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Abstract. This article is devoted to the long-time dynamics of point-vortex systems
near thermal equilibrium and to the possible emergence of collisional relaxation. More
precisely, we consider a tagged particle coupled to a large number of background particles
that are initially at equilibrium, and we analyze its resulting slow dynamics. On the one
hand, in the spirit of the Lenard–Balescu relaxation for plasmas, we establish in a generic
setting the outset of the slow thermalization of the tagged particle. On the other hand,
we show that a completely different phenomenology is also possible in some degenerate
regime: the slow dynamics of the tagged particle then remains conservative and the
thermalization no longer holds in a strict sense. We provide the first detailed description
of this degenerate regime and of its mixing properties. Note that it is particularly delicate
to handle due to statistical closure problems, which manifest themselves as a lack of self-
adjointness of the effective Hamiltonian.
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1. Introduction

1.1. General overview. This article is devoted to the rigorous analysis of the long-time
dynamics of point-vortex systems near equilibrium. More precisely, we consider a tagged
particle coupled to a large number of background particles that are initially at thermal
equilibrium, and we analyze the resulting slow dynamics of the tagged particle. According
to the physics literature, two general types of behavior can occur:
— Relaxation in the non-degenerate case.

Due to the slow correlation with the equilibrium background, the tagged particle is
generically expected to thermalize on the slow timescale t = O(N) — proportional to
the total number N of background particles. This so-called “point-vortex diffusion” was
first described in the physics literature by Chavanis [5, 6, 7, 8, 9] and can be viewed
as the equivalent for point-vortex systems of the celebrated Lenard–Balescu collisional
relaxation for plasmas [1, 20, 16, 28]. In the present contribution, following the line
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of a previous joint work of the first author with Saint–Raymond [13] on the Lenard–
Balescu theory (see also [12]), and in spite of new difficulties for point-vortex systems,
we establish a partial result in this direction, proving the outset of thermalization on
some intermediate timescale.

— No relaxation in the degenerate case.
In some situations, however, depending on the precise shape of the equilibrium, the
thermalization can fail: the slow dynamics of the tagged particle is then expected to be
of a different nature and to take place instead on the shorter timescale t = O(N1/2).
The simplest instance of this degenerate behavior occurs for uniformly distributed point-
vortex systems in a compact space. It seems to have been first discovered in [27] in the
context of plasmas in a strong external magnetic field. Another application concerns the
stellar dynamics in nuclear clusters dominated by a supermassive black hole: the slow
motion of orbital planes in that setting is given by a similar degenerate dynamics, which
is known as “vector resonant relaxation” [26, 18, 14, 22]. Systematic theoretical studies
are however lacking in the physics literature: in particular, due to statistical closure
problems in link with turbulence [19], no effective equation is known to describe the
degenerate dynamics of the tagged particle, and its properties are poorly understood.
We clarify this situation by establishing a well-posed effective description, although
with an effective Hamiltonian expected to lack self-adjointness, and by proving a RAGE
theorem. While this confirms the lack of thermalization in a strict sense, it shows the
presence of mixing over timescales of order O(N1/2) that could still drive the dynamics
to equilibrium in the absence of periodic solutions.

Our analysis provides a systematic explanation for this possible duality of behaviors for
the tagged particle, suggesting that it is in fact determined by the spectral nature of the
linearized mean-field operator at thermal equilibrium. In a nutshell, thermalization should
be expected when this operator has purely continuous spectrum close to 0 orthogonally to
its kernel, and degeneracy when it has instead eigenvalues accumulating at 0. This is easily
understood by a formal BBGKY analysis as explained in Section 1.2 below. By linear Lan-
dau damping, note that the linearized mean-field operator at thermal equilibrium is always
continuous orthogonally to its kernel in the case of plasmas without external magnetic field,
which is why the Lenard–Balescu thermalization is indeed always expected to hold in that
case, see e.g. [13]. In contrast, point-vortex systems have a richer phenomenology and we
shall see that thermalization fails precisely in the case of a Gaussian equilibrium.

1.2. Formal BBGKY analysis. We explain how the above duality of behaviors can be
predicted by a formal BBGKY analysis depending on the spectral nature of linearized
mean-field operators, and we formally derive effective equations for the slow dynamics
of the tagged particle. The starting point is the BBGKY hierarchy of equations for the
tagged particle density f1

N coupled to the multi-particle correlation functions describing
fine correlations with background particles. In terms of the mean-field equilibrium µβ , we
consider the ratio g1

N := f1
N/µβ , and we denote by {gmN }2≤m≤N multi-particle correlations

(see Section 2.2 for precise definitions). We shall view g1
N as belonging to the weighted

space L2(µβ), while for all m ≥ 2 the correlation gmN will be defined in

Hm := L2(µβ)⊗ L2(µβ)⊗s(m−1),

where the first factor stands for the tagged particle variable and where ⊗s stands for the
symmetrized tensor product for exchangeable background particles. In these terms, up
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to projecting g1
N to cancel its linearized mean-field evolution and to focus on the non-

trivial slow correction, the BBGKY hierarchy typically takes on the following guise (see
Lemma 2.1 below for a more precise statement),1{

∂tg
1
N = iS1,+g2

N ,
(∂t + iLm)gmN = iSm,+gm+1

N + 1
N iS

m,−gm−1
N : 2 ≤ m ≤ N, (1.1)

where iLm : Hm → Hm stands for the (skew-adjoint) m-particle linearized mean-field
operator and where operators Sm,+ : Hm+1 → Hm and Sm,− : Hm−1 → Hm satisfy the
symmetry relation

(Sm,+)∗ = Sm+1,−, for all m ≥ 1. (1.2)
As the correlation function g2

N is expected to be small as N � 1, we are led to a formal
timescale separation in (1.1): the tagged particle density g1

N has a slow dynamics, which is
coupled to a fast linear subdynamics for correlations {gmN }2≤m≤N . Heuristically, we then
expect that the latter can be relaxed on the slow timescale of the tagged particle. As
the fast subdynamics is driven by linearized mean-field operators {iLm}m, its relaxation
depends on the spectral properties of the latter. We distinguish between two main cases.

(i) Non-degenerate case.
Assume that the operators {iLm}m have purely absolutely continuous spectrum in a
neighborhood of 0.2 In that case, long-time propagators satisfy the following relax-
ation property:

(ε∂t + iLm)hε = r, hε|t=0 = 0 =⇒ hε
ε↓0−−→ (0 + iLm)−1r. (1.3)

Using this and assuming that correlations vanish initially, a formal analysis of the
hierarchy (1.1) leads to expect gm+1

N = O(N−m) uniformly in time for all m. The
equation for the tagged particle density then yields ∂tg1

N = iS1,+g2
N = O(N−1),

showing that the natural timescale for its evolution is t = O(N). This leads us to
considering the following critically-rescaled quantities,

ḡ1
N (τ) := g1

N (Nτ), ḡm+1
N (τ) := Nmgm+1

N (Nτ), 1 ≤ m < N.

In these terms, the rescaled hierarchy gets formally truncated into a closed system,{
∂τ ḡ

1
N = iS1,+ḡ2

N ,
( 1
N ∂τ + iL2)ḡ2

N = iS2,−ḡ1
N +O( 1

N ).

From the relaxation property (1.3) for iL2, the pair (ḡ1
N , ḡ

2
N ) is then expected to

converge to the solution (ḡ1, ḡ2) of the limit system{
∂τ ḡ

1 = iS1,+ḡ2,
ḡ2 = (0 + iL2)−1iS2,−ḡ1.

1We emphasize the minor differences with the actual BBGKY hierarchy derived in Lemma 2.1: First,
the actual equation for gmN may further involve gm−2

N on top of gm±1
N . Second, the operators {Sm,±}m

should further depend on N and only satisfy the stated symmetry relation in the limit N ↑ ∞. Finally,
the skew-adjointness of iLm should only hold up to suitably deforming the underlying Hilbert structure.
We neglect these issues here as they do not substantially affect the present formal discussion.

2As we shall see, the operators {iLm}m typically have a nontrivial kernel and have purely absolutely
continuous spectrum only on the orthogonal complement. Provided that projections on orthogonal com-
plements can be smuggled in the hierarchy (1.1), this does not affect the present formal discussion.
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This yields a closed equation for ḡ1,

∂τ ḡ
1 + S1,+(0 + iL2)−1(S1,+)∗ḡ1 = 0, (1.4)

which should typically be thought of as a Fokker–Planck equation describing the
thermalization of the tagged particle on the critical timescale τ ∼ 1 (t ∼ N) and the
convergence to thermal equilibrium for τ � 1 (t� N).

(ii) Degenerate case.
Assume that the linearized mean-field operators {iLm}m are compact: in that case,
they have eigenvalues accumulating at 0 and the resolvent (0 + iL2)−1 in (1.4) no
longer makes sense. Long-time propagators then have a completely different scaling
and limiting behavior: instead of (1.3), we have

ε∂thε + iLmhε = εr, hε|t=0 = 0 =⇒ ∂thε
ε↓0−−→ πmr, (1.5)

where πm stands for the orthogonal projection onto the kernel of iLm (we also set
π1 := Id for notational convenience). Using this, a formal analysis of the hierar-
chy (1.1) rather leads to expect gm+1

N = O(N−m/2) uniformly in time for all m,
so that the natural timescale for the evolution of the tagged particle density is in-
stead t = O(N1/2). This leads us to considering the following critically-rescaled
quantities,

ḡ1
N (τ) := g1

N (N
1
2 τ), ḡm+1

N (τ) := N
m
2 gm+1

N (N
1
2 τ).

In these terms, the rescaled hierarchy is no longer truncated into a finite closed system,
and we find instead{

∂τ ḡ
1
N = iS1,+ḡ2

N ,

(∂τ +N
1
2 iLm)ḡmN = iSm,+ḡm+1

N + iSm,−ḡm−1
N : 2 ≤ m ≤ N.

From (1.5), we deduce that the correlations {ḡmN }1≤m≤N should converge to a solu-
tion {ḡm}m≥1 of the following infinite hierarchy,{

∂τ ḡ
1 = iŜ1,+ḡ2,

∂τ ḡ
m = iŜm,+ḡm+1 + iŜm,−ḡm−1 : m ≥ 2,

(1.6)

where we have set Ŝm,± := πmS
m,±πm±1 for all m. Noting that (Ŝm,+)∗ = Ŝm+1,−,

cf. (1.2), this hierarchy constitutes a (formally) unitary evolution for the limiting
tagged particle density ḡ1 coupled to the collection of limiting correlations {ḡm}m≥2

on the critical timescale τ ∼ 1 (t ∼ N1/2). Viewing correlations with the background
as a quantized field, this hierarchy can be understood as a (formally) unitary dynamics
on
⊕

m≥1Hm = L2(µβ)⊗F+(L2(µβ)), where the symmetric Fock space F+(L2(µβ))
is the state space for background correlations.
As we shall see in Section 5, we can typically prove well-posedness of the infinite
hierarchy (1.6), but we should expect unitarity to fail in link with statistical closure
problems. Despite the lack of unitarity, we can expect a version of the RAGE theorem
to hold: up to excluding pure point spectrum, we would get |〈φ, ḡ1(τ)〉| → 0 in Cesàro
mean as τ ↑ ∞ for any φ ∈ L2(µβ). This would describe mixing effects as τ � 1

(t� N1/2), thus confirming the failure of thermalization in a strict sense, but still
possibly leading some type of weak convergence to equilibrium.
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Alternatively, intuition on the system can also be gained by noting that on relatively
short times τ � 1 (t � N1/2) the infinite hierarchy (1.6) can be truncated and
reduces to a linear wave-type equation for the tagged particle density,

∂2
τ ḡ

1 + Ŝ1,+(Ŝ1,+)∗ḡ1 = O(τ2). (1.7)

The formal discussion above leads us to formulate the following general conjecture.

Conjecture 1. Consider the slow dynamics of a tagged particle in a conservative long-
range interacting particle system at thermal equilibrium.
(i) Non-degenerate case:

If linearized mean-field operators at mean-field equilibrium have purely absolutely con-
tinuous spectrum close to 0 (orthogonally to a possibly nontrivial kernel), then ther-
malization of the tagged particle occurs on the slow timescale t = O(N) and is de-
scribed by a Fokker–Planck type equation.

(ii) Degenerate case:
If linearized mean-field operators at mean-field equilibrium have eigenvalues accu-
mulating at 0 (e.g., if these operators are compact), then thermalization fails and
the slow dynamics of the tagged particle rather takes place on the shorter timescale
t = O(N1/2). More precisely, it takes form of a well-posed conservartive hierarchical
evolution for the tagged particle density coupled to the infinite collection of limiting
correlation functions, which describes mixing effects for t� N1/2.

1.3. Point-vortex systems. To illustrate the above conjecture, we focus on the example
of 2D point-vortex systems. More precisely, in the 2-dimensional plane R2, we consider an
interaction force kernel K and an external force field F that satisfy the incompressibility
conditions div(K) = div(F ) = 0 and the action-reaction condition K(−x) = −K(x). The
incompressibility allows to represent K = −∇⊥W and F = −∇⊥V for some potential
fields V,W , and we assume that they satisfy the following smoothness conditions,

W ∈ C∞b (R2), V ∈ C∞loc(R2).

We consider the associated point-vortex dynamics

∂txi = F (xi) + 1
N

N∑
j=1

K(xi − xj), xi|t=0 = x◦i , 1 ≤ i ≤ N.

Equivalently, the Liouville equation for the N -point density fN reads

∂tfN +

N∑
i=1

(
F (xi) + 1

N

N∑
j=1

K(xi − xj)
)
· ∇ifN = 0, fN |t=0 = f◦N . (1.8)

At inverse temperature β > 0, the Gibbs thermal equilibrium measure for this dynamics
is given by

MN,β(x1, . . . , xN ) := Z−1
N,β exp

[
− β

( N∑
i=1

V (xi) + 1
2N

N∑
i,j=1

W (xi − xj)
)]
, (1.9)

where the constant ZN,β > 0 ensures
´

(R2)N MN,β = 1. If β‖W‖L∞(R2) is small enough,
there is a unique associated mean-field invariant measure µβ defined as the solution of the
fixed-point equation

µβ = Z−1
β exp

(
− β(V +W ∗ µβ)

)
, (1.10)
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where the constant Zβ > 0 ensures
´
R2 µβ = 1. The first marginal of the Gibbs mea-

sure MN,β is then known to converge precisely to µβ as N ↑ ∞, see e.g. [2]. Alternatively,
recall that µβ can be constructed as the unique minimizer of the free energy functional

ρ 7→
ˆ
R2

ρ log ρ+ β

ˆ
R2

(
V + 1

2W ∗ ρ
)
ρ.

Now consider a tagged particle (labeled ‘1’) in a Gibbs equilibrium background: in other
words, we assume that initially the N -point density fN |t=0 = f◦N takes on the following
guise,

f◦N (x1, . . . , xN ) = f◦(x1) M̃N,β(x2, . . . , xN ), (1.11)

for some f◦ ∈ P∩C∞c (R2), where M̃N,β is the restricted Gibbs measure for the background
particles,

M̃N,β(x2, . . . , xN ) := Z̃−1
N,β exp

[
− β

( N∑
i=2

V (xi) + 1
2N

N∑
i,j=2

W (xi − xj)
)]
,

where the constant Z̃N,β > 0 ensures
´

(R2)N−1 M̃N,β = 1. At later times, the tagged particle
density is given by the first marginal

f1
N (t, x1) :=

ˆ
(R2)N−1

fN (t, x1, x2, . . . , xN ) dx2 . . . dxN .

We focus on the axisymmetric setting, that is, we assume that the potentials V,W and
the initial tagged particle density f◦ are radial functions. In this setting, the mean-field
description of the tagged particle happens to be trivial, f1

N (t) ≈ f◦ for t = O(1), and
we are thus interested in the slow correction that is the leading non-trivial effect. More
precisely, in this axisymmetric setting, it is most natural to focus on the radial density of
the tagged particle,

〈f1
N 〉(t, r) :=

 
S1
f1
N (t, re) dσ(e),

where we use polar coordinates x = re. Note that for a radial function h we shall use the
notation h′(r) = x

|x| · ∇h(x) for the radial derivative.

1.4. Main results. According to Conjecture 1, the behavior of the system (1.8)–(1.11)
depends on the spectral nature of linearized mean-field operators at mean-field equilib-
rium (1.10), and we shall show the following:
(i) If the mean-field equilibrium measure µβ is not Gaussian, under a suitable non-

degeneracy assumption, the linearized mean-field operators have purely absolutely
continuous spectrum orthogonally to their kernel, cf. Lemma 3.3. We then expect
that the tagged particle displays thermalization on the slow timescale t = O(N), in
line with the generic prediction of point-vortex diffusion.

(ii) If the mean-field equilibrium measure µβ is precisely Gaussian, that is, if it takes
the form µβ(x) ∝ exp(−C|x|2) for some C > 0, the linearized mean-field operators
are compact, cf. Lemma 4.2. We then expect that the tagged particle displays no
thermalization in a strict sense and satisfies instead a conservative hierarchical system
describing mixing effects on the different timescale t = O(N1/2).

Below we state our main results in both cases separately.
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1.4.1. Non-degenerate (non-Gaussian) setting. The following result provides a description
of the outset of thermalization on relatively short times t � N (for technical reasons, as
in [13], we further restrict to t � N1/20, which could be slightly improved by optimizing
our analysis). Our current analysis does not allow to describe the tagged particle density
on the thermalization timescale t = O(N) itself, which is left as an open problem sim-
ilarly as in [13] due to the possibility of uncontrolled echoes. Yet, in this intermediate
regime, we justify the relevant form of the Fokker–Planck operator describing thermaliza-
tion, cf. (1.14). In contrast with [13], the present situation is substantially more delicate
since we do not have a closed formula for the resolvent of linearized mean-field operators.
The proof is postponed to Section 3.

Theorem 1.1 (Non-Gaussian setting). Assume that the external potential V further sat-
isfies ∇(V ′/r) ∈ C∞b (R2). In terms of the mean-field equilibrium µβ, we define the angular
velocity Ωβ as the smooth radial function given by

(logµβ)′ = βrΩβ. (1.12)

Consider the non-Gaussian setting when Ωβ is nowhere constant: more precisely, we as-
sume for simplicity that Ωβ is monotone and satisfies the following non-degeneracy condi-
tion, for some R ∈ (0,∞),

|Ω′β(r)| ≥ 1
R(r ∧ 1), |Ω′′β(0)| ≥ 1

R , for all r ≥ 0, (1.13)

and we also assume that β �R 1 is small enough depending on V,W and on this constant R.
Then, for any σ ∈ (0, 1

20), the subcritically-rescaled tagged particle density

f̄1
N (τ) := N1−σf1

N (Nστ)

satisfies in the radial distributional sense on R+ × R2,

∂τ 〈f̄1
N 〉

N↑∞−−−→ 1
r∂r

(
raβ(r)

(
∂r − (logµβ)′(r)

)
f◦
)
, (1.14)

for some explicit positive scalar coefficient field aβ (see Theorem 3.1).

The non-degeneracy assumption (1.13) implies the radial monotonicity of the angular
velocity Ωβ . According to [10], this is predicted to lead to a kinetic blocking, hence to the
validity of (nonlinear) point-vortex diffusion only on the even slower timescale t = O(N2)
for initially chaotic systems. However, this blocking does not affect the validity of ther-
malization of a tagged particle on the timescale t = O(N) as studied here. Instead of
the non-degeneracy assumption (1.13), we believe that our analysis should essentially hold
true more generally whenever Ωβ is a Morse function, but the analysis would become quite
delicate close to critical points (see in particular the needed adaptation of Lemma 3.3 in
that case), and we skip it for brevity.

This kind of fast angular scale is also somewhat reminiscent of gyrokinetic approxima-
tions, especially in the case of finite Larmor radius as in [15]; see also for example [4].

1.4.2. Degenerate (Gaussian) setting. We turn to the special case when the equilibrium
measure µβ is Gaussian, that is, when potentials V,W satisfy for some R ∈ (0,∞),

(V +W ∗ µβ)(x) = 1
2R|x|

2, µβ(x) = βR
2π e
− 1

2
βR|x|2 . (1.15)

Note that for any given interaction potential W we can always construct some external
potential V that leads to this special case. In this setting, the angular velocity Ωβ defined
in (1.12) is constant and linearized mean-field operators reduce to compact operators,
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cf. Lemma 4.2 below. By Conjecture 1, the thermalization of the tagged particle is thus
expected to fail and to be replaced by a nontrivial conservative dynamics on the shorter
timescale t = O(N1/2). In accordance with (1.7), we first show that to leading order the
tagged particle density satisfies a linear wave equation for relatively short times t� N1/2,
which is in agreement with the expected lack of thermalization. The proof is postponed to
Section 4.

Theorem 1.2 (Gaussian case). Assume that the interaction potential W is nonzero and
belongs to L1(R2), and that the mean-field equilibrium µβ is Gaussian in the sense of (1.15)
for some R ∈ (0,∞). Then, for any σ ∈ (0, 1

2), the subcritically-rescaled tagged particle
density

f̄1
N (τ) := N1−2σf1

N (Nστ)

satisfies in the distributional sense on R+ × R2,

∂2
τ f̄

1
N

N↑∞−−−→ div(A∇f◦),

where the diffusion coefficient field A is explicitly given by

A(x) := 2π

ˆ ∞
0

( 
S1
K(x− re) dσ(e)

)⊗2
µβ(r) r dr. (1.16)

Note that the latter satisfies A(0) = 0 and A(Ox) = OA(x)O′ for all O ∈ O(2).

The expected hierarchical description (1.6) on the critical timescale t = O(N1/2) is not
reachable at the moment by our techniques and is left as an open problem in general. To
get further in this direction, we focus on the extreme case β = 0, which corresponds to
the simplest setting of a tagged particle in a uniform equilibrium background µ0 = cst, say
on the torus T2. More precisely, instead of (1.8)–(1.11), let us now consider a translation-
invariant point-vortex system on T2 with vanishing external force F ≡ 0 and with initial
condition f◦N (x1, . . . , xN ) = f◦(x1) for some f◦ ∈ P ∩ C∞c (T2). In this uniform setting,
linearized mean-field operators happen to vanish identically, which allows to push our rig-
orous analysis further and to describe the degenerate slow dynamics of the tagged particle
on the relevant timescale t = O(N1/2). We refer to Section 5 for a more detailed statement
and for the proof.

Theorem 1.3. Consider the above uniform setting, describing a tagged particle coupled to
an initially uniformly distributed background on the torus T2 (see more precisely (5.1)–(5.2)
below). Then, the critically-rescaled tagged particle density

f̄1
N (τ) := N

1
2 f1
N (N

1
2 τ)

converges weakly-* in L∞(R+; L2(T2)) to the unique solution f̄1 of an effective equation
coupled to the set ḡ = {ḡm}m≥2 of limiting rescaled background correlations: more precisely,
on the Hilbert space H := L2(T2)⊗F+(L2(T2)), where F+(L2(T2)) is the bosonic Fock space
for background correlations, we have in the strong sense

∂τ (f̄1, ḡ) = iS∗(f̄1, ḡ), (f̄1, ḡ)|τ=0 = (f◦, 0), (1.17)

where S∗ is the adjoint of some explicit densely-defined symmetric operator S on H (see
Theorem 5.2). Although the limiting Hamiltonian S is expected to lack self-adjointness
and might not even generate a semigroup, equation (1.17) is well-posed in C2

b (R+;H)
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(see Proposition 5.3) and its solution satisfies the following RAGE theorem (see Propo-
sition 5.4): denoting by {λk}k the set of real eigenvalues of S∗, there exists a family of
positive contractions {Qk}k on L2(T2) such that we can decompose

f̄1(τ) =
∑
k

eiτλkQkf
◦ + R̄(τ),

where the series converges in the weak operator topology and where the remainder satisfies
for all h ∈ L2(T2),

lim
T↑∞

1

T

ˆ T

0
|〈h, R̄(τ)〉L2(T2)|

2 dτ = 0.

Note in particular that f̄1(τ) = R̄(τ) if S∗ has no point spectrum on the real axis.

2. Rigorous BBGKY analysis

The starting point of our analysis is the BBGKY hierarchy of equations for correlation
functions, combined with rigorous a priori estimates on the latter.

2.1. BBGKY hierarchy. We denote by {fmN }1≤m≤N the marginals of the N -point den-
sity fN , that is,

fmN (t, x1, . . . , xm) :=

ˆ
(R2)N−m

fN (t, x1, . . . , xm, xm+1, . . . , xN ) dxm+1 . . . dxN . (2.1)

As background particles with labels 2, . . . , N are exchangeable initially, cf. (1.11), they
remain so over time, hence the marginal fmN is symmetric in its last m− 1 variables. Upon
partial integration, the Liouville equation (1.8) yields the following BBGKY hierarchy of
equations for marginals,

∂tf
m
N +

m∑
i=1

(
F (xi) + 1

N

m∑
j=1

K(xi − xj)
)
· ∇ifmN

+ N−m
N

m∑
i=1

ˆ
R2

K(xi − x∗) · ∇ifm+1
N (x1, . . . , xm, x∗) dx∗ = 0. (2.2)

We recall that the mean-field approximation is obtained formally by assuming that the
tagged particle remains approximately independent of the background particles and that
the latter remain approximately at equilibrium. As the first marginal of the Gibbs ensemble
converges to µβ as N ↑ ∞, this means that we expect to approximate

f2
N ≈ f1

N ⊗ µβ. (2.3)

Inserting this in the above BBGKY equation for f1
N , we find that f1

N should stay close to
the solution f1 of the linearized mean-field equation

∂tf
1 + (F +K ∗ µβ) · ∇f1 = 0, f1|t=0 = f◦. (2.4)

In the axisymmetric setting, as f◦, µβ are radial and as F,K are orthogonal gradients of
radial functions, this mean-field evolution is trivial: f1(t) = f◦ for all t ≥ 0.
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2.2. Correlation functions or cumulants. For notational convenience, we denote by

g1
N := 1

µβ
f1
N

the ratio of the tagged particle density by the mean-field equilibrium. As the linearized
mean-field evolution (2.4) is trivial in the axisymmetric setting, we aim to characterize
next-order correction, which amounts to the defect in the approximation (2.3). This leads
us to defining

g2
N := 1

µ⊗2
β

(f2
N − f1

N ⊗ µβ),

which captures the correlation of the tagged particle with a typical background parti-
cle. Note that we take the convention to define correlation functions as divided by the
mean-field equilibrium. More generally, we introduce all higher-order correlation functions
{gmN }1≤m≤N for the tagged particle with respect to the mean-field background equilib-
rium µ⊗N−1

β : these correlation functions are defined so as to satisfy the following cluster
expansions for marginals,

fmN (t, x1, . . . , xm) = µ⊗mβ (x1, . . . , xm)

m∑
n=1

∑
σ∈Pm−1

n−1

gnN (t, x1, xσ), 1 ≤ m ≤ N, (2.5)

where Pm−1
n−1 stands for the collection of subsets of {2, . . . ,m} with cardinality n − 1 and

where for an index subset σ := {i1, . . . , in−1} we have set xσ := (xi1 , . . . , xin−1). For all m,
the correlation function gmN is uniquely chosen to be symmetric in its last m− 1 variables
and to satisfy

´
R2 g

m
N (t, x1, . . . , xm)µβ(xj) dxj = 0 for all 2 ≤ j ≤ m. More explicitly, the

above relations can be inverted and the correlation functions are given by

gmN (t, x1, . . . , xm) :=

m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

fnN
µ⊗nβ

(t, x1, xσ). (2.6)

For instance,

g3
N (t, x1, x2, x3) =

f3N
µ⊗3
β

(t, x1, x2, x3)− f2N
µ⊗2
β

(t, x1, x2)− f2N
µ⊗2
β

(t, x1, x3) +
f1N
µβ

(t, x1).

We may then reformulate the BBGKY hierarchy (2.2) as a hierarchy of equations on
correlation functions. We shall see in Lemma 4.1 that these equations get drastically
simplified in the specific case when the mean-field equilibrium is Gaussian.

Lemma 2.1 (BBGKY hierarchy for correlations). For all 1 ≤ m ≤ N ,

∂tg
m
N + iLmN,βg

m
N = iSm,+N,β g

m+1
N + 1

N

(
iSm,◦N,βg

m
N + iSm,−N,β g

m−1
N + iSm,=N,β g

m−2
N

)
, (2.7)

where we have set for notational convenience grN = 0 for r < 1 or r > N , and where we
have defined the operators

iLmN,βh
m :=

m∑
j=1

(F +K ∗ µβ)(xj) · ∇jhm

+ N−m
N

m∑
j=2

(∇ logµβ)(xj) ·
ˆ
R2

K(xj − x∗)hm(x[m]\{j}, x∗)µβ(x∗) dx∗,
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iSm,+N,β h
m+1 := − N−m

N

m∑
j=1

ˆ
R2

K(xj − x∗) · ∇j;βhm+1(x[m], x∗)µβ(x∗) dx∗,

iSm,◦N,βh
m := −

m∑
i,j=1

(
K(xi − xj)−K ∗ µβ(xi)

)
· ∇i;βhm

+
m∑
i=1

∑
2≤j≤m
i 6=j

ˆ
R2

K(xi − x∗) · ∇i;βhm(x[m]\{j}, x∗)µβ(x∗) dx∗,

iSm,−N,β h
m−1 := −

m∑
i=1

∑
2≤j≤m
i6=j

(
K(xi − xj)− (K ∗ µβ)(xi)

)
· ∇i;βhm−1(x[m]\{j})

−
m∑
i=2

m∑
j=1

K(xi − xj) · (∇ logµβ)(xi)h
m−1(x[m]\{i})

+

6=∑
2≤i,j≤m

ˆ
R2

K(xi − x∗) · (∇ logµβ)(xi)h
m−1(x[m]\{i,j}, x∗)µβ(x∗) dx∗,

iSm,=N,β h
m−2 := −

6=∑
2≤i,j≤m

K(xi − xj) · (∇ logµβ)(xi)h
m−2(x[m]\{i,j}),

with the short-hand notations [m] := {1, . . . ,m} and ∇i;β := ∇i + (∇ logµβ)(xi).
Proof. By the definition (2.6) of correlation functions, the BBGKY equations (2.2) yield

∂tg
m
N + F (x1) · ∇1;βg

m
N = −

m∑
j=2

F (xj) · ∇j;β
m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1j∈σ
fnN
µ⊗nβ

(x1, xσ)

− 1
N

m∑
j=2

K(x1 − xj) · (∇1;β −∇j;β)

m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1j∈σ
fnN
µ⊗nβ

(x1, xσ)

− 1
N

m∑
i,j=2

K(xi − xj) · ∇i;β
m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1i,j∈σ
fnN
µ⊗nβ

(x1, xσ)

−
m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

ˆ
R2

K(x1 − x∗) ·
(
∇1;β

fn+1
N

µ⊗n+1
β

)
(x1, xσ, x∗)µβ(x∗) dx∗

−
m∑
i=2

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

1i∈σ

ˆ
R2

K(xi − x∗) ·
(
∇i;β

fn+1
N

µ⊗n+1
β

)
(x1, xσ, x∗)µβ(x∗) dx∗.

(2.8)

Replacing the marginals in terms of cumulants, cf. (2.5), we get for the first two right-hand
side terms, for all j ∈ [m] \ {1},

m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1j∈σ
fnN
µ⊗nβ

(x1, xσ)
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=

m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1j∈σ

n∑
r=1

∑
τ∈Pσr−1

grN (x1, xτ )

=
m∑
r=1

∑
τ∈Pm−1

r−1

grN (x1, xτ )
m∑
n=r

(−1)m−n ]{σ ∈ Pm−1
n−1 : j ∈ σ, τ ⊂ σ}︸ ︷︷ ︸

=1j∈τ(m−rn−r)+1j /∈τ(m−1−r
n−1−r)

= gmN (x[m]) + gm−1
N (x[m]\{j}), (2.9)

where we used the combinatorial identity
p∑
j=0

(−1)p−j
(
p

j

)
= δp=0. (2.10)

Similarly, for the third right-hand side term in (2.8), we find for all i, j ∈ [m] \ {1},
m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1i,j∈σ
fnN
µ⊗nβ

(x1, xσ)

= gmN (x[m]) + gm−1
N (x[m]\{i}) + gm−1

N (x[m]\{j}) + gm−2
N (x[m]\{i,j}).

For the fourth right-hand side term in (2.8), replacing again marginals in terms of cumu-
lants, we find

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

ˆ
R2

K(x1 − x∗) ·
(
∇1;β

fn+1
N

µ⊗n+1
β

)
(x1, xσ, x∗)µβ(x∗) dx∗

=

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

n∑
r=1

∑
τ∈Pσr−1

ˆ
R2

K(x1 − x∗) · ∇1;βg
r+1
N (x1, xτ , x∗)µβ(x∗) dx∗

+
m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

n∑
r=1

∑
τ∈Pσr−1

(K ∗ µβ)(x1) · ∇1;βg
r
N (x1, xτ ). (2.11)

Note that
m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

n∑
r=1

∑
τ∈Pσr−1

ˆ
R2

K(x1 − x∗) · ∇1;βg
r+1
N (x1, xτ , x∗)µβ(x∗) dx∗

=
m∑
r=1

∑
τ∈Pm−1

r−1

( m∑
n=r

(−1)m−nN−nN ]{σ ∈ Pm−1
n−1 : τ ⊂ σ}︸ ︷︷ ︸

=(m−rn−r)

)

×
ˆ
Td
K(x1 − x∗) · ∇1;βg

r+1
N (x1, xτ , x∗)µβ(x∗) dx∗

= N−m
N

ˆ
Td
K(x1 − x∗) · ∇1;βg

m+1
N (x[m], x∗)µβ(x∗) dx∗

− 1
N

m∑
j=2

ˆ
Td
K(x1 − x∗) · ∇1;βg

m
N (x[m]\{j}, x∗)µβ(x∗) dx∗, (2.12)
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where the last identity follows from the following computation, based on (2.10),

m∑
n=r

(−1)m−nN−nN

(
m− r
n− r

)

=

m−r∑
n=0

(−1)m−n−r N−n−rN

(
m− r
n

)

= N−r
N

m−r∑
n=0

(−1)m−n−r
(
m− r
n

)
− m−r

N

m−r∑
n=1

(−1)m−n−r
(
m− r − 1

n− 1

)
= N−m

N δr=m − 1
N δr=m−1.

Inserting (2.12) into (2.11), and arguing similarly for the last right-hand side term in (2.11),
we get

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

ˆ
R2

K(x1 − x∗) ·
(
∇1;β

fn+1
N

µ⊗n+1
β

)
(x1, xσ, x∗)µβ(x∗) dx∗

= N−m
N

ˆ
R2

K(x1 − x∗) · ∇1;βg
m+1
N (x[m], x∗)µβ(x∗) dx∗

− 1
N

m∑
j=2

ˆ
R2

K(x1 − x∗) · ∇1;βg
m
N (x[m]\{j}, x∗)µβ(x∗) dx∗

+ N−m
N (K ∗ µβ)(x1) · ∇1;βg

m
N (x[m])− 1

N

m∑
j=2

(K ∗ µβ)(x1) · ∇1;βg
m−1
N (x[m]\{j}),

Similarly, for the last right-hand side term in (2.8), we find

m∑
i=2

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

1i∈σ

ˆ
R2

K(xi − x∗) ·
(
∇i;β

fn+1
N

µ⊗n+1
β

)
(x1, xσ, x∗)µβ(x∗) dx∗

= N−m
N

m∑
i=2

ˆ
R2

K(xi − x∗) · ∇i;βgm+1
N (x[m], x∗)µβ(x∗) dx∗

− 1
N

6=∑
2≤i,j≤m

ˆ
R2

K(xi − x∗) · ∇i;βgmN (x[m]\{j}, x∗)µβ(x∗) dx∗

+ N−m
N

m∑
i=2

ˆ
R2

K(xi − x∗) · (∇ logµβ)(xi) g
m
N (x[m]\{i}, x∗)µβ(x∗) dx∗

− 1
N

6=∑
2≤i,j≤m

ˆ
R2

K(xi − x∗) · (∇ logµβ)(xi) g
m−1
N (x[m]\{i,j}, x∗)µβ(x∗) dx∗

+ N−m
N

m∑
i=2

(K ∗ µβ)(xi) · ∇i;βgmN (x[m])− 1
N

6=∑
2≤i,j≤m

(K ∗ µβ)(xi) · ∇i;βgm−1
N (x[m]\{j})
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+ N−m
N

m∑
i=2

(K ∗ µβ)(xi) · (∇ logµβ)(xi) g
m−1
N (x[m]\{i})

− 1
N

6=∑
2≤i,j≤m

(K ∗ µβ)(xi) · (∇ logµβ)(xi) g
m−2
N (x[m]\{i,j}).

Combining all the above identities into (2.8), and using various cancellations such as

F · ∇ logµβ = (K ∗ µβ) · ∇ logµβ = 0,

which follow from the radial nature of V,W , the conclusion follows. �

2.3. A priori correlation estimates. We prove uniform-in-time propagation-of-chaos
estimates for the particle system in form of a priori bounds on correlation functions. This
is deduced from a symmetry argument inspired by the work of Bodineau, Gallagher, and
Saint-Raymond [3], which is combined as in [13] with some classical large deviation esti-
mates to accommodate the fact that correlations are defined with respect to the mean-field
equilibrium µ⊗Nβ instead of the exact Gibbs measure MN,β. As formal BBGKY analysis
leads to expect g2

N = O(N−1), the present estimates may a priori seem quite suboptimal:
however, we will see that in some degenerate cases the present estimate g2

N = O(N−1/2) is
in fact optimal on long timescales (see in particular Theorem 5.2).

Lemma 2.2. Provided that β‖W‖L∞(R2) � 1 is small enough, we have for all 0 ≤ m < N ,
uniformly in time,

‖gm+1
N ‖L2

β((R2)m+1) :=
(ˆ

(R2)m+1

|gm+1
N |2 µ⊗m+1

β

) 1
2
.β,m,f◦ N

−m
2 .

Proof. Recall that correlations satisfy
´
R2 g

m
N (x[m])µβ(xj) dxj = 0 for all 2 ≤ j ≤ m. Com-

puting the L2 norm of the N -point density fN and inserting the cluster expansion (2.5) in
terms of correlation functions, we then get

ˆ
(R2)N

1
µ⊗Nβ
|fN |2 =

N∑
m=1

(
N − 1

m− 1

)ˆ
(R2)m

|gmN |2µ⊗mβ ,

and thus, for all 0 ≤ m < N ,ˆ
(R2)m+1

|gm+1
N |2µ⊗m+1

β .m N−m
ˆ

(R2)N

1
µ⊗Nβ
|fN |2. (2.13)

It remains to estimate the norm of fN in the right-hand side. In order to obtain a uniform-
in-time estimate, we shall relate it to the conserved quantityˆ

(R2)N

1
MN,β

|fN |2.

Replacing µ⊗Nβ by MN,β requires to appeal to some classical large deviation estimates and
we split the proof into three steps.

Step 1. Proof that we have uniformly in time, for any 1 < q <∞,ˆ
(R2)N

1
µ⊗Nβ
|fN |2 ≤ ‖ 1

µβ
f◦‖2

L2q
β (R2)

e
4β‖W‖L∞(R2)(Zβ)

1
q
−2

(AN,β,q)
1− 1

q (BN,β)
2− 1

q , (2.14)
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where we have set

AN,β,q :=
(

(Zβ)q
′
Zβ,−q′

(Zβ,0)q′+1

)N ´
(R2)N exp(−β(q

′+1)
2N

∑N
i,j=1W (xi−xj)) dν⊗Nβ,−q′ (x1,...,xN )( ´

(R2)N exp(− β
2N

∑N
i,j=1W (xi−xj)) dν⊗Nβ,0 (x1,...,xN )

)q′+1 ,

BN,β :=
ZN,β
Z̃N,β

=

´
(R2)N exp(− β

2N

∑N
i,j=1W (xi−xj)) dν⊗Nβ,0 (x1,...,xN )´

(R2)N−1 exp(− β
2N

∑N
i,j=2W (xi−xj)) dν⊗N−1

β,0 (x2,...,xN )
,

and for any κ ∈ R,

dνβ,κ(x) := Z−1
β,κe

−β(V+κW∗µβ)(x)dx, Zβ,κ :=

ˆ
R2

e−β(V+κW∗µβ).

These N -dependent factors AN,β,q, BN,β take the form of ratios of partition functions,
which we estimate in the next steps by means of large deviation theory.

We turn to the proof of (2.14). Hölder’s inequality yieldsˆ
(R2)N

1
µ⊗Nβ
|fN |2 ≤

(ˆ
(R2)N

|MN,β |q
′+1

|µ⊗Nβ |q′

) 1
q′
(ˆ

(R2)N

|fN |2q
|MN,β |2q−1

) 1
q
.

As MN,β is a global equilibrium for the Liouville equation (1.8), we note that the last
factor is a conserved quantity,

∂t

ˆ
(R2)N

|fN |2q

M2q−1
N,β

= 0.

Recalling the initial condition (1.11), we deduce
ˆ

(R2)N

1
µ⊗Nβ
|fN |2 ≤ ‖ 1

µβ
f◦‖2

L2q
β (R2)

(ˆ
(R2)N

|MN,β |q
′+1

|µ⊗Nβ |q′

) 1
q′

× sup
x1

(
µβ(x1)2q−1

ˆ
(R2)N−1

|M̃N,β(x2,...,xN )|2q
|MN,β(x1,...,xN )|2q−1dx2 . . . dxN

) 1
q

.

Inserting the definitions of µβ,MN,β, M̃N,β, we find that the last two factors in the right-
hand side satisfy ˆ

(R2)N

|MN,β |q
′+1

|µ⊗Nβ |q′
= AN,β,q,

and

sup
x1

(
µβ(x1)2q−1

ˆ
(R2)N−1

|M̃N,β(x2,...,xN )|2q
|MN,β(x1,...,xN )|2q−1dx2 . . . dxN

)
≤ e

4qβ‖W‖L∞(R2)
( ZN,β
ZβZ̃N,β

)2q−1
,

where AN,β,q is defined above. The claim (2.14) follows.

Step 2. Asymptotics of partition functions: given a probability measure ν0 on Rd, d ≥ 1,
and given a bounded, continuous, even interaction potential W0 with ‖W0‖L∞(Rd) small
enough, there is a unique solution µ0 of the fixed-point equation

µ0 = Z−1
0 e−2W0∗µ0ν0, Z0 =

ˆ
Rd
e−2W0∗µ0ν0, (2.15)

and the limit

lim
N↑∞

eNm0

ˆ
(R2)N

exp

(
− 1

N

N∑
i,j=1

W0(xi − xj)
)
dν⊗N0 (x1, . . . , xN )
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then exists and belongs to (0,∞), where m0 is defined as

m0 := − logZ0 −
¨

Rd×Rd
W0(x− y) dµ0(x)dµ0(y). (2.16)

We briefly show how this can be deduced from the large deviation results summarized
in [2]. Appealing to [2, Theorem B(ii)], in terms of

n0 := inf
µ∈P(Rd)

( ˆ
Rd
µ log

( µ
ν0

)
+

¨
Rd×Rd

W0(x− y) dµ(x)dµ(y)

)
, (2.17)

we find that the limit

lim
N↑∞

eNn0

ˆ
(R2)N

exp

(
− 1

N

N∑
i,j=1

W0(xi − xj)
)
dν⊗N0 (x1, . . . , xN )

exists and belongs to (0,∞) provided that this minimization problem (2.17) admits a
unique minimizer µ0 and provided that the value 1 does not belong to the spectrum of
the operator Σµ0f := −2W0 ∗ (fµ0) on L2(Rd, µ0). Provided that interactions are weak
in the sense of ‖W0‖L∞(Rd) <

1
2 , we first note that for any probability measure µ the

operator Σµ on L2(Rd, µ) has operator norm < 1, so that the value 1 is indeed always
regular. In addition, for ‖W0‖L∞(Rd) small enough, we can easily check that the minimiza-
tion problem (2.17) has a unique solution µ0, which is precisely given by the fixed-point
equation (2.15). The infimum value (2.17) is then equal to (2.16), n0 = m0, and the claim
follows.

Step 3. Conclusion.
We turn to the asymptotic analysis of the two factors AN,β,q and BN,β in (2.14) as N ↑ ∞.
On the one hand, appealing to the result of Step 2, provided that β‖W‖L∞(R2) is small
enough, we find after straightforward computations

lim
N↑∞

AN,β,q 'β,q lim
N↑∞

(
(Zβ)q

′
Zβ,−q′

(Zβ,0)q′+1

)N exp(−Nγβ,−q′ )
exp(−N(q′+1)γβ,0) ,

where for any κ ∈ R we have set

γβ,κ := − log
( Zβ
Zβ,κ

)
− 1

2β(1− κ)

¨
R2×R2

W (x− y) dµβ(x)dµβ(y).

After simplifications, this entails

lim
N↑∞

AN,β,q 'β,q 1.

A similar computation shows limN↑∞BN,β 'β 1. Combining this with (2.13) and (2.14),
the conclusion follows. �

2.4. Weighted Sobolev spaces. As shown in Lemma 2.2 above, for 1 ≤ m ≤ N , the
correlation function gmN is an element of the following Hilbert space,

L2
β((R2)m) :=

{
hm ∈ L2

loc((R2)m) :

ˆ
(R2)m

|hm|2 µ⊗mβ <∞,

and hm is symmetric in its last m− 1 entries
}
,
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or equivalently, recalling the notation ⊗s for symmetrized tensor product,

L2
β((R2)m) = L2

β(R2)⊗ L2
β(R2)⊗s(m−1),

endowed with the norm

‖hm‖2
L2
β((R2)m)

:= 〈hm, hm〉L2
β((R2)m),

〈hm, gm〉L2
β((R2)m) :=

ˆ
(R2)m

hm gm µ⊗mβ .

We further define a sequence of Sobolev spaces with respect to µβ : for s ∈ N, we define
the Hilbert space Hs

β((R2)m) as the subset of L2
β((R2)m) that is the domain of the norm

‖hm‖2Hs
β((R2)m) :=

s∑
j=0

ˆ
(R2)m

|(∇[m])
jhm|2 µ⊗mβ , (2.18)

and we denote by H−sβ ((R2)m) the dual of Hs
β((R2)m) with respect to the scalar product

of L2
β((R2)m). Note that we only consider integer regularity s for simplicity. We shall

frequently use the following embeddings, for s ≥ 0,

‖hm‖L2
β((R2)m) ≤ ‖hm‖L∞((R2)m),

‖hm‖Hs
β((R2)m) ≤ ‖µβ‖

m
2

L∞((R2)m)
‖hm‖Hs((R2)m),

‖hm‖H−s((R2)m) ≤ ‖µβ‖
m
2

L∞((R2)m)

∥∥ 1
µ⊗mβ

hm
∥∥
H−sβ ((R2)m)

. (2.19)

For the sake of completeness, we also give the proof of the following useful interpolation
result.

Lemma 2.3 (Interpolation). The following holds for all 0 ≤ s ≤ r and h ∈ C∞c (R2),

‖h‖Hs
β(R2) .r,s ‖h‖

1− s
r

L2
β(R2)

‖h‖
s
r

Hr
β(R2)

, (2.20)

in each of the following two cases:
(i) in the non-Gaussian setting with non-degenerate monotone angular velocity Ωβ in the

sense of (1.13) (in which case the multiplicative constant in (2.20) may further depend
on the constant R in (1.13) and on an upper bound on β and ‖∇Ωβ‖W r−1,∞(R2));

(ii) in the Gaussian setting (1.15) (in which case the multiplicative constant in (2.20) is
independent of β,R).

Proof. We focus on the Gaussian setting (ii), while the proof in the non-Gaussian setting (i)
follows along the same lines using the specific properties of Ωβ in (1.13). Using that in the
Gaussian setting

∇ 1√
µβ

= 1
2βRx

1√
µβ
,

and decomposing h = 1√
µβ

(h
√
µβ), we first note that

‖h‖Hs
β(R2) .s

s∑
j=0

‖〈βRx〉s−j∇j(h√µβ)‖L2(R2),

and thus, by an interpolation inequality due to Lin [21],

‖h‖Hs
β(R2) .s ‖〈βRx〉sh

√
µβ‖L2(R2) + ‖h√µβ‖Hs(R2).
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Standard interpolation then yields for r ≥ s,

‖h‖Hs
β(R2) .s ‖h

√
µβ‖

1− s
r

L2(R2)

(
‖〈βRx〉rh√µβ‖L2(R2) + ‖h√µβ‖Hr(R2)

) s
r
.

Further using ∇√µβ = −1
2βRx

√
µβ to estimate the Hr-norm of h√µ

β
, we deduce

‖h‖Hs
β(R2) .s,r

r∑
j=0

‖h√µβ‖
1− s

r

L2(R2)
‖〈βRx〉r−j(∇jh)

√
µβ‖

s
r

L2(R2)
. (2.21)

As ∇µβ = −βRxµβ , an integration by parts yields for any k ≥ 1,

‖|βRx|kh√µβ‖2L2(R2)
=

ˆ
R2

|βRx|2k|h|2µβ

=

ˆ
R2

βRx|βRx|2k−2|h|2 · (−∇µβ)

.k

ˆ
R2

|βRx|2k−1|h||∇h|µβ +

ˆ
R2

|βRx|2k−2|h|2µβ.

Hence, by the Cauchy–Schwarz inequality,

‖|βRx|kh√µβ‖L2(R2) .k ‖|βRx|
k−1(∇h)

√
µβ‖L2(R2) + ‖|βRx|k−1h

√
µβ‖L2(R2),

which gives by induction,

‖〈βRx〉kh√µβ‖L2(R2) .k

k∑
j=0

‖(∇jh)
√
µβ‖L2(R2).

Using this to post-process (2.21), the conclusion (ii) follows. �

3. Non-degenerate case: non-Gaussian equilibrium

This section is devoted to the proof of Theorem 1.1. More precisely, we establish the
following more detailed result. Note that the positivity of the expression (3.3) is not
obvious and is part of the proof.

Theorem 3.1 (Non-Gaussian setting). Assume that the external potential V further sat-
isfies ∇(V ′/r) ∈ C∞b (R2). In terms of the mean-field equilibrium µβ, we define the angular
velocity Ωβ as the smooth radial function given by

(logµβ)′ = βrΩβ.

Consider the non-Gaussian setting when Ωβ is nowhere constant: more precisely, we as-
sume for simplicity that Ωβ is monotone and satisfies the following non-degeneracy condi-
tion, for some R ∈ (0,∞),3

|Ω′β(r)| ≥ 1
R(r ∧ 1), |Ω′′β(0)| ≥ 1

R , for all r ≥ 0, (3.1)

and we also assume that β is small enough depending on V,W and on this constant R.
Then, for any σ ∈ (0, 1

20), the subcritically-rescaled tagged particle density

f̄1
N (τ) := N1−σf1

N (Nστ)

3Note that this strict monotonicity assumption implies a non-Gaussian decay, for r ≥ 1,

µβ(0) exp
(

1
2
Ωβ(0)βr2 − Cβr3

)
≤ µβ(r) ≤ µβ(0) exp

(
1
2
( 1
R

+ Ωβ(0))βr2 − 1
CR

βr3
)
.
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satisfies in the radial distributional sense on R+ × R2,

∂τ 〈f̄1
N 〉

N↑∞−−−→ 1
r∂r

(
raβ(r)

(
∂r − (logµβ)′(r)

)
f◦
)
, (3.2)

where the coefficient field aβ is a positive scalar radial function that can be expressed as

aβ(r) :=

ˆ
S1

( ˆ
R2

H0(re, y)
[
<(iL2

β + 0)−1Hβ

]
(re, y)µβ(y) dy

)
dσ(e), (3.3)

in terms of:

• the operator L2
β given by

L2
β := Lβ ⊗ Id + Id⊗(Lβ + βTβ),

with

iLβh(x) := −β−1∇ logµβ(x) · ∇⊥h(x),

iTβh(x) := β−1∇ logµβ(x) ·
ˆ
R2

K(x− x∗)h(x∗)µβ(x∗) dx∗;

• the functions H0, Hβ given by

H0(x, y) := x
|x| ·K(x− y), (3.4)

Hβ(x, y) := x
|x| · (−∇

⊥
1 Wβ)(x, y),

where the ‘renormalized’ interaction potential Wβ = W + O(β) is defined as a β-
expansion,

Wβ(x, y) :=

∞∑
n=0

(−β)nW ∗µβ (n+1)(x, y), (3.5)

and where so-called µβ-convolution powers are defined for all n ≥ 1 by

W ∗µβn(x0, xn) :=

ˆ
(Rd)n−1

( n∏
k=1

W (xk−1 − xk)
)

× µβ(x1) . . . µβ(xn−1) dx1 . . . dxn−1. (3.6)

Remark 3.2. In terms of the renormalized interaction potential Wβ, we can define the
corresponding renormalized force kernel

Kβ(x, y) := 1
|x|2

(
x+ |x|2−y·x

y·x⊥ x⊥
)(
x · (−∇⊥1 Wβ)(x, y)

)
.

Noting that we have by symmetry x · (∇⊥1 Wβ)(x, y) = −y · (∇⊥2 Wβ)(x, y), we find that this
choice of Kβ satisfies

Kβ(x, y) = −Kβ(y, x), (x− y) ·Kβ(x, y) = 0.

The definition of Hβ in the above statement is then equivalent to

Hβ(x, y) = x
|x| ·Kβ(x, y).
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3.1. Preliminary BBGKY analysis. As V and W are radial, the mean-field force can
be written as

(F +K ∗ µβ)(x) = x⊥Ωβ(x), ∇ logµβ(x) = βxΩβ(x), (3.7)

where Ωβ is the smooth radial function

Ωβ(x) := 1
βr (logµβ)′ = −1

r (V +W ∗ µβ)′(r).

In these terms, the linearized mean-field operators {LmN,β}1≤m≤N in Lemma 2.1 can be
expressed as Kronecker sums

LmN,β = Lβ ⊗ (IdL2
β(R2))

⊗(m−1)

+

m∑
j=2

(IdL2
β(R2))

⊗(j−1) ⊗
(
Lβ + βN−mN Tβ

)
⊗ (IdL2

β(R2))
⊗(m−j), (3.8)

where we have defined the following single-particle operators on L2
β(R2),

(iLβh)(x) := −xΩβ(x) · ∇⊥h(x),

(iTβh)(x) := xΩβ(x) ·
ˆ
R2

K(x− x∗)h(x∗)µβ(x∗) dx∗. (3.9)

Note that in polar coordinates x = (r, θ) the operator Lβ takes the form

iLβ = Ωβ(r)∂θ, (3.10)

thus showing that Ωβ indeed plays the role of an angular velocity. In the limit N ↑ ∞, the
linearized mean-field operators (3.8) are replaced by

Lmβ := Lβ ⊗ (IdL2
β(R2))

⊗(m−1) +
m∑
j=2

(IdL2
β(R2))

⊗(j−1) ⊗ (Lβ + βTβ)⊗ (IdL2
β(R2))

⊗(m−j).

We start by studying the spectral properties of these operators. For that purpose, we can
focus on the following single-particle operators on L2

β(R2),

Lβ(γ) := Lβ + γTβ, for γ ∈ R.
The main difficulty is that we do not have a closed formula for the resolvent of Lβ(γ)
for γ 6= 0, in contrast with the situation for the linearized Vlasov operators in [13]: for
that reason, the spectral analysis requires more care.4 Note that in the proof of item (i)
below we further show that Lβ(γ) is actually self-adjoint when viewed as acting on a
suitably deformed Lipschitz-equivalent Hilbert space. In that deformed self-adjoint setting,
item (iii) then entails that the restriction of Lβ(γ) to the orthogonal complement of its
kernel has purely absolutely continuous spectrum.

Lemma 3.3 (Properties of linearized mean-field operators). Given β ∈ (0, 1], assume that
the angular velocity Ωβ satisfies (3.1). Then, for all γ �R β−2/3 small enough (hence
in particular for all γ ≤ β provided that β �R 1 is itself small enough), the following
properties hold:
(i) The operator Lβ(γ) generates a C0-group {eitLβ(γ)}t∈R that is uniformly bounded,

sup
t∈R
‖eitLβ(γ)h‖L2

β(R2) . ‖h‖L2
β(R2), for all h ∈ L2

β(R2).

4See however explicit resolvent computations in [7, 8] in the specific Coulomb setting.
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(ii) The kernel of Lβ(γ) coincides with the set of radial functions.
(iii) On the orthogonal complement

Eβ := ker(Lβ(γ))⊥ = ker(Lβ)⊥

=

{
h ∈ L2

β(R2) :

ˆ
S1
h(re) dσ(e) = 0 for almost all r

}
, (3.11)

the restriction Lβ(γ)|Eβ satisfies the following limiting absorption principle: for all
g, h ∈ C∞c (R2) ∩ Eβ,

sup
ω∈C,=ω 6=0

∣∣〈g, (Lβ(γ)− ω
)−1

h
〉

L2
β(R2)

∣∣ .R |||g|||β|||h|||β, (3.12)

where we have set for abbreviation

|||g|||β := ‖∇g‖L2
β(R2) + ‖〈 1

x〉g‖L2
β(R2) + ‖(∇ logµβ)g‖L2

β(R2). (3.13)

Remark 3.4. By definition, the operators LmN,β and Lmβ are Kronecker sums of Lβ(γ) for
different values of 0 ≤ γ ≤ β. As a direct consequence of the above result, provided that
β �R 1 is small enough, we deduce that for all m ≥ 1 the kernels of LmN,β and of Lmβ
on L2

β((R2)m) are both given by the set of functions that are radial in each of their m
entries. Hence, we have

Emβ := ker(LmN,β)⊥ = ker(Lmβ )⊥

=

{
h ∈ L2

β((R2)m) :

ˆ
(S1)m

h(r1e1, . . . , rmem) dσ(e1) . . . dσ(em) = 0

for almost all r1, . . . , rm

}
.

Moreover, the proof of item (iii) is easily repeated in this multi-particle setting: provided
that β �R,m 1 is small enough (further depending on m), the restriction of LmN,β (resp. Lmβ )
to Emβ satisfies the following limiting absorption principle, for all g, h ∈ C∞c ((R2)m)∩Emβ ,

sup
ω∈C,=ω 6=0

∣∣〈g, (LmN,β − ω)−1h
〉

L2
β((R2)m)

∣∣ .R,m |||g|||β;m|||h|||β;m,

where we have set for abbreviation

|||g|||β;m :=
m∑
j=1

(
‖∇jg‖L2

β((R2)m) + ‖〈 1
xj
〉g‖L2

β((R2)m) + ‖(∇ logµβ)(xj)g‖L2
β((R2)m)

)
.

Proof of Lemma 3.3. We split the proof into three steps: we start with the proof of item (i),
then we establish fine spectral properties of the unperturbed operator Lβ , proving items (ii)
and (iii) with γ = 0, before concluding perturbatively for |γ| small enough.

Step 1. Proof of (i).
The operator Lβ in (3.10) is clearly self-adjoint on its natural domain in L2

β(R2). Next,
noting that

‖Tβh‖L2
β(R2) ≤ ‖xΩβ‖L2

β(R2)‖K‖L∞(R2)‖h‖L2
β(R2),

the assumptions on Ωβ ensure that Tβ defines a bounded operator on L2
β(R2) with operator

norm
‖Tβ‖L2

β(R2)→L2
β(R2) .R β−

2
3 .
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For all γ ∈ R, standard perturbation theory (e.g. [17, Theorem IX.2.1]) then ensures that
the perturbed operator Lβ(γ) = Lβ +γTβ generates a C0-group on L2

β(R2), and it remains
to show that this C0-group is uniformly bounded. For that purpose, we appeal to an energy
conservation argument. Consider the following deformed scalar product on L2

β(R2),

〈g, h〉
L̃2
β,γ(R2)

:= 〈g, h〉L2
β(R2) + γ

¨
R2×R2

W (x− y) g(x)h(y)µβ(x)µβ(y) dxdy, (3.14)

as well as the associated norm

‖h‖2
L̃2
β,γ(R2)

:= 〈h, h〉
L̃2
β,γ(R2)

.

For |γ|‖W‖L∞(R2) < 1, this norm is Lipschitz-equivalent to the standard norm on L2
β(R2),(

1− γ‖W‖L∞(R2)

)
‖h‖2

L2
β(R2)

≤ ‖h‖2
L̃2
β,γ(R2)

≤
(
1 + γ‖W‖L∞(R2)

)
‖h‖2

L2
β(R2)

, (3.15)

and we denote by L̃2
β,γ(R2) the Hilbert space L2

β(R2) endowed with this new structure.
From definition (3.9), a straightforward computation yields

〈g, iLβ(γ)h〉
L̃2
β,γ(R2)

= β−1

ˆ
R2

(∇g) · (∇⊥h)µβ

+ γ

¨
R2×R2

g(x)h(y)K(x− y) ·
(
xΩβ(|x|) + yΩβ(|y|)

)
µβ(x)µβ(y) dxdy

− γ2β−1

¨
R2×R2

g(x)h(y)

( ˆ
R2

K⊥(x− z) ·K(y − z)µβ(z) dz

)
µβ(x)µβ(y) dxdy,

which shows that Lβ(γ) is symmetric on the deformed space L̃2
β,γ(R2). As the generator

of a C0-group, it is therefore self-adjoint on this space. Combining Stone’s theorem with
the Lipschitz property (3.15), we deduce for |γ|‖W‖L∞(R2) ≤ 1

2 ,

‖eitLβ(γ)h‖L2
β(R2) . ‖e

itLβ(γ)h‖
L̃2
β,γ(R2)

= ‖h‖
L̃2
β,γ(R2)

. ‖h‖L2
β(R2),

which proves that the generated C0-group is indeed uniformly bounded on L2
β(R2).

Step 2. Proof of (ii) and (iii) for γ = 0.
As by assumption the function Ωβ is absolutely continuous and nowhere constant, we
deduce from (3.10) that the kernel of Lβ coincides with the set of radial functions and
that its restriction to the orthogonal complement Eβ := ker(Lβ)⊥ has purely absolutely
continuous spectrum,

σess(Lβ|Eβ ) = σac(Lβ|Eβ ) =
{
kλ : k ∈ Z \ {0}, λ ∈ ess. im(Ωβ)

}
,

σsc(Lβ|Eβ ) = σpp(Lβ|Eβ ) = ∅.

Moreover, we shall show that the restriction Lβ|Eβ satisfies the following limiting absorption
principle: for all g, h ∈ C∞c (R2) ∩ Eβ ,

sup
ω∈C,=ω 6=0

∣∣〈g, (Lβ − ω)−1h
〉

L2
β(R2)

∣∣ .R |||g|||β|||h|||β, (3.16)

where we recall that the norm ||| · |||β is defined in (3.13).
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Let g, h ∈ C∞c (R2) ∩ Eβ be fixed. In order to prove (3.16), we start by using polar
coordinates x = (r, θ) and Fourier series to write, for =ω 6= 0,〈

g, (Lβ − ω)−1h
〉

L2
β(R2)

= 1
2π

∑
k∈Z\{0}

ˆ ∞
0

ĝ(r, k)ĥ(r, k)

kΩβ(r)− ω
rµβ(r) dr, (3.17)

where we use the notation ĝ(r, k) :=
´
S1 e
−iθkg(r, θ) dθ for Fourier coefficients with respect

to the angle in polar coordinates, and where we noticed that the condition g, h ∈ Eβ is
equivalent to ĝ(r, 0) = ĥ(r, 0) = 0. To estimate this expression (3.17), we proceed to a local
analysis of the integral close to singularities kΩβ(r)− ω ≈ 0. We start with the following
two general estimates:
— for all φ ∈ C∞c (R) and 1 < p <∞,

sup
ε 6=0

∣∣∣∣ ˆ 1

−1

φ(t)
t+iε dt

∣∣∣∣ .p ‖φ‖W 1
p ,p(−1,1)

, (3.18)

— for all φ ∈ C∞c (R),

sup
ε6=0

∣∣∣∣ ˆ 1

0

tφ(t)
t2+iε

dt

∣∣∣∣ . ‖1
tφ‖L1(0,1).

The first estimate follows from the Sobolev embeddingW
1
p
,p

(−1, 1) ⊂ L∞(−1, 1), combined
with the Lp theory for the Hilbert transform. The second estimate is obvious.

Now using these bounds to estimate (3.17) close to singularities, using local deformations
to reduce to these model situations, recalling the non-degeneracy assumption (3.1) for Ωβ ,
we are led to

sup
ω∈C,=ω 6=0

∣∣〈g, (Lβ − ω)−1h
〉

L2
β(R2)

∣∣
.R

∑
k∈Z\{0}

|k|−1
(
‖∂r(ĝ(·, k)

√
µβ)
√
r‖L2(R+) + ‖〈1r 〉ĝ(·, k)

√
rµβ‖L2(R+)

)
×
(
‖∂r(ĥ(·, k)

√
µβ)
√
r‖L2(R+) + ‖〈1r 〉ĥ(·, k)

√
rµβ‖L2(R+)

)
. (3.19)

To obtain this bound and simplify the form of the right-hand side, we have used here
Hölder’s inequality and the Sobolev embedding H1(R+) ⊂ W

1
p
,q

(R+) for 1 < p, q < ∞
with 1

p = 1
q + 1

2 , in form of

‖ab‖
W

1
p ,p(R+)

.p,q ‖a‖
W

1
p ,q(R+)

‖b‖L2(R+) + ‖a‖L2(R+)‖b‖W 1
p ,q(R+)

.p,q ‖a‖H1(R+)‖b‖L2(R+) + ‖a‖L2(R+)‖b‖H1(R+).

From (3.19), the claim (3.16) follows by Plancherel’s theorem.

Step 3. Proof of (ii) and (iii).
With the above spectral properties of Lβ at hand, we now turn to the corresponding prop-
erties of the perturbed operator Lβ(γ) = Lβ + γTβ and we conclude the proof of items (ii)
and (iii). First note that by definition (3.9) the kernel of Lβ(γ) clearly contains the set of
radial functions. By density, we then deduce that item (ii) would follow from item (iii), and
it thus remains to prove the latter. For that purpose, we shall argue perturbatively for |γ|
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small enough, combining the above limiting absorption principle (3.16) for Lβ together
with regularizing properties of Tβ . By definition (3.9), we can write for =ω 6= 0,(

Tβ(Lβ − ω)−1h
)
(x) = −ixΩβ(x) ·

〈
K(x− ·), (Lβ − ω)−1h

〉
L2
β(R2)

.

Taking the norm ||| · |||β defined in (3.13), appealing to the result (3.16) of Step 2, and using
the properties of Ωβ , we deduce

sup
ω∈C,=ω 6=0

|||Tβ(Lβ − ω)−1h|||β .R
(
1 + ‖〈·〉2‖L2

β(R2) + β‖〈·〉4‖L2
β(R2)

)
|||h|||β

.R β−
2
3 |||h|||β.

Hence, for γ �R β
2
3 small enough,

sup
ω∈C,=ω 6=0

|||γTβ(Lβ − ω)−1h|||β ≤ 1
2 |||h|||β.

This allows us to construct the Neumann series〈
g, (Lβ(γ)− ω)−1h

〉
L2
β(R2)

=

∞∑
n=0

〈
g, (Lβ − ω)−1

[
γTβ(Lβ − ω)−1

]n
h
〉

L2
β(R2)

, (3.20)

and the bound (3.12) follows. This ends the proof of item (iii). �

Next, we establish the following estimates on BBGKY operators in the weighted negative
Sobolev spaces defined in Section 2.4.

Lemma 3.5.
(i) Weak bounds on BBGKY operators:

For all 1 ≤ m ≤ N , s ≥ 0, and hm+r ∈ C∞c ((R2)m+r) for r ∈ {−2,−1, 0, 1}, we have

‖LmN,βhm‖H−s−1
β ((R2)m) .m,s ‖h

m‖H−sβ ((R2)m),

‖Sm,◦N,βh
m‖H−s−1

β ((R2)m) .m,s ‖h
m‖H−sβ ((R2)m),

‖Sm,+N,β h
m+1‖H−s−1

β ((R2)m) .m,s ‖h
m+1‖H−sβ ((R2)m+1),

‖Sm,−N,β h
m−1‖H−s−1

β ((R2)m) .m,s ‖h
m−1‖H−sβ ((R2)m−1),

‖Sm,=N,β h
m−2‖H−sβ ((R2)m) .m,s ‖h

m−2‖H−sβ ((R2)m−2).

(ii) Weak bounds on linearized mean-field evolutions:
For all 1 ≤ m ≤ N , s ≥ 0, δ > 0, and hm ∈ C∞c ((R2)m), we have

‖eiL
m
N,βthm‖

H
−d3s/2e
β ((R2)m)

.R,β,m,s,δ 〈t〉s+δ‖hm‖H−sβ ((R2)m).

Proof. By duality, item (i) follows from the following corresponding estimates on the adjoint
operators, for all s ≥ 0 and hm ∈ C∞c ((R2)m),

‖(LmN,β)∗hm‖Hs
β((R2)m) .m,s ‖hm‖Hs+1

β ((R2)m),

‖(Sm,◦N )∗hm‖Hs
β((R2)m) .m,s ‖hm‖Hs+1

β ((R2)m),

‖(Sm,+N )∗hm‖Hs
β((R2)m+1) .m,s ‖hm‖Hs+1

β ((R2)m),

‖(Sm,−N )∗hm‖Hs
β((R2)m−1) .m,s ‖hm‖Hs+1

β ((R2)m),
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‖(Sm,=N )∗hm‖Hs
β((R2)m−2) .m,s ‖hm‖Hs

β((R2)m).

Adjoints can be computed explicitly and these estimates easily follow; we omit the details.
We turn to the proof of (ii). By duality, it suffices to prove that, for all s ≥ 0 and δ > 0,

‖ei(L
m
N,β)∗thm‖Hs

β((R2)m) .R,β,m,s,δ 〈t〉s+δ‖hm‖H3s/2
β ((R2)m)

.

As by definition LmN,β is a Kronecker sum of the perturbed operator Lβ(γ) = Lβ + γTβ for
different values of 0 ≤ γ ≤ β, cf. (3.8), it suffices to show that for all s ≥ 0, δ > 0, γ ≤ β,
and h ∈ C∞c (R2),

‖eiLβth‖Hs
β(R2) .R,β,s 〈t〉s‖h‖

H
d3s/2e
β (R2)

, (3.21)

‖eiLβ(γ)∗th‖Hs
β(R2) .R,β,s,δ 〈t〉s+δ‖h‖Hd3s/2eβ (R2)

. (3.22)

We split the proof into two steps, separately proving these two estimates.

Step 1. Proof of (3.21).
Starting from the explicit expression for the flow

eiLβth(x) = h
(
x cos(tΩβ(x)) + x⊥ sin(tΩβ(x))

)
,

we find for all s ≥ 0, ˆ
R2

|∇seiLβth|2µβ .s 〈t〉2s
ˆ
R2

〈·〉2s|〈∇〉sh|2µβ, (3.23)

where the multiplicative constant depends on ‖∇Ωβ‖W s,∞(R2). Using assumption (3.1) in
form of

〈x〉2µβ(x) .R µβ(x)− β−1 x
|x| · ∇µβ(x),

an integration by parts gives for any s ≥ 0,ˆ
R2

〈·〉2s|∇sh|2µβ .R,β,s
ˆ
R2

〈·〉2s−2|∇sh|2µβ +

ˆ
R2

〈·〉2s−2|∇sh||∇s+1h|µβ.

Hence, by the Cauchy–Schwarz inequality,ˆ
R2

〈·〉2s|∇sh|2µβ .R,β,s
ˆ
R2

〈·〉2s−2|∇sh|2µβ +

ˆ
R2

〈·〉2s−4|∇s+1h|2µβ,

which yields by induction for all s ≥ 0,ˆ
R2

〈·〉2s|∇sh|2µβ .R,β,s ‖h‖2
H
d3s/2e
β (R2)

.

Combined with (3.23), we obtain the claim (3.21).

Step 2. Proof of (3.22).
Let 0 ≤ γ ≤ β. Decomposing Lβ(γ)∗ = Lβ + γT ∗β , we start with Duhamel’s formula in the
form

eiLβ(γ)∗th = eiLβth+ γ

ˆ t

0
eiLβ(t−t′)iT ∗βe

iLβ(γ)∗t′h dt′.

Taking the Sobolev norm and applying (3.21), we deduce for all r ≥ 0,∥∥eiLβ(γ)∗th− eiLβth
∥∥
Hr
β(R2)

.R,β,r 〈t〉r
ˆ t

0
‖γT ∗βeiLβ(γ)∗t′h‖Hr

β(R2) dt
′.
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As the operator T ∗β satisfies the following regularizing property, for all r ≥ 0,

‖γT ∗βh‖Hr
β(R2) .r ‖h‖L2

β(R2),

we deduce ∥∥eiLβ(γ)∗th− eiLβth
∥∥
Hr
β(R2)

.R,β,r 〈t〉r
ˆ t

0
‖eiLβ(γ)∗t′h‖L2

β(R2) dt
′.

Now we combine this with the interpolation inequality of Lemma 2.3(i): for all r ≥ s ≥ 0,
we get ∥∥eiLβ(γ)∗th− eiLβth

∥∥
Hs
β(R2)

.R,β,r,s
∥∥eiLβ(γ)∗th− eiLβth

∥∥1− s
r

L2
β(R2)

∥∥eiLβ(γ)∗th− eiLβth
∥∥ sr
Hr
β(R2)

.R,β,r 〈t〉s
∥∥eiLβ(γ)∗th− eiLβth

∥∥1− s
r

L2
β(R2)

(ˆ t

0
‖eiLβ(γ)∗t′h‖L2

β(R2) dt
′
) s
r
.

By the triangle inequality and by the uniform boundedness of Lemma 3.3(i), we finally
arrive at

‖eiLβ(γ)∗th‖Hs
β(R2) .R,β,r,s ‖eiLβth‖Hs

β(R2) + 〈t〉s(1+ 1
r

)‖h‖L2
β(R2).

Combined with (3.21), this yields the claim (3.22) after choosing r ≥ s
δ . �

3.2. Proof of Theorem 3.1. We start by using the cumulant estimates of Lemma 2.2 to
truncate the BBGKY hierarchy and get a closed description of the tagged particle density.

Lemma 3.6. For all t ≥ 0 and δ > 0, we have∥∥∥N∂t〈g1
N 〉 −

ˆ t

0

〈
iS1,+
N,βe

−i(t−s)L2
N,β iS2,−

N,β( 1
µβ
f◦)
〉
ds

−
ˆ t

0

ˆ s

0

〈
iS1,+
N,βe

−i(t−s)L2
N,β iS2,+

N,βe
−i(s−s′)L3

N,β iS3,=
N,β( 1

µβ
f◦)
〉
ds′ ds

∥∥∥
H−7
β (R2)

.R,β,δ 〈t〉10+δN−
1
2 .

Proof. First, for the tagged particle density, the BBGKY hierarchy (2.7) in Lemma 2.1
yields

∂tg
1
N + iL1

N,βg
1
N = iS1,+

N,βg
2
N + 1

N iS
1,◦
N,βg

1
N ,

and thus, for the radial density, noting that the contributions of L1
N,β and S1,◦

N,β disappear
when taking angular averages,

N∂t〈g1
N 〉 = 〈iS1,+

N,βNg
2
N 〉. (3.24)

The Duhamel formula for the above equation also yields

g1
N (t) = e−itL

1
N,β ( 1

µβ
f◦) +

ˆ t

0
e−i(t−s)L

1
N,β

(
iS1,+
N,βg

2
N (s) + 1

N iS
1,◦
N,βg

1
N (s)

)
ds,

or equivalently, since 1
µβ
f◦ is radial and thus belongs to the kernel of L1

N,β,

g1
N (t) = 1

µβ
f◦ +

ˆ t

0
e−i(t−s)L

1
N,β

(
iS1,+
N,βg

2
N (s) + 1

N iS
1,◦
N,βg

1
N (s)

)
ds. (3.25)
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Next, the BBGKY hierarchy (2.7) for g2
N and g3

N yields

∂tNg
2
N + iL2

N,βNg
2
N = iS2,+

N,βNg
3
N + iS2,◦

N,βg
2
N + iS2,−

N,βg
1
N ,

∂tNg
3
N + iL3

N,βNg
3
N = iS3,+

N,βNg
4
N + iS3,◦

N,βg
3
N + iS3,−

N,βg
2
N + iS3,=

N,βg
1
N ,

and thus, combining the corresponding Duhamel formulas,

Ng2
N (t) =

ˆ t

0
e−i(t−s)L

2
N,β

(
iS2,◦
N,βg

2
N (s) + iS2,−

N,βg
1
N (s)

)
ds

+

ˆ t

0

ˆ s

0
e−i(t−s)L

2
N,β iS2,+

N,βe
−i(s−s′)L3

N,β

×
(
iS3,+
N,βNg

4
N (s′) + iS3,◦

N,βg
3
N (s′) + iS3,−

N,βg
2
N (s′) + iS3,=

N,βg
1
N (s′)

)
ds′ ds.

Replacing g1
N in this expression by (3.25), and reorganizing the terms, we deduce

Ng2
N (t) =

ˆ t

0
e−i(t−s)L

2
N,β iS2,−

N,β( 1
µβ
f◦) ds

+

ˆ t

0

ˆ s

0
e−i(t−s)L

2
N,β iS2,+

N,βe
−i(s−s′)L3

N,β iS3,=
N,β( 1

µβ
f◦) ds′ ds

+

ˆ t

0
e−i(t−s)L

2
N,β iS2,◦

N,βg
2
N (s) ds

+

ˆ t

0

ˆ s

0
e−i(t−s)L

2
N,β iS2,+

N,βe
−i(s−s′)L3

N,β

(
iS3,+
N,βNg

4
N (s′) + iS3,◦

N,βg
3
N (s′) + iS3,−

N,βg
2
N (s′)

)
ds′ ds

+

ˆ t

0

ˆ s

0
e−i(t−s)L

2
N,β iS2,−

N,βe
−i(s−s′)L1

N,β

(
iS1,+
N,βg

2
N (s′) + 1

N iS
1,◦
N,βg

1
N (s′)

)
ds′ ds

+

ˆ t

0

ˆ s

0

ˆ s′

0
e−i(t−s)L

2
N,β iS2,+

N,βe
−i(s−s′)L3

N,β iS3,=
N,βe

−i(s′−s′′)L1
N,β

×
(
iS1,+
N,βg

2
N (s′′) + 1

N iS
1,◦
N,βg

1
N (s′′)

)
ds′′ ds′ ds.

Inserting this into (3.24) and appealing to Lemma 3.5 to estimate the different terms, the
conclusion follows. �

We appeal to Laplace transform to express long-time linear evolutions more conveniently
in terms of associated resolvents. The representation is further simplified by noting that
the resolvent of iL3

N,β can be explicitly computed on some specific test functions. Before
stating the result, we introduce some notation: given R1, R2 ∈ C∞b ((R2)2), we define the
µβ-convolution product

R1 ∗µβ R2(x, y) :=

ˆ
R2

R1(x, z)R2(z, y)µβ(z) dz.

Note that this product is in general not commutative, but is always associative. We define
corresponding µβ-convolution powers of an element R ∈ C∞b ((R2)2) iteratively by

R∗µβ (n+1) := R ∗µβ R
∗µβn, R∗µβ 1 = R, for all n ≥ 1.
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For a function S ∈ C∞(R2), identifying it with S̃(x, y) := S(x − y), we similarly define
with some mild abuse of notation,

S∗µβn(x, y) := (S̃)∗µβn(x, y), for all n ≥ 1,

which coincides with the more explicit definition given in (3.6). In these terms, the following
result holds.

Lemma 3.7. For all σ ≥ 0 and φ ∈ C∞c (R+), considering the subcritically time-rescaled
tagged particle density

ḡ1
N (τ) := N1−2σg1

N (Nστ),

we have for all δ > 0,∥∥∥ˆ ∞
0

φ∂τ 〈ḡ1
N 〉 dτ −

ˆ
R
gφ(α)

〈
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,−

N,β( 1
µβ
f◦)
〉
dα

−
ˆ
R
gφ(α)

〈
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,+

N,βH
3;◦
β

〉
dα

+

ˆ
R

iα+1
Nσ gφ(α)

〈
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,+

N,β(iL3
N,β + iα+1

Nσ )−1H3;◦
β

〉
dα
∥∥∥
H−7
β (R2)

.R,β,δ N
(10+δ)σ− 1

2 ‖〈·〉10+δφ‖L1(R+),

where

H3;◦
β (x1, x2, x3) := −β( 1

µβ
f◦)(x1)WN,β(x2, x3), (3.26)

WN,β(x2, x3) :=
∞∑
n=0

(−β)n(N−3
N )nW ∗µβ (n+1)(x2, x3),

while gφ(α) := 1
2π

´∞
0

e(iα+1)τ

iα+1 φ(τ) dτ belongs to C∞b (R) and satisfies

|gφ(α)| .φ 〈α〉−2 and
ˆ
R
gφ =

ˆ ∞
0

φ.

Proof. Appealing to the product formula for the Laplace transform, as e.g. [13, Lemma 5.2],
we can readily deduce from Lemma 3.6 that∥∥∥ˆ ∞

0
φ∂τ 〈ḡ1

N 〉 −
ˆ
R
gφ(α)

〈
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,−

N,β( 1
µβ
f◦)
〉
dα

−
ˆ
R
gφ(α)

〈
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,+

N,β(iL3
N,β + iα+1

Nσ )−1iS3,=
N,β( 1

µβ
f◦)
〉
dα
∥∥∥
H−7
β (R2)

.δ N
(10+δ)σ− 1

2 ‖〈·〉10+δφ‖L1(R+), (3.27)

where the transformation gφ is as in the statement.
By definition of S3,=

N,β in Lemma 2.1, we have

iS3,=
N,β( 1

µβ
f◦)(x1, x2, x3) = −β( 1

µβ
f◦)(x1)K(x2 − x3) ·

(
x2Ωβ(x2)− x3Ωβ(x3)

)
= −β( 1

µβ
f◦)(x1)∇W (x2 − x3) ·

(
x⊥2 Ωβ(x2)− x⊥3 Ωβ(x3)

)
.
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Now compare this expression with the definition of L3
N,β: for any radial f ∈ C∞c (R2) and

any h ∈ C∞c ((R2)2),

iL3
N,β

[
(x1, x2, x3) 7→ f(x1)h(x2, x3)

]
(x1, x2, x3)

= f(x1)x⊥2 Ωβ(x2) · ∇2

(
h(x2, x3) + βN−3

N

ˆ
R2

W (x2 − x∗)h(x∗, x3)µβ(x∗)dx∗

)
+ f(x1)x⊥3 Ωβ(x3) · ∇3

(
h(x2, x3) + βN−3

N

ˆ
R2

h(x2, x∗)W (x∗ − x3)µβ(x∗)dx∗

)
.

We deduce
iL3

N,βH
3;◦
β = iS3,=

N,β( 1
µβ
f◦),

where H3;◦
β ∈ C∞b ((R2)3) is the smooth function defined in (3.26). Using this identity in

form of

(iL3
N,β + iα+1

Nσ )−1iS3,=
N,β( 1

µβ
f◦) = H3;◦

β −
iα+1
Nσ (iL3

N,β + iα+1
Nσ )−1H3;◦

β ,

and inserting it into (3.27), the conclusion follows. �

It remains to pass to the limit in the different terms of the above representation of ∂τ 〈ḡ1
N 〉.

For that purpose, we use the fact that the resolvents of iL2
N,β and iL3

N,β can be computed
in form of explicit Neumann series, cf. (3.20).

Proof of Theorem 3.1. We split the proof into four steps, separately evaluating the limit
of the different terms in the representation of ∂τ 〈ḡ1

N 〉 given in Lemma 3.7. The last step is
devoted to the proof of the positivity of the limiting coefficient field aβ .

Step 1. Proof that, provided β � 1 is small enough, we have for all φ ∈ C∞c (R+), all radial
h ∈ C∞c (R2), and 0 < σ < 1

2 ,

lim
N↑∞

ˆ
R
gφ(α)

〈
h,
(
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,−

N,β( 1
µβ
f◦)

+ iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,+

N,βH
3;◦
N,β

)〉
L2
β(R2)

dα

= −
(ˆ ∞

0
φ
)¨

(R2)2
∇h(x1) ·K(x1 − x2)

(
(iL2

β + 0)−1π2
βG

2;◦
β

)
(x1, x2)

× µβ(x1)µβ(x2) dx1dx2, (3.28)

where we define

G2;◦
β (x1, x2) := ( 1

µβ
∇f◦)(x1) · (−∇⊥1 Wβ)(x1, x2)

− ( 1
µβ
f◦)(x1)∇ logµβ(x2) ·K(x1 − x2), (3.29)

and where the orthogonal projection π2
β : L2

β((R2)2)→ E2
β is given by

π2
βh(x1, x2) := h(x1, x2)−

  
(S1)2

h(|x1|e1, |x2|e2) dσ(e1)dσ(e2).
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By definition of S1,+
N,β, S

2,−
N,β in Lemma 2.1, using that V,W, f◦ are radial, we can compute

〈
h,
(
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,−

N,β( 1
µβ
f◦) + iS1,+

N,β(iL2
N,β + iα+1

Nσ )−1iS2,+
N,βH

3;◦
N,β

)〉
L2
β(R2)

= −N−1
N

¨
(R2)2

∇h(x1) ·K(x1 − x2)
(
(iL2

N,β + iα+1
Nσ )−1G2;◦

N,β

)
(x1, x2)

× µβ(x1)µβ(x2) dx1dx2,

where

G2;◦
N,β(x1, x2) := 1

µβ(x1)µβ(x2)K(x1 − x2) · (∇1 −∇2)(f◦(x1)µβ(x2))

+ N−2
N

2∑
j=1

ˆ
R2

K(xj − x∗) · (∇j +∇ logµβ(xj))H
3;◦
N,β(x1, x2, x∗)µβ(x∗) dx∗.

As h and W are radial, we note that the map

(x1, x2) 7→ ∇h(x1) ·K(x1 − x2) = −∇h(x1) · ∇⊥W (x1 − x2)

belongs to E2
β . Further noting that the map L2

N,β leaves the subspace E2
β invariant, the

orthogonal projection π2
β can be smuggled in the above identity, to the effect of

〈
h,
(
iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,−

N,β( 1
µβ
f◦) + iS1,+

N,β(iL2
N,β + iα+1

Nσ )−1iS2,+
N,βH

3;◦
N,β

)〉
L2
β(R2)

= −N−1
N

¨
(R2)2

∇h(x1) ·K(x1 − x2)
(
(iL2

N,β + iα+1
Nσ )−1π2

βG
2;◦
N,β

)
(x1, x2)

× µβ(x1)µβ(x2) dx1dx2. (3.30)

Next, we proceed to a suitable reformulation of G2;◦
N,β. Recalling the definition of H3;◦

N,β in
Lemma 3.7, as well as K = −∇⊥W , we find that

G2;◦
N,β(x1, x2) = 1

µβ(x1)µβ(x2)K(x1 − x2) · (∇1 −∇2)(f◦(x1)µβ(x2))

+ βN−2
N ( 1

µβ
∇f◦)(x1) · ∇⊥1 (W ∗µβ WN,β)(x1, x2)

+ βN−2
N ( 1

µβ
f◦)(x1)

ˆ
R2

∇⊥W (x2 − x∗) · (∇2WN,β)(x∗, x2)µβ(x∗) dx∗

+ βN−2
N ( 1

µβ
f◦)(x1)∇ logµβ(x2) ·

ˆ
R2

∇⊥W (x2 − x∗)WN,β(x∗, x2)µβ(x∗) dx∗.

From the definition of WN,β in Lemma 3.7, we note that

W (x1 − x2)−WN,β(x1, x2) = βN−3
N (W ∗µβ WN,β)(x1, x2).
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This allows to reorganize the first two right-hand side terms above,

G2;◦
N,β(x1, x2) = ( 1

µβ
∇f◦)(x1) · (−∇⊥1 WN,β)(x1, x2)

− ( 1
µβ
f◦)(x1)∇ logµβ(x2) ·K(x1 − x2)

− β
N ( 1

µβ
∇f◦)(x1) ·

ˆ
R2

K(x1 − x∗)WN,β(x∗, x2)µβ(x∗) dx∗

+ βN−2
N ( 1

µβ
f◦)(x1)

ˆ
R2

∇⊥W (x2 − x∗) · (∇2WN,β)(x∗, x2)µβ(x∗) dx∗

+ βN−2
N ( 1

µβ
f◦)(x1)∇ logµβ(x2) ·

ˆ
R2

∇⊥W (x2 − x∗)WN,β(x∗, x2)µβ(x∗) dx∗. (3.31)

In order to evaluate the last two terms in the right-hand side, we note that the very
definition of WN,β further lets us compute
ˆ
R2

∇⊥W (x2 − x∗)WN,β(x∗, x2)µβ(x∗) dx∗

= 1
2∇
⊥
x2

( ∞∑
n=0

(−βN−3
N )nW ∗µβ (n+2)(x2, x2)

)
, (3.32)

together with
ˆ
R2

∇⊥W (x2 − x∗) · (∇2WN,β)(x∗, x2)µβ(x∗) dx∗

= −
d∑

α=1

∞∑
n=0

(−βN−3
N )n

(
∇⊥αW ∗µβ W

∗µβn ∗µβ ∇αW
)
(x2, x2) = 0.

As by symmetry the function x 7→W ∗µβn(x, x) is radial for all n ≥ 1, these two identities
ensure that the last two right-hand side terms in (3.31) actually vanish identically. We are
thus left with

G2;◦
N,β(x1, x2) = ( 1

µβ
∇f◦)(x1) · (−∇⊥1 WN,β)(x1, x2)

− ( 1
µβ
f◦)(x1)∇ logµβ(x2) ·K(x1 − x2)

− β
N ( 1

µβ
∇f◦)(x1) ·

ˆ
R2

K(x1 − x∗)WN,β(x∗, x2)µβ(x∗) dx∗.

Comparing this with the definition of G2;◦
β in (3.29), and in particular comparing WN,β

to Wβ , we easily find that for β ≤ 1
2‖W‖

−1
L∞(R2)

,

‖G2;◦
N,β −G

2;◦
β ‖L2

β((R2)2) .
1
N ‖

1
µβ
∇f◦‖L2

β(R2).

Further noting that

(iL2
N,βh− iL2

βh)(x1, x2) = −2β
N x2Ωβ(x2) ·

ˆ
R2

K(x2 − x∗)h(x1, x∗)µβ(x∗) dx∗,

we can estimate for all <ω 6= 0,∥∥(iL2
N,β + ω)−1 − (iL2

β + ω)−1
∥∥

L2
β((R2)2)→L2

β((R2)2)
. 1

N |<ω|
−2‖∇ logµβ‖L2

β(R2).
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These error estimates allow to replace the representation formula (3.30) by the following
approximation, for β ≤ 1

2‖W‖
−1
L∞(R2)

and 0 < σ < 1
2 ,

lim
N↑∞

sup
α∈R

∣∣∣∣〈h,(iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,−

N,β( 1
µβ
f◦)

+ iS1,+
N,β(iL2

N,β + iα+1
Nσ )−1iS2,+

N,βH
3;◦
N,β

)〉
L2
β(R2)

+

¨
(R2)2

∇h(x1) ·K(x1 − x2)
(
(iL2

β + iα+1
Nσ )−1π2

βG
2;◦
β

)
(x1, x2)

× µβ(x1)µβ(x2) dx1dx2

∣∣∣∣ = 0.

Finally, the limiting absorption principle of Remark 3.4 allows to pass to the limit in the
second left-hand side term. As

´
R gφ =

´∞
0 φ and |gφ(α)| .φ 〈α〉−2, the claim (3.28)

follows.

Step 2. Proof that for all φ ∈ C∞c (R+), all radial h ∈ C∞c (R2), and σ > 0,

lim
N↑∞

ˆ
R
gφ(α)

× iα+1
Nσ

〈
h, iS1,+

N,β(iL2
N,β + iα+1

Nσ )−1iS2,+
N,β(iL3

N,β + iα+1
Nσ )−1H3;◦

β

〉
L2
β(R2)

dα = 0. (3.33)

Let the radial test function h ∈ C∞c (R2) be fixed. By the definition of S1,+
N,β, S

2,+
N,β in

Lemma 2.1, we can compute for <ω 6= 0,

ω
〈
h, iS1,+

N,β(iL2
N,β + ω)−1iS2,+

N,β(iL3
N,β + ω)−1H3;◦

β

〉
L2
β(R2)

= −N−1
N

N−2
N

2∑
j=1

ω

˚
(R2)3

K(xj − x3) ·
[
∇j;β(iL3

N,β + ω)−1H3;◦
β

]
(x1, x2, x3)

×
[
((iL2

N,β)∗ + ω)−1H2;h
]
(x1, x2)µβ(x1)µβ(x2)µβ(x3) dx1dx2dx3, (3.34)

where we define H2;h(x1, x2) := K(x1−x2) ·∇1h(x1). Alternatively, by further integrating
by parts, this reads

ω
〈
h, iS1,+

N,β(iL2
N,β + ω)−1iS2,+

N,β(iL3
N,β + ω)−1H3;◦

β

〉
L2
β(R2)

= N−1
N

N−2
N

2∑
j=1

ω

˚
(R2)3

[
(iL3

N,β + ω)−1H3;◦
β

]
(x1, x2, x3)

×K(xj − x3) · ∇j
[
((iL2

N,β)∗ + ω)−1H2;h
]
(x1, x2)µβ(x1)µβ(x2)µβ(x3) dx1dx2dx3.

As h is radial, we note that H2;h belongs to E2
β . Recalling that E2

β = ker(L2
N,β)⊥, cf. Re-

mark 3.4, we deduce that
((iL2

N,β)∗ + ω)−1H2;h ∈ E2
β.

Now, for any g ∈ E2
β , we note that for j = 1, 2 the function

(x1, x2, x3) 7→ K(xj − x3) · ∇jg(x1, x2)
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also belongs to E3
β . As E3

β = ker(L3
N,β)⊥, cf. Remark 3.4, this allows to replace H3;◦

β

by π3
βH

3;◦
β in (3.34),

ω
〈
h, iS1,+

N,β(iL2
N,β + ω)−1iS2,+

N,β(iL3
N,β + ω)−1H3;◦

β

〉
L2
β(R2)

= −N−1
N

N−2
N

2∑
j=1

ω

˚
(R2)3

K(xj − x3) ·
[
∇j;β(iL3

N,β + ω)−1π3
βH

3;◦
β

]
(x1, x2, x3)

×
[
((iL2

N,β)∗ + ω)−1H2;h
]
(x1, x2)µβ(x1)µβ(x2)µβ(x3) dx1dx2dx3.

Now decomposing

L2
N,β = A2

β + βN−2
N T 2

β , L3
N,β = A3

β + βN−3
N T 3

β ,

in terms of
A2
β := Lβ ⊗ Id + Id⊗Lβ, T 2

β := Id⊗Tβ,
A3
β := Lβ ⊗ Id⊗2 + Id⊗Lβ ⊗ Id + Id⊗2⊗Lβ, T 3

β := Id⊗Tβ ⊗ Id + Id⊗2⊗Tβ,

and further arguing as in the proof of Lemma 3.3(iii) to express the resolvents of L2
N,β

and L3
N,β as power series, we are led to

ω
〈
h, iS1,+

N,β(iL2
N,β + ω)−1iS2,+

N,β(iL3
N,β + ω)−1H3;◦

β

〉
L2
β(R2)

= −N−1
N

N−2
N

2∑
j=1

ω

˚
(R2)3

K(xj − x3) ·
[
∇j;β(iA3

β + ω)−1G3;◦
β,ω

]
(x1, x2, x3)

×
[
((iA2

β)∗ + ω)−1G2;h
β,ω

]
(x1, x2)µβ(x1)µβ(x2)µβ(x3) dx1dx2dx3,

where we define the modified test functions

G2;h
N,β,ω :=

∞∑
n=0

(−βN−2
N )n[(iT 2

β )∗((iA2
β)∗ + ω)−1]nH2;h,

G3;◦
N,β,ω :=

∞∑
n=0

(−βN−3
N )n[iT 3

β (iA3
β + ω)−1]nπ3

βH
3;◦
β .

Using polar coordinates x = (r, θ), noting that resolvents of A2
β, A

3
β are explicit using

Fourier series, and writing K(x) = −W ′(|x|)x⊥|x| , the above can be reformulated into

ω
〈
h, iS1,+

N,β(iL2
N,β + ω)−1iS2,+

N,β(iL3
N,β + ω)−1H3;◦

β

〉
L2
β(R2)

= N−1
N

N−2
N

2∑
j=1

∑
k1,k2,k3,k′1,k

′
2

ω

˚
(R+)3

(¨
(0,2π)2

ei(k1−k
′
1)θ1+i(k2−k′2)θ2+ik3θj dθ1dθ2

)
×
([
− r3S

k3(rj , r3)∂rj + (ikj + βr2
jΩβ(rj))R

k3(rj , r3)
] Ĝ3;◦

N,β,ω(r1,k1;r2,k2;r3,k3)

ik1Ωβ(r1)+ik2Ωβ(r2)+ik3Ωβ(r3)+ω

)
× Ĝ2;h

N,β,ω(r1,k′1;r2,k′2)

ik′1Ωβ(r1)+ik′2Ωβ(r2)+ω
µβ(r1)µβ(r2)µβ(r3) r1r2r3 dr1dr2dr3,
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where we denote

Rk(r1, r3) :=

ˆ 2π

0

W ′((r21+r23−2r1r3 cos(θ))1/2)

(r21+r23−2r1r3 cos(θ))1/2

(
1− r3

r1
cos(θ)

)
e−ikθ dθ,

Sk(r1, r3) :=

ˆ 2π

0

W ′((r21+r23−2r1r3 cos(θ))1/2)

(r21+r23−2r1r3 cos(θ))1/2
sin(θ) e−ikθ dθ.

Performing integrals over angles, this leads to∣∣∣ω〈h, iS1,+
N,β(iL2

N,β + ω)−1iS2,+
N,β(iL3

N,β + ω)−1H3;◦
β

〉
L2
β(R2)

∣∣∣
.

∑
k1,k2,k3

∣∣∣∣ω˚
(R+)3

Ĝ2;h
N,β,ω(r1,k1+k3;r2,k2)

i(k1+k3)Ωβ(r1)+ik2Ωβ(r2)+ω

×
([
− r3S

k3(r1, r3)∂r1 + (ik1 + βr2
1Ωβ(r1))Rk3(r1, r3)

] Ĝ3;◦
N,β,ω(r1,k1;r2,k2;r3,k3)

ik1Ωβ(r1)+ik2Ωβ(r2)+ik3Ωβ(r3)+ω

)
× µβ(r1)µβ(r2)µβ(r3) r1r2r3 dr1dr2dr3

∣∣∣∣ + sym,

where “sym” stands for the corresponding expression obtained by exchanging variables
(r1, k1) and (r2, k2) in the integrand.

We turn to the evaluation of the derivative ∂r1 in the integrand. For that purpose, we
separately consider the cases k1 = 0 and k3 = 0. Noting that Sk3=0(r1, r3) = 0, using the
following identities,(

1
ik1Ωβ(r1)+ik2Ωβ(r2)+ω

)2
= − 1

ik1Ω′β(r1)
∂r1
(

1
ik1Ωβ(r1)+ik2Ωβ(r2)+ω

)
,

∂r1
(

1
ik1Ωβ(r1)+ik2Ωβ(r2)+ik3Ωβ(r3)+ω

)
=

k1Ω′β(r1)

k3Ω′β(r3)
∂r3
(

1
ik1Ωβ(r1)+ik2Ωβ(r2)+ik3Ωβ(r3)+ω

)
,

and performing several integrations by parts, we are led to∣∣∣ω〈h, iS1,+
N,β(iL2

N,β + ω)−1iS2,+
N,β(iL3

N,β + ω)−1H3;◦
β

〉
L2
β(R2)

∣∣∣ (3.35)

.
∑
k1,k2

∣∣∣∣ω¨
(R+)2

(
1

ik1Ωβ(r1)+ik2Ωβ(r2)+ω

)
Ak1,k2N,β,ω(r1, r2)µβ(r1)µβ(r2) r1r2 dr1dr2

∣∣∣∣
+

∑
k1,k2,k3

1k3 6=0

∣∣∣∣ω˚
(R+)3

(
1

ik1Ωβ(r1)+ik2Ωβ(r2)+ik3Ωβ(r3)+ω

)(
1

i(k1+k3)Ωβ(r1)+ik2Ωβ(r2)+ω

)
×Bk1,k2,k3

N,β,ω (r1, r2, r3)µβ(r1)µβ(r2)µβ(r3) r1r2r3 dr1dr2dr3

∣∣∣∣
+

∑
k1,k2,k3

1k3 6=0

∣∣k1
k3

∣∣∣∣∣∣ω˚
(R+)3

(
1

ik1Ωβ(r1)+ik2Ωβ(r2)+ik3Ωβ(r3)+ω

)(
1

i(k1+k3)Ωβ(r1)+ik2Ωβ(r2)+ω

)
× Ck1,k2,k3N,β,ω (r1, r2, r3)µβ(r1)µβ(r2)µβ(r3) r1r2r3 dr1dr2dr3

∣∣∣∣ + sym,



DYNAMICS OF POINT-VORTEX SYSTEMS NEAR EQUILIBRIUM 35

where we use the notations

Ak1,k2N,β,ω(r1, r2) :=
(
∂r1 + βr1Ωβ(r1) + 1

r1

)
×
(

1
Ω′β(r1)

(
1 + β

ik1
r2

1Ωβ(r1)
)
Ĝ2;h
β,ω(r1, k1; r2, k2)

×
ˆ
R+

R0(r1, r3) Ĝ3;◦
β,ω(r1, k1; r2, k2; r3, 0)µβ(r3) r3 dr3

)
,

Bk1,k2,k3
N,β,ω (r1, r2, r3) := Ĝ2;h

β,ω(r1, k1 + k3; r2, k2)

×
(
r3S

k3(r1, r3)∂r1 − (ik1 + βr2
1Ωβ(r1))Rk3(r1, r3)

)
×Ĝ3;◦

β,ω(r1, k1; r2, k2; r3, k3),

Ck1,k2,k3N,β,ω (r1, r2, r3) := Ω′β(r1)Ĝ2;h
β,ω(r1, k1 + k3; r2, k2)

×(∂r3 + βr3Ωβ(r3) + 1
r3

)
(
r3Sk3 (r1,r3)

Ω′β(r3)
Ĝ3;◦
β,ω(r1, k1; r2, k2; r3, k3)

)
.

With this reformulation (3.35), we are now in position to use to direct estimates similarly
as in the proof of Lemma 3.3(iii). More precisely, instead of (3.18), we can use here the
following rougher model estimate: for any φ ∈ C∞b (−1, 1) and ε 6= 0,∣∣∣∣ ˆ 1

−1

φ(t)
t+iε dt

∣∣∣∣+

∣∣∣∣ˆ 1

0

tφ(t)
t2+iε

dt

∣∣∣∣ . log(2 + 1
ε )‖φ‖L∞(−1,1).

Using this bound to estimate (3.35) close to singularities, using local deformations to
reduce to these model situations, recalling the non-degeneracy assumption (3.1) for Ωβ ,
and recalling |gφ(α)| .φ 〈α〉−2, the claim (3.33) easily follows. The key is the transversality
of singularities in (3.35) (cf. k3 6= 0 in the last two terms).

Step 3. Proof of (3.2).
Combined with Lemma 3.7, for 0 < σ < 1

20 , the results of the first two steps yield in the
distributional sense, for all radial h ∈ C∞c (R2), as N ↑ ∞,

〈h, ∂τ ḡ1
N 〉L2

β(R2) → Tβ(h),

where we denote

Tβ(h) := −
¨

(R2)2
∇h(x1) ·K(x1 − x2)

(
(iL2

β + 0)−1π2
βG

2;◦
β

)
(x1, x2)

× µβ(x1)µβ(x2) dx1dx2. (3.36)

It remains to proceed to a slight reformulation of this limiting expression. For that purpose,
we note that by definition of iL2

β ,

iL2
β

[
(x1, x2) 7→ β( 1

µβ
f◦)(x1)Wβ(x1, x2)

]
= −( 1

µβ
f◦)(x1)∇ logµβ(x1) · ∇⊥1 Wβ(x1, x2)

− ( 1
µβ
f◦)(x1)∇ logµβ(x2) · ∇⊥2

(
Wβ + βWβ ∗µβ W

)
(x1, x2).

Using the definition of Wβ in form of

Wβ + βWβ ∗µβ W = W,
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cf. (3.5), we deduce

iL2
β

[
(x1, x2) 7→ β( 1

µβ
f◦)(x1)Wβ(x1, x2)

]
= ( 1

µβ
f◦)(x1)∇ logµβ(x1) · (−∇⊥1 Wβ)(x1, x2)

− ( 1
µβ
f◦)(x1)∇ logµβ(x2) ·K(x1 − x2).

Recalling the definition of G2;◦
β in Step 1, this allows us to rewrite, after straightforward

simplifications, for ε > 0,

(iL2
β + ε)−1π2

βG
2;◦
β = (iL2

β + ε)−1π2
βR

2;◦
β + π2

βS
2;◦
β − ε(iL

2
β + ε)−1π2

βS
2;◦
β ,

where we take

R2;◦
β (x1, x2) := ∇( 1

µβ
f◦)(x1) · (−∇⊥1 Wβ)(x1, x2),

S2;◦
β (x1, x2) := β( 1

µβ
f◦)(x1)Wβ(x1, x2).

Letting ε ↓ 0, appealing to the limiting absorption principle for the restriction of L2
β

to ran(π2
β) = E2

β = ker(L2
β)⊥, cf. Remark 3.4, we deduce

(iL2
β + 0)−1π2

βG
2;◦
β = (iL2

β + 0)−1π2
βR

2;◦
β + π2

βS
2;◦
β .

The limit (3.36) can then be reformulated as follows,

Tβ(h) = −
¨

(R2)2
∇h(x1) ·K(x1 − x2) (π2

βS
2;◦
β )(x1, x2)µβ(x1)µβ(x2) dx1dx2

−
¨

(R2)2
∇h(x1) ·K(x1 − x2)

(
(iL2

β + 0)−1π2
βR

2;◦
β

)
(x1, x2)

× µβ(x1)µβ(x2) dx1dx2.

Recalling that the test function (x1, x2) 7→ ∇h(x1) ·K(x1, x2) belongs to E2
β , and inserting

the definition of S2;◦
β , the first right-hand side term takes on the following form,

¨
(R2)2

∇h(x1) ·K(x1 − x2) (π2
βS

2;◦
β )(x1, x2)µβ(x1)µβ(x2) dx1dx2

= −β
ˆ
R2

f◦(x1)∇h(x1) ·
(ˆ

R2

∇⊥W (x1 − x∗)Wβ(x∗, x1)µβ(x∗) dx∗

)
dx1,

and thus, using the definition ofWβ as in (3.32), noting that the function x 7→W ∗µβn(x, x)
is radial for all n ≥ 1,¨

(R2)2
∇h(x1) ·K(x1 − x2) (π2

βS
2;◦
β )(x1, x2)µβ(x1)µβ(x2) dx1dx2 = 0.

Further noting that R2;◦
β actually belongs to E2

β , hence π
2
βR

2;◦
β = R2;◦

β , we get that

Tβ(h) = −
¨

(R2)2
∇h(x1) ·K(x1 − x2)

(
(iL2

β + 0)−1R2;◦
β

)
(x1, x2)µβ(x1)µβ(x2) dx1dx2.

Using polar coordinates x = re, inserting the definition of R2;◦
β , noting that the operator L2

β

commutes with multiplication by radial functions of the first variable x1, and taking the
real part, this proves the conclusion (3.2).
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Step 4. Positivity of aβ .
In the spirit of (3.14), consider the following deformed Hilbert structure on L2

β((R2)2): for
all G,H ∈ L2

β((R2)2), define

〈G,H〉
L̃
2
β((R2)2)

:=

¨
(R2)2

G(x1, x2)H(x1, x2)µβ(x1)µβ(x2) dx1dx2

+ β

¨
(R2)3

G(x1, x2)H(x1, x3)W (x2 − x3)µβ(x1)µβ(x2)µβ(x3) dx1dx2dx3,

that is, using µβ-convolution notation,

〈G,H〉
L̃
2
β((R2)2)

=

¨
(R2)2

(
G+ β(G ∗µβ W )

)
(x1, x2)H(x1, x2)µβ(x1)µβ(x2) dx1dx2.

Noting that the definition of H0, Hβ in (3.4) yields

Hβ + β(Hβ ∗µβ W ) = H0,

and recalling that L2
β commutes with multiplication by radial functions of the first vari-

able x1, we deduce for all nonnegative radial h ∈ C∞c (R2),〈√
hHβ, (iL

2
β + 0)−1

√
hHβ

〉
L̃
2
β((R2)2)

=

¨
(R2)2

h(x1)H0(x1, x2)
[
(iL2

β + 0)−1Hβ

]
(x1, x2)µβ(x1)µβ(x2) dx1dx2,

which means, by definition (3.3) of aβ ,ˆ
R+

h(r) aβ(r)µβ(r) r dr =
〈√

hHβ,<(iL2
β + 0)−1

√
hHβ

〉
L̃2
β((R2)2)

. (3.37)

As L2
β is self-adjoint on the deformed Hilbert structure L̃2

β((R2)2), as shown in the proof
of Lemma 3.3(i), we deduce that the right-hand side of (3.37) is nonnegative. The non-
negativity of aβ follows by the arbitrariness of h. �

4. Degenerate case: Gaussian equilibrium

This section is devoted to the case of a Gaussian mean-field equilibrium µβ , that is, we
assume that potentials V,W satisfy for some R ∈ (0,∞),

(V +W ∗ µβ)(x) = 1
2R|x|

2, µβ(x) = βR
2π e
− 1

2
βR|x|2 , (4.1)

and we shall then prove Theorem 1.2.

4.1. Preliminary BBGKY analysis. We start by noting that the BBGKY hierarchy
for correlations as derived in Lemma 2.1 simplifies drastically in the Gaussian setting.

Lemma 4.1 (BBGKY hierarchy for correlations). In the Gaussian setting (4.1), the cor-
relation functions satisfy the BBGKY hierarchy (2.7) where the defining operators are now
given for all 1 ≤ m ≤ N by

iLmN,βg
m
N := −N−m

N

m∑
j=2

βRxj ·
ˆ
R2

K(xj − x∗) gmN (x[m]\{j}, x∗)µβ(x∗) dx∗,
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iSm,+N,β g
m+1
N := −N−m

N

m∑
j=1

∇j;β ·
ˆ
R2

K(xj − x∗) gm+1
N (x[m], x∗)µβ(x∗) dx∗,

iSm,◦N,βg
m
N :=

m∑
i=1

∑
2≤j≤m
i6=j

∇i;β ·
ˆ
R2

K(xi − x∗) gmN (x[m]\{j}, x∗)µβ(x∗) dx∗

−
m∑

i,j=1

(
K(xi − xj)−K ∗ µβ(xi)

)
· ∇i;βgmN ,

iSm,−N,β g
m−1
N := −

6=∑
2≤i,j≤m

βRxi ·
ˆ
R2

K(xi − x∗) gm−1
N (x[m]\{i,j}, x∗)µβ(x∗) dx∗

−
m∑
i=1

∑
2≤j≤m
i6=j

(
K(xi − xj)− (K ∗ µβ)(xi)

)
· ∇i;βgm−1

N (x[m]\{j})

+
m∑
i=2

m∑
j=1

βRxi ·K(xi − xj) gm−1
N (x[m]\{i}),

iSm,=N,β g
m−2
N := 0,

with the short-hand notation ∇i;β = ∇i − βRxi.

Proof. As V,W, f◦ are radial, we first note that the initial data (1.11) satisfies

f◦N (Ox1, . . . , OxN ) = f◦N (x1, . . . , xN ), for all O ∈ O(2),

which remains true over time by the Liouville equation. In particular, via (2.6), we deduce

gmN (Ox1, . . . , Oxm) = gmN (x1, . . . , xm), for all 1 ≤ m ≤ N and O ∈ O(2),

which implies the differential identity
m∑
j=1

x⊥j · ∇jgmN = 0.

In the Gaussian setting (4.1), as we have F +K ∗ µβ = −Rx⊥, we deduce
m∑
j=1

(K ∗ µβ + F )(xj) · ∇jgmN = 0,

which yields the different simplifications in the definition of the relevant operators compared
to Lemma 2.1. �

The above shows that the linearized mean-field operators {LmN}1≤m≤N can now be writ-
ten as Kronecker sums

LmN,β = N−m
N

m∑
j=2

(IdL2
β(R2))

⊗j−1 ⊗ Tβ ⊗ (IdL2
β(R2))

⊗(m−j), (4.2)

involving the following single-particle operator on L2
β(R2),

(iTβh)(x) := −βRx ·
ˆ
R2

K(x− x∗)h(x∗)µβ(x∗) dx∗. (4.3)
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The following result states that this operator is compact, and identifies its kernel.

Lemma 4.2. Consider the Gaussian setting (4.1) and assume that W does not vanish
identically. Then, for all β > 0, the above-defined operator Tβ is compact and self-adjoint
on L2

β(R2). Moreover, its kernel coincides with the set of radial functions.

Proof. We split the proof into three steps.

Step 1. Proof that Tβ is compact.
Given a weakly converging sequence hn ⇀ h in L2

β(R2), we find Tβhn → Tβh a.e. By the
Cauchy–Schwarz inequality, the definition (4.3) of Tβ can be bounded by

|Tβhn(x)| ≤ |βRx| ‖K‖L∞(R2)

(
supn ‖hn‖L2

β(R2)

)
∈ L2

β(R2),

so that the dominated convergence theorem entails Tβhn → Tβh strongly in L2
β(R2). This

proves that Tβ is compact.

Step 2. Proof that Tβ is self-adjoint.
By Step 1, in order to show that Tβ is self-adjoint on L2

β(R2), it remains to check that it
is symmetric. Recalling that x ·K(x) = 0, we can write

〈h′, Tβh〉L2
β(R2) = iβR

¨
R2×R2

x ·K(x− x∗)h′(x)h(x∗)µβ(x)µβ(x∗) dxdx∗

= i
2βR

¨
R2×R2

(x+ x∗) ·K(x− x∗)h′(x)h(x∗)µβ(x)µβ(x∗) dxdx∗.

As K satisfies K(−x) = −K(x), this proves that Tβ is symmetric.

Step 3. Identification of ker(Tβ).
Recalling again that x ·K(x) = 0, as well as ∇µβ = −βRxµβ and K = −∇⊥W , and
integrating by parts, we can rewrite the definition (4.3) of Tβ as

(iTβh)(x) = −βR
ˆ
R2

K(x− x∗) · x∗ h(x∗)µβ(x∗) dx∗

= 2

ˆ
R2

K(x− x∗) · (h
√
µβ)(x∗)∇

√
µβ(x∗) dx∗

= −2

ˆ
R2

W (x− x∗)∇⊥(h
√
µβ)(x∗) · ∇

√
µβ(x∗) dx∗.

If h ∈ L2
β(R2) belongs to ker(Tβ), we deduce from this identity that

H := F
{
∇⊥(h

√
µβ) · ∇√µβ

}
= 0 a.e. on the support of F{W},

where we use here the notation F{g} for the Fourier transform of a function g on R2.
As µβ is Gaussian and as h√µβ ∈ L2(Rd), we note that H is real analytic. Given that it
vanishes on the support of F{W}, and noting that the latter contains an open set as W is
integrable and does not vanish identically, we deduce that H vanishes everywhere on R2.
Inverting the Fourier transform, this means

∇⊥(h
√
µβ) · ∇√µβ = 0 a.e.,

or equivalently x⊥ · ∇h(x) = 0 a.e., which precisely means that h is radial. �
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Next, we establish the following useful preliminary estimates on BBGKY operators
in the weighted negative Sobolev spaces defined in (2.18). We emphasize that item (ii)
establishes that linearized mean-field evolutions are almost uniformly bounded in negative
Sobolev spaces in sharp contrast with the non-Gaussian case of Lemma 3.5(ii).

Lemma 4.3.
(i) Weak bounds on BBGKY operators:

For all 1 ≤ m ≤ N , s ≥ 0, and hm+r ∈ C∞c ((R2)m+r) for r ∈ {−1, 0, 1}, we have

‖LmN,βhm‖H−sβ ((R2)m) .m,s ‖h
m‖H−sβ ((R2)m),

‖Sm,◦N,βh
m‖H−s−1

β ((R2)m) .m,s ‖h
m‖H−sβ ((R2)m),

‖Sm,+N,β h
m+1‖H−s−1

β ((R2)m) .m,s ‖h
m+1‖H−sβ ((R2)m+1),

‖Sm,−N,β h
m−1‖H−s−1

β ((R2)m) .m,s ‖h
m−1‖H−sβ ((R2)m−1).

(ii) Weak bounds on linearized mean-field evolutions:
For all 1 ≤ m ≤ N , s ≥ 0, δ > 0, and hm ∈ C∞c ((R2)m), we have

‖eiL
m
N,βthm‖H−sβ ((R2)m) .m,s,δ 〈t〉

δ‖hm‖H−sβ ((R2)m).

Proof. Item (i) is obtained by duality, as in the proof of Lemma 3.5, and we skip the detail.
We turn to the proof of item (ii). By duality, recalling that the operator LmN,β in (4.2) is
self-adjoint by Lemma 4.2, it suffices to prove for all s ≥ 0, δ > 0, and hm ∈ C∞c ((R2)m),

‖eiL
m
N,βthm‖Hs

β((R2)m) .m,s,δ 〈t〉δ‖hm‖Hs
β((R2)m).

As by definition LmN,β is (a multiple of) the Kronecker sum of Tβ over the last m − 1

directions on L2
β((R2)m), cf. (4.2), it suffices to show, for all s ≥ 0, δ > 0, and h ∈ C∞c (R2),

‖eiTβth‖Hs
β(R2) .s,δ 〈t〉δ‖h‖Hs

β(R2). (4.4)

For that purpose, we first note that by definition (4.3) the operator Tβ satisfies the following
regularizing property: for all r ≥ 0,

‖Tβh‖Hr
β(R2) .r ‖h‖L2

β(R2).

Writing eiTβth− h =
´ t

0 iTβ(eiTβt
′
h) dt′ and using this regularizing property, we then get

‖eiTβth− h‖Hr
β(R2) ≤

ˆ t

0
‖Tβ(eiTβt

′
h)‖Hr

β(R2) dt
′ .r

ˆ t

0
‖eiTβt′h‖L2

β(R2) dt
′.

Now we combine this with the interpolation inequality of Lemma 2.3(ii): for all r ≥ s ≥ 0,
we get

‖eiTβth− h‖Hs
β(R2) .s,r ‖eiTβth− h‖

1− s
r

L2
β(R2)

‖eiTβth− h‖
s
r

Hr
β(R2)

.r ‖eiTβth− h‖1−
s
r

L2
β(R2)

(ˆ t

0
‖eiTβt′h‖L2

β(R2) dt
′
) s
r
.

By the triangle inequality and the self-adjointness of Tβ on L2
β(R2), cf. Lemma 4.2, we

conclude that
‖eiTβth‖Hs

β(R2) .s,r ‖h‖Hs
β(R2) + 〈t〉

s
r ‖h‖L2

β(R2),

and the claim (4.4) follows by choosing r ≥ s
δ . �
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4.2. Proof of Theorem 1.2. We start by using the cumulant estimates of Lemma 2.2
to truncate the BBGKY hierarchy and get a closed description of the tagged particle
density. We manage to get arbitrarily close to the critical timescale t = O(N1/2) by
considering multiple iterations of the hierarchy. This iteration procedure works precisely
thanks to the almost uniform bound on linearized mean-field evolutions that we proved
above, cf. Lemma 4.3(ii), in contrast with the non-Gaussian case where we could not avoid
a strong time restriction, cf. Lemma 3.6.

Lemma 4.4. Consider the Gaussian setting (4.1). For all σ < 1
2 , there exist δ, s > 0

(with δ ' 1
2 − σ and s ' δ−2) such that

sup
0≤t≤Nσ

∥∥∥N∂2
t g

1;t
N − iS

1,+
N,βe

−it(Id⊗Tβ)iS2,−
N,β( 1

µβ
f◦)
∥∥∥
H−sβ (R2)

.σ N−δ.

Proof. Recall that in the Gaussian setting the BBGKY hierarchy (2.7) holds with L1
N,β = 0,

with Sm,=N,β = 0 for all m ≥ 1, and with L2
N,β = N−2

N (Id⊗Tβ), where Tβ is defined in (4.3),
cf. Lemma 4.1. For the tagged particle density, we then find

∂tg
1
N = iS1,+

N,βg
2
N + 1

N iS
1,◦
N,βg

1
N , (4.5)

and thus, taking another time derivative and iterating,

N∂2
t g

1
N − iS

1,+
N,βN∂tg

2
N = −S1,◦

N,βS
1,+
N,βg

2
N − 1

N S
1,◦
N,βS

1,◦
N,βg

1
N . (4.6)

Next, we further appeal to the BBGKY hierarchy to express the correlation functionN∂tg2
N

in the left-hand side. For that purpose, we shall use the following version of the Duhamel
formula: if g, h satisfy an equation of the form

∂tg + iLg = h, g|t=0 = 0,

for a self-adjoint operator L, then we can write the solution as gt =
´ t

0 e
−iL(t−s)hs ds, from

which we can deduce for instance, taking a time derivative and integrating by parts,

∂tg
t =

ˆ t

0

(
δ(s− t)− e−iL(t−s)iL

)
hs ds

= e−iLth◦ +

ˆ t

0
e−iL(t−s)∂sh

s ds. (4.7)

Now, as L2
N,β = N−2

N (Id⊗Tβ), the BBGKY equation (2.7) for the correlation function g2
N

takes the form

∂tg
2
N + i(Id⊗Tβ)g2

N = iS2,+
N,βg

3
N + 1

N

(
iS2,◦
N,βg

2
N + iS2,−

N,βg
1
N + 2i(Id⊗Tβ)g2

N

)
,

hence, using g1
N |t=0 = 1

µβ
f◦ and gmN |t=0 = 0 for allm ≥ 2, the above Duhamel formula (4.7)

yields

N∂tg
2;t
N = e−it(Id⊗Tβ)iS2,−

N,β( 1
µβ
f◦) +

ˆ t

0
e−i(t−s)(Id⊗Tβ)iS2,+

N,βN∂sg
3;s
N ds

+

ˆ t

0
e−i(t−s)(Id⊗Tβ)

(
iS2,◦
N,β∂sg

2;s
N + iS2,−

N,β∂sg
1;s
N + 2i(Id⊗Tβ)∂sg

2;s
N

)
ds.



42 M. DUERINCKX AND P.-E. JABIN

Further replacing ∂sg1
N by (4.5) in the right-hand side, and integrating by parts as in (4.7)

to remove the time derivative on g2
N , we get

N∂tg
2;t
N = e−it(Id⊗Tβ)iS2,−

N,β( 1
µβ
f◦) +

ˆ t

0
e−i(t−s)(Id⊗Tβ)iS2,+

N,βN∂sg
3;s
N ds

+

ˆ t

0
e−i(t−s)(Id⊗Tβ)

(
iS2,−
N,βiS

1,+
N,βg

2;s
N + 1

N iS
2,−
N,βiS

1,◦
N,βg

1;s
N

)
ds

+

ˆ t

0

(
δ(s− t)− e−i(t−s)(Id⊗Tβ)i(Id⊗Tβ)

)(
iS2,◦
N,β + 2i(Id⊗Tβ)

)
g2;s
N ds.

Appealing to Lemmas 2.2 and 4.3 to estimate the different right-hand side terms, we deduce
for all s ≥ 1 and T, δ > 0,

sup
0≤t≤T

‖N∂tg2;t
N ‖H−s−1

β (R2) .s,δ 1 +N−
1
2 〈T 〉1+δ + 〈T 〉1+δ sup

0≤t≤T
‖N∂tg3;t

N ‖H−sβ (R2), (4.8)

and similarly, further combining with (4.6),

sup
0≤t≤T

∥∥∥N∂2
t g

1;t
N − iS

1,+
N,βe

−it(Id⊗Tβ)iS2,−
N,β( 1

µβ
f◦)
∥∥∥
H−s−2
β (R2)

.s,δ N
− 1

2 〈T 〉1+δ + 〈T 〉1+δ sup
0≤t≤T

‖N∂tg3;t
N ‖H−sβ (R2). (4.9)

It remains to estimate the 3-particle correlation function ∂tg
3
N . In order to get an esti-

mate valid up to the critical timescale t = O(N1/2), some special care is needed and we
shall argue by iterations on the whole hierarchy. For any m ≥ 3, applying the Duhamel
formula (4.7) to the BBGKY equation (2.7) for gmN , we get

N∂tg
m;t
N =

ˆ t

0
e−iL

n
N (t−s)iSm,+N,β N∂sg

m+1;s
N ds

+

ˆ t

0
e−iL

n
N (t−s)

(
iSm,◦N,β∂sg

m;s
N + iSm,−N,β ∂sg

m−1;s
N

)
ds,

and therefore, by Lemmas 2.2 and 4.3, we get for any s ≥ 0 and T, δ > 0,

sup
0≤t≤T

‖N∂tgm;t
N ‖H−s−1

β (R2) .s,δ N
−1〈T 〉1+δ sup

0≤t≤T
‖N∂tgm;t

N ‖H−sβ (R2)

+ 〈T 〉1+δ sup
0≤t≤T

‖N∂tgm+1;t
N ‖H−sβ (R2) +N−1〈T 〉1+δ sup

0≤t≤T
‖N∂tgm−1;t

N ‖H−sβ (R2).

Denoting

Ams (T ) := sup
0≤t≤T

‖N
m−1

2 ∂tg
m;t
N ‖H−sβ (R2), (4.10)

the above means for all m ≥ 3, s ≥ 0, and T, δ > 0,

Ams+1(T ) .s,δ N
−1〈T 〉1+δAms (T ) +N−

1
2 〈T 〉1+δ

(
Am+1
s (T ) +Am−1

s (T )
)
. (4.11)
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Further note that the BBGKY equation (2.7) for ∂tgmN , combined with Lemmas 2.2 and 4.3,
yields the following a priori estimates, for all m ≥ 2, s ≥ 1, and T > 0,

Ams (T ) ≤ sup
0≤t≤T

N
m−1

2

(
‖iLmN,βg

m;t
N ‖H−sβ (R2) + ‖iSm,+N,β g

m+1;t
N ‖H−sβ (R2)

+ 1
N ‖iS

m,◦
N,βg

m;t
N ‖H−sβ (R2) + 1

N ‖iS
m,−
N,β g

m−1;t
N ‖H−sβ (R2)

)
. 1. (4.12)

Now combining (4.11) and (4.12), we deduce by direct iteration, for all s ≥ 1, k ≥ 0,
and T, δ > 0, provided that N−1/2〈T 〉1+δ ≤ 1,

A3
s+k(T ) .s,k,δ N

−1〈T 〉1+δ + (N−
1
2 〈T 〉1+δ)k +N−

1
2 〈T 〉1+δA2

s(T ).

Noting that (4.8) means, with the notation (4.10), for s ≥ 1,

A2
s+1(T ) .s,δ N

− 1
2 +N−1〈T 〉1+δ +N−

1
2 〈T 〉1+δA3

s(T ), (4.13)

and inserting this into the above, we deduce for all s ≥ 1, k ≥ 0, and T, δ > 0, provided
that N−1/2〈T 〉1+δ ≤ 1,

A3
s+k+1(T ) .s,k,δ N

−1〈T 〉1+δ + (N−
1
2 〈T 〉1+δ)k + (N−

1
2 〈T 〉1+δ)2A3

s(T ).

Now further iterating this inequality for A3, together with the a priori estimate (4.12), we
deduce for all k ≥ 1, s ≥ k2, and T > 0, provided that N−1/2〈T 〉1+δ ≤ 1,

sup
0≤t≤T

‖N∂tg3;t
N ‖H−sβ (R2) = A3

s(T ) .s,k,δ N
−1〈T 〉1+δ + (N−

1
2 〈T 〉1+δ)k.

Combining this with (4.9) and optimizing in k yield the conclusion. �

In view of the compact nature of the linearized mean-field operator Tβ , as formulated
in Lemma 4.2, we may now pass to the limit in the above closed description of the tagged
particle density and conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. By definition of BBGKY operators in Lemma 2.1, we have that

iS1,+
N,βe

−it(Id⊗Tβ)iS2,−
N,β( 1

µβ
f◦)

= −N−1
N (∇− βRx) ·

ˆ
R2

K(x− x∗) (e−it(Id⊗Tβ)H)(x, x∗)µβ(x∗) dx∗, (4.14)

where H ∈ L2
β((R2)2) is given by

H(x, x∗) = −
(
K(x− x∗)− (K ∗ µβ)(x)

)
· (∇− βRx)( 1

µβ
f◦)(x)

= −K(x− x∗) · ( 1
µβ
∇f◦)(x).

Since Tβ is compact, cf. Lemma 4.2, we find as in (1.5), for all h ∈ L2
β(R2) and σ > 0,

e−iτN
σTβh

N↑∞−−−→ π0h,

in the weak-* sense of L∞(R+; L2
β(R2)), where π0 stands for the orthogonal projection

of L2
β(R2) onto the kernel of Tβ , that is, by Lemma 4.2, onto the subspace of radial
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functions. Using this in (4.14) with t = Nστ , we deduce the following weak-* convergence
in L∞(R+;H−1

β (R2)),

iS1,+
N e−iτN

σ(Id⊗Tβ)iS2,−
N ( 1

µβ
f◦)

N↑∞−−−→ −(∇− βRx) ·
ˆ
R2

K(x− x∗) ((Id⊗π0)H)(x, x∗)µβ(x∗) dx∗.

By definition of H, the weak-* limit can be rewritten as

iS1,+
N e−iτN

σ(Id⊗Tβ)iS2,−
N ( 1

µβ
f◦)

N↑∞−−−→ 1
µβ

div(A∇f◦), in L∞(R+;H−1
β (R2)),

where the coefficient field A ∈ L∞(R2)2×2 is given by

A(x) :=

ˆ
R2

K(x− x∗)⊗
(

(Id⊗π0)
[
(x1, x2) 7→ K(x1 − x2)

])
(x, x∗)µβ(x∗) dx∗.

The projection π0 onto the subspace of radial functions can be explicitly computed and we
recover formula (1.16) for A. Combining this convergence with the estimate of Lemma 4.4,
and using (2.19) in form of ‖h‖H−s(R2) . ‖ 1

µβ
h‖H−sβ (R2), the conclusion follows. �

5. Special degenerate case: uniform equilibrium

This section is devoted to the special degenerate case of a tagged particle in a uniformly
distributed background on the torus Td, say in arbitrary spatial dimension d ≥ 1. More
precisely, given a smooth force kernel K ∈ C∞(Td)d that satisfies the incompressibility
condition div(K) = 0 and the action-reaction condition K(−x) = −K(x), we now consider
the associated point-vortex dynamics

∂txi = 1
N

N∑
j=1

K(xi − xj), xi|t=0 = x◦i , 1 ≤ i ≤ N.

The Liouville equation for the N -point density fN ∈ P((Td)N ) then reads

∂tfN + 1
N

N∑
i,j=1

K(xi − xj) · ∇ifN = 0, fN |t=0 = f◦N . (5.1)

Consider a tagged particle (labeled ‘1’) in a uniform equilibrium background: in other
words, we assume that initially the N -point density fN |t=0 = f◦N takes the form

f◦N (x1, . . . , xN ) = f◦(x1), (5.2)

for some f◦ ∈ P ∩C∞(Td). At later times, the tagged particle density is given by the first
marginal

f1
N (t, x1) :=

ˆ
(Rd)N−1

fN (t, x1, x2, . . . , xN ) dx2 . . . dxN .

As linearized mean-field operators actually vanish at uniform equilibrium, Conjecture 1
leads us to expect a nontrivial slow conservative dynamics for the tagged particle on the
timescale t = O(N1/2), displaying no thermalization in the strict sense. In the spirit
of (1.7), we start by showing that the tagged particle density satisfies a linear wave equation
to leading order for relatively short times t� N1/2 (that is, τ � 1). This is analogous to
Theorem 1.2 in the Gaussian degenerate setting. The proof is displayed in Section 5.1.
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Proposition 5.1. The critically-rescaled tagged particle density f̄1
N (τ) := f1

N (N
1
2 τ) satis-

fies
‖∂2

τ f̄
1
N (τ)− div(A∇f◦)‖L2(Td) .f◦ τ

2 + 1
N ,

with constant diffusion matrix A :=
´
Td K ⊗K.

For a description of the dynamics on the critical timescale t = O(N1/2), we need to
consider the tagged particle density together with the whole family of its correlation func-
tions with respect to background particles. We first recall some standard definitions. As
in (2.1), we denote by {fmN }1≤m≤N the marginals of fN ,

fmN (t, x1, . . . , xm) :=

ˆ
(Td)N−m

fN (t, x1, . . . , xm, xm+1, . . . , xN ) dxm+1 . . . dxN . (5.3)

As background particles with labels 2, . . . , N are exchangeable initially, cf. (5.2), they re-
main so over time, hence fmN is symmetric in its last m − 1 variables. The correlation
functions {gmN }1≤m≤N for the tagged particle with respect to the initially uniform back-
ground are defined so as to satisfy the following cluster expansions,

fmN (t, x1, . . . , xm) =

m∑
n=1

∑
σ∈Pm−1

n−1

gnN (t, x1, xσ), 1 ≤ m ≤ N. (5.4)

For all m, the correlation function gmN is uniquely chosen to be symmetric in its last m− 1
variables and to satisfy

´
Td g

m
N (x1, . . . , xm) dxj = 0 for all 2 ≤ j ≤ m. More explicitly, the

above relations can be inverted and correlation functions are given by

gmN (t, x1, . . . , xm) :=
m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

fnN (t, x1, xσ). (5.5)

In these terms, we can now state the following result. In accordance with (1.6), the tagged
particle density does not satisfy a closed equation on the critical timescale t = O(N1/2),
but its dynamics takes the form of a (formally) unitary evolution for an infinite hierarchy
of coupled equations describing limits of all rescaled correlation functions.

Theorem 5.2. The critically-rescaled correlation functions

ḡmN (τ) := N
m−1

2 gmN (N
1
2 τ), 1 ≤ m ≤ N, (5.6)

converge weakly-* in W 1,∞(R+; L2((Td)m)) as N ↑ ∞,

ḡmN
∗
⇀ ḡm, m ≥ 1,

where the limit {ḡm}m is the unique weak solution of the limit hierarchy ∂τ ḡ
m = iSm,+ḡm+1 + iSm,−ḡm−1 : m ≥ 1,

ḡ1|τ=0 = f◦,
ḡm|τ=0 = 0 : m > 1,

(5.7)

such that

sup
τ≥0

∞∑
m=1

1
(m−1)!‖∂

k
τ ḡ

m‖2
L2((Td)m)

< ∞, for all k ≥ 0, (5.8)
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and where the operators Sm,± are explicitly defined as follows,

iSm,+ḡm+1 := −
m∑
i=1

ˆ
Td
K(xi − x∗) · ∇iḡm+1(x[m], x∗) dx∗,

iSm,−ḡm−1 := −
m∑
i=1

m∑
j=2

K(xi − xj) · ∇iḡm−1(x[m]\{j}).

In addition, the limit hierarchy (5.7) has the following (formal) unitary structure: defin-
ing Hm as the Hilbert space of functions hm ∈ L2((Td)m) that are symmetric in their last
m− 1 entries, and endowing this space with the norm

‖hm‖2Hm := 1
(m−1)!‖h

m‖2
L2((Td)m)

,

the operators Sm,+ : Hm+1 → Hm and Sm+1,− : Hm → Hm+1 satisfy

(Sm,+)∗ = Sm+1,−, (Sm+1,−)∗ = Sm,+. (5.9)

Let us further describe the structure of the limit hierarchy (5.7)–(5.8) and investigate
its actual unitary structure. For that purpose, consider the Hilbert space

H :=
⊕

m≥1Hm, (5.10)

that is, the Hilbert closure of the algebraic direct sum
⊕

m≥1Hm with respect to the norm

‖h‖2H :=
∞∑
m=1

‖hm‖2Hm =
∞∑
m=1

1
(m−1)!‖h

m‖2
L2((Td)m)

.

In other words, this means H = L2(Td) ⊗ F+(L2(Td)), where the bosonic Fock space
F+(L2(Td)) is viewed as the state space for background correlations. In this setting, we
consider the operator S := S+ + S− on H given by

(Sh)m := Sm,+hm+1 + Sm,−hm−1, m ≥ 1, (5.11)

which is well-defined for all h in the dense subset

C :=
⊕

m≥1C
∞
b ((Td)m) ⊂ H. (5.12)

(Note that the direct sum is understood in the algebraic sense.) The symmetry rela-
tions (5.9) precisely mean that this densely-defined operator S is symmetric on C. In these
terms, the fact that the limit ḡ = {ḡm}m is a weak solution of the limit hierarchy (5.7)
and that it satisfies the a priori estimates (5.8) is equivalent to the following: the limit
ḡ = {ḡm}m belongs to C∞b (R+;H) and satisfies

〈h, ∂τ ḡ〉H = −〈iSh, ḡ〉H, for all h ∈ C,
with initial condition ḡ|τ=0 = ḡ◦ ∈ C given by

(ḡ◦)m :=

{
f◦, for m = 1,
0, for m > 1.

(5.13)

This actually means that ḡ is a strong solution of

∂τ ḡ = iS∗ḡ, ḡ|τ=0 = ḡ◦, (5.14)

in terms of the adjoint S∗ of S on H. The uniqueness of the solution to this limit equation
and the unitarity of the so-defined semigroup would amount to the essential self-adjointness
of the operator S on H, or equivalently to the symmetry of its adjoint S∗. However, we
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do not expect S to be essentially self-adjoint: this operator can indeed be viewed as a
cubic expression in terms of canonical creation and annihilation operators on the Fock
space, and in dimension 1 nontrivial symmetric polynomials of order 3 in creation and
annihilation operators are known to be non-self-adjoint [25, 23]. This expected lack of
self-adjointness, leading to a lack of unitarity, is related to statistical closure problems in
link with turbulence [19]. In fact, it is not even clear whether S∗ generates a semigroup.

Leaving these delicate issues aside, we can at least show that the limit equation (5.14)
is well-posed in some sense. This explains the uniqueness of the limit in Theorem 5.2. The
proof is postponed to Section 5.4. Note that the proof of uniqueness only relies on the
symmetry of S on its core C and on the observation that SC ⊂ C.

Proposition 5.3 (Well-posedness of limiting hierarchy). For all g◦ ∈ C, there is a unique
strong solution g ∈ C∞b (R+;H) of the limit equation

∂τg = iS∗g, g|τ=0 = g◦. (5.15)

Moreover, it satisfies the following properties:
(i) Contraction: for all τ ≥ 0 and k ≥ 0,

‖∂kτ g(τ)‖H ≤ ‖Skg◦‖H.

(ii) Approximate isometricity up to O(τ∞): for all k ≥ 0,

− 1
k!τ

k
k∑
j=0

(
k

j

)
‖Sjg◦‖2H ≤ ‖g(τ)‖2H − ‖g◦‖2H ≤ 0.

Finally, we establish the following RAGE theorem, which further describes the structure
and the mixing behavior of the limit dynamics. The proof is postponed to Section 5.5.

Proposition 5.4 (RAGE theorem). Let {λk}k be the set of real eigenvalues of S∗ (if any).
There exists a family of positive contractions {Pk}k on H such that for all k the image
ran(Pk) is a subset of the eigenspace of S∗ associated with λk, such that the orthogonality
condition ran(Pk)⊥ ran(Pl) holds for |λk| 6= |λl|, and such that the following RAGE theorem
holds: for all g◦ ∈ C, the unique strong solution g of the limit equation (5.15) as given by
Proposition 5.3 can be decomposed as

g(τ) =
∑
k

eiτλkPkg
◦ +R(τ),

where the remainder R satisfies for all h ∈ H,

lim
T↑∞

1

T

ˆ T

0
|〈h,R(τ)〉H|2dτ = 0.

5.1. Proof of Proposition 5.1. Taking time derivatives in the Liouville equation (5.1),
and using that L2 norms are conserved, we find for all k ≥ 0,

‖∂kt fN‖L2((Td)N ) = ‖∂kt fN |t=0‖L2((Td)N ). (5.16)

From the Liouville equation (5.1) and the choice (5.2) of initial data, we find

∂kt fN |t=0 =

[
− 1

N

N∑
i,j=1

K(xi − xj) · ∇i
]k
f◦(x1). (5.17)
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By integration by parts, the norm of this quantity can be written as

‖∂kt fN |t=0‖2L2((Td)N )
= (−1)kN−2k

N∑
i1,j1,...,i2k,j2k=1

ˆ
(Td)N

f◦(x1)Kα1(xi1 − xj1)(∇i1)α1

. . .Kα2k
(xi2k − xj2k)(∇i2k)α2k

f◦(x1) dx1 . . . dxN .

Taking advantage of cancellations when computing the derivatives, and recalling that
div(K) = 0, we find that the only non-vanishing contributions in this sum are those such
that for all 1 ≤ l ≤ 2k the index il belongs both to {1, j1, . . . , jl−1} and to {jl+1, . . . , j2k, 1}.
Moreover, recalling that

´
Td K = 0, we find that each value in {i1, j2, . . . , i2k, j2k} \ {1}

must be taken by at least two different indices. From these two restrictions in the above
summation, we can immediately conclude that

‖∂kt fN |t=0‖L2((Td)N ) .k,f◦ N
− k

2 .

Combining this with (5.16), we deduce for all k ≥ 0,

‖∂kt fN‖L2((Td)N ) .k,f◦ N
− k

2 . (5.18)

A second-order Taylor expansion then yields in particular,∥∥∂2
τ (fN (N

1
2 τ))−N(∂2

t fN |t=0)−N
3
2 τ(∂3

t fN |t=0)
∥∥

L2((Td)N )

=
∥∥∥N ˆ N

1
2 τ

0
(N

1
2 τ − s) (∂4

t fN )(s) ds
∥∥∥

L2((Td)N )
.f◦ τ

2.

Averaging over variables x2, . . . , xN , this entails∥∥∂2
τ (f1

N (N
1
2 τ))−N(∂2

t f
1
N |t=0)−N

3
2 τ(∂3

t f
1
N |t=0)

∥∥
L2((Td)N )

.f◦ τ
2. (5.19)

Starting from (5.17), direct computations yield

∂2
t f

1
N |t=0 =

ˆ
(Td)N−1

[
− 1

N

N∑
i,j=1

K(xi − xj) · ∇i
]2

f◦(x1) dx2 . . . dxN

= 1
N2

N∑
i,j,k=1

ˆ
(Td)N−1

K(xi − xj) · ∇iK(x1 − xk) · ∇1f
◦(x1) dx2 . . . dxN

= N−1
N2

(ˆ
Td
K ⊗K

)
: ∇2f◦,

and
∂3
t f

1
N |t=0 = 0,

which concludes the proof of Proposition 5.1. �

Remark 5.5. The above proof can be pursued to capture higher-order corrections in a
similar perturbative way up to O(τ∞ + 1

N ). For instance, the next-order Taylor expansion
yields, instead of (5.19),∥∥∥∂2

τ (f1
N (N

1
2 τ))−N(∂2

t fN |t=0)− τN
3
2 (∂3

t f
1
N |t=0)

− 1
2τ

2N2(∂4
t fN |t=0)− 1

6τ
3N

5
2 (∂5

t fN |t=0)
∥∥∥

L2(Td)
. τ4.



DYNAMICS OF POINT-VORTEX SYSTEMS NEAR EQUILIBRIUM 49

Further computing ∂4
t fN |t=0, starting from (5.17), and noting that ∂5

t fN |t=0 = 0, we are
led to the following next-order version of Proposition 5.1,∥∥∥∂2

τ (f1
N (N

1
2 τ))− div(A∇f◦)− 3

2τ
2(divA∇)2f◦ − 1

2τ
2div(B∇f◦)

∥∥∥
L2(Td)

. τ4 + 1
N ,

where the matrix B is explicitly given by

Bαβ =
(ˆ

Td
(∇γKδ)(∇δKγ)(Kα ∗Kβ)

)
− 2
(ˆ

Td
(∇δKα)(∇γKβ)

)(ˆ
Td
KδKγ

)
− 2
( ˆ

Td
(∇δKα)(∇γKβ)(Kδ ∗Kγ)

)
− 2
(ˆ

Td
(∇δKα)(∇γKδ)(Kγ ∗Kβ)

)
,

where we implicitly sum over indices δ, γ.

5.2. Rigorous BBGKY analysis. We start by reformulating the BBGKY hierarchy of
Lemma 2.1 in the present uniform setting, noting that it gets drastically simplified and
that in particular linearized mean-field operators vanish.

Lemma 5.6 (BBGKY hierarchy for cumulants). For all 1 ≤ m ≤ N ,

∂tg
m
N = iSm,+N gm+1

N +
1

N

(
iSm,◦N gmN + iSm,−N gm−1

N

)
, (5.20)

where we have set for notational convenience grN = 0 for r < 1 or r > N , and where we
have defined the operators

iSm,+N gm+1
N := −N−m

N

m∑
i=1

ˆ
Td
K(xi − x∗) · ∇igm+1

N (x[m], x∗) dx∗,

iSm,◦N gmN := −
m∑

i,j=1

K(xi − xj) · ∇igmN

+
m∑
i=1

∑
2≤j≤m
i6=j

ˆ
Td
K(xi − x∗) · ∇igmN (x[m]\{j}, x∗) dx∗,

iSm,−N gm−1
N := −

m∑
i=1

m∑
j=2

K(xi − xj) · ∇igm−1
N (x[m]\{j}),

where we recall the short-hand notation [m] = {1, . . . ,m}.

Proof. Upon partial integration, the Liouville equation (5.1) yields the following BBGKY
hierarchy of equations for the marginals,

∂tf
m
N + 1

N

m∑
i,j=1

K(xi − xj) · ∇ifmN

+ N−m
N

m∑
i=1

ˆ
Td
K(xi − x∗) · ∇ifm+1

N (x1, . . . , xm, x∗) dx∗ = 0. (5.21)

By definition (5.5) of correlation functions, we deduce

∂tg
m
N = − 1

N

m∑
j=2

K(x1 − xj) · (∇1 −∇j)
m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1j∈σf
n
N (x1, xσ)
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− 1
N

m∑
i,j=2

K(xi − xj) · ∇i
m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1i,j∈σf
n
N (x1, xσ)

−
m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

ˆ
Td
K(x1 − x∗) · ∇1f

n+1
N (x1, xσ, x∗) dx∗

−
m∑
i=2

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

1i∈σ

ˆ
Td
K(xi − x∗) · ∇ifn+1

N (x1, xσ, x∗) dx∗. (5.22)

Replacing marginals in terms of cumulants, cf. (5.4), and arguing as in (2.9), we get for
the first right-hand side term, for all j ∈ [m] \ {1},

m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1j∈σf
n
N (x1, xσ) = gmN (x[m]) + gm−1

N (x[m]\{j}).

Similarly, for the second right-hand side term in (5.22), we find for all i, j ∈ [m] \ {1},
m∑
n=1

(−1)m−n
∑

σ∈Pm−1
n−1

1i,j∈σf
n
N (x1, xσ)

= gmN (x[m]) + gm−1
N (x[m]\{i}) + gm−1

N (x[m]\{j}) + gm−2
N (x[m]\{i,j}).

For the third right-hand side term in (5.22), arguing as in (2.12), replacing again marginals
by cumulants and using that

´
Td K = 0, we find that

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

ˆ
Td
K(x1 − x∗) · ∇1f

n+1
N (x1, xσ, x∗) dx∗

=

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

n∑
r=1

∑
τ∈Pσr−1

ˆ
Td
K(x1 − x∗) · ∇1g

r+1
N (x1, xτ , x∗) dx∗

= N−m
N

ˆ
Td
K(x1 − x∗) · ∇1g

m+1
N (x[m], x∗) dx∗

− 1
N

m∑
j=2

ˆ
Td
K(x1 − x∗) · ∇1g

m
N (x[m]\{j}, x∗) dx∗. (5.23)

For the last right-hand side term in (5.22), we similarly get

m∑
i=2

m∑
n=1

(−1)m−nN−nN

∑
σ∈Pm−1

n−1

1i∈σ

ˆ
Td
K(xi − x∗) · ∇ifn+1

N (x1, xσ, x∗) dx∗

= N−m
N

m∑
i=2

ˆ
Td
K(xi − x∗) · ∇igm+1

N (x[m], x∗) dx∗

− 1
N

6=∑
2≤i,j≤m

ˆ
Td
K(xi − x∗) · ∇igmN (x[m]\{j}, x∗) dx∗.
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Combining the above identities, the conclusion follows. �

Next, we prove uniform-in-time propagation-of-chaos estimates for the particle system in
form of a priori estimates on correlation functions. This is deduced from a straightforward
symmetry argument inspired by the work of Bodineau, Gallagher, and Saint-Raymond [3].
In contrast with the more delicate case of Lemma 2.2, no large deviation theory is needed
here. Note that in the present situation the N -scaling gm+1

N = O(N−m/2) is actually
optimal on long timescales, cf. Theorem 5.2, whereas the scaling gm+1

N = O(N−m) that
can be heuristically guessed from the BBGKY hierarchy (5.20) is only valid on short
times t = O(1). For later purposes, we also include estimates on time derivatives of corre-
lation functions.

Lemma 5.7 (A priori cumulant estimates). For all 0 ≤ m < N and k ≥ 0, we have

‖∂kt gm+1
N ‖L2((Td)m+1) .m,k,f◦ N

−m+k
2 .

Proof. Recall that correlation functions satisfy
´
Td g

m
N (x[m]) dxj = 0 for 2 ≤ j ≤ m. Com-

puting the L2 norm of the N -point density fN and inserting the cluster expansion (5.4) in
terms of correlation functions, we then get

ˆ
(Td)N

|fN |2 =

N∑
m=1

(
N − 1

m− 1

) ˆ
(Td)m

|gmN |2, (5.24)

hence in particular, for all 0 ≤ m < N ,

‖gm+1
N ‖L2((Td)m+1) .m N−

m
2 ‖fN‖L2((Td)N ).

By linearity, we similarly find for all k ≥ 0,
ˆ

(Td)N
|∂kt fN |2 =

N∑
m=1

(
N − 1

m− 1

) ˆ
(Td)m

|∂kt gmN |2, (5.25)

hence
‖∂kt gm+1

N ‖L2((Td)m+1) .m N−
m
2 ‖∂kt fN‖L2((Td)N ).

Combining this with the energy estimate (5.18) for the Liouville equation, the conclusion
follows. �

5.3. Proof of Theorem 5.2. For all m ≥ 1, we deduce from Lemma 5.7 that the rescaled
correlation function ḡmN defined in (5.6) is bounded inW k,∞(R+; L2((Td)m)), for any k ≥ 0,
as N ↑ ∞. By weak-* compactness, up to a subsequence, we deduce that there exists a
limiting family ḡ = {ḡm}m≥1 such that for all m, k we have

ḡmN ⇀ ḡm, weakly-* in W k,∞(R+; L2((Td)m)).

As the choice (5.2) of initial data yields ḡ1
N |τ=0 = f◦ and ḡmN |τ=0 = 0 for m > 1, the

convergence implies in particular

ḡ1|τ=0 = f◦ and ḡm|τ=0 = 0 for m > 1. (5.26)

Next, we note that, after rescaling, the BBGKY hierarchy for cumulants in Lemma 5.6
takes the form

∂τ ḡ
m
N = iSm,+N ḡm+1

N + iSm,−N ḡm−1
N +N−

1
2 iSm,◦N ḡmN , 1 ≤ m ≤ N.
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Passing to the limit in the weak formulation of those equations, we deduce that the limit ḡ
satisfies the following hierarchy of equations in the weak sense,

∂τ ḡ
m = iSm,+ḡm+1 + iSm,−ḡm−1, m ≥ 1, (5.27)

where the limiting operators iSm,+, iSm,− are defined in the statement. Moreover, refor-
mulating (5.25) in terms of rescaled correlations, truncating the sum, and combining with
the energy estimate (5.18), we find for any fixed M,k,

M∧N∑
m=1

N1−m
(
N − 1

m− 1

)
‖∂kτ ḡmN ‖2L2((Td)m)

≤ Nk‖∂kt fN‖2L2((Td)N )
.k,f◦ 1.

Passing to the limit N ↑ ∞, with N1−m(N−1
m−1

)
→ 1

(m−1)! , we deduce by weak lower semi-
continuity,

M∑
m=1

1
(m−1)!‖∂

k
τ ḡ

m‖2
L2((Td)m)

.k,f◦ 1,

and thus, letting M ↑ ∞, we infer for all k ≥ 1,
∞∑
m=1

1
(m−1)!‖∂

k
τ ḡ

m‖2
L2((Td)m)

.k,f◦ 1. (5.28)

Finally, in order to get rid of the extraction of a subsequence in the above argument, it re-
mains to check that there is at most one ḡ = {ḡm}m that satisfies the limit hierarchy (5.27)
in the weak sense and such that the a priori estimates (5.28) hold. As explained, this is
equivalent to proving that there is at most one strong solution ḡ ∈ C∞b (R+;H) of the
following equation,

∂τ ḡ = iS∗ḡ, ḡ|τ=0 = ḡ◦,

where the Hilbert space H and the densely-defined symmetric operator S are defined
in (5.10)–(5.11), and where the initial condition ḡ◦ is given by (5.13). Noting that ḡ◦
belongs to the core C of S and that the latter satisfies SC ⊂ C, the desired uniqueness is a
consequence of Lemma 5.8 below. This ends the proof of Theorem 5.2. �

5.4. Proof of Proposition 5.3. We start by proving the uniqueness of a solution of
the limit hierarchy in C2

b (R+;H). We state it separately in form of the following general
abstract result.

Lemma 5.8. Let H be a Hilbert space, let S be a densely-defined symmetric operator,
defined on a dense subset C ⊂ H, and assume that SC ⊂ C. Then, for all g◦ ∈ H, there is
at most one solution g ∈ C2

b (R+;H) of the following equation,

∂τg = iS∗g, g|τ=0 = g◦. (5.29)

Proof. As SC ⊂ C, we note that the squared operator S2 is well-defined, symmetric, and
positive on C. By Friedrichs’ theorem, it admits a canonical self-adjoint extension L0.
Given a solution g ∈ C2(R+;H) of equation (5.29), we may then compute for all h ∈ C,

〈h, ∂2
τ g(τ)〉H = −〈S2h, g(τ)〉H = −〈L0h, g(τ)〉H.

As g belongs to C2(R+;H), the left-hand side is bounded by ‖∂2
τ g(τ)‖H‖h‖H, hence so is

the right-hand side, which entails that g(τ) belongs to the domain of L0 for all τ . This
implies that g is a strong solution the following equation,

∂2
τ g + L0g = 0, g|τ=0 = g◦, ∂τg|τ=0 = iS∗g◦.



DYNAMICS OF POINT-VORTEX SYSTEMS NEAR EQUILIBRIUM 53

By self-adjointness and non-negativity of L0, the strong solution of this equation is unique.
(Note that equation (5.29) and the condition g ∈ C2(R+;H) ensure g◦ ∈ D(S∗), so iS∗g◦
is indeed well-defined.) �

Remark 5.9. The proof of Lemma 5.8 is easily adapted to establish the following result:
given a Hilbert space H and a densely-defined symmetric operator S, defined on a dense
subset C ⊂ H, if S admits a self-adjoint extension S0, then for all g◦ ∈ D(S0) there is a
unique strong solution g ∈ C1

b (R+;H) of the equation

∂τg = iS∗g, g|τ=0 = g◦,

and it coincides with the unitary group g(τ) = eiτS0g◦. It is however not clear to us
whether this result applies to our situation as we do not know how to prove the existence
of a self-adjoint extension for the operator S defined in (5.11).

With the above general uniqueness result at hand, we can now conclude the proof of
Proposition 5.3, establishing the well-posedness, contraction, and approximate isometricity
of solutions of the limit hierarchy.

Proof of Proposition 5.3. Let the Hilbert space H, the densely-defined symmetric opera-
tor S, and its core C ⊂ H be defined as in (5.10)–(5.12). We split the proof into two
steps.

Step 1. Proof that there exists a unique contraction-valued strongly-continuous map
U : R+ → L(H), which might not be a semigroup, such that for all g◦ ∈ C the evolution
g(τ) := U(τ)g◦ is the unique strong solution in C∞b (R+;H) of the equation

∂τg = iS∗g, g|τ=0 = g◦. (5.30)

Moreover, we shall show that it satisfies the stability property

‖∂kτU(τ)g◦‖H ≤ ‖Skg◦‖H, for all k ≥ 0 and g◦ ∈ C. (5.31)

To prove this result, we start by defining self-adjoint truncations of S: for all N ≥ 1, we
consider the closed subspace H≤N :=

⊕
1≤m≤N Hm ⊂ H, we let π≤N : H → H≤N be the

associated orthogonal projection, and we define the truncated operator SN := π≤NSπ≤N
on C. Note that this truncation could be replaced by the original hierarchy (5.20) for
fixed N : it does not change the argument, but the present truncation is simpler to handle.
By definition of S, using the symmetry relations (5.9), we easily check that this truncated
operator SN is essentially self-adjoint on C (self-adjointness poses no difficulty here thanks
to truncations). We may then consider the unitary semigroup UN : R+ → L(H) given by

UN (τ) := eiτSN .

Up to extraction of a subsequence, as N ↑ ∞, the semigroup UN converges pointwise in the
weak operator topology to some strongly-continuous map U : R+ → L(H) with U(0) = Id
and ‖U(τ)‖ ≤ 1 for all τ ≥ 0. Note that this weak limit map U might no longer be a
semigroup nor take its values among unitary operators.

Given g◦ ∈ C, let us examine the properties of the limit evolution τ 7→ U(τ)g◦. For
all N ≥ 1, as iSN is the generator of UN and as SNC ⊂ C, the flow τ 7→ UN (τ)g◦ belongs
to C∞b (R+;H) and satisfies

‖∂kτUN (τ)g◦‖H = ‖SkNg◦‖H, for all k ≥ 0, (5.32)
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and
〈h, ∂τUN (τ)g◦〉 = 〈SNh, iUN (τ)g◦〉, for all h ∈ C.

Note that the tridiagonal structure of S yields SkNh = Skh for all h ∈ π≤N−kC and k ≥ 1,
and therefore SkNh → Skh strongly as N ↑ ∞ for all h ∈ C and k ≥ 1. We may then
pass to the limit along the extracted subsequence in the above properties of UN (τ)g◦: we
deduce that the limit evolution τ 7→ U(τ)g◦ also belongs to C∞b (R+;H) and satisfies

‖∂kτU(τ)g◦‖H ≤ ‖Skg◦‖H, for all k ≥ 0, (5.33)

and
〈h, ∂τU(τ)g◦〉 = 〈Sh, iU(τ)g◦〉, for all h ∈ C.

The former is the desired contraction property (5.31) and the latter precisely means that
the limit evolution g(τ) := U(τ)g◦ satisfies equation (5.30) in the strong sense.

Now, by Lemma 5.8, the solution of equation (5.30) is necessarily unique in C2
b (R+;H).

In particular, the limit evolution τ 7→ U(τ)g◦ is uniquely determined for all g◦ ∈ C. As U is
contraction-valued and as C is dense in H, this entails that U is itself uniquely determined
as a contraction-valued strongly-continuous map R+ → L(H).

Step 2. Approximate unitarity: proof that for all k ≥ 0 and g◦ ∈ C,

− 1
k!τ

k
k∑
j=0

(
k

j

)
‖Sjg◦‖2H ≤ ‖U(τ)g◦‖2H − ‖g◦‖2H ≤ 0. (5.34)

The upper bound follows from (5.33) and it remains to prove the lower bound. Let g◦ ∈ C
be fixed. For M,N ≥ 1, consider

EM,N (τ) := ‖π≤MUN (τ)g◦‖2H =
M∑
m=1

‖UN (τ)g◦‖2Hm ,

and appeal to Taylor’s expansion∣∣∣EM,N (τ)−
k−1∑
j=0

1
j!τ

j∂jτEM,N (0)
∣∣∣ ≤ 1

k!τ
k‖∂kτEM,N‖L∞(R+).

Using (5.32), time derivatives of EM,N can be estimated as follows, for all k ≥ 1,

|∂kτEM,N (τ)| ≤
k∑
j=0

(
k

j

)
‖π≤M∂jτUN (τ)g◦‖H‖π≤M∂k−jτ UN (τ)g◦‖H

≤
k∑
j=0

(
k

j

)
‖SjNg

◦‖H‖Sk−jN g◦‖H.

By the symmetry in the sum and the trivial bound 2ab ≤ a2 + b2, the above becomes∣∣∣EM,N (τ)−
k−1∑
j=0

1
j!τ

j∂jτEM,N (0)
∣∣∣ ≤ 1

k!τ
k

k∑
j=0

(
k

j

)
‖SjNg

◦‖2H. (5.35)
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Now for M < N , recalling SN = π≤NSπ≤N and the definition of S, we can compute the
first time derivative of EM,N as follows: setting gN (τ) := UN (τ)g◦ and gN = {gmN }m≥1,

∂τEM,N (τ) = 2<
M∑
m=1

〈gmN (τ), ∂τg
m
N (τ)〉Hm

= 2<
M∑
m=1

〈
gmN (τ), iSm,+ḡm+1

N (τ) + iSm,−gm−1
N (τ)

〉
Hm ,

and thus, using (Sm,−)∗ = Sm−1,+ and recognizing a telescoping sum,

∂τEM,N (τ) = 2<
M∑
m=1

(
〈gmN (τ), iSm,+gm+1

N (τ)〉Hm − 〈iSm−1,+gmN (τ), gm−1
N (τ)〉Hm−1

)
= 2<〈gMN (τ), iSM,+gM+1

N (τ)〉HM .
Evaluating at τ = 0, this means

∂τEM,N (0) = 2<〈(g◦)M , iSM,+(g◦)M+1〉HM .
For g◦ ∈ C, there is M0(g◦) < ∞ such that (g◦)M = 0 for all M > M0(g◦). Hence,
we deduce ∂τEM,N (0) = 0 for M ≥ M0(g◦). Taking additional time derivatives of the
above expression and using the tridiagonal structure of S, we find ∂jτEM,N (0) = 0 for all
1 ≤ j ≤ M + 1 −M0(g◦). By definition of EM,N , the estimate (5.35) then takes on the
following guise: for all M < N and k ≤M + 2−M0(g◦),∣∣∣‖π≤MUN (τ)g◦‖2H − ‖π≤Mg◦‖2H

∣∣∣ ≤ 1
k!τ

k
k∑
j=0

(
k

j

)
‖SjNg

◦‖2H.

Letting N ↑ ∞ and then M ↑ ∞, using that UN (τ)g◦ converges weakly to U(τ)g◦ in H,
and recalling that SjNg

◦ converges strongly to Sjg◦ in H for all j ≥ 0, the claimed lower
bound (5.34) follows. �

5.5. Proof of Proposition 5.4. We show that the RAGE theorem still applies to the weak
limit of a sequence of unitary groups, although the limit might no longer be a semigroup
nor take its values among unitary operators. Note however that we loose (part of) the
usual orthogonality property for periodic solutions. Proposition 5.4 is a direct consequence
of the following general abstract result.

Lemma 5.10. Let (UN )N be a sequence of unitary semigroups UN : R+ → L(H) on a
Hilbert space H, and assume that their generators (SN )N are essentially self-adjoint on a
common (dense) core C ⊂ H. As N ↑ ∞, assume that SN converges in the strong operator
topology to some operator S on C (necessarily symmetric on C, but possibly not essentially
self-adjoint), and that UN converges pointwise in the weak operator topology to a map
U : R+ → L(H) (necessarily strongly-continuous and contraction-valued, but possibly not
unitary and not a semigroup). Then the following RAGE theorem holds for U : denoting
by {λk}k the set of real eigenvalues of S∗, there exists a family of positive contractions {Pk}k
on H such that for all k the image ran(Pk) is a subset of the eigenspace of S∗ associated
with λk, and such that for all g◦ ∈ H we can decompose the limit evolution as

U(τ)g◦ =
∑
k

eiτλkPkg
◦ +R(τ)g◦,
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where the remainder R(τ)g◦ satisfies for all h ∈ H,

lim
T↑∞

1

T

ˆ T

0
|〈h,R(τ)g◦〉H|2dτ = 0.

If in addition we have SNC ⊂ C, SC ⊂ C, and if the squared operator S2
N also converges

in the strong operator topology to S2 on C, then we have the following partial orthogonality
property: ran(Pk)⊥ ran(Pl) for |λk| 6= |λl|.

Proof. For all N , we can consider the spectral measure EN of the essentially self-adjoint
generator SN and represent the unitary group UN as

UN (τ) = eiSN τ =

ˆ
R
eiλτdEN (λ).

Under the considered assumptions, the spectral measure EN converges weakly as N ↑ ∞
to some positive operator-valued measure E such that

U(τ) =

ˆ
R
eiλτdE(λ),

and in addition for all g◦ ∈ C we find that the limit evolution τ 7→ U(τ)g◦ belongs to
C1
b (R+;H) and is a strong solution of

∂τU(τ)g◦ = iS∗U(τ)g◦ = iU(τ)Sg◦, U(τ)g◦|τ=0 = g◦. (5.36)

Note that the limit measure E is a priori not projection-valued, hence is not a spectral
measure, in link with the fact that the limit operator S might not be essentially self-adjoint
and might not even generate a semigroup. By Naimark’s dilation theorem, see e.g. [24,
Theorem 4.6], there exists an extended Hilbert space Ĥ, a bounded linear map V : Ĥ → H
with V V ∗ = Id, and a spectral measure Ê on R such that dE(λ) = V dÊ(λ)V ∗. In terms
of the self-adjoint operator Ŝ :=

´
R λdÊ(λ) on Ĥ, we then get

U(τ) = V eiτ ŜV ∗ = V

ˆ
R
eiτλdÊ(λ)V ∗.

We may now appeal to the standard form of the RAGE theorem for Ŝ, see e.g. [11, Sec-
tion 5.4]: denoting by {λk}k ⊂ R the set of eigenvalues of Ŝ and denoting by P̂k : Ĥ → Ĥ
the orthogonal projection onto the eigenspace of Ŝ associated with λk, we can decompose
for all g◦ ∈ H,

U(τ)g◦ =
∑
k

eiτλkV P̂kV
∗g◦ +R(τ)g◦, (5.37)

where the remainder R(τ)g◦ satisfies for all h ∈ H,

lim
T↑∞

1

T

ˆ T

0
|〈h,R(τ)g◦〉H|2dτ = 0. (5.38)

Note that by definition the remainder can be written as

R(τ)g◦ = V
(
eiτ Ŝ −

∑
k

eiτλk P̂k

)
V ∗g◦ = V eiτ Ŝ π̂cV

∗g◦, (5.39)

where π̂c := 1−
∑

k P̂k is the orthogonal projection onto the continuous subspace of Ŝ.
Next, we show that for all k the value λk is actually also an eigenvalue of the adjoint S∗

on H and that the image of Pk := V P̂kV
∗ is a subset of the associated eigenspace in H.
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For that purpose, applying the operator ∂τ − iS∗ to (5.37) and using the equation (5.36)
satisfied by the limit evolution, we find in the weak sense

(∂τ − iS∗)R(τ)g◦ = −i
∑
k

eiτλk (λk − S∗)V P̂kV ∗g◦.

Given some k0, multiplying both sides of this identity by e−iτλk0 and integrating over some
time interval [0, T ], with T > 0, we deduce in the weak sense

1

iT

(
e−iTλk0R(T )g◦ −R(0)g◦

)
+

1

T

ˆ T

0
e−iτλk0 (λk0 − S∗)R(τ)g◦ dτ

= −(λk0 − S∗)V P̂k0V ∗ḡ◦ −
∑
k:k 6=k0

eiT (λk−λk0 ) − 1

iT (λk − λk0)
(λk − S∗)V P̂kV ∗g◦.

Now testing this identity with some h ∈ C, and singling out the first right-hand side term,
we deduce∣∣〈(λk0 − S)h, V P̂k0V

∗g◦
〉
H
∣∣

≤ 1

T
‖h‖H

(
‖R(T )g◦‖H + ‖R(0)g◦‖H

)
+

1

T

ˆ T

0

∣∣〈(λk0 − S)h,R(τ)g◦
〉
H
∣∣

+
∑
k:k 6=k0

∣∣∣∣eiT (λk−λk0 ) − 1

iT (λk − λk0)

∣∣∣∣‖P̂kV ∗(λk − S)h‖H‖P̂kV ∗g◦‖H. (5.40)

By (5.39), we have ‖R(τ)g◦‖H ≤ ‖g◦‖H, and the first right-hand side term in (5.40) thus
converges to 0 as T ↑ 0. By (5.38) and Jensen’s inequality, the second right-hand side
term also converges to 0. For the last right-hand side term, using |eix − 1| ≤ 2 ∧ |x|, and
decomposing (λk − S)h = (λk − λk0)h+ (λk0 − S)h, we find∑

k:k 6=k0

∣∣∣∣eiT (λk−λk0 ) − 1

iT (λk − λk0)

∣∣∣∣‖P̂kV ∗(λk − S)h‖H‖P̂kV ∗g◦‖H

≤ 2
T

∑
k

‖P̂kV ∗h‖H‖P̂kV ∗g◦‖H

+
∑
k:k 6=k0

(
1 ∧ 2

T |λk−λk0 |
)
‖P̂kV ∗(λk0 − S)h‖H‖P̂kV ∗g◦‖H,

which converges to 0 as T ↑ ∞ by dominated convergence. Going back to (5.40), we
conclude for all h ∈ C, 〈

(λk0 − S)h, V P̂k0V
∗g◦
〉
H = 0, (5.41)

which precisely means that V P̂k0V ∗g◦ is an eigenvector of S∗ with eigenvalue λk0 .
Finally, let us further assume SNC ⊂ C, SC ⊂ C, and that the squared operator S2

N also
converges in the strong operator topology to S2 on C. This easily implies that for g◦ ∈ C
the limit evolution τ 7→ U(τ)g◦ belongs to C2

b (R+;H). By Lemma 5.8, we then learn
that this limit evolution is the unique strong solution of equation (5.36) in C2

b (R+;H).
Moreover, in terms of the canonical self-adjoint extension L0 of the squared operator S2

on C as given by Friedrichs’ theorem, the proof of Lemma 5.8 shows that for g◦ ∈ C the
limit evolution τ 7→ U(τ)g◦ coincides with the unique strong solution of

∂2
τ g + L0g = 0, g|τ=0 = g◦, ∂τg|τ=0 = iS∗g◦.
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For all k, a straightforward adaptation of the proof of (5.41) above then leads us to conclude
that V P̂kV ∗g◦ is also an eigenvector of L0 with eigenvalue λ2

k. As L0 is self-adjoint, this
entails that V P̂kV ∗g◦ is orthogonal to V P̂lV ∗g◦ whenever λ2

k 6= λ2
l . This ends the proof of

Proposition 5.4. �
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