (5.41)

which precisely means that Vpko V*g° is an eigenvector of S* with eigenvalue Ag,.

Finally, let us further assume SyC C C, SC C C, and that the squared operator S also
converges in the strong operator topology to S? on C. This easily implies that for ¢° € C
the limit evolution 7 — U(7)g® belongs to CZ(R™;#). By Lemma 5.8, we then learn
that this limit evolution is the unique strong solution of equation (5.36) in CZ(R™;H).
Moreover, in terms of the canonical self-adjoint extension Lg of the squared operator S?
on C as given by Friedrichs’ theorem, the proof of Lemma 5.8 shows that for ¢g° € C the
limit evolution 7+ U(7)g° coincides with the unique strong solution of

29+ Log=0,  gl—o=¢°,  Orglr—o =1iS"¢".
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For all k, a straightforward adaptation of the proof of (5.41) above then leads us to conclude
that VP, V*g° is also an eigenvector of £y with eigenvalue )\%. As Ly is self-adjoint, this

entails that V P, V* g° is orthogonal to VEV* g° whenever )\% =+ )\12. This ends the proof of
Proposition 5.4. O
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