Bourgain’s surprising result in stochastic homogenization
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Let A be a uniformly elliptic, stationary and ergodic random coefficient field, con-
structed on a probability space (€2, P). Homogenization theory has been focussing
on the fine description of the solution Vu$ of the rescaled elliptic problem

-V A(2)Vu; =V - f, in RY,
in the limit of fast oscillating coefficients ¢ | 0, for a given deterministic force

field f € L2(R4)9. A different perspective on the topic has been recently initiated
by Sigal [6], based on the following observation (see [4]).

Lemma. There exist a bounded convolution operator A(V) on L?*(RY) and a
bounded pseudo-differential operator F(-,V) : L*(R?) — L*(R? x Q) with centered
stationary random symbol, related by A(V) = E[AId+F(-,V))], such that:

e the averaged solution E[Vu%| satisfies

(1) ~V - A(eV)E[Vu3] =V - f, in RY;
e the deviation is described by
(2) Vui — E[Vu3] = F(2,eV)E[Vuj].

This result is obtained as a simple consequence of stationarity and of the
Schur complement formula, starting from the block decomposition of the operator
L= -V - AV on L?(R?x ) with respect to projections P := E and P+ :=1d — P,

PLP  PLPt
®) L= (PLLP PLLPL) '

Homogenization can be reformulated in these terms as the regularity of the
symbols R? — R4 ;¢ s A(i€) and RY — L2(Q)4*4 . ¢ v F(-,i€) at i€ = 0.
Indeed, this regularity allows to transform the equation (1) for the averaged so-
lution perturbatively into the usual form of (higher-order) effective PDEs, and to
transform the relation (2) into (higher-order) two-scale expansions; see [3] for a
precise equivalence. Unlike the case of periodic homogenization, we recall that
two-scale expansions in the random setting cannot be pursued to arbitrary order,
corresponding to the problem of existence of higher-order correctors: under the
strongest mixing conditions, the two-scale expansion of the solution Vu§ is only

possible to accuracy O(¢%?) in L*(R? x Q), which implies that the symbols A
and F are a priori only (almost) of class C%? at 0. This regularity is optimal
for F, but an improvement can be expected for A as it is an averaged quantity.
By refined homogenization techniques, the regularity of A has been shown in [2]
to be indeed at least twice better, that is, (almost) of class C%. Very surprisingly,
Bourgain [1] and Kim and Lemm [5] proved in a perturbative regime that it is
actually four times better, that is, (almost) of class C>?, thus yielding an effec-
tive description of the averaged solution by an effective PDE to accuracy (almost)
O(£2?). Still no understanding of this result is available by non-perturbative ho-
mogenization techniques, and it has led to formulate the following conjecture.
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Conjecture (Bourgain-Spencer). If A satisfies strong enough mixing conditions,
then the symbol A is of class (almost) C?? in a neighborhood of 0.

The rest of this note is devoted to a brief description of Bourgain’s perturbative
argument. Asin [1, 5], we focus on the discrete iid setting for simplicity (see [4] for
more general results): we consider the operator L = V*AV on L?(Z%), where V
stands now for the discrete gradient and where A = {A,},cza is a sequence of iid
uniformly elliptic random conductivities. The description of the averaged solution
still holds as above in that case, and we use the same notation A(V) for the corre-
sponding convolution operator. The perturbative regularity result by Bourgain [1]
and Kim and Lemm [5] takes on the following guise.

Theorem (Bourgain [1], Kim-Lemm [5]). Let d > 2 and assume Ay = 1+ §B,
with ellipticity ratio 6 < 1 and with |B,| < 1 and E[B,] = 0. Then we have
A(V) = 1d +Ls where Ls is a convolution operator on Z¢ with kernel satisfying

(4) Ls(z,y)] < C6% (@ —y)° (@) =1+ |z|)
for some universal constant C' > 0, meaning that its symbol is of class C2¢~¢9.

This result is essentially optimal in the sense that the decay of the kernel cannot
be improved beyond (-) 3%, as will be clear from the proof, but we emphasize that
it does not solve the above conjecture even in the perturbative regime due to the
loss C'§ in the exponent. This indicates that the conjecture might, in fact, be false
and that the non-perturbative C? regularity in [2] might be optimal in general.

The proof starts from the Schur complement formula for the block decom-
position (3), combined with a Neumann expansion, which allows to represent
(PL=1P)~! = V*(Id +Ls)V with

(5) Ls=0>20,0"LM™, LM .= PBKPLB)"P,

with the short-hand notation K := VA~1V*, and we then proceed by analyzing
this perturbation series. Expanding the composition of operators, the kernel for
the nth term in the series takes the form

(6) L™ (xo,zn) = Y. PByK(wo—21)P By, ... K@y 1 —2,)P By,
z€(Z4)n—1

where the sum runs over all ‘paths’ = (21,...,2,-1) in 74 connecting o to .
A direct estimate of the series, using the pointwise decay |K(z,y)| < (z —y)~9,
would yield

L& (2,y)| < C™(x — y)~“log(2+ |z — y|)",
where the logarithms come from estimating integrals with borderline decay. For
all n > 0, using logt < n~1#7 for t > 1, this bound translates into
(7) L) (@, )] < n"(S)"a — y)7~.
The combinatorial factor n™ destroys any possible use of this direct estimate in
the perturbation series. In [1], Bourgain made a more clever use of the global
structure of the paths, together with Calderén-Zygmund theory in form of the LP-
boundedness of K, to show that this factor can, in fact, be removed.
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Lemma (Bourgain’s deterministic lemma). For alln € (0,1) and x # y,
L (2, y)] S 0(§)" (@ —y)".

Choosing n = 2C'§, this bound can now be used to estimate the perturbation
series (5), to the effect of

ILs (2, y)| Z Loy (g — )1 < 2067 (w — y)* .

To prove the stated decay ( ), this naive bound needs to be improved by taking
advantage of stochastic cancellations. We indeed easily realize that many paths
do not contribute in the sum (6): for instance,

PB(xo)P*B(z1)... P*B(x,) =0
whenever {zo,...,z;} N{zjt1,...,2,} = &, for some 0 < j < n.

The sum in (6) can thus be restricted to the so-called ‘irreducible’ paths that
do not satisfy this condition. Further cancellations exist but are not needed in
the analysis. For x # y, we note for instance that there is no irreducible path
with n < 2 edges from x to y, and that for n = 3 the only irreducible path is

(.13, Y, x, y)’ that iS,

A simple combinatorial argument shows that an irreducible path from = to y can
always be decomposed into three disjoint paths from z to y. Evaluating the sum (6)
by summing separately over these three paths, a direct estimate as in (7) would
then yield the following, for all n > 1 and n > 0,

L™ (20, 2n)| < 0™ (§)" & — )"~

This captures the optimal decay (-)~37 as stated in (4), but the factor n” again

makes this direct estimate useless in the perturbation series. Since the restriction
to irreducible paths breaks the special oscillatory structure of the composition of
Calderén—Zygmund kernels in (6), it is a priori unclear how to improve on such
direct estimates. In a nutshell, the main contribution of Bourgain’s work in [1] is
to show how simple enough restrictions on the summations still allow to appeal to
the Calderéon—Zygmund theory.
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