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Foreword

«Dites ! quels temps versés au gouffre des années,
Et quelle angoisse ou quel espoir des destinées,

Et quels cerveaux chargés de noble lassitude
A-t-il fallu pour faire un peu de certitude ? »

Émile Verhaeren

This thesis was carried out from October 2014 onwards during a three-year PhD program in the
Département de Mathématique at the Université Libre de Bruxelles (ULB, Belgium) and in the Lab-
oratoire Jacques-Louis Lions (LJLL) at the Université Pierre et Marie Curie (UPMC, France), under
the co-supervision of Prof. Antoine Gloria and Prof. Sylvia Serfaty. It was supported financially
by the Fonds de la Recherche Scientifique F.R.S.-FNRS through a Research Fellowship, while addi-
tional financial support was provided by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2014-2019 Grant Agreement QUANTHOM 335410).
The present manuscript collects different results obtained during this PhD, aiming at a better math-
ematical understanding of the effects of disorder in various physical systems. Starting with some
classical stochastic homogenization questions, we next investigate fluctuations around the homoge-
nization limit, and in a last part we focus on the interplay between interactions and disorder in the
context of the Ginzburg-Landau superconducting vortices.
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Chapter 1

Introduction

«L’analyse mathématique [ . . . ] n’est-elle donc qu’un vain
jeu de l’esprit ? Elle ne peut donner au physicien qu’un lan-
gage commode ; n’est-ce pas là un médiocre service, dont on
aurait pu se passer à la rigueur ; et même, n’est-il pas à crain-
dre que ce langage artificiel ne soit un voile interposé entre
la réalité et l’œil du physicien ? Loin de là, sans ce langage,
la plupart des analogies intimes des choses nous seraient de-
meurées à jamais inconnues ; et nous aurions toujours ignoré
l’harmonie interne du monde, qui est [ . . . ] la seule véritable
réalité objective. »

Henri Poincaré, La valeur de la science.

Though often regarded as an imperfection that must be driven away from experiments wherever
possible in order to get closer to predictions of “ideal” theories, disorder appears to be intrinsic to
various physical systems and can often not be realistically avoided. Moreover, disorder may sometimes
lead to radically new phenomena that are not predicted by classical theories. Crucial in an ever-
increasing number of applications, the physics of disordered media has only started in recent decades
to emerge consciously as a new domain in its own right, full of challenges both for theoretical and for
experimental physicists [192, 194].

The first studies on the effects of disorder are related to the notion of effective behavior, which
was gradually developed in the course of the 19th century. This started around 1820 with the works
by Navier and Cauchy, who viewed matter as an assemblage of material molecules and formally
derived from a discrete “molecular” model suitable “effective” equations describing elastic continua. A
similar micro-mechanical perspective was at the basis of Poisson’s theory of induced magnetism [364]
and of Faraday’s theory of dielectric materials [179], both derived from a model of small conducting
particles distributed in a nonconducting matrix. This heterogeneous model was subsequently studied
by Mossotti [324, 325], Maxwell [317], Clausius [119], Lorentz [308], Lorenz [309], Rayleigh [368],
and others. The main focus at that time was thus on two-phase dispersed media composed of a
main homogeneous material with small foreign inclusions, and on the definition of their “effective”
or “homogenized” properties, which typically differ from the properties of the constituents. On large
scales the microstructural detail is somehow averaged out due to a kind of law of large numbers,
and heterogeneous physical properties are replaced by homogeneous ones. This process justifies the
importance of the study of constant-coefficient equations, although in an intrinsically random and
composite world. Formulas were further soon predicted for the deviations caused by the disorder, a
topic on which we shall come back in the course of this thesis. A clear parallel is to be noted between
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these scientific developments and the pictorial experiments of neoimpressionist painters of the last
quarter of the 19th century, such as Seurat or Signac, which led to pointillism: at a certain distance
the tones are recomposed by the viewer’s eye from the small dots of pure color that make up the
painting.

The first steps towards a mathematical theory of homogenization are traced back to the first half
of the 20th century, with the development of averaging methods for ODEs in nonlinear dynamics by
Poincaré [363], von Zeipel [421], van der Pol [416], Krylov, Bogolyubov, and Mitropolsky [276, 71],
and others. The general theory of homogenization of PDEs, as a mathematically rigorous approach
to composite materials, emerged only in the 1970s, at the crossroads between probability and analysis
of PDEs. Not surprisingly, this relatively new field has been heavily fueled by modern technological
applications and by the need for improving our knowledge of composites. A further motivation stems
from shape optimization and optimal structural design problems in modern engineering: given two
materials, we aim at finding the best arrangement that maximizes some overall physical property (like
conductivity or elastic stiffness) under e.g. some volume constraint on the “best” of the two materials
(which is typically more expensive or heavier). Optimality can usually not be achieved by any given
mixture: it is more advantageous to split inclusions into many tinier ones, so that the optimization
naturally leads to composite materials with fine microstructure. The use of homogenization theory in
this context was initiated by Murat and Tartar already in the late 1970s (see e.g. [12] and references
therein).

In many examples, the physical properties of heterogeneous media remain of the same type on
large scales: models with heterogeneous coefficients are replaced by the same ones with homogeneous
effective coefficients, and homogenization is then really a matter of defining and computing the latter.
A complete turn was prompted when it became apparent that disorder could sometimes lead to
radically new phenomena. The first discovery in this respect is the kinetic theory of Brownian
motion developed at the dawn of the 20th century by Sutherland [406], Einstein [175], and von
Smoluchowski [420], later theorized by Wiener [423]. The erratic motion of a pollen suspended in
water is caused by continuous kicks by lighter water molecules, which lead to an overall diffusive
motion, that is, the averaged position of the pollen grows as the square root of time rather than
linearly. More precisely, the averaged position of the pollen satisfies an irreversible diffusion equation.
Note that this leads to a classical apparent contradiction with the reversibility of the microscopic
Hamiltonian mechanics describing the underlying collision process with water molecules. The key
to this contradiction is the loss of information as the macroscopic diffusive motion is obtained by
neglecting or integrating out many degrees of freedom on small scales [68]. This kinetic theory for
Brownian motion truly revolutionized the understanding of the importance of disorder, and led to
the emergence of a new paradigm in physics [192]: more than being omnipresent in nature, disorder
can have new, non-classical effects.

Another important discovery in this respect concerns conducting materials, where the typically
disordered ionic lattice constitutes obstacles to the flow of electrons and transforms their free ballistic
motion into a diffusive motion. This precisely creates resistance, that is, the partial conversion of
the energy of electrons into heat. The more regular the ionic lattice is, the less the flow of electrons
can be disturbed, and consequently, the resistance decreases. Resistance is indeed another crucial
example of an effect of disorder. In some cases, random impurities in the metal can actually not only
slow down electrons, but even completely stop their flow, leading to an insulating material. This
surprising electron localization phenomenon was first predicted by Anderson [22] in 1958, but its full
mathematical understanding still remains very challenging.

These two discoveries — the kinetic theory of Brownian motion and the Anderson localization —
really marked the emergence of the physics of disordered media as a new domain in its own right.
One of the main current challenges for physicists in this area consists in the understanding of mixed
effects of disorder and interactions. While interactions tend to make particles behave as an ordered,
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coherent whole, disorder competes with this order and typically leads to a large number of nearly
degenerate energy states separated by huge energy barriers. Interactions thus modify the effects of
disorder drastically and lead to a new “glassy” physics, with remarkable static and dynamic properties
that are still largely ununderstood [193]. This competition between interactions and disorder is
generically realized by elastic-like systems in disordered media, which can have various microscopic
origins, ranging from Ginzburg-Landau vortices in type-II superconductors [195, 369] to domain walls
in magnetic or ferroelectric systems [355]. This last example is particularly important in applications,
as it is found in any computer hard drive.

In this thesis, we start with considering various stochastic homogenization problems in connection
with physics questions from the 19th century (Chapters 2–5). In Chapter 2, motivated by the rigorous
derivation of rubber elasticity from the statistical physics of polymer-chain networks, we establish the
existence of (and we provide ways to compute) the effective properties of heterogeneous hyperelastic
materials under quite general assumptions. In Chapter 3, we propose to go beyond the existence
and convergence of effective properties and discuss fluctuations. Considering for simplicity the easiest
linearized model, we establish the first complete pathwise theory of fluctuations. In Chapter 5,
again for simple linear models, we investigate the explicit first-order formulas developed by Mossotti,
Maxwell, and Clausius for the effective properties of two-phase dispersed media. We provide the
first general and rigorous proof of the so-called Clausius-Mossotti formula, as well as an extension to
higher orders. In a second part (Chapters 6–8), we focus on more complicated systems and study
the dynamical behavior of Ginzburg-Landau vortices in type-II superconductors in the presence of
impurities. Although a complete mathematical understanding of the glassy properties of such systems
seems out of reach, we establish the mean-field limit of a large number of vortices, and subsequently
investigate the homogenization of these mean-field equations and their peculiar properties.

Whether in the context of rubber elasticity or of glassy properties of vortex systems, a leitmotiv
in this work is the rigorous derivation of phenomenological physics equations from first principles by
justifying the needed successive limits, for which homogenization theory is in some cases a crucial
tool. This is precisely the object of Hilbert’s Sixth Problem, asked in the occasion of the Interna-
tional Congress of Mathematicians in Paris in 1900, which concerns the mathematical treatment of
the Axioms of Physics, “developing mathematically the limiting processes [...] which lead from the
atomistic view to the laws of motion of continua” [239]. One can indeed only be astonished at the
incredible diversity of physical phenomena that one observes, all supposed to be deductible from very
few fundamental principles governing physics.

In the sequel of this main introduction, we shortly describe and contextualize the content of
each chapter. Precise statements, complete references, full details, and many perspectives and open
problems are however postponed to the introductions of the chapters themselves.

Contents

1.1 Topics in stochastic homogenization (Part I) . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Homogenization of nonconvex unbounded integral functionals (Chapter 2) . . . 4
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1.1.3 Pathwise structure of fluctuations (Chapter 3) . . . . . . . . . . . . . . . . . . . 9
1.1.4 Weighted functional inequalities for correlated random fields (Chapter 4) . . . . 12
1.1.5 Clausius-Mossotti formulas and beyond (Chapter 5) . . . . . . . . . . . . . . . 13

1.2 Ginzburg-Landau vortices in disordered media (Part II) . . . . . . . . . . . . . . . . . 17
1.2.1 Mean-field limit of Coulomb-like interaction gradient flows (Chapter 6) . . . . . 18
1.2.2 Well-posedness for mean-field evolutions (Chapter 7) . . . . . . . . . . . . . . . 21
1.2.3 Mean-field dynamics of Ginzburg-Landau vortices (Chapter 8) . . . . . . . . . . 23
1.2.4 Ginzburg-Landau vortices in disordered media (Chapter 8, cont’d) . . . . . . . 28
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1.1 Topics in stochastic homogenization (Part I)

The first part of this thesis is devoted to several topics in stochastic homogenization — the
study of macroscopic effective properties of heterogeneous media. Let ε > 0 denote the typical scale
of microstructures, that is, the ratio between typical microscopic and macroscopic scales, so that
all physical characteristics of the considered material are described as functions of the form A( ·ε).
Depending on the nature of heterogeneities, the function A can be periodic, almost periodic, or more
generally a typical realization of a stationary random field. Stationarity is a natural assumption
here, as it means that microstructures look about the same everywhere, in the sense that their law
is translation-invariant. At a technical level, we shall systematically express stationarity in terms
of equivariance under a measurable action of the additive group (Rd,+) on the probability space
(cf. Section 2.A.2 for detail), which conveniently places us in the realm of ergodic theory. Ergodicity
of this group action — seen as a minimality condition on the probability space — is always assumed
in the sequel. Depending on the physical system in consideration, the fast oscillating coefficients A( ·ε)
enter the corresponding PDEs. Due to small-scale variations, such PDEs are typically impossible to
solve in practice and we rather aim at a suitable asymptotic analysis in the limit ε ↓ 0. In other words,
we are interested in the large-scale effective properties obtained after averaging out over smaller scales.
Understanding this averaging process may be difficult, depending on the considered PDE, and is the
purpose of the homogenization theory (see e.g. [50, 265] for general references). In this first part of the
thesis, we focus on stationary problems. We start with very general variational functionals associated
with second-order nonlinear operators motivated by nonlinear elasticity, for which we establish some
new qualitative results on existence and definition of effective properties. Subsequently, we focus on
the simpler linearized setting and turn to more involved quantitative homogenization questions.

1.1.1 Homogenization of nonconvex unbounded integral functionals (Chapter 2)

In Chapter 2 we consider the well-travelled problem of stochastic homogenization of a nonlinearly
hyperelastic material. Assume that the reference configuration of some sample is given by a bounded
open subset O ⊂ Rd and that the material is heterogeneous with microstructures at the small scale
ε > 0. The elastic energy of the sample, subject to a displacement u : O → Rd, then takes the form

Iε(u) :=

ˆ
O
W (xε ,∇u(x))dx, (1.1)

in terms of the (heterogeneous) energy density W : Rd × Rd×d → [0,∞]. As ε ↓ 0, the fine structure
of the material becomes irrelevant, and overall properties are expected to be described by a simpler
homogenized energy functional of the form

I(u) :=

ˆ
O
Whom(∇u(x))dx, (1.2)

in terms of a so-called homogenized energy density Whom : Rd×d → [0,∞] that does no longer depend
on the microscopic space variable. More precisely we mean the following: for any external force
f : O → Rd, any subset E ⊂ ∂O, and any Dirichlet boundary data h : E → Rd on E, the minimizers
and the minimal value of the minimization problem

min
u :u|E=h

ˆ
O

(
W (xε ,∇u(x))− f(x) · u(x)

)
dx (1.3)

should converge in some sense to the minimizers and the minimal value of the constant-coefficient
problem

min
u :u|E=h

ˆ
O

(
Whom(∇u(x))− f(x) · u(x)

)
dx.
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Due to the violent oscillations expected for minimizers at the scale ε, convergence is naturally expected
here in the weak sense of Sobolev spaces. The natural framework for this asymptotic analysis is De
Giorgi’s notion of Γ-convergence [139], which is a variational convergence that ensures, under some
equicoercivity assumption, the convergence of minimizers and of minimal values, as well as the stability
with respect to continuous perturbations (in this case, with respect to the external force f). We refer
to [133, 78] for general references.

Usual properties of Γ-limits with Dirichlet boundary data ensure that the homogenized integrand
Whom in (1.2) is quasiconvex in the sense of

Whom(Λ) = min
u :u|∂O=0

 
O
Whom(Λ +∇u),

and this leads to the following asymptotic homogenization formula, for all Λ ∈ Rd×d,

Whom(Λ) = lim
ε↓0

min
u :u|∂O=0

 
O
W (xε ,Λ +∇u(x))dx = lim

R↑∞
min

u :u|∂QR=0

 
QR

W (y,Λ +∇u(y))dy,

(1.4)

which characterizes Whom in terms of W , where QR := [−R
2 ,

R
2 )d is the centered cube of side-length

R. In the periodic convex setting, that is, when W (y, ·) is convex on Rd×d for all y ∈ Rd and when
W (·,Λ) is 1-periodic for all Λ ∈ Rd×d, the asymptotic formula (1.4) is well-known to reduce to a
minimization problem on a unit cell with periodic boundary conditions [314, 331], that is,

Whom(Λ) = min
φ periodic

ˆ
Q
W (y,Λ +∇φ(y))dy. (1.5)

The minimizer φΛ for this cell problem is called the corrector in the direction Λ. Note that this single-
cell formula (1.5) is false in the nonconvex case due to a possible buckling phenomenon [331, 44]. In
the random convex setting, an abstract version of the single-cell formula (1.5) holds as well (cf.
Lemma 2.2.7),

Whom(Λ) = min
∇φ stationary

E [W (0,Λ +∇φ(0))] , (1.6)

where minimization is on the set of all gradient-like stationary fields. Due to the failure of the usual
Poincaré inequality on the probability space (as it would correspond to a Poincaré inequality in
infinite volume), the main issue here is that the corresponding corrector φΛ (that is, the solution of
this abstract cell problem (1.6)) should not be stationary. Only its gradient ∇φΛ is stationary so that
φΛ may actually grow at infinity, in contrast with the periodic case. Stationarity of ∇φΛ nevertheless
implies sublinearity of φΛ at infinity (cf. Lemma 2.2.4), which will happen to be sufficient for our
purposes here.

The main tasks in qualitative homogenization theory consist in proving the desired Γ-convergence
result for Iε with any boundary condition, in justifying a homogenization formula to characterize
the homogenized energy density Whom, and in establishing qualitative properties of Whom (such as
coercivity, quasiconvexity, and upper bounds). For simplicity in this introduction we focus on the
periodic case. The main homogenization results previously known for integral functionals of the
form (1.1) are due to Marcellini [314], Braides [77], and Müller [331], and cover the following two
situations,

— 1
C |Λ|

p ≤W (y,Λ) ≤ C(1+ |Λ|p) for all y,Λ, with p > 1 and withW (y, ·) nonconvex and locally
Lipschitz for all y;

— 1
C |Λ|

p ≤ W (y,Λ) and supzW (z,Λ) < ∞ for all y,Λ, with p > d and with W (y, ·) convex for
all y.
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These results have recently been generalized by Anza Hafsa and Mandallena [25], who considered the
following,

— 1
C |Λ|

p ≤ M(Λ) ≤ W (y,Λ) ≤ C(1 + M(Λ)) for all y,Λ, with p > d, with M convex, and
with W (y, ·) nonconvex and radially uniformly upper semicontinuous (ru-usc in short, cf.
Definition 2.1.5) for all y.

Note that in each of these situations the domain of the map Λ 7→ W (y,Λ) is convex and does
not depend on the space variable y ∈ Rd. To our knowledge, only one work has gone beyond this
setting [79], but it focuses on stiff inclusions and exploits a very precise control of the geometry.

As motivated by the derivation of nonlinear elasticity from the statistical physics of polymer-chain
networks [9, 200, 138], much weaker assumptions on the energy density W should be considered.
Indeed, the free energy of the polymer-chain network is given by two contributions: the sum of the
free energies of the deformed chains, and a nonconvex steric effect prohibiting the interpenetration of
matter. The free energy of a single chain is a convex increasing function of the square of the length
of the deformed polymer-chain, which blows up at a finite deformation depending on the number
of monomers in the considered chain. The corresponding problem in a continuum setting is the
homogenization of a nonconvex density W of the form

W (y,Λ) = V (y,Λ) + a(y) g(det Λ),

where V is an unbounded convex density such that the domain of Λ 7→ V (y,Λ) can strongly vary with
respect to the space variable y ∈ Rd, where a is uniformly bounded, and where g is a nonnegative
convex function with g(t) ↑ ∞ as t ↓ 0. However, proving homogenization for the steric effect
a(y) g(det Λ) is one of the most important open problems in the field (cf. Section 2.1.7), so that we
decide here to truncate this effect for simplicity in order to focus on the first contribution only. More
precisely, we consider a ru-usc nonconvex density W satisfying a two-sided estimate by a convex
integrand, that is,

1

C
|Λ|p ≤ V (y,Λ) ≤W (y,Λ) ≤ C(1 + V (y,Λ)), (1.7)

where V is an unbounded convex integrand as above and where p > d.
Two major difficulties appear for this homogenization problem. First, the domain of the homog-

enized density Whom is unknown a priori, since the domain of V is no longer fixed, in stark contrast
with all previously known results. Second, boundary data yielding a finite homogenized energy may
not be adapted to the energy at any fixed value of the parameter ε > 0, so that we do not expect
in general any homogenization result to hold with Dirichlet conditions. As a consequence, the usual
asymptotic homogenization formula (1.4) with Dirichlet boundary conditions can no longer hold. The
results that we obtain in Chapter 2 are summarized as follows, further assuming that the interior of
the domain of Λ 7→ supy V (y,Λ) is nonempty,

— Convex result. The convex energy functional Jε(u) :=
´
O V (y/ε,∇u(y))dy Γ-converges to

the homogenized functional J(u) :=
´
O Vhom(∇u(y))dy with respect to the weak W 1,p(O)d

topology (with Neumann boundary data), where Vhom is given e.g. by the usual single-cell
formula (1.5)–(1.6).

— Nonconvex result. The nonconvex energy functional Iε Γ-converges to the homogenized func-
tional I with respect to the weak W 1,p(O)d topology (that is, with Neumann boundary data),
where Whom is given by the following formula,

Whom(Λ) = lim inf
t↑1

lim
R↑∞

inf
u∈W 1,p

0 (QR)

 
QR

W (y, tΛ + t∇φΛ(y) +∇u(y))dy, (1.8)

where φΛ denotes the corrector for the (single-cell) convex problem in the direction Λ.
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Note that the two-sided estimate (1.7) indeed ensures that the convex corrector is well-adapted as a
Dirichlet boundary data in the asymptotic formula for Whom: this is the idea behind formula (1.8),
while the first lim inf corresponds to some further needed relaxation.

We briefly comment on the proof of these Γ-convergence results, and start with the convex func-
tional Jε. The most original parts of the argument are a quantitative use of the sublinearity of
correctors at infinity in the random setting, and a particularly careful gluing construction. The main
difficulty for the Γ-convergence result comes from the construction of recovery sequences: for all
u ∈ W 1,p(O)d we need to construct a sequence uε −⇀ u inW 1,p(O)d such that lim supε Jε(uε) ≤ J(u).
For that purpose, we argue à la Müller [331], by first reducing by approximation to the case when
the limiting test function u is piecewise affine. If u = Λx is affine on the whole of O, then a recovery
sequence is given by a rescaling of the corrector, uε := u + εφΛ( ·ε). For a piecewise affine u, it thus
remains to understand how to glue such recovery sequences for each of the affine pieces. Assume that
O = O1

⊎
O2 and that u|Oi = Λix+ ci for i = 1, 2. Choosing a cut-off χη for O1 inside O1 +Bη, with

η to be later optimized as a function of ε, we are led to consider the following gluing,

uε,η(x) := u(x) + χη(x)εφΛ1(xε ) + (1− χη(x))εφΛ2(xε ).

As the energy functional Jε only involves the gradient, we compute

∇uε,η = χη(Λ1 +∇φΛ1( ·ε)) + (1− χη)(Λ2 +∇φΛ2( ·ε))

+O(|Λ1 − Λ2|)1(O1+Bη)∩O2
+O( εη )‖(φΛ1 , φΛ2)‖L∞ . (1.9)

If the last two terms can be treated as errors, then by convexity of V we would conclude

lim supJε(uε,η) ≤ |O1|Vhom(Λ1) + |O2|Vhom(Λ2) = J(u),

as ε, η ↓ 0. In the periodic setting, the correctors φΛi are periodic and uniformly bounded if p >
d, hence the last term in (1.9) is pointwise small in the regime ε � η. In the random setting,
correctors may grow at infinity, but their sublinearity is still enough to conclude similarly (with η
going sufficiently slowly to 0). The penultimate term in (1.9) is concentrated in space on the η-
neighborhood of the boundary ∂O1, and hence, if the integrand V satisfies supy V (y,Λ) < ∞ for all
Λ, this term would vanish in the limit η ↓ 0. However, in the present case, no such bound is available.
Our idea is rather to refine the gradient jump |Λ1 − Λ2| and make it pointwise small: we set up an
additional approximation argument and replace u by a sequence of piecewise affine functions with
vanishing gradient jumps.

The Γ-convergence result for the nonconvex energy functional Iε is deduced by adapting relatively
standard methods together with the same gluing construction as that needed for the convex functional
Jε. To treat all error terms, we make a strong use of the two-sided estimate (1.7) and reduce to a
convex situation.

1.1.2 Quantitative stochastic homogenization in the linear setting

Beyond these purely qualitative questions of existence and characterization of an effective en-
ergy functional, quantitative aspects are naturally of interest as well, namely rates of convergence
for minimizers, rates of convergence for the infinite volume limit in the asymptotic homogenization
formula (1.4), as well as fluctuations around these convergences. While for the qualitative theory we
tried to consider the most general assumptions possible on the nonlinearity, the quantitative theory is
mainly developed for linearized equations (see however e.g. [95, 35, 36, 34, 341]) and the focus is then
on establishing optimal convergence rates. Until recently, most quantitative results were confined
to the periodic setting, since in that case the problem is reduced to one on the torus and optimal
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estimates can then be deduced by compactness methods [50, 38]. In the following, we rather focus on
the random case, and we restrict attention to linear equations.

Formally linearizing the minimization problem (1.3), we are led to the following second-order
elliptic system describing linear elasticity,

−∇ ·A( ·ε)∇uε = f, in O, and uε|∂O = h, on ∂O, (1.10)

where the domain O ⊂ Rd corresponds to a reference configuration, where A( ·ε) is the (fourth-order)
stiffness tensor field with heterogeneities at the scale ε > 0, where f : Rd → Rd is an applied force,
where h : ∂O → Rd is a Dirichlet boundary data, and where the solution uε : O → Rd describes
the elastic displacement. In the sequel, we shall also consider the corresponding scalar PDE, that
is, equation (1.10) for uε : O → R, with some domain O ⊂ Rd, some matrix coefficient field A( ·ε),
some f : O → R, and some boundary data h : ∂O → R. This heterogeneous scalar Laplace equation
arises e.g. in the context of Poisson’s law in electrostatics, of Fourier’s law for stationary temperature
distribution, of Fick’s law for stationary diffusion, etc. Henceforth, we always use scalar notation
for simplicity, and the coefficient field A is assumed to be an ergodic stationary random field on the
ambient space Rd satisfying the following boundedness and ellipticity properties,

|A(x)ξ| ≤ |ξ|, for all ξ, x ∈ Rd,ˆ
Rd
∇ζ ·A∇ζ ≥ λ

ˆ
Rd
|∇ζ|2, for all ζ ∈ C∞c (Rd), (1.11)

for some λ > 0. For suitable f ∈ L2(O), we consider the weak solution uε ∈ H1
h(O) of (1.10). Since

the pioneering works by Kozlov [273] and by Papanicolaou and Varadhan [354], we know that, almost
surely, the solution uε converges weakly in H1(O) as ε ↓ 0 to the unique weak solution ū ∈ H1

h(O) of

−∇ ·Ahom∇ū = f, in O, and ū|∂O = h, on ∂O,

where Ahom is a deterministic constant coefficient that depends only on the law of A and satisfies
the ellipticity condition (1.11). For all directions ξ ∈ Rd, the projections Ahomξ are given by the
expectation of the flux of the corrector,

Ahomξ = E [A(∇φξ + ξ)] , (1.12)

where φξ is the corrector in the direction ξ, that is, the unique (up to additive constant) almost sure
solution of the corrector equation on Rd,

−∇ ·A(∇φξ + ξ) = 0, (1.13)

in the class of functions with stationary gradient and finite second moment. We denote by φ = (φi)
d
i=1

the vector field whose entries φi := φei are the correctors in the canonical directions ei of Rd. Note
that the cell problem (1.13) is the linearization of (1.6), and again the possible non-stationarity of
the corrector φξ itself is related to the failure of the Poincaré inequality in the probability space. As
formula (1.12) shows, the corrector field ∇φξ precisely makes the link between the microstructure A
and the macrostructure Ahom, somehow correcting the arithmetic mean along A-harmonic coordinates.
In the scalar 1D case, we simply compute Ahom = E[A−1]−1, so that homogenization corresponds to
taking the harmonic average of coefficients, but in higher dimensions the correction is more subtle
and, in general, not explicit.

In this linear setting, the quantitative questions mainly concern the homogenization error ‖uε −
ū‖L2(O). More precisely, while the convergence of uε to ū in H1(O) is only weak since ∇uε typically
displays spatial oscillations at scale ε, which are not captured by the limit ∇ū, these oscillations are
expected to be well-described by those of the corrector field ∇φ( ·ε) through the two-scale expansion

uε ≈ ū+ εφi(
·
ε)∇iū, (1.14)
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in the sense of strong convergence inH1(O) up to boundary layers. In the periodic case such an expan-
sion is well-known to hold, but in the stochastic setting a first difficulty originates in the potentially
bad behavior of the corrector φ. Another quantitative question concerns the numerical approximation
of the homogenized coefficients Ahom: in contrast with the periodic case, the representation (1.12) is
indeed of no direct use for numerical methods since the corrector equation (1.13) needs to be solved
for every realization of the random coefficients and in the whole space Rd. This difficulty is typi-
cally overcome by the representative volume element scheme: a large but finite sample volume of the
random medium is chosen, then an approximation for the exact effective coefficient is obtained by
using the cell formula on this sample volume, which leads to random finite-volume approximations
of Ahom, and a crucial question concerns the accuracy of these. Naturally, for such quantitative
considerations, ergodicity of the coefficient field A must be strengthened into suitable quantitative
ergodicity assumptions. The main underlying question in quantitative stochastic homogenization is
how ergodicity properties of the coefficient field are transmitted to the solution operator (−∇·A∇)−1,
which is a particularly nontrivial question since the solution operator is a nonlinear nonlocal function
of the coefficients.

The first suboptimal quantitative convergence result for uε is due to Yurinskii [428] in the late
1980s, but the theory literally exploded in the last decade with the emergence of a completely optimal
quantitative theory. Everything started in 2009 with the works by Gloria and Otto [209, 210] in the
simpler discrete setting with independent and identically distributed (i.i.d.) coefficients, where they
established an optimal analysis of the representative volume element scheme and show in passing that
the corrector φ is stationary and has all bounded moments in dimension d > 2. This was inspired
by an unpublished work by Naddaf and Spencer [334], and in particular strongly relied on the use
of a spectral gap in the probability space — seen as a quantification of ergodicity, and somehow
curing the lack of the usual Poincaré inequality. These results were continued by Gloria, Neukamm,
and Otto [206, 205], including a justification of the two-scale expansion, and further extended to the
continuum setting [212]. The need for a large-scale regularity theory for the random elliptic operator
−∇·A∇ was quickly recognized [142, 313, 201]. A striking contribution by Armstrong and Smart [36],
inspired by previous works by Dal Maso and Modica [134] and by Avellaneda and Lin [38, 39],
then paved the way for a quenched large-scale regularity theory of A-harmonic functions and for
quantitative homogenization results avoiding any use of functional inequalities in the probability space
(but rather based on milder mixing-type assumptions, thus allowing for a greater generality). The
main insight is that one should separate error estimates, which require strong ergodicity assumptions,
from the large-scale regularity theory, which should hold under milder assumptions. This program
was further developed by Armstrong, Kuusi, and Mourrat in a variational framework [34, 33, 32]
(see also [30]), and found a different, intrinsic formulation in the works by Gloria, Neukamm, and
Otto [204, 203, 208].

1.1.3 Pathwise structure of fluctuations (Chapter 3)

As opposed to periodic homogenization, which essentially boils down to the understanding of
the spatial oscillations of the solution ∇uε of (1.10) in form of a suitable two-scale expansion (3.3),
the random setting involves the random fluctuations of ∇uε on top of its oscillations. Whereas
oscillations are concerned with the almost sure lack of strong compactness for ∇uε in L2, fluctuations
are concerned with the leading-order probabilistic behavior of weak-type expressions of the form´
Rd g · ∇uε. Henceforth, in order to avoid boundary layers, we consider the following version of
equation (1.10) on the whole space Rd: given f ∈ L2(Rd)d, we let uε denote the unique solution in
Ḣ1(Rd) of

−∇ ·A( ·ε)∇uε = ∇ · f.
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We are mainly interested in the fluctuations of the field ∇uε and flux A( ·ε)∇uε of the solution,
and of the field ∇φ( ·ε) and flux A( ·ε)∇φ( ·ε) of the corrector. It follows from the usual quantitative
theory of stochastic homogenization that the fluctuations of these quantities have (generically) the
same scaling as the random coefficient field A( ·ε) itself, hence they display the central limit theorem
(CLT) scaling ε

d
2 in the case of weakly dependent coefficient fields. CLT results for these quantities

were first established in dimension d > 2 in the discrete case with i.i.d. Gaussian coefficients 1 by
Mourrat and Otto [329], Mourrat and Nolen [328], and Gu and Mourrat [225]. These first results
indicated some intriguing link between the different limiting laws: the limiting fluctuations of ∇φ( ·ε)
is the Helmholtz projection of a Gaussian white noise with some particular covariance tensor, and the
same tensor appears in the limiting fluctuations of ∇uε. A natural question that occurs is then to
understand the origin of this relation between limiting laws. As observed by Gu and Mourrat [225],
such a relation is however quite surprising, since the fluctuations of the solution operator cannot be
inferred from those of the corrector via the usual two-scale expansion (3.3): this expansion (as well
as its higher-order versions) is indeed not accurate in the CLT scaling in dimension d ≥ 2, and the
corrector field ∇φ is therefore a priori not the driving quantity for fluctuations.

In Chapter 3, we provide a complete theory of fluctuations, and our main achievement is the
identification of the suitable driving quantity. The key in our theory consists in focusing on the
homogenization commutator A( ·ε)∇uε −Ahom∇uε of the solution, and in studying its relation to the
standard homogenization commutator Ξ = (Ξi)

d
i=1 defined by

Ξi := A(∇φi + ei)−Ahom(∇φi + ei).

This stationary random 2-tensor field Ξ finds a natural motivation in terms of H-convergence (cf.
Section 3.1.1), and was simultaneously independently introduced by Armstrong, Kuusi, and Mour-
rat [32] formalizing previous ideas initiated in [36]. We establish that the homogenization commutator
satisfies the following three key principles, which lead to our complete theory of fluctuations:

(I) First and most importantly, the two-scale expansion of the homogenization commutator of the
solution,

A( ·ε)∇uε −Ahom∇uε − E
[
A( ·ε)∇uε −Ahom∇uε

]
≈ Ξi(

·
ε)∇iū,

is (generically) accurate in the fluctuation scaling in the sense of

E
[∣∣∣ˆ

Rd
g ·
(
A( ·ε)∇uε −Ahom∇uε − E

[
A( ·ε)∇uε −Ahom∇uε

] )
−
ˆ
Rd
g · Ξi( ·ε)∇iū

∣∣∣2] 1
2

≤ o(1)E
[∣∣∣ ˆ

Rd
g · Ξi( ·ε)∇iū

∣∣∣2] 1
2

, (1.15)

where o(1) ↓ 0 as ε ↓ 0, for all g ∈ C∞c (Rd)d. Let us emphasize that this property is nontrivial
and is due to the special form of the commutator.

(II) Second, both the fluctuations of the field∇uε and of the flux A( ·ε)∇uε can be recovered through
deterministic projections of those of the homogenization commutator A( ·ε)∇uε − Ahom∇uε
of the solution, which shows that no information is lost by passing to the homogenization
commutator. In addition, the fluctuations of the field ∇φ( ·ε) and of the flux A( ·ε)∇φ( ·ε) of the

1. More precisely, for coefficients that are C2
b -functions of i.i.d. Gaussian random variables, so as to satisfy the

uniform ellipticity assumption (1.11).
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corrector are determined by those of the standard commutator Ξ( ·ε). For instance,ˆ
Rd
g · ∇(uε − E [uε])

= −
ˆ
Rd

(P̄∗Hg) ·
(
A( ·ε)∇uε −Ahom∇uε − E

[
A( ·ε)∇uε −Ahom∇uε

])
, (1.16)

ˆ
Rd
F : ∇φ( ·ε) = −

ˆ
Rd
P̄∗HF : Ξ( ·ε), (1.17)

in terms of the Helmholtz projection P̄∗H := ∇(∇ · A∗hom∇)−1∇·, where A∗hom denotes the
transpose matrix.

(III) Third, the standard homogenization commutator Ξ is an approximately local function of the
coefficients A, which allows to infer the large-scale behavior of Ξ from the large-scale behavior
of A itself.

On the one hand, items (I)–(II) reveal the pathwise structure of fluctuations in stochastic ho-
mogenization. Indeed, combined with identities of the form (1.16)–(1.17), the accuracy (1.15) of
the two-scale expansion of the homogenization commutator implies that the fluctuations of ∇uε,
A( ·ε)∇uε, ∇φ( ·ε), and A( ·ε)∇φ( ·ε) are determined at leading order by those of Ξ( ·ε) in a strong norm
in probability. This almost sure (“pathwise” in the language of SPDE) relation thus reduces the
leading-order fluctuations of all quantities of interest to those of the sole homogenization commuta-
tor Ξ in a pathwise sense. Besides its theoretical importance, this pathwise structure is bound to
affect multi-scale computing and uncertainty quantification in an essential way. Independently of the
present work, Armstrong, Gu, and Mourrat [225] have proposed an interesting formal heuristics that
also suggests the pathwise character of fluctuations but from which no rigorous proof has yet been
extracted at the level of the solution operator.

On the other hand, item (III) is the key to the understanding of the limiting fluctuations of the
standard homogenization commutator Ξ. In the case of a weakly dependent coefficient field, it implies
that Ξ is itself an (approximately) weakly dependent random field, so that its rescaling ε−

d
2 Ξ( ·ε) (seen

as a random Schwartz distribution) must converge in law to a Gaussian white noise (see also [32, 208]).
Item (III) further opens the way to determine the limiting fluctuations in the case of coefficient fields
with strong correlations, for which, as well-understood in 1D [42, 224, 291], Ξ may display different
(not CLT) scalings, and different (not white, and potentially not even Gaussian) limiting laws.

In this very first work on the pathwise structure of fluctuations, we focus on the model framework
of a discrete linear elliptic equation with i.i.d. coefficients. Using a spectral gap and various other
functional inequalities in the probability space, we establish optimal quantitative estimates in any
dimension d ≥ 2. As described in Section 3.1.4, various generalizations are postponed to forthcoming
work. More precisely, we prove the following:

— CLT scaling: for all ε > 0 and all F ∈ C∞c (Rd)d×d,

Var

[
ε−

d
2

ˆ
Rd
F : Ξ( ·ε)

]
.F 1.

— Pathwise structure (with optimal error estimates): for all f, g ∈ C∞c (Rd)d, the accuracy of
the two-scale expansion of the homogenization commutator holds in the form (1.15) with
o(1) 'f,g εµd(1

ε )
1
2 , where µd(ε) := 1 for d > 2 and µd(1

ε ) := log(2 + 1
ε ) for d = 2. In particular,

identity (1.16) implies for all ε > 0 and all f, g ∈ C∞c (Rd)d,

E

[(
ε−

d
2

ˆ
Rd
g · ∇(uε − E [uε]) + ε−

d
2

ˆ
Rd

(P̄∗Hg) · Ξi( ·ε)∇iū
)2
] 1

2

.f,g εµd(
1
ε )

1
2 . (1.18)
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— Approximate normality (with nearly optimal rate): for all ε > 0 and all F ∈ C∞c (Rd)d×d,

δN

(
ε−

d
2

ˆ
Rd
F : Ξ( ·ε)

)
.F ε

d
2 log(2 + 1

ε ), (1.19)

where for a random variable X ∈ L2(Ω) with variance σ2 = Var [X] its distance to normality
is defined by δN (X) := dW

(
1
σX,N

)
+ dK

(
1
σX,N

)
, with N a standard Gaussian random

variable and with dW (·, ·) and dK (·, ·) the Wasserstein and Kolmogorov metrics.
— Convergence of the covariance structure (with optimal rate): there exists a non-degenerate

symmetric 4-tensor Q such that for all F ∈ C∞c (Rd)d×d,∣∣∣Var

[
ε−

d
2

ˆ
Rd
F : Ξ( ·ε)

]
−
ˆ
Rd
F : QF

∣∣∣ .F εµd(
1
ε )

1
2 . (1.20)

Combined with (1.19), this yields the convergence of ε−
d
2 Ξ( ·ε) in law to a (2-tensor) Gaussian

white noise with covariance tensor Q. Together with identity (1.17) and with the pathwise
result (1.18), this leads in particular to the first (nearly) optimal quantitative version of the
known scaling limit results for ∇uε and ∇φ( ·ε).

In addition, we complement this fluctuation theory with the study of the accuracy of the random
volume element scheme for the numerical approximation of the so-called effective fluctuation tensor Q.

1.1.4 Weighted functional inequalities for correlated random fields (Chapter 4)

Let A be an ergodic stationary random coefficient field on Rd. We say that it satisfies the standard
spectral gap (∂-SG) if for all σ(A)-measurable random variables X(A) there holds

Var [X(A)] ≤ C

ˆ
Rd

E
[(
∂A,BR(x)X(A)

)2
]
dx, (1.21)

where the “derivative” ∂A,BR(x)X(A) measures the local dependence of X(A) with respect to the
restriction A|BR(x) of the coefficient field on the ball BR(x) of radius R centered at x. Note that in
the continuum setting there is no canonical choice of a vertical derivative ∂, which can be chosen as e.g.
the usual Glauber derivative ∂G, the oscillation ∂osc, or the functional derivative ∂fct (see Section 4.1.2
for definitions), and these different choices are not at all equivalent. We also consider covariance and
logarithmic Sobolev inequalities (∂-CI) and (∂-LSI), which are useful variants of the above spectral
gap. As illustrated in Chapter 3 in the proof of the pathwise result for fluctuations in stochastic
homogenization, these functional inequalities on the probability space lead to a powerful and very
convenient sensitivity calculus for nonlinear functions X(A) of A. The use of such inequalities in
quantitative stochastic homogenization originates in the inspiring unpublished work by Naddaf and
Spencer [334]. In addition, these inequalities are well-known in mathematical physics as powerful tools
to establish strong nonlinear concentration of measure properties for functions of A. Unfortunately,
they are extremely restrictive in the context of coefficient fields of interest to homogenization in
practice, as they are essentially only known to hold in the following situations,

— any local transformation A of a product (i.i.d.) structure (e.g. Poisson inclusions with bounded
radius) satisfies (∂G-SG), (∂G-CI), and (∂osc-LSI);

— a stationary Gaussian random fieldA satisfies (∂fct-SG) if and only if
´
Rd |Cov [A(x);A(0)] |dx <

∞;
— a stationary Gaussian random field A satisfies (∂fct-CI) if and only if it has finite range of

dependence.

In Chapter 4, we introduce a new hierarchy of generalized versions of these functional inequalities,
which still imply strong concentration properties but are satisfied for various examples of random
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fields with strong long-range dependences. More precisely, the idea is to modify (1.21) by explicitly
taking into account dependences at all scales r > 0 according to some weight: given an integrable
function π : R+ → R+, we say that A satisfies the weighted spectral gap (∂-WSG) with weight π if
for all σ(A)-measurable random variable X(A) there holds

Var [X(A)] ≤ E
[ˆ ∞

0

ˆ
Rd

(
∂A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`) d`

]
, (1.22)

and we similarly define weighted covariance and logarithmic Sobolev inequalities (∂-WCI) and (∂-
WLSI). The standard spectral gap (∂-SG) is naturally recovered for compactly supported weights π,
and we note that (∂-WSG) with weight π implies the ergodicity of A whenever

´∞
0 π(r)dr < ∞. In

this sense, this hierarchy of weighted functional inequalities provides a quantification of ergodicity.
As we show, these weighted functional inequalities still imply strong concentration properties,

which crucially depend both on the decay of the weight and on the choice of the derivative, and which
are generally stronger than those implied by the corresponding α-mixing. In addition, we develop
a ready-to-use criterion to produce random fields that satisfy such weighted inequalities, based on
transformations of higher-dimensional product structures, and relying on approximate chain rules for
nonlinear and random changes of variables for random fields. This approach allows us to treat all the
models of heterogeneous materials encountered in the applied sciences [413], including for instance
the following typical examples,

— Gaussian random fields: if the covariance function C satisfies supB(x) |C| ≤ c(|x|) for some
non-increasing c : R+ → R+, then A satisfies (∂fct-WSG) and (∂fct-WLSI) with weight π(`) '
|c′(`)|;

— Poisson random inclusions with i.i.d. random radii: if the radius law is given by some random
variable V , then A satisfies (∂osc-WSG) with weight π(`) ' (`+ 1)d P [`− 4 ≤ V < `+ 4];

— Poisson random tessellations (Voronoi or Delaunay): A satisfies (∂osc-WSG) and (∂osc-WLSI)
with weight π(`) ' e−

1
C
`d ;

— random parking process: A satisfies (∂osc-WSG) and (∂osc-WLSI) with weight π(`) ' e−
1
C
`.

We further extend this weighted approach to the case of second-order Poincaré inequalities à la
Chatterjee [112, 113]. While “first-order” functional inequalities, such as spectral gap, quantify the
distance to constants for nonlinear functions X(A) in terms of their local dependence on the random
field A, these second-order inequalities quantify their distance to normality.

We then turn to two applications of this theory. The first application is in quantitative stochas-
tic homogenization. More precisely, we consider the quenched large-scale regularity theory for A-
harmonic functions [32, 204]: the integrability properties of the minimal radius beyond which the
regularity theory holds are known to follow from the concentration properties of spatial averages of
approximately local functions of the random field A. For random fields that satisfy weighted func-
tional inequalities, such concentration properties can be optimally determined, resulting in optimal
integrability properties for the minimal radius, which are in general stronger than those obtained
from the corresponding α-mixing. For instance, for Poisson random tessellations, the minimal radius
r∗ is shown to satisfy E

[
exp( 1

C r
d
∗)
]
<∞ instead of E

[
exp( 1

C r
d/2
∗ )

]
<∞.

The second application concerns random sequential adsorption models in stochastic geometry, and
more precisely fluctuations of the jamming limit. Using our weighted first- and second-order functional
inequalities, we revisit and complete previous works pioneered by Penrose and Yukich [357, 359, 358,
360, 391, 286].

1.1.5 Clausius-Mossotti formulas and beyond (Chapter 5)

As described in Section 1.1.2 above, for second-order linear elliptic PDEs in divergence form,
cf. (1.10), the qualitative theory of stochastic homogenization is well-understood and leads to the
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A0 = α Id

A1 = β Id

Figure 1.1 – Clausius-Mossotti model of dispersed spherical inclusions.

existence of a homogenized coefficient Ahom, defined in terms of an abstract cell problem (1.12)–
(1.13) on the probability space. For some very particular two-dimensional geometries, exact solutions
of the cell problem are possible and lead to explicit expressions for Ahom (see e.g. [265, Sections 1.5
and 7.3]). In general no explicit formula is however possible and we can only try to develop numerical
approximations. In contrast with the simpler periodic case, the definition of Ahom has no direct use
for numerical methods in practice, since it requires to solve the corrector equation (1.13) for every
realization of the random coefficient field A and in the whole space Rd. Numerical approximations of
Ahom follow from the representative volume element method, the efficiency of which is well understood
since the pioneering works by Gloria and Otto [209, 210]. Estimating Ahom nevertheless remains
computationally demanding. In Chapter 5, we focus on a particular situation of interest, that is,
when A is a “small random perturbation” of some better-known coefficient field A0, which can be
e.g. constant or periodic (cf. [20, 21]). It is then expected that the perturbed homogenized coefficient
Ahom is a small perturbation of the unperturbed one (A0)hom, and the main interest lies in finding a
simpler formula for the first-order deviation, which can be used as a good proxy for Ahom that is less
demanding to compute, and can also be used to reduce the variance in some numerical approximation
methods for Ahom [296]. More precisely, given two reference coefficient fields A0 and A1, we consider
an inclusion process (e.g. Poisson spherical random inclusions) with small volume fraction v � 1,
and we consider the random field A equal to A0 outside inclusions and equal to A1 inside. In other
words, the considered perturbation is only small in an L1 sense. This encompasses the example of
errors occurring with small probability in the construction process of some material with engineered
microstructures: errors result in small foreign inclusions and a strong practical interest resides in
determining the deviation in the effective properties of the constructed material, with respect to the
expected ones.

The study of effective properties of such two-phase dispersed media finds its origin in the prehis-
tory of stochastic homogenization in the 19th century, motivated by the works of Poisson [364] and
Faraday [179] on induced magnetism and on dielectric materials. Mossotti [324, 325] was the first to
investigate the effective large-scale properties of two-phase conducting materials composed of a ho-
mogeneous matrix with dilute foreign spherical inclusions. Continuing this study, Clausius [119] came
up with an explicit formula for the first-order deviation due to the foreign inclusions — the so-called
Clausius-Mossotti formula: for spherical inclusions with A0 = α Id and A1 = β Id (cf. Figure 1.1), it
is predicted at first order in the volume fraction v � 1,

Ahom = α Id︸︷︷︸
A0,hom

+ v
αd(β − α)

β + α(d− 1)
Id +O(v2). (1.23)

This formula was independently also derived by Maxwell [317], followed by Rayleigh [368]. These
considerations were adapted to a refractivity context in optics by Lorentz [308] and Lorenz [309],
while Einstein [176] used similar ideas to compute the effective shear viscosity of dilute suspensions of
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rigid particles in a fluid. Several decades later, Bruggeman [89] established similar formulas in linear
elasticity in the form of an explicit expansion of Lamé’s coefficients. While these works focused on
first-order deviations, higher-order terms were first computed by Ross [374] and Jeffrey [259, Section 5]
more than a century after Mossotti. Interactions between inclusions must then be taken into account,
and spatial statistics of the distribution of inclusions enter the result. For precise historical detail, we
refer to [283, 315].

A more convenient mathematical framework consists in viewing A as a Bernoulli perturbation of
a given coefficient field A0. Let A0 and A1 be reference ergodic stationary random coefficient fields
(in particular, not necessarily constant), and let (qn)n be an ergodic stationary point process. For
simplicity in this introduction we focus on unit spherical inclusions (although random shapes could be
considered as well in our analysis), and we consider the associated inclusion process

⋃
nB(qn), which

is regarded as a collection of possible inclusions. We now vary the volume fraction of this inclusion
process by choosing each inclusion independently of the others only with a small fixed probability
p ∈ [0, 1]. For that purpose, we independently choose a Bernoulli process (b

(p)
n )n, that is, a sequence of

i.i.d. Bernoulli random variables such that b(p)n equals 1 with probability p and 0 otherwise. Denoting
by E(p) := {n : b

(p)
n = 1} the set of chosen indices, we consider the corresponding (ergodic stationary)

perturbed coefficient field,
A(p) = A0 + (A1 −A0)1⋃

n∈E(p) B(qn).

and we study the associated homogenized coefficient A(p)
hom. Since the volume fraction associated with

this inclusion process satisfies v(p) ' p, expansions of the form (1.23) are naturally reformulated as
expansions with respect to p � 1: in the case of isotropic constant reference coefficients A0 = α Id
and A1 = β Id,

A
(p)
hom = α Id + v(p) αd(β − α)

β + α(d− 1)
Id +O(p2). (1.24)

The first rigorous proofs of this formula are due to Almog [14, 15, 13], who establishes (1.24) in
dimension d > 2 with an error of size o(p). Another contribution is due to Mourrat [327], who
proves (1.24) in dimension d ≥ 2 with almost optimal error O(p2−), under strong mixing assumptions.
These results are both limited to the scalar case. The question is thus threefold. First, can we
establish (1.24) with the optimal error O(p2)? If so, can the expansion be pursued to higher orders?
And what is the optimal regularity of the map p 7→ A

(p)
hom in terms of assumptions on A? Second, are

mixing assumptions on A really needed for such expansions to hold? Third, can similar results be
proven in the case of linear elasticity?

In Chapter 5 we answer these questions by proving under the sole assumptions of stationarity and
ergodicity, both in the scalar case and in the case of linear elasticity, that the map p 7→ A

(p)
hom is analytic

whenever the inclusion process
⋃
nB(qn) has finite penetrability, meaning, whenever ]{n : 0 ∈ B(qn)}

is a.s. bounded by a deterministic constant. In addition, we provide semi-explicit formulas for all
derivatives. As discussed in Section 5.1.5, the finite penetrability assumption is expected to be
necessary for the analyticity result, and prohibits the example of Poisson random inclusions. We
further investigate the corresponding expansions for the perturbed effective fluctuation tensor Q(p)

introduced in (1.20).
This new analyticity result is not so surprising, as it is very much in line with the cluster expansions

used in this setting in the physics literature [413]. Let us briefly describe this heuristics. At leading
order for p� 1 no inclusion is seen in a given finite sample, while at first order at most one inclusion
is seen in the sample, etc. Hence there holds at leading order A(p)

hom ∼ (A0)hom, while the first-order
correction should correspond to comparing values if we put or not one inclusion at each possible
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location, etc. This formally justifies the following expansion,

A
(p)
hom = E

[
A(p)(∇φ(p) + Id)

]
= E [A0(∇φ0 + Id)]︸ ︷︷ ︸

=(A0)hom

+ p
∑
n

E
[
A{n}(∇φ{n} + Id)−A0(∇φ0 + Id)

]
+p2

∑
n<m

E
[
A{n,m}(∇φ{n,m} + Id)−A{n}(∇φ{n} + Id)−A{m}(∇φ{m} + Id) +A0(∇φ0 + Id)

]
+. . .

where ∇φ0 is the corrector gradient associated with the reference coefficient A0, and where for all
subset F ⊂ N we set AF := A0 + (A1 − A0)1⋃

n∈F B(qn) and we let ∇φF denote the corresponding
corrector gradient. The meaning of the above expansion is however unclear, as even the series defining
the first-order term does not converge absolutely. In Chapter 5 we show that we can make sense of
these cluster formulas by using massive approximations of the corrector gradients, computing the
sums, and then passing to the limit of a vanishing mass, and that in this precise sense these formulas
are correct for the derivatives of p 7→ A

(p)
hom at p = 0.

We now briefly recapitulate the main ideas of the proof. A natural strategy to establish the
desired result consists in considering the cluster expansion of the corrector gradient ∇φ(p) = ∇φ +∑

n∈E(p) ∇(φ{n} − φ) + . . . and justifying it in L2(Ω). Formally injecting this expansion into the
definition of the perturbed homogenized coefficient A(p)

hom then easily leads to the expected cluster
expansion for A(p)

hom. This was done at first order by Mourrat [327], and can be iterated to any
order (up to technicalities, cf. Appendix 5.A). This argument however requires a strong use of the
quantitative theory of stochastic homogenization, hence of superfluous strong mixing assumptions.
In addition, such an argument does a priori not lead to the analyticity of p 7→ A

(p)
hom (but only to a

C∞ result). This gap is not so surprising as we are only interested in the averaged quantity A(p)
hom,

which should be much easier to analyze than pointwise quantities such as the corrector gradient.
With this in mind, we rather need to focus exclusively on the perturbed homogenized coefficient

A
(p)
hom and to understand cancellations at that level, for which we drew a crucial inspiration from

some ingenious computations by Anantharaman and Le Bris (see in particular [19, Proposition 3.4]).
A careful investigation of the algebraic and combinatorial structure of the perturbed homogenized
coefficient leads to natural expansions in powers of p that can be pursued up to any order n ≥ 0,

A
(p)
hom = (A0)hom +

n∑
k=1

pk∆k + pn+1E(p)
n ,

where ∆k and E(p)
n are given by explicit formulas (cf. Lemmas 5.1.10 and 5.3.1). Again, this expan-

sion should rather be seen at the level of massive term approximations, which are omitted here for
simplicity. The analyticity result then follows if we manage to prove bounds of the form |∆k| ≤ Ck

and |E(p)
n | ≤ Cn for all k, n ≥ 0. A quick look at the formulas indicates that these bounds follow from

the following hierarchy of a priori estimates: for all k ≥ j ≥ 1,

E

∑
|G|=j

∣∣∣∣ ∑
|F |=k−j
F∩G=∅

∇δFφ
∣∣∣∣2
 ≤ Ck, (1.25)

where we define the difference operators δ{n}φ = φ{n}−φ0 and δF :=
∏
n∈F δ

{n}. These estimates are
the core of the analyticity result. The proof is obtained by an intricate triangular induction argument.
In order to illustrate the structure, let us briefly schematize the argument at the level k = 2. We
write down the equation for δ{n,m}φ in three different ways and deduce different energy estimates
from each of them,
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— the first equation,

−∇ ·A{n,m}∇δ{n,m}φ = ∇ · (A{m} −A0)∇δ{n}φ+∇ · (A{n} −A0)∇δ{m}φ,

leads to

E

∑
n6=m
|∇δ{n,m}φ|2

 . E

[∑
n

|∇δ{n}φ|2
]

;

— the second equation,

−∇ ·A{n}∇δ{n,m}φ = ∇ · (A{m} −A0)∇δ{n}φ{m} +∇ · (A{n} −A0)∇δ{m}φ,

leads to

E

∑
n

∣∣∣∣ ∑
m:m6=n

∇δ{n,m}φ
∣∣∣∣2
 . E

∑
n 6=m
|∇δ{n,m}φ|2

+E

[∣∣∣∣∑
n

∇δ{n}φ
∣∣∣∣2
]

+E

[∑
n

|∇δ{n}φ|2
]

;

— the third equation,

−∇ ·A0∇δ{n,m}φ = ∇ · (A{m} −A0)∇δ{n}φ{m} +∇ · (A{n} −A0)∇δ{m}φ{n},

leads to

E

∣∣∣∣ ∑
n6=m
∇δ{n,m}φ

∣∣∣∣2
 . E

∑
n

∣∣∣∣ ∑
m:m6=n

∇δ{n,m}φ
∣∣∣∣2
+E

[∣∣∣∣∑
n

∇δ{n}φ
∣∣∣∣2
]

+E

[∑
n

|∇δ{n}φ|2
]
.

Combining these three different energy estimates yields

E

∣∣∣∣ ∑
n 6=m
∇δ{n,m}φ

∣∣∣∣2
+ E

∑
n

∣∣∣∣ ∑
m:m 6=n

∇δ{n,m}φ
∣∣∣∣2
+ E

∑
n6=m
|∇δ{n,m}φ|2


. E

[∣∣∣∣∑
n

∇δ{n}φ
∣∣∣∣2
]

+ E

[∑
n

|∇δ{n}φ|2
]
,

which proves that the case k = 2 is, indeed, reduced to the easier case k = 1. As we show in Chapter 5,
such induction arguments can be pursued up to any order to establish the key a priori estimates (1.25)
(cf. Section 5.2.3).

1.2 Ginzburg-Landau vortices in disordered media (Part II)

Superconductors are materials that lose their resistivity at sufficiently low temperature (or low
pressure), which allows them to carry electric currents without energy dissipation. An important
property of these materials is the so-called Meissner effect: moderate external magnetic fields are
completely expelled from the sample. If the external field is too strong, however, the superconducting
material returns to a normal state. In the case of a type-II superconductor, an intermediate regime
is possible between these two critical values of the external field. The material is then in a mixed
state, allowing a partial penetration of the external field through “vortex filaments”. This mixed
state presents however a major drawback: when an electric current is applied, it flows through the
sample, inducing a Lorentz-like force that sets the vortices in motion, and hence, since vortices are
flux filaments, their movement generates an electric field in the direction of the electric current, which
dissipates energy and destroys the superconductivity property.
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While ordinary superconductors need extreme cooling to achieve superconductivity, the discovery
of high-temperature superconductors from the 1980s onwards has given a major boost to technological
applications, as the critical temperature of such materials is reached by simple liquid nitrogen. These
high-temperature superconductors happen to be in practice strongly of type II and, as such, they
show vortices for a very wide range of values of the applied magnetic field. Most technological
applications of superconductors therefore occur in this mixed state, and methods must be designed
to prevent vortices from moving and recover the crucial property of dissipation-free current flow. For
that purpose a common attempt consists in introducing normal impurities in the material, which are
meant to destroy superconductivity locally and therefore “pin down” the vortices to their locations,
if the applied current is not too strong. With these applications in mind, there is a strong interest
in the physics community in understanding the precise effect of such impurities, typically randomly
scattered around the sample, on the statics and dynamics of vortices.

In Part II of this thesis, we study the collective dynamics of many vortices in a 2D section of a
type-II superconductor with impurities and applied current, based on their mesoscopic description by
the 2D Ginzburg-Landau model, and we aim at establishing in various regimes the correct mean-field
equations describing the macroscopic evolution of the vortex matter. Note that in the asymptotic
limit of point-like vortices the Ginzburg-Landau vortex dynamics is subjected to three forces: the
mutual repulsive Coulomb interaction between the vortices, the Lorentz-like force due to the applied
current and pushing them in a given direction, and the pinning force attracting them towards the
random impurities. This is therefore an example of a physical system where interactions compete
with disorder: interactions tend to favor some kind of order in the system, making vortices behave
as a coherent elastic whole, which in turn strongly modifies the effect of disorder on the vortices.
This leads to a glassy physics with remarkable static and dynamical properties that are still largely
ununderstood [195, 369]. We aim at writing correct PDEs for the evolution of the vortex matter, thus
settling a first mathematically rigorous basis for the study of such systems in the mean-field limit,
and allowing to ask some relevant questions on their expected glassy behavior.

1.2.1 Mean-field limit of Coulomb-like interaction gradient flows (Chapter 6)

A main task in this part of the thesis is to understand the mean-field evolution of 2D Ginzburg-
Landau vortices in the presence of impurities and applied current. For that purpose, we shall follow
Serfaty [395] and make use of a modulated energy method. Before going into technical details of
vortex analysis, we study in Chapter 6 how this modulated energy strategy is applied to the mean-
field limit of the simplified example of a Coulomb interaction gradient flow (without impurities and
forcing). On the one hand, in the asymptotic limit of point-like vortices, the 2D Ginzburg-Landau
vortex dynamics is known to coincide with the gradient flow evolution of Coulomb particles, so that
both problems are indeed physically related. On the other hand, many mean-field limit questions for
Coulomb-like interaction gradient flows are still open, and we aim at understanding what new can be
established with modulated energy methods.

More precisely, we consider the gradient flow evolution of a system of N identical interacting
particles with interaction potential g, that is, for all 1 ≤ i ≤ N ,

∂tx
t
i,N = − 1

N

N∑
j:j 6=i
∇g(xti,N − xtj,N ),

where {t 7→ xtj,N}Nj=1 denotes the collection of particle trajectories. When the number N of particles
is large, we are led to a large system of coupled ODEs, which is impossible to solve or describe exactly
in practice. For various purposes, we are however only interested in the overall flow of particles, that
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is, in the overall evolution of the empirical (probability) measure

µtN :=
1

N

∑
i

δxti,N .

Formally, if at initial time µ◦N
∗−⇀ µ◦ holds for some smooth probability measure µ◦, then we expect

µtN
∗−⇀ µt for all t ≥ 0, where µt satisfies

∂tµ = div (µ∇g ∗ µ), µ|t=0 = µ◦. (1.26)

Such a mean-field limit result is well-known if g is smooth (in the sense g ∈ C1
b (Rd)) or if g is convex

(cf. Section 6.1.2). We shall therefore rather focus on the singular case of Riesz potentials,

g(x) = gs(x) := c−1
d,s

{
|x|−s, if 0 < s < d;

− log(|x|), if s = 0.

Note that for this choice g = gs the convolution gs∗ coincides with the fractional Laplacian (−4)−
d−s

2 ,
and the limiting mean-field equation (1.26) is then the so-called fractional porous medium equation.
The particular choice s = d−2, d ≥ 2 is the Coulomb case. The corresponding mean-field limit result
was proven in the following cases (cf. Section 6.1.2 for more detail on these approaches),

— by Schochet [390] in any dimension d ≥ 1 in the logarithmic case s = 0;
— by Hauray and Jabin [234, 233] in dimension d ≥ 3 for 0 ≤ s < d− 2;
— by Berman and Önnheim [54] in the very particular case of dimension d = 1 for all 0 ≤ s < 1;

but it remains an open question for all other parameter values. In Chapter 6, using a modulated
energy approach inspired by Serfaty [395], we manage to establish the mean-field limit result in
dimensions d = 1 and 2 for all 0 ≤ s < 1, hence leading in particular to a new result in dimension
d = 2.

We briefly describe some ideas of the proof. The key observation is that the limiting equa-
tion (1.26) satisfies a weak-strong stability estimate in the modulated energy metric. More pre-
cisely, this equation can be seen as a Wasserstein gradient flow for the energy functional E(µ) :=˜

Rd×Rd gs(x − y)dµ(x)dµ(y), and the “modulation” of this energy structure (that is, the associated
Bregman divergence [84]) leads to the following metric,

E(µ1|µ2) := E(µ1)− E(µ2)−
〈 δE
δµ

(µ2) , µ1 − µ2

〉
=

¨
Rd×Rd

gs(x− y)d(µ1 − µ2)(x)d(µ1 − µ2)(y) = ‖µ1 − µ2‖2
Ḣ−

d−s
2
.

Then, for 0 ∨ (d − 2) ≤ s < d, the following weak-strong stability result holds (cf. Lemmas 6.1.7
and 6.2.1): for any two solutions µ1 and µ2 of the limiting equation (1.26),

E(µt1|µt2) ≤ E(µ◦1|µ◦2) exp
(
C

ˆ t

0
‖∇2gs ∗ µu2‖L∞du

)
. (1.27)

The idea of modulated energy methods, originating in the relative entropy method first designed
by DiPerna [145] and Dafermos [131, 132] (see e.g. [378] and references therein for more recent
developments), consists in devising an adapted metric modeled on the available energy (or entropy)
structure and in expecting that this new metric is much better behaved along the flow than arbitrary
metrics like W2 and that it indeed leads to stronger stability results. In the Coulomb case s = d− 2,
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d ≥ 2, the above result (1.27) follows from a simple Grönwall argument: using equation (1.26) for µ1

and µ2, and setting hi := gd−2 ∗ µi = (−4)−1µi for i = 1, 2, we compute

∂tE(µt1|µt2) = 2

ˆ
Rd

(ht1 − ht2)(∂tµ
t
1 − ∂tµt2) = −2

ˆ
Rd
∇(ht1 − ht2)(µt1∇ht1 − µt2∇ht2)

= −2

ˆ
Rd
|∇(ht1 − ht2)|2µt1 − 2

ˆ
Rd
∇ht2 · ∇(ht1 − ht2) (µt1 − µt2),

where the product ∇(ht1 − ht2) (µt1 − µt2) in the last term can be rewritten à la Delort using the
modulated stress-energy tensor,

−2∇(ht1 − ht2) (µt1 − µt2) = 2∇(ht1 − ht2) ∆(ht1 − ht2) = div T (µt1|µt2), (1.28)

T (µt1|µt2) := 2∇(ht1 − ht2)⊗∇(ht1 − ht2)− Id |∇(ht1 − ht2)|2,

and we easily conclude, integrating by parts and using that E(µt1|µt2) =
´
Rd |∇(ht1 − ht2)|2,

∂tE(µt1|µt2) ≤ −
ˆ
Rd
∇2ht2 : T (µt1|µt2) . ‖∇2ht2‖L∞

ˆ
Rd
|∇(ht1 − ht2)|2 = ‖∇2ht2‖L∞ E(µt1|µt2),

from which the stability result (1.27) follows. In other Riesz cases the result is more subtle and
requires to use the extension representation for the fractional Laplacian popularized by Caffarelli and
Silvestre [92] in order to find a suitable proxy for the Delort-type identity (1.28).

The prefactor in the right-hand side of the stability result (1.27) only depends on the regularity
of µ2, hence the naming “weak-strong”. A natural idea to prove a mean-field limit result then consists
in trying to reproduce the above argument with µ1 := µN and µ2 = µ. However, µN is not a solution
of the limiting equation (1.26) and it has in addition infinite continuum energy due to the presence
of Dirac masses so that E(µN |µ) is not well-defined. It is a matter of removing divergent diagonal
terms in the product µN∇gs ∗ µN and in the definition of the continuum energy. We therefore need
to rather consider the following “renormalized” modulated energy,

Ẽ(µtN |µt) :=

¨
x 6=y

gs(x− y)d(µtN − µt)(x)d(µtN − µt)(y).

Unfortunately the removal of diagonal terms prevents us from repeating the same Grönwall argument
as above: in the Coulomb case s = d− 2, d ≥ 2, we may again compute

∂tẼ(µtN |µt) ≤ −
ˆ
∇2ht : T̃ (µtN |µt), and Ẽ(µtN |µt) =

ˆ
Rd
|̃∇(htN − ht)̃|2,

where T̃ (µN |µ) is the diagonal-free version of T (µN |µ),

T̃ (µN |µ)(x) :=

¨
y 6=z

(
2∇g(x− y)⊗∇g(x− z)− Id∇g(x− y) · ∇g(x− z)

)
d(µN −µ)(y)d(µN −µ)(z),

and where the notation |̃∇(hN − h)̃|2 stands for the diagonal-free version of the square |∇(hN − h)|2,

|̃∇(hN − h)̃|2(x) :=

¨
y 6=z
∇g(x− y) · ∇g(x− z)d(µN − µ)(y)d(µN − µ)(z),

but it is no longer true that |T̃ (µN |µ)| . |̃∇(hN − h)̃|2 holds pointwise, so that the above continuum
proof indeed fails in that case.
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The key idea is to rather use another formulation of Ẽ(µN |µ), where diagonal contributions are
subtracted differently. With 2D Ginzburg-Landau vortex analysis in mind, a natural choice is (cf.
Lemma 6.2.10)

Ẽ(µN |µ) = lim
η↓0

(¨
Rd×Rd

(gs(η) ∧ gs(x− y)) d(µN − µ)(x) d(µN − µ)(y) − gs(η)

N

)
.

This formulation appears to be much better suited for our purposes here. Mimicking the mean-field
limit proof for 2D Ginzburg-Landau vortices [395], the main technical ingredient is given by a suitable
version of the so-called ball construction lower bound (cf. Proposition 6.2.15): in the Coulomb case,
we show that there exists a collection of disjoint closed balls BN with total radius that tends to 0 as
N ↑ ∞ and such that

lim inf
N↑∞

lim inf
η↓0

( ˆ
BN
|∇hN,η|2 −

1

N
gs(η)

)
≥ 0.

This is classical for the Coulomb case in the 2D Ginzburg-Landau context [382, Chapter 4], and we
show that a suitable version of this lower bound also holds for Riesz potentials if and only if 0 ≤ s < 1,
hence our restriction to this parameter range. Interestingly, such arguments are natural for Ginzburg-
Landau vortices but were not common in the context of mean-field limits of particle systems. Note
that this mean-field limit proof obtained by adapting a weak-strong uniqueness argument makes a
particularly strong use of the regularity properties of the limiting equation.

1.2.2 Well-posedness for mean-field evolutions (Chapter 7)

As announced, the ultimate goal of this second part of the thesis is to obtain various mean-
field limit results for the evolution of vortex matter in the 2D Ginzburg-Landau model with pinning
impurities and with imposed current. Since in certain regimes the fluid-like mean-field evolutions
that we shall obtain appear to be new in the literature, we devote Chapter 7 to establishing a global
well-posedness theory for these equations, considering general vortex-sheet initial data as well, and
further investigating the uniqueness and regularity properties of the solutions. Depending on the
considered regime of the vortex density, characterized by some parameter λ ∈ [0,∞], the mean-field
equation takes on the following guise,

∂tv = λ∇(a−1 div (av))− α(Ψ + v)curl v +β(Ψ + v)⊥curl v, in R+ × R2, (1.29)

where v : R+×R2 → R2 is the mean-field supercurrent density associated with a nonnegative vorticity
curl v ≥ 0, where α > 0, β ∈ R, where Ψ : R2 → R2 is a given forcing vector field, and where a := eh

is determined by a given “pinning potential” h : R2 → R. The degenerate case λ = 0 is also of
interest and physically corresponds to a high vortex density regime, while the limiting case λ = ∞
corresponds to a low vortex density and is to be understood as the following incompressible model,

∂tv = ∇p−α(Ψ + v)curl v +β(Ψ + v)⊥curl v, div (av) = 0, in R+ × R2. (1.30)

Note that in the parabolic case α > 0, β = 0, this incompressible model can be seen as a Wasserstein
gradient flow for the vorticity curl v, which coincides with the mean-field limit of the formal Coulomb
discrete vortex dynamics, as is natural for low vortex density. However, a common gradient flow
structure seems to be missing for the whole family of equations (1.29) with λ ∈ [0,∞].

Let us briefly describe the physics and history of these models (1.29)–(1.30). In the framework
of the (mesoscopic) 2D Ginzburg-Landau model, vortices are known to become point-like in the
asymptotic limit of a large Ginzburg-Landau parameter (which is indeed typically the case in real-life
superconductors), and to interact with one another according to a Coulomb pair potential. In the
mean-field limit of a large number of vortices, the evolution of the (macroscopic) suitably normalized
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mean-field density m : R+ × R2 → R of the vortex liquid was then naturally conjectured to satisfy
the following Chapman-Rubinstein-Schatzman-E equation [173, 111],

∂tm = div (|m|∇(−4)−1m), in R+ × R2,

where (−4)−1m is indeed the Coulomb potential generated by the vortices. Although the vortex
density m is a priori a signed measure, we restrict here (and throughout this part of the thesis) to
nonnegative measures, |m| = m ≥ 0, so that the above is replaced by

∂tm = div (m∇(−4)−1m). (1.31)

More precisely, the mean-field supercurrent density v : R+ × R2 → R2 (linked to the vortex density
through the relation m = curl v) was conjectured to satisfy

∂tv = ∇p− v curl v, div v = 0. (1.32)

Taking the curl of this equation indeed formally yields (1.31), noting that the incompressibility con-
straint div v = 0 allows to write v = ∇⊥4−1 m.

In the context of superfluidity [4, 376], a conservative counterpart of the usual parabolic Ginzburg-
Landau equation is used as a mesoscopic model. This counterpart is given by the Gross-Pitaevskii
equation, which is a particular instance of a nonlinear Schrödinger equation. At the level of the mean-
field evolution of the corresponding vortices, we then need to replace (1.31) by its conservative version,
thus replacing ∇(−4)−1m by ∇⊥(−4)−1m. As argued in [26], there is also physical interest in rather
starting from the “mixed-flow” (or “complex”) Ginzburg-Landau model, which is a mix between the
usual Ginzburg-Landau equation describing superconductivity (α = 1, β = 0), and its conservative
counterpart given by the Gross-Pitaevskii equation (α = 0, β = 1). The above mean-field equation
for the supercurrent density v is then replaced by the following, for α ≥ 0, β ∈ R,

∂tv = ∇p−αv curl v +βv⊥ curl v, div v = 0. (1.33)

Note that in the conservative case α = 0, this equation is equivalent to the 2D Euler equation, as is
clear from the identity v⊥ curl v = (v ·∇) v−1

2∇|v|
2.

The first rigorous deductions of these macroscopic mean-field limit models from the mesoscopic
Ginzburg-Landau equation are due to [281, 263, 395]. As discovered by Serfaty [395], in the dissipative
case α > 0, the limiting equation (1.33) is only correct in a regime of dilute vortices, while for higher
vortex density it must be replaced by the following compressible flow,

∂tv = λ∇(div v)− αv curl v +βv⊥ curl v, (1.34)

for some 0 < λ < ∞. In Chapter 8 we show that for even higher vortex density the relevant
limiting equation is (1.34) in the degenerate case λ = 0. In contrast, in the conservative case α = 0,
the equation (1.33) is always expected to hold in the corresponding mean-field limit; this is further
discussed in Section 1.2.3 below. In Chapter 8 we rather consider the 2D Ginzburg-Landau model
with pinning impurities and with applied current, in which case the mean-field equations (1.33)–(1.34)
are replaced by (1.30)–(1.29), with a pinning weight a = eh and with a forcing term Ψ := F⊥ −∇⊥h
in terms of the pinning force −∇h and of some vector field F : R2 → R2 related to the imposed
electric current. In the conservative regime α = 0, β = 1, the incompressible model (1.30) takes the
form of the following inhomogeneous version of the 2D Euler equation: using the identity v⊥ curl v =
(v ·∇) v−1

2∇|v|
2, and setting p̃ := p−1

2 |v|
2,

∂tv = ∇p̃ + Ψ⊥curl v +(v ·∇) v, div (av) = 0, in R+ × R2. (1.35)
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In the context of 2D fluid dynamics, this conservative equation is known as the lake equation [217,
p.235] (see also [96, 97]): the pinning weight a corresponds to the effect of a varying depth in shallow
water [351], while the forcing Ψ is similar to a background flow.

Rather than discussing the proof of global well-posedness results for (1.29)–(1.30), we describe
the structure of these equations, which is best understood from their vorticity formulation. Setting
m := curl v and d := div (av), these equations take the form of a nonlinear nonlocal transport equation
for the vorticity m,

∂tm = div
(

m
(
α(Ψ + v)⊥ + β(Ψ + v)

))
, v = a−1∇⊥(div a−1∇)−1 m +∇(div a∇)−1 d, (1.36)

where for the incompressible model (1.30) we have d := 0, while for the compressible model (1.29) the
divergence d is the solution of the following transport-diffusion equation (which is highly degenerate
when λ = 0),

∂td−λ4d +λ div (d∇h) = div
(
am
(
− α(Ψ + v) + β(Ψ + v)⊥

))
.

In Chapter 7, in the non-degenerate case λ > 0, we establish a local existence result for all values
of the parameters, while global existence is obtained for the incompressible model (1.30), as well as
for the compressible model (1.29) in the parabolic case α > 0, β = 0. General vortex-sheet initial
data m◦ ∈ P(R2) can be considered in all parabolic cases: the Coulomb repulsion has the effect
of spreading the mass, and the vorticity is indeed shown to become instantaneously bounded. In
contrast, for the incompressible model both in the mixed-flow and in the conservative cases we may
only consider initial data m◦ ∈ P ∩ Lq(R2) with q > 1. This result happens to be particularly
subtle in the conservative case due to a lack of strong enough a priori estimates, and only a notion
of “very weak” solutions is then obtained for such initial data. This is in sharp contrast with the
simpler situation of the 2D Euler equation, which corresponds to the choice a ≡ 1, and for which
existence with vortex-sheet initial data is well-known [143]. Inhomogeneities a 6≡ 1 indeed give rise
to important difficulties, as can be inferred from the following observation: in terms of the stress-
energy tensor Sv := v⊗ v−1

2 Id |v|2, for all smooth vector fields v with div (av) = 0, the nonlinearity
mv = v curl v in equation (1.36) can be written as

v curl v = −|v|2∇
⊥a

2a
− a−1(div (aSv))⊥,

where the first right-hand side term involving |v|2 is clearly not weakly continuous as a function of v
(although the second term is, as in the classical theory [143]) and it only vanishes in the homogeneous
case a ≡ 1. Various weak-strong uniqueness principles are proven for equations (1.29)–(1.30), in
addition to a uniqueness result for bounded vorticity for the incompressible model (1.30), in parallel
with Yudovich’s theorem [427]. Finally, a well-posedness theory is also established for (1.29) in the
degenerate regime λ = 0 in the parabolic case α > 0, β = 0, but this is based on very different
arguments, rather exploiting the scalar structure of the corresponding solution v and using ODE type
arguments to obtain an explicit representation.

1.2.3 Mean-field dynamics of Ginzburg-Landau vortices (Chapter 8)

As announced, the main task in Chapter 8 consists in rigorously establishing (1.29) as the mean-
field evolution of the supercurrent density described by the mesoscopic 2D Ginzburg-Landau model. In
order to illustrate the problem, we start by describing this question in the simpler case without pinning
impurities and without applied current. Working in the whole space to avoid delicate boundary issues,
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and omitting the magnetic gauge for simplicity of notation (see Section 8.2.3 otherwise), we start from
the following mixed-flow 2D Ginzburg-Landau model,

λε(α+ i|log ε|β)∂tuε = 4uε +
uε
ε2

(1− |uε|2), (1.37)

where uε : R+ × R2 → C is the complex-valued order parameter describing superconductivity, where
α ≥ 0, β ∈ R, α2 + β2 = 1, where λε > 0 is a suitable time rescaling, and where ε > 0 is the inverse
Ginzburg-Landau parameter, a characteristic of the material that is typically very small for real-life
superconductors. We refer e.g. to [412, 411] for further reference on this model, and to [382] for a
mathematical introduction. The order parameter uε has the following meaning: the values |uε| = 1
and 0 correspond to a superconducting and to a normal phase, respectively, and the vortices are
the zeroes of uε with non-zero topological degree. A vortex of degree d carries an energy π|d||log ε|.
Vortices typically have a core of size of order ε, hence they become point-like in the asymptotic limit
ε ↓ 0. The supercurrent density is defined by

jε := 〈∇uε, iuε〉,

where 〈·, ·〉 stands for the scalar product in C as identified with R2, that is, 〈x, y〉 = <(xȳ) for all
x, y ∈ C. As in fluid mechanics, the vorticity µε is then derived from the supercurrent via µε := curl jε.
Note that this indeed corresponds to the density of vortices, in the sense that

µε := curl jε ≈ 2π
∑
i

diδxi , as ε ↓ 0, (1.38)

with {xi}i the vortex locations and {di}i their degrees (this is made precise by the so-called Jaco-
bian estimates [382, Chapter 6]). For a fixed number N of vortices, the asymptotic limit ε ↓ 0 of
equation (1.37) is well-understood and vortices are known to behave like Coulomb particles,

∂tx
t
i,N = −N−1

(
α∇xiWN − β∇⊥xiWN

)
(xt1,N , . . . , x

t
N,N ), (1.39)

WN (x1, . . . , xN ) := −
N∑
i 6=j

log |xi − xj |,

with {t 7→ xti,N}Ni=1 the macroscopic vortex trajectories. In this second part of the thesis, we rather
study the situation when the number Nε of vortices blows up as ε ↓ 0, which is a physically more
realistic situation, and we aim at describing the evolution of the density of the corresponding vortex
liquid. For a small enough vortex density, that is, if Nε does not blow up too quickly with respect
to ε, the correct mean-field equation is naturally expected to coincide with the mean-field limit of
the discrete Coulomb vortex dynamics (1.39), that is, the incompressible model (1.33) (as justified
in Chapter 6). In contrast, the mean-field behavior changes drastically for a higher vortex density in
the dissipative case α > 0, and rather leads to the compressible model (1.34).

In order to experience the structure of the 2D Ginzburg-Landau model (1.37) and the importance
of a careful vortex analysis, we now give a formal derivation of the mean-field equations (1.33)–(1.34).
For that purpose, in addition to the supercurrent density jε and the vorticity µε, we define the vortex
velocity

Vε := 2〈∇uε, i∂tuε〉,
the energy density

eε :=
1

2

(
|∇uε|2 +

1

2ε2
(1− |uε|2)2

)
,

and the stress-energy tensor

(Sε)kl := 〈∂kuε, ∂luε〉 −
δkl
2

(
|∇uε|2 +

1

2ε2
(1− |uε|2)2

)
.
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These definitions easily imply the following algebraic identities,

∂tjε = Vε +∇〈∂tuε, iuε〉, ∂tµε = curlVε. (1.40)

Moreover, using equation (1.37) for uε, we further find the following identities for the divergence of
the supercurrent density

div jε = 〈4uε, iuε〉 = λεα〈∂tuε, iuε〉 −
λεβ|log ε|

2
∂t(1− |uε|2), (1.41)

for the divergence of the stress-energy tensor

divSε =
〈
∇uε,4uε +

uε
ε2

(1− |uε|2)
〉

= λεα〈∇uε, ∂tuε〉+
λε|log ε|β

2
Vε, (1.42)

and for the time derivative of the energy density

∂teε = div 〈∇uε, ∂tuε〉 − λεα|∂tuε|2.

Using (1.42) to rewrite the quantity 〈∇uε, ∂tuε〉, this last identity rather takes on the following guise,

λεα∂teε = div divSε −
λε|log ε|β

2
div Vε − λ2

εα
2|∂tuε|2. (1.43)

If there is no excess energy, the Ginzburg-Landau energy is expected to split into a (concentrated)
vortex energy of order O(Nε|log ε|) and a (diffuse) phase energy of order O(N2

ε ). Since the quantity
|1−|uε|2| is bounded by ε(eε)1/2, it is therefore formally of order O(εNε+ε|log ε|), which is negligible
as soon as Nε remains much smaller than ε−1. Choosing the critical scaling λε := Nε/|log ε|, the
above identities (1.41), (1.42), and (1.43) then become

div
jε
Nε
≈ α〈∂tuε, iuε〉

|log ε|
, (1.44)

2 div
Sε
N2
ε

= 2α
〈∇uε, ∂tuε〉
Nε|log ε|

+ β
Vε
Nε

, (1.45)

α∂t
2eε

Nε|log ε|
= 2 div div

Sε
N2
ε

− β div
Vε
Nε
− 2α2 |∂tuε|2

|log ε|2
. (1.46)

In order to be able to take weak limits in these equations, a priori bounds on all the terms are needed,
and in addition relations between the various weak limits need to be found. In the limit ε ↓ 0, vortices
become point-like and the vorticity µε looks like a sum of Nε Dirac masses, cf. (1.38). We may thus
formally assume that the rescaled vorticity N−1

ε µε converges weakly-* to some probability measure
m ∈ L∞(R+;P(R2)). Similarly, the vortex velocity Vε concentrates at vortex locations, and we may
assume that its rescaled version N−1

ε Vε converges weakly-* to some measure V ∈ L∞loc(R+;M(R2)2).
For all p < 2 the rescaled supercurrent density N−1

ε jε may be assumed to be bounded in Lploc(R
2)

and thus to converge weakly to some limit v ∈ L∞loc(R+; Lploc(R
2)2), but it cannot converge in L2

loc(R2)
due to energy concentration. In short,

N−1
ε µε

∗−⇀ m, N−1
ε Vε

∗−⇀ V, N−1
ε jε −⇀ v . (1.47)

Quadratic quantities such as eε ≈ 1
2 |jε|

2 and |∂tuε|2 have a part that concentrates at vortex locations
in the limit ε ↓ 0, and their concentrated and diffuse parts must be analyzed separately. If there is
no excess energy, the concentrated part of the energy density eε ≈ 1

2 |jε|
2 should coincide with the

vortex self-interaction energy 1
2 |log ε|µε ≈ 1

2Nε|log ε|m (this is made precise by the Jerrard-Sandier
ball-construction lower bound, see e.g. [382, Chapter 4]), while the diffuse part should be given by
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1
2N

2
ε |v|2 in terms of the weak limit v of N−1

ε jε. Such properties could be phrased in terms of defect
measures for the convergence of N−1

ε jε in L2
loc(R2) (cf. [381]). Similarly, if there is no excess energy,

the concentrated part of |∂tuε|2 should coincide with 1
2 |log ε|µ−1

ε |Vε|2 ≈ 1
2Nε|log ε|m−1|V|2 in terms

of the vortex velocity and the vorticity (this is made precise by the so-called product estimate [381]),
while identity (1.44) in the form α2|∂tuε|2 ≈ α2|〈∂tuε, iuε〉|2 ≈ λ−2

ε | div jε|2 suggests that the diffuse
part of α2|∂tuε|2 should simply be given by |log ε|2|div v|2. In short,

2eε ≈ |jε|2 ≈ Nε|log ε|m +N2
ε |v|2, (1.48)

2α2|∂tuε|2 ≈ 2|log ε|2|div v|2 + α2Nε|log ε|m−1|V|2. (1.49)

Let us now turn to the limit of the stress-energy tensor Sε ≈ jε ⊗ jε − Id
2 |jε|

2. Due to the isotropy of
the vortex core energy, in link with equipartition properties of the Ginzburg-Landau energy [280], the
stress-energy tensor Sε should not be sensitive to the concentrated part of jε in L2

loc(R2), and we simply
expect N−2

ε Sε ≈ v⊗ v− Id
2 |v|

2 in terms of the weak limit v of N−1
ε jε (see also [382, Chapter 13]). In

particular,

div
Sε
N2
ε

≈ div
(

v⊗ v− Id

2
|v|2
)

= v⊥m + v div v . (1.50)

Injecting the convergences (1.47) and the identifications (1.48), (1.49), and (1.50) into identities (1.44),
(1.45), and (1.46), we obtain after straightforward simplifications,

div v ≈ α〈∂tuε, iuε〉
|log ε|

, (1.51)

2v⊥m +2v div v ≈ 2α
〈∇uε, ∂tuε〉
Nε|log ε|

+ βV, (1.52)

α∂tm +2αλεv ·∂tv ≈ 2 div (v⊥m) + 2v ·∇ div v−β div V−λεα2m−1|V|2, (1.53)

and further injecting (1.51) into (1.40), we obtain

α∂tv ≈ αV +λ−1
ε ∇ div v, ∂tm = curl V . (1.54)

We now separately consider the Gross-Pitaevskii and the dissipative cases.
• Gross-Pitaevskii case (α = 0, β = 1). Identity (1.51) yields div v = 0, while identity (1.52)

takes the form V = 2v⊥m. Injecting this into (1.54) then leads to

∂tm = 2 div (vm), curl v = m, div v = 0,

or alternatively,
∂tv = ∇p +2v⊥curl v, div v = 0.

In the regime 1� Nε � ε−1 with the critical choice λε = Nε/|log ε|, the rescaled supercurrent
density N−1

ε jε is thus expected to converge to the solution v of this incompressible 2D Euler
equation.
• Dissipative case (α > 0, α2 + β2 = 1). Injecting (1.54) into (1.53) yields

∂tm ≈
2

α
div (v⊥m)− β

α
div V−λεV ·(2v +αm−1V). (1.55)

Comparing with (1.54) in the form ∂tm = curl V, we deduce in the parabolic case (α = 1,
β = 0) that V = −2vm, while a more careful computation in the general mixed-flow case leads
to V = −2αvm +2βv⊥m. Injecting this into (1.54), we obtain

∂tv ≈ (λεα)−1∇ div v +2(−αv +βv⊥) curl v . (1.56)

We need to distinguish between three regimes:
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— for Nε � |log ε| (hence λε � 1), equation (1.55) and the identification of V yield

∂tm = div (2(αv⊥+βv) m),

while equation (1.56) together with (1.51) leads to div v = 0, so that we deduce, using the
relation div v = 0 in the form v = ∇⊥4−1 m, and setting p := −24−1 div ((−αv +βv⊥) m),

∂tv = ∇p +2(−αv +βv⊥) curl v, div v = 0;

— for Nε ' |log ε| with λε → λ ∈ (0,∞), equation (1.56) becomes

λ∂tv = α−1∇ div v +2λ(−αv +βv⊥) curl v;

— for Nε � |log ε| (hence λε � 1), equation (1.56) becomes

∂tv = 2(−αv +βv⊥) curl v .

In the regime 1� Nε � ε−1 with the critical choice λε = Nε/|log ε|, the rescaled supercurrent
densityN−1

ε jε is thus expected to converge to the solution v of one of these equations depending
on the vortex density regime.

This careful heuristic argument therefore allows to predict the whole family of announced mean-field
evolutions (1.34), and formally explains the (a priori unexpected) higher variety of possible behaviors
in the dissipative case depending on the vortex density regime. Note however that this argument
relies on important unproven assumptions such as the absence of energy excess and the equipartition
of energy.

In order to establish these mean-field limit results, we follow Serfaty [395] and make use of a
modulated energy technique (as illustrated in a much simpler setting in Chapter 6). In the present
situation, the method consists in considering the following modulated Ginzburg-Landau energy,

Eε :=
1

2

ˆ
R2

(
|∇uε − iuεNεv|2 +

1

2ε2
(1− |uε|2)2

)
, (1.57)

where v denotes the solution of the (postulated) limiting equation. This modulated energy somehow
measures the distance between the supercurrent density jε = 〈∇uε, iuε〉 and the postulated limit Nεv,
in a way that is well adapted to the Ginzburg-Landau energy structure. Since each vortex of degree
d carries a self-interaction energy π|d||log ε|, and assuming that all vortices have positive degrees
initially, we need to subtract the fixed quantity πNε|log ε| from (1.57), thus defining the modulated
energy excess Dε := Eε − πNε|log ε|. In order to prove the desired convergence N−1

ε jε → v, showing
Dε = o(N2

ε ) is then sufficient. For that purpose, the strategy is to establish a Grönwall relation for Dε,
so that ifDε is initially of order o(N2

ε ) then it remains so, which in turn implies the desired convergence.
In order to prove the Grönwall relation for Dε, we exploit as in [395] the strong regularity properties
of v (as established in Chapter 7), and various similar identities and identifications are needed as in
the above formal argument. This requires to use all the by-now standard tools of vortex analysis like
vortex-balls constructions, Jacobian estimates, and product estimates (see e.g. [382]). The argument
in [395] covers the dissipative case in the regime 1 � Nε . |log ε|, and the Gross-Pitaevskii case
in the regime |log ε| � Nε � ε−1. In Chapter 8, we treat in addition the parabolic case in the
regime |log ε| � Nε � |log ε| log |log ε|, while other missing regimes remain open questions (except
the Gross-Pitaevskii case with Nε � 1 blowing up sufficiently slowly, which is treated in [263] by
other methods); see Section 8.1.4.
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1.2.4 Ginzburg-Landau vortices in disordered media (Chapter 8, cont’d)

As explained above, when an electric current is applied to a type-II superconductor, it flows
through the material, inducing a Lorentz-like force that makes the vortices move, which in turn dissi-
pates energy and destroys the superconductivity property. In order to prevent vortices from moving
and therefore reduce this energy dissipation, a common attempt consists in introducing normal impu-
rities in the material, which are meant to destroy superconductivity locally and therefore “pin down”
the vortices — at least if the applied current is not too strong. The resulting competition between
vortex interactions and disorder leads to glassy effects that are still largely not understood [193]. In
Chapter 8 we aim at a rigorous description of the corresponding evolution of the vortex matter in the
mean-field regime.

More precisely, normal impurities are usually modeled by correcting the Ginzburg-Landau equa-
tions with a non-uniform equilibrium density a : R2 → [0, 1], which locally lowers the energy penalty
associated with the vortices [284, 109] (see also [108]). Writing a = eh in terms of the so-called pinning
potential h : R2 → R, and also considering the effect of an imposed current, the 2D Ginzburg-Landau
model (1.37) is replaced after some transformations and simplifications by the following (cf. Sec-
tion 8.2.1),

λε(α+ i|log ε|β)∂tuε = 4uε +
auε
ε2

(1− |uε|2) +∇h · ∇uε + iF⊥ · ∇uε + fuε, (1.58)

where F : R2 → R2 is some vector field related to the imposed electric current and where f : R2 → R
is some unimportant zeroth-order term. As formally predicted by Chapman and Richardson [110], the
non-uniform density a translates at the level of the vortex dynamics into a pinning force −∇h, indeed
attracting the vortices to the minima of a. For a fixed number N of vortices, the asymptotic limit
ε ↓ 0 of equation (1.58) is rigorously well-understood [264, 397, 261, 279], and vortices are subjected
to three forces:

— their mutual Coulomb interaction;
— the Lorentz-like force F due to the applied current;
— the pinning force −∇h.

Note that the pinning and applied current intensities are parameters which can be tuned, leading
to regimes in which one or two forces dominate over the others, or all are of the same order. In
the sequel, we rather consider the physically more realistic situation when the number Nε of vortices
blows up as ε ↓ 0, and we wish to describe the evolution of the density of the corresponding vortex
liquid. The most interesting situation from the modeling viewpoint is to further let the pinning weight
oscillate quickly at some mesoscale ηε, which also tends to 0 as ε ↓ 0. Since impurities are typically
randomly scattered in the sample, we consider a pinning weight of the form a(x) := a0(x/ηε) for
some typical realization a0 of a stationary random field. For simplicity, we may focus attention on
the periodic case. One is thus led to the question of combining the mean-field limit for the Ginzburg-
Landau model (1.58) together with a homogenization limit. In Chapter 8, we split the difficulty into
two parts: we first establish a rigorous mean-field limit result in the presence of a fixed disorder
ηε = η > 0, and then we consider the homogenization limit of the obtained mean-field equations as
η ↓ 0. Since all arguments are quantitative, this yields a complete result at least for diagonal regimes
with a large number of particles and with a small pin separation that tends sufficiently slowly to 0.

Let us first briefly describe the mean-field limit result for fixed disorder ηε = η > 0, which is about
generalizing the results described in Section 1.2.3 above to the case with pinning and forcing: starting
from (1.58) instead of (1.37), we show that the mean-field equation (1.34) is replaced by (1.29) with
Ψ := F⊥ −∇⊥h. Regarding the strategy of the proof, we adapt the modulated energy method first
used by Serfaty [395]. In the present context with pinning weight a, the modulated energy (1.57)
must naturally be changed into a weighted one,

Ẽε :=
1

2

ˆ
R2

a
(
|∇uε − iuεNεv |2 +

a

2ε2
(1− |uε|2)2

)
. (1.59)
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In addition, a vortex of degree d at a point x now carries a self-interaction energy π|d|a(x)|log ε|,
which non-trivially depends on the vortex location x. The vortex self-interaction energy that needs
to be subtracted from the modulated energy (1.59) is therefore no longer πNε|log ε| but rather
π
∑

i dia(xi)|log ε| ∼ |log ε|
2

´
R2 aµε (cf. (1.38)), so that the modulated energy excess now takes the

form
D̃ε :=

1

2

ˆ
R2

a
(
|∇uε − iuεNεv |2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
.

In order to establish a Grönwall relation for D̃ε, even at a formal level, the heavier structure of the
weighted Ginzburg-Landau equation must first be well understood. We mention some additional
technical difficulties that are encountered along the way.

— In some regimes, the solution v of the limiting equation must crucially be replaced in the
modulated energy (1.59) by some suitable ε-dependent map vε : R+ × R2 → R2, which
is separately shown to converge to v. This amounts to including lower-order terms in the
modulated energy.

— In this weighted setting, we need to establish a localized version of the so-called ball con-
struction lower bound [382, Chapter 4] with a very precise error estimate o(N2

ε ) (which gets
very small when Nε diverges slowly). The usual error in the ball construction lower bound
is essentially O(Nε| log r|), where r is the total radius of the balls, so that we need to take r
large enough (almost as large as O(1) when Nε diverges slowly), but here the pinning weight
a adds an important difficulty since it may vary significantly over the size of the balls of this
construction, thus perturbing the lower bound itself. A particularly careful vortex analysis is
therefore needed (cf. Section 8.5).

— If ∇h, F , and f in (1.58) are only assumed to be bounded, then the modulated energy Ẽε
does usually not remain finite along the flow, which forces us to truncate it at some scale. As
a consequence, the vortex analysis must further be refined to the setting of the infinite plane
with no global energy control, hence no a priori finiteness assumption on the total number of
vortices (cf. Section 8.5).

Once the mean-field limit equations are rigorously established, we may turn to their homogeniza-
tion limit for a small pin separation η ↓ 0. This happens to be a difficult problem, related to the
subtle competition between vortex interactions and pinning and to the possible glassy properties of
such systems.

In the regime of negligible vortex interactions, particles are independent and the mean-field equa-
tions are reduced to simple linear transport equations, which are much easier to understand. On the
one hand, for F ≡ 0, the vorticity is simply attracted towards the neighborhood of the local wells of
the pinning potential h. On the other hand, a constant applied force F 6≡ 0 can be absorbed into the
pinning force −∇h by adding to the potential h an affine function, which effectively tilts the potential
landscape into a washboard-shaped graph. Beyond some positive critical value of the intensity |F |,
the tilted potential has no local minimum, leading the vorticity to fall in the direction of F , while
below this critical value the vorticity remains pinned. This critical value corresponds to the so-called
depinning current. Such a system seems to be known as a “washboard” in the physics literature, and
the limiting stick-slip dynamics is rigorously justified in Section 8.9.5.

In critical regimes with non-negligible interactions, we formally derive corresponding nonlinear
stick-slip homogenized equations (cf. Section 8.9.4). Due to the complexity of the collective effects
of the interacting vortices, the rigorous treatment of this homogenization limit is however extremely
delicate and is postponed to future works. Note that all glassy properties of vortex matter (such
as the value of the depinning exponent) should be enclosed in these formal homogenized equations.
Unravelling and describing them is a separate topic and is not pursued in this thesis.
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Notation

— d is the dimension of the ambient space Rd.
— d(·, ·) denotes the Euclidean distance between subsets of Rd.
— For all k ∈ N, Bk denotes the Euclidean ball of unit radius centered at 0 in Rk, and for all

x ∈ Rk and r > 0 we set Bk(x) := x + Bk, Bk
r := rBk, and Bk(x, r) := Bk

r (x) := x + rBk.
When k = d or when there is no confusion possible on the meant dimension, we drop the
superscript k.

— We use similar notation for cubes as for balls, replacing Bk by Qk := [−1
2 ,

1
2)k (the unit cube

in dimension k). Note that Qk is frequently identified with the k-torus Tk.
— B(Rk) denotes the Borel σ-algebra on Rk.
— For all subsets A of a reference set E, we let Ac := E \A denote the complement of A in E.
— 1A denotes the indicator function of a set A.
— R+ := [0,∞) denotes the set of nonnegative real numbers.
— We use the notation a∧ b := min{a, b}, a∨ b := max{a, b}, a+ := a∨0, and a− := (−a)∨0 for

all a, b ∈ R. In particular, given a function f : Rk → R, we denote its positive and negative
parts by f+(x) := 0 ∨ f(x) and f−(x) := 0 ∨ (−f)(x), respectively.

— bac denotes the largest integer ≤ a, and dae denotes the smallest integer ≥ a.
— M+

loc(R
d) denotes the convex cone of locally finite non-negative Borel measures on Rd, and

P(Rd) denotes the convex subset of Borel probability measures, endowed with the usual weak-*
topology.

— Mes(Rd) = Mes(Rd;R) denotes the space of Lebesgue-measurable functions Rd → R.
— For all σ > 0, Cσb (Rd) denotes the Banach space Cbσc,σ−bσcb (Rd) of bounded Hölder functions,

while Cσc (Rd) denotes the subspace of compactly supported functions, and Cσ(Rd) denotes the
space of functions that are locally in Cσb (Rd). For σ ∈ (0, 1), we denote by | · |Cσ the usual
Hölder seminorm, and by ‖ · ‖Cσ := | · |Cσ + ‖ · ‖L∞ the corresponding norm.

— Lpuloc(R
d) denotes the Banach space of functions that are uniformly locally Lp-integrable on

Rd, endowed with norm ‖f‖Lpuloc
:= supx ‖f‖Lp(B(x)). We similarly define the corresponding

Sobolev spaces W k,p
uloc(R

2).
— Given a Banach space X and given t > 0, we use the notation ‖ · ‖Lpt X for the usual norm in

Lp([0, t];X).
— Given a function u : R+ × Rd → R, the superscript t in the notation ut indicates that the

function u is evaluated at time t, that is, ut := u(t, ·).
— Given an exponent 1 ≤ p ≤ ∞, we denote its Hölder conjugate by p′ := p

p−1 .
— F denotes Fourier transformation on Rd.
— Given two linear operators A,B on some function space, we denote by [A,B] := AB − BA

their commutator.
— For a ∈ Rd, we set a⊗2 := a⊗ a, and we similarly define a⊗k for all k ≥ 1.
— Given a matrix M , we denote by M t or M∗ its transpose matrix.
— For any vector a = (a1, a2) ∈ R2, we use the notation a⊥ = (−a2, a1). We also write J : R2 →

R2 for the rotation of vectors by angle π
2 in the plane, so that Ja = a⊥.

— For any vector field F = (F1, . . . , Fd) = Rd → Rd, we use the notation ∇ · F =
∑d

i=1∇iFi.
For any 2D vector field F = (F1, F2) : R2 → R2, we use the notation curlF = ∂1F2 − ∂2F1.

— For any k-tensor field T , we denote its components by (T )i1...ik . Its divergence is defined
by (div T )i1...ik−1

=
∑d

j=1∇j(T )i1...ik−1j , and its rotational is defined by (∇ × T )i1...ik =∑d
j,l=1 εikjl∇j(T )i1...ik−1l.

— C denotes various positive constants that only depend on fixed parameters (like the space
dimension d, etc.) and possibly on other controlled quantities. Note that these constants may
vary from line to line. We denote by Ct any positive constant that further depends on an upper
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bound on time t ≥ 0, while additional subscripts indicate the dependence on other parameters.
— We write . and & for ≤ and ≥ up to such multiplicative constants C. We use the notation '

if both relations . and & hold. Alternatively, we write a ≤ O(b) if a . b. We add a subscript
in order to indicate the dependence of the multiplicative constants on other parameters (e.g.
on time t).

— For a, b ≥ 0, the notation a � b (or equivalently b � a) stands for a ≤ 1
C b for some large

enough constant C ' 1.
— When considering sequences (aε)ε, (bε)ε ⊂ R+ indexed by a parameter ε that is sent to 0, we

rather write aε � bε (or bε � aε) if aε/bε converges to 0 as the parameter ε ↓ 0. Alternatively,
we write aε ≤ o(bε) or aε ≤ oε(bε) if aε � bε.

— or(1) denotes a quantity that goes to 0 when the parameter r goes to its limit, uniformly with
respect to all other parameters. We write o(b)

r (1) if it converges to 0 only for any fixed value of
the parameter b.

— Given an underlying probability space (Ω,A,P), we write E [·] for the expectation, Var [·] for the
variance, and Cov [·; ·] for the covariance, and the notation E [ · ‖ · ] stands for the conditional
expectation.

— N denotes a standard normal random variable (on R).
— dTV (·, ·), dW (·, ·), and dK (·, ·) denote the total variation distance, the 1-Wasserstein (or

Monge-Kantorovich) distance, and the Kolmogorov distance, respectively: given two random
variables X1, X2 with laws µ1, µ2 ∈ P(R), we recall that

dTV (X1, X2) := sup
A∈B(R)

∣∣µ1(A)− µ2(A)
∣∣, (1.60)

dW (X1, X2) := sup
ψ∈C0,1(R),
|ψ|
C0,1≤1

ˆ
R
ψ(x)d(µ1 − µ2)(x), (1.61)

dK (X1, X2) := sup
x∈R

∣∣µ1((−∞, x])− µ2((−∞, x])
∣∣. (1.62)
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Chapter 2

Stochastic homogenization of nonconvex
unbounded integral functionals
with convex growth

We consider the well-travelled problem of homogenization of random integral functionals. When
the integrand satisfies standard growth conditions, the qualitative theory is well-understood. When
it comes to unbounded functionals, that is, when the domain of the integrand is not the whole space
and may depend on the space variable, there is no satisfactory theory. In this chapter we develop
a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with
convex growth. We first prove that if the integrand is convex and has p-growth from below (with
p > d, the space dimension), then it admits homogenization regardless of growth conditions from above
(in particular its domain may depend on the space variable). In the case of nonconvex integrands,
we prove that a similar homogenization result holds provided the nonconvex integrand admits a
two-sided estimate by a convex integrand that itself admits homogenization. These results are also
new in the periodic setting, and are motivated by (and of interest to) the rigorous derivation of
rubber elasticity from polymer physics, which indeed involves the stochastic homogenization of such
unbounded functionals.

This chapter essentially corresponds to the article [166] jointly written with Antoine Gloria.
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2.1 Introduction

2.1.1 General overview

Let O be a bounded Lipschitz domain of Rd, d,m ≥ 1. We consider the homogenization of a
random integral functional Iε : W 1,p(O;Rm)→ [0,∞] given by

Iε(u) =

ˆ
O
W
(x
ε
,∇u(x)

)
dx,

where W is a typical realization of a random Borel function that is stationary in its first variable and
satisfies for almost every y ∈ Rd for all Λ ∈ Rm×d the two-sided estimate

1

C
|Λ|p − C ≤ V (y,Λ) ≤ W (y,Λ) ≤ C(1 + V (y,Λ)), (2.1)

for some C > 0, p > 1, and some typical realization of a random Borel function V : Rd×Rm×d → [0,∞]
that is stationary in its first variable and convex in the second. The originality of the growth condition
that we consider here is that V (y, ·) may take infinite values and that its domain may depend on y,
so that the domain of the homogenized integrand W (if it exists) is unknown a priori.

The motivation for considering such a problem comes from the derivation of nonlinear elasticity
from the statistical physics of polymer-chain networks [9, 200, 138]. Indeed, the free energy of the
polymer-chain network is given by two contributions: a steric effect (for which proving homogenization
is one of the most important open problems in the field, cf. Section 2.1.7), and the sum of the free
energies of the deformed chains. The free energy of a single chain is a convex increasing function
of the square of the length of the deformed polymer-chain, which blows up at finite deformation
but depends on the number of monomers in the considered chain. Truncating the steric effect for
simplicity, the corresponding problem in a continuum setting would be the homogenization of the
nonconvex integrand

W (y,Λ) = V (y,Λ) + a(y) g(det Λ) ≤ C(1 + V (y,Λ)), (2.2)

where V is an unbounded convex stationary ergodic integrand (the domain of which is allowed to
depend on the space variable), where a is a uniformly bounded stationary random field, and where g
is a nonnegative convex function. Unfortunately, the present work crucially relies on the upper bound
in (2.2) (cf. (2.1)), which prevents us from considering any physically relevant model for the steric effect
since this upper bound is incompatible with the non-interpenetration of matter (cf. Section 2.1.7).

Homogenization of multiple integrals has a long history, and we start with the state of the art
when V and W are periodic in the first variable:
(i) The first contribution (beyond the linear case) is due to Marcellini [314], who addressed the

homogenization of convex periodic integrands satisfying a polynomial standard growth condition,
that is, (2.1) for V (y,Λ) = |Λ|p.

(ii) Marcellini’s result was then generalized to nonconvex periodic integrands satisfying a polynomial
standard growth condition, by Braides [77] (which covers in addition the case of almost-periodic
coefficients) and independently by Müller [331, Theorem 1.3].

(iii) Müller [331, Theorem 1.5] also addressed the case of a convex periodic integrand satisfying a
convex standard growth condition (2.1) for V (y,Λ) = Ṽ (Λ) with Ṽ : Rm×d → R+ a (general)
convex finite-valued map, and p > d.

(iv) Braides and Defranceschi [78, Chapter 21] treated the case of nonconvex periodic integrands
(see also [126] in the convex case) satisfying (2.1) where V is convex periodic and satisfies the
polynomial non-standard growth condition
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1

C
|Λ|p − C ≤ V (y,Λ) ≤ C(1 + |Λ|q) (2.3)

for some q < p∗ (with p∗ the Sobolev-conjugate of p > 1), and the doubling property

V (y, 2Λ) ≤ C(1 + V (y,Λ)).

(v) Given a collection of well-separated periodic inclusions, Braides and Garroni [79] treated the
case of nonconvex periodic integrands satisfying a polynomial standard growth condition as well
as the (strong) doubling property

W (y, 2Λ) ≤ CW (y,Λ).

outside the inclusions, but only satisfying inside the inclusions a convex standard growth condi-
tion (2.1) for some possibly unbounded map V (y,Λ) that is convex in the Λ-variable.

(vi) More recently, Anza Hafsa and Mandallena [25] studied the homogenization of quasiconvex
periodic integrands satisfying a standard (unbounded) convex growth condition, that is, (2.1) for
V (y,Λ) = Ṽ (Λ) with Ṽ : Rm×d → [0,∞] an unbounded convex map such that Ṽ (Λ) ≥ |Λ|p,
and with p > d. Note that in this case the domain is fixed.

When W is random, the results are sparser:
(vii) The first contribution beyond the linear case is due to Dal Maso and Modica [134], who ad-

dressed the homogenization of convex random stationary integrands satisfying a polynomial
standard growth condition, generalizing Marcellini’s result (ii) to the random setting.

(viii) Messaoudi and Michaille [321] later treated the homogenization of quasiconvex stationary
ergodic integrands satisfying a polynomial standard growth condition, following Dal Maso
and Modica’s approach.

(ix) In their monograph on homogenization, Jikov, Kozlov, and Oleinik [265, Chapter 15] treated
the case of convex stationary ergodic integrands satisfying a polynomial non-standard growth
condition (2.3) for some q < p∗ (with p∗ the Sobolev-conjugate of p > 1).

For scalar functionals, that is, when m = 1, results are much more precise, and we refer the reader to
the monograph [100] by Carbone and De Arcangelis (which is however only concerned with the periodic
setting) and to [98, 99]. The main technical tool for scalar unbounded functionals is truncation of
test-functions (see also [265, Section 15.2]), which is in general no longer available for systems. More
precisely, such truncation arguments replace the Sobolev embedding that is used for systems, thus
allowing to relax the assumption p > d.

In this chapter we give a far-reaching generalization of (i), (ii), (iii), (iv), (vi), (vii), (viii), and (ix)
for systems in the random setting, by relaxing the assumption that the domain of V (y, ·) in (2.1) is
independent of y. Our contribution also generalizes (v) by relaxing all geometric assumptions. In the
scalar case m = 1, combining our approach with truncation arguments, we may further refine our
results by relaxing the condition p > d: our approach then improves and extends to the stochastic
setting some scalar periodic results of [98, 99, 100].

The argument splits into two main steps. First, for convex integrands, our results show that
homogenization holds without any growth condition from above (cf. Theorem 2.1.2 for Neumann
boundary conditions, and Corollary 2.1.4 for the more subtle case of Dirichlet boundary conditions),
so that we may homogenize the integral functional associated with the bound V itself. For that
purpose we proceed by truncation of the energy density (following the approach by Müller [331]), and
start by proving in Proposition 2.2.8 that homogenization and truncation commute at the level of
the definition of the homogenized energy density. The proof relies on the existence of correctors with
stationary gradients for convex problems and exploits quantitatively their sublinearity at infinity (cf.
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Lemma 2.2.4), which is a substantial difference between the periodic and the random settings and
makes the latter more subtle. The other main technical achievement is the construction of recovery
sequences in Proposition 2.2.10 (a gluing argument based on affine boundary data trivially fails since
the domain of V (y, ·) depends on y — this difficulty is already present in the periodic setting, and
prevents us from using the standard homogenization formula with Dirichlet boundary conditions).

Second, in the case of nonconvex integrands with a two-sided convex estimate (2.1), we show in
Theorem 2.1.6 that homogenization reduces to the homogenization of the convex bound V . The first
obstacle in this program is the definition of the homogenized energy density itself. Indeed, in the
absence of correctors (which is a consequence of nonconvexity), one usually defines the homogenized
energy density through an asymptotic limit with linear boundary data on increasing cubes, but as
already noticed such an approach fails in general when the domain of the integrand is not fixed.
Instead, in Lemma 2.3.1, we use the (well-defined) correctors of the associated convex problem as
boundary data for the nonconvex problem on these increasing cubes. Next we argue by blow-up in
Proposition 2.3.3 for the Γ-lim inf inequality (following the approach by Fonseca and Müller [183]),
and make a systematic use of the correctors of the convex problem to control the nonconvex energy
from above. Then for the Γ-lim sup we argue in Proposition 2.3.6 by a relaxation method (follow-
ing the approach introduced by Fonseca [182] and first used in homogenization by Anza Hafsa and
Mandallena [25]), again making use of the corrector of the convex problem in the estimates.

To conclude this overview, let us go back to the initial motivation, that is, the homogenization
of (2.2). On the one hand, we have reduced the homogenization for such integrands to the homoge-
nization for the convex integrand V . On the other hand, we have proved homogenization for convex
integrands without growth condition from above, and we have therefore established homogenization
for (2.2) itself. We believe that a similar approach can be successfully implemented in the discrete
setting considered in [9] for the derivation of nonlinear elasticity from polymer physics (with truncated
steric effect).

This chapter is organized as follows. The main results are stated in Section 2.1.2. The proof of
the results for convex integrands are displayed in Section 2.2, whereas Section 2.3 is dedicated to
the proof for nonconvex integrands. In Section 2.4 we turn to various possible improvements of our
general results under additional assumptions. In Appendix 2.A we prove several standard and less
standard technical results on approximation of functions and on measurability of integral functionals,
which are abundantly used in this chapter.

2.1.2 Notation and assumptions

Let (Ω,F ,P) be a complete probability space and let τ := (τy)y∈Rd be a measurable ergodic action
of (Rd,+) on (Ω,F ,P) (cf. Appendix 2.A.2), that are fixed once and for all throughout the chapter.
We denote by E [·] the expectation on Ω with respect to P.

Consider a map W : Rd × Rm×d × Ω → [0,∞] that is τ -stationary in the sense that, for all
Λ ∈ Rm×d, all ω ∈ Ω, and all y, z ∈ Rd,

W (y,Λ, τ−zω) = W (y + z,Λ, ω), (2.4)

and assume that W (y, ·, ω) is lower semicontinuous on Rm×d for almost all y, ω. We also assume in
the rest of this chapter that, for almost all ω, the map y 7→ W (y,Λ + u(y), ω) is measurable for all
u ∈ Mes(Rd;Rm×d), and that, for almost all y ∈ Rd, the map ω 7→ W (y,Λ + v(ω), ω) is measurable
for all v ∈ Mes(Ω;Rm×d). Continuity in the second variable and joint measurability (in which caseW
is called a Carathéodory integrand) would ensure these properties, but weaker sufficient conditions are
given in Appendix 2.A.1. Such integrands W will be called τ -stationary normal random integrands.
We further make the following additional measurability assumption on W .
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Hypothesis 2.1.1. For all jointly measurable functions f : Rd×Ω→ R, all bounded domains O ⊂ Rd,
and all ε > 0, the function

ω 7→ inf
u∈W 1,1

0 (O;Rm)

ˆ
O
W (y/ε, f(y, ω) +∇u(y), ω)dy

is F-measurable on Ω. ♦

As discussed in Appendix 2.A.3, this last hypothesis is always satisfied ifW is convex in the second
variable, and more generally if it is sup-quasiconvex (in the sense of Definition 2.A.9), which includes
e.g. the case of a sum of a convex integrand and of a “nice” nonconvex part (cf. Hypothesis 2.1.9).

For any bounded domain O ⊂ Rd, we define the following family of random integral functionals
parametrized by ε > 0,

Iε(·, ·;O) : W 1,1(O;Rm)× Ω→ [0,∞] : (u, ω) 7→ Iε(u, ω;O) :=

ˆ
O
W (y/ε,∇u(y), ω)dy. (2.5)

The aim of this chapter is to prove homogenization for Iε as ε ↓ 0 under mild growth conditions on
W , which we formulate in terms of Γ-convergence for the weak convergence of W 1,p(O;Rm) (for some
p > 1). When Λ 7→ W (y,Λ, ω) is convex for almost all y, ω, we say that W is a τ -stationary convex
normal random integrand, and shall use the notation V and Jε instead of W and Iε, that is, for every
bounded domain O ⊂ Rd and ε > 0,

Jε(·, ·;O) : W 1,1(O,Rm)× Ω→ [0,∞] : (u, ω) 7→ Jε(u, ω;O) :=

ˆ
O
V (y/ε,∇u(y), ω)dy. (2.6)

The notationW and Iε will be used for nonconvex integrands only. We start our analysis with the case
of convex integrands, then turn to nonconvex integrands, discuss several possible improvements of
these general results under additional assumptions, and conclude with a description of the application
to nonlinear elasticity.

2.1.3 Main results: convex integrands

In this section we state homogenization results for Jε with (essentially) no growth condition from
above. We start with Neumann boundary conditions, and then address the more subtle case of
Dirichlet conditions.

Homogenization with Neumann boundary conditions

Our first result is as follows.

Theorem 2.1.2 (Convex integrands with Neumann boundary data). Let V : Rd × Rm×d × Ω →
[0,∞] be a τ -stationary convex normal random integrand that satisfies the following uniform coercivity
condition: there exist C > 0 and p > d such that for almost all ω and y, we have for all Λ,

1

C
|Λ|p − C ≤ V (y,Λ, ω). (2.7)

Assume that the convex function M := sup essy,ω V (y, ·, ω) has 0 in the interior of its domain. Then,
for almost all ω ∈ Ω and all bounded Lipschitz domains O ⊂ Rd, the integral functionals Jε(·, ω;O)
Γ-converge to the integral functional J(·;O) : W 1,p(O;Rm)→ [0,∞] defined by

J(u;O) =

ˆ
O
V (∇u(y))dy,

for some lower semicontinuous convex function V : Rm×d → [0,∞] characterized by the following
three equivalent formulas:
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(i) Formula in probability: for all Λ ∈ Rm×d,

V (Λ) = inf
g∈F ppot(Ω)m

E[V (0,Λ + g, ·)], (2.8)

where the definition of the space F ppot(Ω) of mean-zero potential random variables is recalled in
Section 2.2.1 below.

(ii) Dirichlet formula with truncation: for any increasing sequence V k ↑ V of τ -stationary convex
random integrands that satisfy the standard p-growth condition

1

C
|Λ|p − C ≤ V k(y,Λ, ω) ≤ Ck(1 + |Λ|p) (2.9)

for all y, ω,Λ, and some sequence Ck < ∞, we have for almost all ω, all Λ, and all bounded
Lipschitz domains O ⊂ Rd,

V (Λ) = lim
k↑∞

lim
ε↓0

inf
φ∈W 1,p

0 (O/ε;Rm)

 
O/ε

V k(y,Λ +∇φ(y), ω)dy. (2.10)

(iii) Convexification formula: for all Λ and all bounded Lipschitz domains O ⊂ Rd, we have for
almost all ω,

V (Λ) = lim
t↑1

lim
ε↓0

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V (y, tΛ +∇φ(y), ω)dy. (2.11)

As a consequence of convexity, the limit t ↑ 1 can be omitted when Λ /∈ ∂domV . ♦

Comments are in order:
— The limit t ↑ 1 cannot be omitted in (2.11) in general for Λ ∈ ∂domV . Indeed, let V coin-

cide with a convex map Ṽ : Rm×d → [0,∞] with a closed domain, and which is not lower
semicontinuous at the boundary of its domain. In the interior of domṼ , V coincides with Ṽ .
However, since V is necessarily lower semicontinuous on its domain, it cannot coincide with Ṽ
on ∂domṼ .

— In the proof we take (2.10) as the defining formula for V , following the approach by Müller
in [331]. Formula (2.8) is interesting in two respects: first, it is intrinsinc (no approximation
is required), and second it is an exact formula (there is no asymptotic limit involved). The
equivalence of both formulas, which can be interpreted as the commutation of truncation and
homogenization, is the key to the proof of the Γ-convergence result.

We may extend Theorem 2.1.2 in two directions:
— The extension of Theorem 2.1.2 to the case of domains with holes (or more generally to soft in-

clusions, for which the coercivity assumption (2.7) does not hold everywhere) is straighforward
provided we have a suitable extension result at our disposal. When holes are well-separated,
such extension results are standard (see e.g. [265, Sections 3.1]). For general situations how-
ever, this can become a subtle issue (see in particular [265, Sections 3.1 and 3.5]). In the
particular case of the periodic setting, there is a very general extension result [2], which is
used e.g. in [79].

— In the generality of Theorem 2.1.2, the assumption p > d is crucially used in the form of the
Sobolev embedding of W 1,p(O;Rm) in L∞(O;Rm). In the case 1 < p ≤ d, the conclusions of
the theorem still hold true provided that V (y,Λ, ω) ≤ M(Λ) holds for some convex function
M : Rm×d → R that satisfies the growth condition lim sup|Λ|↑∞M(Λ)/|Λ|q < ∞ for q =
dp/(d − p) if p < d or for some q < ∞ if p = d. In the scalar case m = 1, the use of the
Sobolev embedding can be replaced by a truncation argument, as explained in Corollary 2.1.7
below (see also [100, 98]).
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Dirichlet boundary conditions

We now discuss the homogenization result in the case of Dirichlet boundary conditions (the case of
mixed boundary data can then be dealt with in a straightforward way, and we leave the detail to the
reader). A first remark is that Dirichlet data need to be well-prepared, as the following elementary
example shows.

Example 2.1.3. Consider random unit spherical inclusions centered at the points of a Poisson point
process, choose the integrand V to be equal to |Λ|p outside the inclusions and to be equal to some fixed
convex function with bounded domain D ⊂ Rm×d inside the inclusions. Given a (nonempty) bounded
open set O ⊂ Rd, for almost all ω, the realization of the inclusions corresponding to ω intersects
∂(O/ε) for infinitely many ε > 0, and hence for Λ /∈ D we have lim supε Jε(u + Λ · x, ω;O) = ∞ for
all u ∈ W 1,p

0 (O;Rm), due to the Dirichlet boundary condition. In contrast, if the intensity of the
underlying Poisson process is not too big, it is easily seen that the homogenized integral functional
J defined in Theorem 2.1.2 is finite-valued. This proves that, for all Λ /∈ D and almost all ω,
Jε(· + Λ · x, ω;O) cannot Γ-converge to J(·;O) on W 1,p

0 (O;Rm), due to the intersection of rigid
inclusions with the boundary of the domain where the Dirichlet condition is imposed. ♦

We propose two ways to prepare Dirichlet data:
— by relaxing the boundary data so that the energy remains finite for all ε > 0 while ensuring

that the boundary data are recovered at the limit ε ↓ 0; we call “lifting” this procedure;
— by replacing the integrand V by a softer integrand on a neighborhood of the boundary where

the boundary condition is imposed; we call this a “soft buffer zone”.

Corollary 2.1.4 (Convex integrands with Dirichlet boundary data). Let V , M , Jε, and J be as
in Theorem 2.1.2 for some p > d. Then, for almost all ω ∈ Ω and all bounded Lipschitz domains
O ⊂ Rd, the following hold.

(i) Lifting Dirichlet boundary data:
For all boundary data u ∈W 1,p(O;Rm) such that J(αu;O) <∞ for some α > 1, there exists a
lifted sequence (uε)ε with uε −⇀ u in W 1,p(O;Rm), such that we have on W 1,p

0 (O;Rm),

J(·+ u;O) = Γ- lim
t↑1

Γ- lim inf
ε↓0

Jε(·+ tuε, ω;O)

= Γ- lim
t↑1

Γ- lim sup
ε↓0

Jε(·+ tuε, ω;O).

In particular,

inf
v∈W 1,p

0 (O)
J(v + u;O) = lim

t↑1
lim inf
ε↓0

inf
v∈W 1,p

0 (O)
Jε(v + tuε;O)

= lim
t↑1

lim sup
ε↓0

inf
v∈W 1,p

0 (O)
Jε(v + tuε;O).

If u satisfies the additional condition
´
OM(∇u(y))dy <∞, then we may choose uε ≡ u, and if

this condition is strengthened to
´
OM(α∇u(y))dy <∞ for some α > 1, then the limit t ↑ 1 can

be omitted.

(ii) Soft buffer zone for Dirichlet boundary data:
For all boundary data u ∈W 1,p(O;Rm) such that J(u;O) <∞, we have on W 1,p

0 (O;Rm),

J(·+ u;O) = Γ- lim
t↑1,η↓0

Γ- lim inf
ε↓0

Jηε (·+ tu, ω;O)

= Γ- lim
t↑1,η↓0

Γ- lim sup
ε↓0

Jηε (·+ tu, ω;O),
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where Jηε is the following modification of Jε on an η-neighborhood of ∂O,

Jηε (v, ω;O) :=

ˆ
O
V O,η
ε (y,∇v(y), ω)dy,

V O,η
ε (y,Λ, ω) :=

{
V (y/ε,Λ, ω), if d(y, ∂O) > η;

|Λ|p, if d(y, ∂O) < η.
(2.12)

In particular,

inf
v∈W 1,p

0 (O)
J(v + u;O) = lim

t↑1,η↓0
lim inf
ε↓0

inf
v∈W 1,p

0 (O)
Jηε (v + tu;O)

= lim
t↑1,η↓0

lim sup
ε↓0

inf
v∈W 1,p

0 (O)
Jηε (v + tu;O).

If u satisfies the additional condition J(αu;O) <∞ for some α > 1, then the limit t ↑ 1 can be
omitted. ♦

Comments are in order:
— The results of Corollary 2.1.4 above are not completely satisfactory. Indeed, if one makes a

diagonal extraction of t and η with respect to ε to obtain a Γ-convergence in ε only, then the
extraction for the Γ-limsup depends on the target function v+u and not only on the boundary
data u as we would hope for. This dependence is however restricted to a dilation parameter
only in the case of lifting. In the case of the buffer zone, the result can be (optimally) improved
to ηε = θε for any fixed θ > 0, under some additional structural assumption in the form of
the existence of stationary quasi-correctors (see Proposition 2.4.1). For specific examples for
which this assumption holds, see Corollary 2.1.8 below.

— In the specific situation when domV = domM (this is trivially the case when the domain is
fixed, that is, when domV (y, ·, ω) = domM for almost all y, ω), then the strong assumptions´
OM(∇u(y))dy <∞ and

´
OM(α∇u(y))dy <∞ (for some α > 1) in part (i) of the statement

reduce to the simpler assumptions J(u;O) <∞ and J(αu;O) <∞ (for some α > 1), respec-
tively. In particular, in that situation, the lifting can always be chosen to be trivial, uε := u
for all ε.

— In [79] (see also [78, Chapter 20]), Braides and Garroni prepare the boundary data in a different
way in the specific case of stiff inclusions. In particular they introduce an operator Rε which
acts on functions u as follows: on each stiff inclusion Rε(u) has value the average of u on
the considered stiff inclusion, away from all inclusions Rε(u) coincides with u, and in between
Rε(u) is an interpolation between u and the average of u on the inclusion. Such a construction
can be used here as well, but seem to admit no natural generalization in other settings than
stiff inclusions.

2.1.4 Main results: nonconvex integrands with convex growth

In the case when W is nonconvex and admits a two-sided estimate by a convex function (which
may itself depend on the space variable), we show that a Γ-convergence result similar to the convex
case holds. Before we precisely state this result, let us recall the useful notion of radial uniform upper
semicontinuity (which is trivially satisfied by convex maps).

Definition 2.1.5. A map Z : Rm×d → [0,∞] is said to be ru-usc (i.e. radially uniformly upper
semicontinuous) if there is some α ≥ 0 such that the function

∆α
Z(t) = sup

Λ∈domZ

Z(tΛ)− Z(Λ)

α+ Z(Λ)
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satisfies lim supt↑1 ∆α
Z(t) ≤ 0. A τ -stationary normal random integrandW is said to be ru-usc if there

exists a τ -stationary integrable random field a : Rd × Ω→ [0,∞] such that the function

∆a
W (t) :=sup ess

y∈Rd
sup ess
ω∈Ω

sup
Λ∈domW (y,·,ω)

W (y, tΛ, ω)−W (y,Λ, ω)

a(y, ω) +W (y,Λ, ω)

satisfies lim supt↑1 ∆a
W (t) ≤ 0. ♦

The following result is a far-reaching generalization of [331, Theorem 1.5] to a wide class of random
and nonconvex integrands; it is also a substantial extension of [25, Corollary 2.2]. (In general, we do
not expect that the limit t ↑ 1 can be dropped in (2.14) below.)

Theorem 2.1.6 (Nonconvex integrands with convex growth). Let W : Rd×Rm×d×Ω→ [0,∞] be a
(nonconvex) ru-usc τ -stationary normal random integrand satisfying Hypothesis 2.1.1. Assume that,
for almost all ω, y, and for all Λ,

V (y,Λ, ω) ≤ W (y,Λ, ω) ≤ C(1 + V (y,Λ, ω)), (2.13)

for some C > 0 and some τ -stationary convex random integrand V : Rd × Rm×d × Ω → [0,∞] that
satisfies the assumptions of Theorem 2.1.2 for some p > d. Then, for almost all ω ∈ Ω and all bounded
Lipschitz domains O ⊂ Rd, the integral functionals Iε(·, ω;O) Γ-converge to the integral functional
I(·;O) : W 1,p(O;Rm)→ [0,∞] defined by

I(u;O) =

ˆ
O
W (∇u(y))dy,

for some ru-usc lower semicontinuous quasiconvex function W : Rm×d → [0,∞] that satisfies V ≤
W ≤ C(1 + V ), where V is the homogenized integrand associated with V by Theorem 2.1.2. In
addition, the results stated in Corollary 2.1.4 for Jε also hold for Iε.

For all Λ ∈ Rm×d, let gΛ be the mean-zero potential field in probability minimizing E[V (0,Λ + ·)]
(cf. (2.8)), and note that x 7→ gΛ(τxω) is a gradient field on Rd for almost all ω ∈ Ω, which we denote
by x 7→ ∇ϕΛ(x, ω). The homogenized integrand W is characterized for all Λ ∈ Rm×d by

W (Λ) = lim inf
t↑1

lim
ε↓0

inf
v∈W 1,p

0 (O/ε;Rm)

 
O/ε

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy, (2.14)

for any bounded Lipschitz domain O ⊂ Rd and almost every ω ∈ Ω. ♦

2.1.5 Some improved results

The general results above naturally call for some questions concerning possible improvements:
— What about the subcritical case 1 < p ≤ d?
— What is the minimal size ηε of the soft buffer zone needed in the presence of Dirichlet boundary

conditions (see Corollary 2.1.4(ii))? Under which conditions can we take ηε = θε for some
constant θ > 0?

These two questions are partially addressed below under various additional assumptions.

Subcritical case 1 < p ≤ d

The first improvement concerns the growth condition from below in Theorem 2.1.2. It is relaxed
here to any p > 1 in the convex scalar case m = 1 under the additional assumption that V has fixed
domain. The idea is to avoid the use of Sobolev embedding by using suitable truncations (in the
spirit of e.g. [100, proof of Lemma 13.1.5]), which are indeed only available in the scalar case with
fixed domain. We recover in particular in this way the results of [100, Section 13.4] in Sobolev spaces.
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Corollary 2.1.7 (Subcritical case). Let V and M satisfy the assumptions of Theorem 2.1.2 in the
scalar case m = 1, for some p > 1. Also assume that domV (y, ·, ω) = domM for almost all y, ω.
Then the conclusions of Theorem 2.1.2 and Corollary 2.1.4 hold true for this p > 1. ♦

Minimal soft buffer zone

The second improvement concerns the size of the buffer zone for Dirichlet boundary data, at
least for affine target functions. The minimal size ηε = θε, for any constant θ > 0, is achieved
under the technical structural assumption that stationary quasi-correctors exist (cf. Proposition 2.4.1).
Understanding the validity of this assumption in general seems to be a difficult question of functional
analytic nature. It is trivially satisfied in the periodic case. It is also valid provided that truncations
are available, which holds in the scalar case with fixed domain.

Corollary 2.1.8 (Minimal soft buffer zone). Let V, Jε, J,M and W, Iε, I be as in Theorems 2.1.2
and 2.1.6 for some p > 1. Also assume that one of the following holds:
(1) p > d, and, for all Λ, ω, V (·,Λ, ω) and W (·,Λ, ω) are Q-periodic;
(2) m = 1, and domV (y, ·, ω) = domM is open for almost all y, ω.
Then, for all Λ, for almost all ω ∈ Ω,

V (Λ) = lim
ε↓0

inf
v∈W 1,p

0 (O)

 
O
V O,θε
ε (y,Λ +∇v(y), ω)dy,

where V O,θε
ε is defined as in (2.12) with η = θε. The same result also holds for V, Jε, J replaced by

W, Iε, I (for p > d). ♦

2.1.6 Application to nonlinear elasticity

In the example from the statistical physics of polymer-chain networks (with truncated steric effect),
the integrand has the specific decomposition (2.2). Moreover, the nonconvex part of the integrand
satisfies the following assumption, which in particular implies that W satisfies Hypothesis 2.1.1 (see
indeed Lemma 2.A.10), as well as the ru-usc property.

Hypothesis 2.1.9. There exists a τ -stationary convex map V : Rd × Rm×d × Ω→ [0,∞] and some
p > 1 such that

W (y,Λ, ω) = V (y,Λ, ω) +Wnc(y,Λ, ω),

whereWnc : Rd×Rm×d×Ω→ [0,∞] is a (nonconvex) τ -stationary normal random integrand satisfying
the following p-th order upper bound and local Lipschitz condition, for some C > 0,
(i) for almost all y, ω, for all Λ,

Wnc(y,Λ, ω) ≤ C(|Λ|p + 1);

(ii) for almost all y, ω, for all Λ,Λ′,

|Wnc(y,Λ, ω)−Wnc(y,Λ′, ω)| ≤ C(1 + |Λ|p−1 + |Λ′|p−1)|Λ− Λ′|. ♦

Under this assumption, the conclusions of Theorem 2.1.6 hold true.

Corollary 2.1.10. Let W : Rd × Rm×d × Ω→ [0,∞] be a (nonconvex) τ -stationary normal random
integrand satisfying Hypothesis 2.1.9. Assume that, for almost all ω, y, and for all Λ,

V (y,Λ, ω) ≤ W (y,Λ, ω) ≤ C(1 + V (y,Λ, ω)), (2.15)

for some C > 0, where V : Rd × Rm×d × Ω → [0,∞] satisfies the assumptions of Theorem 2.1.2 for
some p > d. Then the conclusions of Theorem 2.1.6 hold true. ♦
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2.1.7 Perspectives and open questions

As already explained, in the context of the derivation of nonlinear elasticity from the statistical
physics of polymer-chain networks [9, 200, 138], the discrete-to-continuum limit of interest would
in a purely continuum setting take the form of the homogenization of a random integral functional
Iε(u, ω) =

´
OW (xε ,∇u(x), ω)dx, where W is a nonconvex integrand of the form

W (y,Λ, ω) = V (y,Λ, ω) + a(y, ω) g(det Λ), (2.16)

where V is as before an unbounded convex stationary ergodic integrand whose domain depends on
the space variable, where a is an ergodic stationary random field, and where g : R → [0,∞] is a
continuous convex function with g(t) = ∞ for t ≤ 0 and with g(t) < ∞ for t > 0. With such
assumptions, the term a(y, ω) g(det Λ) indeed correctly models the steric effect, since it is compatible
both with the non-interpenetration of matter and with the necessity of an infinite amount of energy to
compress a non-zero volume into a zero volume [118]. Even for a ≡ 1 and for a convex integrand V with
polynomial growth, this homogenization question remains a major open problem in the field. Carefully
considering the discrete polymer-chain network model, we note that the homogenization of (2.16) is
the relevant continuum version of the problem only in dimension d = 2, while the continuum steric
term g(det Λ) should be understood differently in higher dimensions due to the possibility of reversing
some cells with finite energy in the discrete model. (In dimension d > 2 the relevant steric effect in
the discrete model is quite subtle to describe due to its strong non-locality: sending two polymer
chains into a same small volume costs much energy even though the two chains are initially far apart.
This non-locality is absent in dimension d = 2 since cells cannot be reversed in that case.)

Using a theorem by Dacorogna and coauthors [129, 130] on some partial differential inclusion, Anza
Hafsa and Mandallena [24] recently established a homogenization result for (2.16) in the periodic case
in any dimension d ≥ 1 under the additional assumption that V (y,Λ) satisfies a polynomial standard
growth condition of order p > 1, that the periodic functions y 7→ V (y,Λ) and y 7→ a(y) are continuous
(uniformly in Λ), and that for some T > 0 the function g : R → [0,∞] is continuous and convex
on (−T,∞), and satisfies g(t) = ∞ for −T ≤ t ≤ 0, g(t) < ∞ for t > 0, and g(t) = T for
t < −T . It would be interesting to generalize this result to the stochastic setting and under less
stringent assumptions on the convex part V . This result is however not physically relevant since the
assumptions on g are not compatible with the non-interpenetration of matter.

When trying to adapt Müller’s approach [331] to treat the original problem of homogenizing (2.16),
two main issues appear:

— Can any function u with bounded energy
´
OW (y,∇u(y))dy <∞ be approached by a sequence

of piecewise affine homeomorphisms such that the corresponding energies converge?
— Given two functions u, v with bounded energy on two disjoint sets, can they be glued in such

a way that the energy remains controlled?
In dimension d = 2, a useful tool is provided by the Rado-Kneser-Choquet theorem (in the form of
e.g. [171, 8]). It was used by Iwaniec, Kovalev, and Onninen [253, 252] to approach any function with
bounded energy by piecewise affine homeomorphisms in the strongW 1,p topology with 1 < p <∞. An
important step is however missing in order to ensure the convergence of the whole energy. Similarly,
devising a general procedure to glue functions with bounded energy into a function with controlled
energy remains an open problem that we would like to keep in mind in the future.

Another possible direction of research concerns the adaptation of our main results of this chapter
to the case when the integrand is degenerate in the sense that it does not satisfy the coercivity
assumption (2.7), — a situation that has captured much attention recently. More precisely, we may
consider the case when the lower bound (2.7) holds with C = C(ω) satisfying some moment condition
(see e.g. [342] and references therein).
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2.2 Proof of the results for convex integrands

This section is dedicated to the proofs of Theorem 2.1.2 and Corollary 2.1.4. Let V be a convex
τ -stationary normal random integrand. Up to the addition of a constant, we may restrict to the
following stronger version of (2.7): for almost all ω, y, we have for all Λ,

1

C
|Λ|p ≤ V (y,Λ, ω), (2.17)

for some C > 0 and 1 < p <∞. We assume that 0 belongs to the interior of the domain of the convex
function M := sup essy,ω V (y, ·, ω).

Following the strategy of [331, Theorem 1.5], we proceed by truncation of V . We let (V k)k be
an increasing sequence of τ -stationary convex normal random integrands V k : Rd ×Rm×d ×Ω→ R+

such that, for almost all ω, y, we have for all Λ,

lim
k↑∞

V k(y,Λ, ω) = V (y,Λ, ω), and
1

C
|Λ|p ≤ V k(y,Λ, ω) ≤ Ck(|Λ|p + 1), (2.18)

for some C > 0 and some sequence Ck ↑ ∞ (see [331, Lemma 3.4] for such a construction). Let Ω0 ∈ F
be an event of full probability on which all these assumptions (about V , V k) are simultaneously
pointwise satisfied.

We shall prove the existence of a subset Ω′ ⊂ Ω0, Ω′ ∈ F , of full probability such that for all
ω ∈ Ω′ and all bounded Lipschitz domains O ⊂ Rd the functionals Jε(·, ω;O) Γ-converge to the
functional J(·;O) on W 1,p(O;Rm), where we recall the definitions

Jε(u, ω;O) :=

ˆ
O
V (y/ε,∇u(y), ω)dy, J(u;O) :=

ˆ
O
V (∇u(y))dy.

As usual, the proof of Γ-convergence splits into two parts: the proof of a lower bound (Γ-lim inf
inequality) and the explicit construction of a recovery sequence which achieves the lower bound (Γ-
lim sup inequality).

2.2.1 Preliminaries

We first need to briefly recall the standard stationary differential calculus in probability (first
introduced by Papanicolaou and Varadhan [354, Section 2]), as well as some results on ergodic Weyl
decompositions.

Stationary differential calculus in probability

Let 1 ≤ p < ∞. For all 1 ≤ i ≤ d, consider the partial action (T ih)h∈R of (R,+) on Lp(Ω),
defined by (T ihf)(ω) = f(τ−heiω) for h ∈ R. The actions (T ih)h∈R (for 1 ≤ i ≤ d) commute with each
other and are unitary and strongly continuous by Lemma 2.A.5. For all i, we may then consider the
infinitesimal generator Di of (T ih)h∈R, defined by

Dif = lim
h→0

T ihf − f
h

, f ∈ Lp(Ω),

whenever the limit exists in the strong sense of Lp(Ω). By classical semigroup theory, the generatorsDi

are closed linear operators with dense domains Di ⊂ Lp(Ω), and the intersection W 1,p(Ω) :=
⋂d
i=1Di

is also dense in Lp(Ω). Moreover, W 1,p(Ω) is endowed with a natural Banach space structure.
For f ∈ W 1,p(Ω), its stationary gradient is then defined by Df := (D1f, . . . ,Ddf) ∈ Lp(Ω;Rd).

By unitarity of the action T , the operator D is skew-symmetric, so that the following “integration by
parts formula” holds, for all f ∈W 1,p(Ω) and g ∈W 1,p′(Ω), p′ = p/(p− 1),

E[Df ] = 0, and E[fDg] = −E[gDf ].
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Through the usual correspondence between random variables and τ -stationary random fields as re-
called in Appendix 2.A.2 (for all g ∈ Lp(Ω), writing g(x, ω) := g(τ−xω), we have g ∈ Lploc(R

d; Lp(Ω))),
we may define Df(x, ω) := Df(τ−xω) for all x. As explained in Lemma 2.A.7, for almost all ω, the
function Df(·, ω) coincides with the distributional derivative of f(·, ω) ∈ Lploc(R

d), and the following
identity holds,

W 1,p(Ω) = {f ∈W 1,p
loc (Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω),∀x, y, ω}. (2.19)

This justifies that in the sequel we simply use the notation Df = ∇f .

Ergodic Weyl decomposition

Ergodicity of the measurable action τ of (Rd,+) on the probability space (Ω,F ,P) is crucial in the
sequel. Let 1 < p < ∞. In analogy with the classical Weyl subspaces of Lploc(R

d;Rd), we define the
subspaces of potential and solenoidal random fields with respect to the differential calculus associated
with the group action in the following way: for p′ = p/(p− 1),

Lppot(Ω) = {f ∈ Lp(Ω;Rd) : E[f · (∇× g)] = 0, ∀g ∈W 1,p′(Ω;Rd)}, (2.20)

Lpsol(Ω) = {f ∈ Lp(Ω;Rd) : E[f · ∇g] = 0, ∀g ∈W 1,p′(Ω)}.

Reinterpreting these definitions in physical space, we easily obtain the following reformulations in
terms of stationary extensions:

Lppot(Ω) = {f ∈ Lp(Ω;Rd) : for almost all ω, x 7→ f(τxω) ∈ Lploc(R
d;Rd) is potential}, (2.21)

Lpsol(Ω) = {f ∈ Lp(Ω;Rd) : for almost all ω, x 7→ f(τxω) ∈ Lploc(R
d;Rd) is solenoidal},

where a function h ∈ Lploc(R
d) is said to be potential (resp. solenoidal) if ∇× h = 0 (resp. ∇ · f = 0)

in the distributional sense. As constant functions belong to both subspaces, we further define

F ppot(Ω) = {f ∈ Lppot(Ω) : E[f ] = 0}, and F psol(Ω) = {f ∈ Lpsol(Ω) : E[f ] = 0}. (2.22)

The spaces Lppot(Ω), Lpsol(Ω), F ppot(Ω), and F psol(Ω) are all closed in Lp(Ω;Rd), and the following
orthogonality relations hold [265, Lemma 15.1],

(F ppot(Ω))⊥ = Lp
′

sol(Ω) = F p
′

sol(Ω)⊕ Rd, (2.23)

(F psol(Ω))⊥ = Lp
′

pot(Ω) = F p
′

pot(Ω)⊕ Rd,

as well as the following density results (for the strong Lp(Ω) topology),

F ppot(Ω) = adhLp(Ω;Rd){∇g : g ∈W 1,p(Ω)}, (2.24)

F psol(Ω) = adhLp(Ω;Rd){∇ × g : g ∈W 1,p(Ω)}.

2.2.2 Γ-convergence of truncated energies

Since the approximations V k of V all satisfy standard polynomial growth conditions, we can
appeal to the classical stochastic homogenization result of [134] (which could by the way be reproved
as a direct adaptation of the (periodic) arguments of [331, Theorem 1.3]). More precisely, there exists
a subset Ω1 ⊂ Ω0, Ω1 ∈ F , of full probability such that, for all ω ∈ Ω1, all k, and all Λ ∈ Rm×d,
the following limit exists (as a consequence of the Ackoglu-Krengel subadditive ergodic theorem) and
defines the homogenized integrand V k,

V
k
(Λ) = lim

R↑∞
inf

φ∈W 1,p
0 (QR;Rm)

 
QR

V k(y,Λ +∇φ(y), ω)dy, (2.25)
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where QR := [−R
2 ,

R
2 )d. By dominated convergence, this convergence also holds when taking the

expectation of the infimum. In addition, for any bounded Lipschitz domain O ⊂ Rd, and for all
ω ∈ Ω1 and all k, the functionals Jkε (·, ω;O) Γ-converge, as ε ↓ 0, to the functional Jk(·;O), defined
by

Jkε (u, ω;O) :=

ˆ
O
V k(y/ε,∇u(y), ω)dy, and Jk(u;O) :=

ˆ
O
V
k
(∇u(y))dy.

Since k 7→ V k is increasing, k 7→ V
k is increasing as well, and for all Λ ∈ Rm×d we may define

V (Λ) := limk↑∞ V
k
(Λ). In particular,

V (Λ) = sup
k
V
k
(Λ) = sup

k
lim
R↑∞

inf
φ∈W 1,p

0 (QR;Rm)

 
QR

V k(y,Λ +∇φ(y), ω)dy. (2.26)

It remains to pass to the limit k ↑ ∞ in the Γ-convergence result. The key is to prove the commutation
of homogenization and truncation, which we do in Subsection 2.2.4 below.

Alternative formulas for V k are obtained in Lemma 2.2.7. Since V k is convex and everywhere
finite, it is continuous on Rm×d, and the following is a direct consequence of the definition V (Λ) :=

supk V
k
(Λ),

Lemma 2.2.1. The map V : Rm×d → [0,∞] is convex and lower semicontinuous. ♦

2.2.3 Γ-lim inf inequality

In view of the definition of V , the Γ-lim inf inequality is an elementary consequence of the mono-
tone convergence theorem.

Proposition 2.2.2 (Γ-lim inf inequality). For all ω ∈ Ω1, all bounded domains O ⊂ Rd, and all
sequences (uε)ε ⊂W 1,p(O;Rm) with uε −⇀ u in W 1,p(O;Rm), we have

lim inf
ε↓0

Jε(uε, ω;O) ≥ J(u;O). ♦

Proof. Let O, (uε)ε, and u be as in the statement. Then, for all ω ∈ Ω1 and all k ∈ N, using the
Γ-lim inf result for Jkε (·, ω;O) towards Jk(·;O) (see Section 2.2.2 above), and recalling that V ≥ V k,

lim inf
ε↓0

Jε(uε, ω;O) ≥ lim inf
ε↓0

Jkε (uε, ω;O) ≥ Jk(u;O),

so that, by monotone convergence,

lim inf
ε↓0

Jε(uε, ω;O) ≥ lim
k↑∞

Jk(u;O) = J(u;O).

From this Γ-lim inf result, we deduce the locality of recovery sequences, if they exist.

Corollary 2.2.3 (Locality of recovery sequences). If for some ω ∈ Ω1, some bounded domain O ⊂ Rd,
and some function u ∈ W 1,p(O;Rm), there exists a sequence (uε)ε ⊂ W 1,p(O;Rm) with uε −⇀ u
in W 1,p(O;Rm) and Jε(uε, ω;O) → J(u;O), then we also have Jε(uε, ω;O′) → J(u;O′) for any
subdomain O′ ⊂ O. Hence, by an extension result, the Γ-lim sup inequality on a bounded Lipschitz
domain O implies the Γ-lim sup inequality on any subdomain O′ ⊂ O. ♦

Proof. Choose a subdomain O′ ⊂ O, and define O′′ := int(O \O′). We then have by assumption

J(u;O) = lim
ε↓0

Jε(uε, ω;O) = lim
ε↓0

(
Jε(uε, ω;O′) + Jε(uε, ω;O′′)

)
≥ lim inf

ε↓0
Jε(uε, ω;O′) + lim inf

ε↓0
Jε(uε, ω;O′′).

Now by Proposition 2.2.2 we have lim infε↓0 Jε(uε, ω;O′) ≥ J(u;O′) and lim infε↓0 Jε(uε, ω;O′′) ≥
J(u;O′′). The conclusion then follows from the identity J(u;O′) + J(u;O′′) = J(u;O).
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2.2.4 Commutation of truncation and homogenization

The crucial ingredient to prove the commutation of truncation and homogenization is the refor-
mulation of the asymptotic homogenization formula in the probability space. For that purpose, we
first introduce the following proxy for V ,

P (Λ) := inf
f∈F ppot(Ω)m

E[V (0,Λ + f, ·)]. (2.27)

Likewise, for all k ∈ N, we set

P
k
(Λ) := inf

f∈F ppot(Ω)m
E[V k(0,Λ + f, ·)]. (2.28)

In this case, due to the growth condition (2.18), we may check (see Lemma 2.2.7 below) that

lim
ε↓0

E

[
inf

φ∈W 1,p
0 (O/ε;Rm)

 
O/ε

V k(y,Λ +∇φ(y), ·)dy

]
= P

k
(Λ).

However, for V itself, this equality has no chance to be true if Λ ∈ domP \ domM since the left-hand
side could be infinite (because of the Dirichlet boundary condition) while the right-hand side is not
(cf. Example 2.1.3). We thus rather use a “relaxed version” of the Dirichlet boundary conditions and
set for all ε > 0,

P ε(Λ, ω;O) := inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V (y,Λ +∇φ(y), ω)dy. (2.29)

As opposed to the case of Dirichlet boundary conditions, there is no natural subadditive property in
this definition (two test-functions on disjoint domains cannot be glued together). This difficulty will
be overcome by using a more sophisticated gluing argument that relies quantitatively on the following
sublinearity property of the correctors.

Lemma 2.2.4 (Sublinearity of correctors). For all Λ ∈ Rm×d, there exists a corrector field ϕΛ ∈
Mes(Ω;W 1,p

loc (Rd)m) such that ∇ϕΛ(0, ·) ∈ F ppot(Ω)m, and

P (Λ) = E [V (0,Λ +∇ϕΛ(0, ·), ·)] .

In addition, ϕΛ is sublinear at infinity in the sense that for almost all ω ∈ Ω,

εϕΛ(·/ε, ω) −⇀ 0, (2.30)

weakly in W 1,p
loc (O;Rm). ♦

Remark 2.2.5. Although the space {∇g : g ∈ W 1,p(Ω)} is dense in F ppot(Ω) (cf. (2.24)), the infi-
mum (2.27) defining P (Λ) cannot be replaced in general by an infimum over this smaller dense sub-
space because of a possible lack of strong continuity of the functional; see however Proposition 2.4.1
and Lemma 2.4.2. ♦

Proof. Let Λ ∈ Rm×d be fixed. By convexity and by the lower bound (2.17) on V , the map χ 7→
E[V (0,Λ +χ, ·)] is lower semicontinuous and coercive on F ppot(Ω)m, and therefore attains its infimum.
Let g ∈ F ppot(Ω)m be a minimizer. The τ -stationary extension (x, ω) 7→ g(τ−xω) of g is a potential
field on Rd for almost every ω. Hence, there exists a map ϕΛ ∈ Mes(Ω;W 1,p

loc (Rd;Rm)) such that
g(τ−xω) = ∇ϕΛ(x, ω) for almost all x, ω (see indeed Proposition 2.A.8 for measurability issues). The
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claim now follows from the combination of the following two applications of the Birkhoff-Khinchin
ergodic theorem: for almost all ω,

∇ϕΛ(·/ε, ω) −⇀ 0, (weakly) in Lp(O;Rm), (2.31)

ε

ˆ
O
ϕΛ(y/ε, ω)dy → 0. (2.32)

Indeed, by Poincaré’s inequality and (2.31), the sequence y 7→ εϕΛ(y/ε, ω) − ε
´
O ϕΛ(z/ε, ω)dz con-

verges weakly to zero in W 1,p(O;Rm) for almost every ω. Combined with (2.32), this implies (2.30).
To conclude, we turn to the proofs of (2.31) and (2.32). The weak convergence (2.31) is a direct

consequence of the Birkhoff-Khinchin ergodic theorem in the form ∇ϕΛ(·/ε, ω) −⇀ E[∇ϕΛ(0, ·)] = 0
in Lp(O;Rm). It remains to prove (2.32). Without loss of generality we may assume ϕΛ(0, ·) = 0
almost surely, so that∣∣∣∣ε 

O
ϕΛ(y/ε, ω)dy

∣∣∣∣ =

∣∣∣∣∣ε
 
O/ε

ϕΛ(·, ω)

∣∣∣∣∣ =

∣∣∣∣∣ε
 
O/ε

ˆ 1

0
x · ∇ϕΛ(tx, ω)dtdx

∣∣∣∣∣
≤
 1/ε

0

∣∣∣∣ 
O
x · ∇ϕΛ(tx, ω)dx

∣∣∣∣ dt. (2.33)

For almost all ω, the function ψω(t) :=
ffl
O x · ∇ϕΛ(tx, ω)dx is continuous on (0,∞). By (2.31),

ψω(t)→ 0 as t ↑ ∞ for almost all ω. By joint measurability and (local) integrability of ∇ϕΛ, and by
stationarity, 0 is a Lebesgue point of ∇ϕΛ(·, ω) for almost all ω, and hence lim supt↓0 |ψω(t)| <∞ for
almost all ω. The result (2.32) then follows from (2.33).

For all Λ ∈ domP , let ϕΛ be defined as in Lemma 2.2.4 above, and let ΩΛ ⊂ Ω1, ΩΛ ∈ F , be a
subset of full probability such that (2.30) holds on ΩΛ for all bounded Lipschitz domains. Restricting
ΩΛ further, the Birkhoff-Khinchin ergodic ensures that for all ω ∈ ΩΛ we have for all bounded subsets
O ⊂ Rd and all t ∈ Q,

 
O/ε
∇ϕtΛ(·, ω)

ε↓0−−→ 0 (2.34)

and  
O/ε

V (y, tΛ +∇ϕtΛ(y, ω), ω)dy
ε↓0−−→ E[V (0, tΛ +∇ϕtΛ(0, ·))] = P (tΛ). (2.35)

We now turn to the proof that limε P
ε(Λ, ω;O) = P (Λ) for all Λ for almost all ω ∈ Ω. The

following inequality is the most subtle part.

Lemma 2.2.6. For all Λ ∈ int domP and all bounded domains O ⊂ Rd, there exists a sequence
ψΛ,O,ε ∈ Mes(Ω;W 1,p(O/ε;Rm)) such that for all ω ∈ ΩΛ we have

ffl
O/ε∇ψΛ,O,ε(·, ω) = 0 and

εψΛ,O,ε(·/ε, ω) −⇀ 0

weakly in W 1,p(O;Rm) as ε ↓ 0, and

P (Λ) ≥ lim sup
ε↓0

 
O/ε

V (y,Λ +∇ψΛ,O,ε(y, ω), ω)dy ≥ lim sup
ε↓0

P ε(Λ, ω;O). (2.36)

♦
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Proof. Let Λ ∈ int domP be fixed, and let ω ∈ ΩΛ. For all t ∈ [0, 1) ∩Q and ε > 0, set

ΛωO,ε,t := −t
 
O/ε
∇ϕΛ/t(·, ω), and ψΛ,O,ε,t(x, ω) := tϕΛ/t(x, ω) + ΛωO,ε,t · x.

By definition, we have
ffl
O/ε∇ψΛ,O,ε,t = 0, and by Lemma 2.2.4 we also have εψΛ,O,ε,t(·/ε, ω) −⇀ 0 in

W 1,p(O;Rm) as ε ↓ 0. Hence,

P ε(Λ, ω;O) ≤
 
O/ε

V (y,Λ +∇ψΛ,O,ε,t(y, ω), ω) =: P̂ εt (Λ, ω;O).

By convexity

P̂ εt (Λ, ω;O) =

 
O/ε

V (y,Λ + t∇ϕΛ/t(y, ω) + ΛωO,ε,t, ω)dy

≤ t
 
O/ε

V (y,Λ/t+∇ϕΛ/t(y, ω), ω)dy + (1− t)
 
O/ε

V

(
y,

1

1− t
ΛωO,ε,t, ω

)
dy.

Since 0 ∈ int domM , there exists δ > 0 such that adhBδ ⊂ int domM . As t is rational and ω ∈ ΩΛ,
we have ΛωO,ε,t → 0 as ε ↓ 0 by the Birkhoff-Khinchin ergodic theorem in the form of (2.34). Hence
there exists εωΛ,O,t > 0 such that for all 0 < ε < εωΛ,O,t we have∣∣∣∣ 1

1− t
ΛωO,ε,t

∣∣∣∣ < δ,

and therefore,  
O/ε

V

(
y,

1

1− t
ΛωO,ε,t, ω

)
dy ≤ sup

|Λ′|<δ
M(Λ′) <∞.

This implies that

lim sup
t↑1,t∈Q

lim sup
ε↓0

P̂ εt (Λ, ω;O) ≤ lim sup
t↑1,t∈Q

lim sup
ε↓0

 
O/ε

V (y,Λ/t+∇ϕΛ/t(y, ω), ω)dy.

By the Birkhoff-Khinchin ergodic theorem in the form (2.35) and by the continuity of P in the interior
of its domain (as a consequence of convexity), this yields

lim sup
t↑1,t∈Q

lim sup
ε↓0

P̂ εt (Λ, ω;O) ≤ lim sup
t↑1,t∈Q

E[V (0,Λ/t+∇ϕΛ/t(0, ·), ·)] = lim sup
t↑1,t∈Q

P (Λ/t) = P (Λ).

We have thus proved,

lim sup
t↑1,t∈Q

lim sup
ε↓0

((
P̂ εt (Λ, ω;O)− P (Λ)

)+
+ ‖εψΛ,O,ε,t(·/ε, ω)‖Lp(O;Rm)

)
= 0.

By Attouch’s diagonalization lemma [37, Corollary 1.16], this implies the existence of a sequence
(ψΛ,O,ε)ε with ψΛ,O,ε ∈W 1,p(O/ε;Rm) such that

´
O/ε∇ψΛ,O,ε = 0, lim supε P̂

ε
t (Λ, ω;O) ≤ P (Λ), and

εψΛ,O,ε(·/ε, ω) → 0 in Lp(O;Rm), for all ω ∈ ΩΛ. By the choice of Λ, P (Λ) < ∞, so that the lower
bound (2.17) on V implies that the sequence (∇ψΛ,O,ε(·/ε, ω))ε is bounded in Lp(O;Rm). We thus
conclude that εψΛ,O,ε(·/ε, ω) −⇀ 0 weakly in W 1,p(O;Rm), as claimed.

In the case of standard growth conditions (thus e.g. for the V k’s), the corresponding inequality
(2.36) in Lemma 2.2.6 is indeed an equality. The following lemma gives equivalent definitions for the
V
k’s, which will be crucial in the sequel.
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Lemma 2.2.7. Let O be a bounded Lipschitz domain of Rd. For all ω ∈ Ω1, all k, and all Λ ∈ Rm×d,
the following quantities are well-defined,

V
k
1(Λ) := lim

ε↓0
inf

φ∈W 1,p
0 (O/ε;Rm)

 
O/ε

V k(y,Λ +∇φ(y), ω)dy, (2.37)

V
k
2(Λ, ω) := lim

ε↓0
inf

φ∈W1,p(O/ε;Rm)ffl
O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy, (2.38)

V
k
3(Λ) := inf

f̃∈F ppot(Ω)m
E[V k(0,Λ + f̃ , ·)], (2.39)

and we have
V
k
(Λ) = V

k
1(Λ) = V

k
2(Λ) = V

k
3(Λ). ♦

This result is standard (see for instance [265, Chapter 15]), but we display its proof for complete-
ness. Note that the formulas (2.38) and (2.39) for V will be shown to be equivalent to V , whereas
formula (2.37) is in general larger than V .

Proof. Let O ⊂ Rd be a bounded Lipschitz domain, and k ∈ N. By the definition of Γ-convergence
for Jk on W 1,p

0 (O;Rm) and the convergence of infima with Dirichlet boundary conditions, for all Λ
and ω ∈ Ω1 we have

V
k
(Λ) =

1

|O|
inf

φ∈W 1,p
0 (O;Rm)

ˆ
O
V
k
(Λ +∇φ)

=
1

|O|
lim
ε↓0

inf
φ∈W 1,p

0 (O;Rm)

 
O
V k(y/ε,Λ +∇φ(y), ·)dy = V

k
1(Λ). (2.40)

Likewise, the Γ-convergence result holds on {u ∈W 1,p(O) :
´
O∇u = 0} so that the identity

V
k
(Λ) = V

k
2(Λ)

also follows from the convergence of infima. Since Lemma 2.2.6 (applied to V k instead of V ) yields
V
k
2(Λ) ≤ V k

3(Λ), it remains to prove that V k
3(Λ) ≤ V k

1(Λ) for all Λ.
Let O′ ⊂ Rd be a bounded domain. By the coercivity and the lower semicontinuity of the integral

functional Jk (which follow from the growth condition (2.18) and the convexity of V k), there exists
a minimizer ζ ∈ L∞(Ω;W 1,p

0 (O′;Rm)) (see Proposition 2.A.13 for measurability issues) such that for
almost all ω,

 
O′
V k(y,Λ +∇ζ(y, ω), ω)dy = inf

φ∈W 1,p
0 (O′;Rm)

 
O′
V k(y,Λ +∇φ(y), ω)dy.

Set
ξ(x, ω) :=

1

|O′|

ˆ
Rd
ζ(x+ z, τzω)dz =

 
−x+O′

ζ(x+ z, τzω)dz.

Clearly, ξ is well-defined and stationary, belongs to W 1,p(Ω;Rm), and

∇ξ(x, ω) =

 
−x+O′

∇ζ(x+ z, τzω)dz.

Hence
V
k
3(Λ) ≤ E

[
V k(0,Λ +∇ξ(0, ·), ·)

]
= E

[
V k

(
0,Λ +

 
O′
∇ζ(z, τz·)dz, ·

)]
,
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and by convexity of V k,

V
k
3(Λ) ≤ E

[ 
O′
V k(0,Λ +∇ζ(z, τz·), ·)dz

]
.

By stationarity and the Fubini theorem, we may conclude

V
k
3(Λ) ≤

 
O′

E[V k(z,Λ +∇ζ(z, ·), ·)]dz = E

[
inf

φ∈W 1,p
0 (O′;Rm)

 
O′
V k(y,Λ +∇φ(y), ·)dy

]
.

With O′ := O/ε, the claim V
k
3(Λ) ≤ V

k
1(Λ) follows by the dominated convergence theorem and the

growth condition from above (2.18).

The following result proves the equivalence between formulas (i), (ii) and (iii) in Theorem 2.1.2.

Proposition 2.2.8 (Commutation of limits). For all bounded Lipschitz domains O ⊂ Rd, and all
Λ ∈ Rm×d, we have for almost all ω

V (Λ) = P (Λ) = lim
t↑1

lim
ε↓0

P ε(tΛ, ω;O).

By convexity, for all Λ /∈ ∂domV , this takes the form V (Λ) = P (Λ) = limε↓0 P
ε(Λ, ω;O). ♦

Remark 2.2.9. Although not stated explicitly, this result proves the commutation of truncation and
homogenization. By monotone convergence (cf. the proof of V = P below) we have for all ε > 0 and
almost all ω,

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V (y,Λ +∇φ(y), ω)dy = sup
k

inf
φ∈W1,p

0 (O/ε;Rm)ffl
O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy

so that Proposition 2.2.8, combined with (2.38) in Lemma 2.2.7, yields the desired commutation result

lim
ε↓0

sup
k

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy

= V (Λ) = sup
k
V
k
(Λ) = sup

k
lim
ε↓0

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω) dy. ♦

Proof of Proposition 2.2.8. We split the proof into two steps.

Step 1. Proof of V ≡ P .
Let Λ ∈ domV . By (2.39) in Lemma 2.2.7, for all k,

V
k
(Λ) = inf

f∈F ppot(Ω)m
E[V k(0,Λ + f)].

By convexity, the map f 7→ E[V k(0,Λ + f)] is lower semicontinuous on F ppot(Ω)m, hence by coercivity
the infimum is attained. Therefore, there exists gk ∈ F ppot(Ω)m such that

V
k
(Λ) = E[V k(0,Λ + gk)].

By the uniform growth condition from below (2.18), (gk)k is bounded in Lp(Ω;Rm×d),

1

C
2−p+1E[|gk|p]−

1

C
|Λ|p ≤ 1

C
E[|Λ + gk|p] ≤ E[V k(0,Λ + gk)] = V

k
(Λ) ≤ V (Λ).

54



Let g ∈ F ppot(Ω)m be a cluster point of the sequence (gk)k for the weak convergence of Lp(Ω;Rm×d).
We have along the subsequence

V (Λ) = sup
k
V
k
(Λ) = lim

k↑∞
E[V k(0,Λ + gk)].

Since k 7→ V k is increasing and since the map f 7→ E[V k(0,Λ + f)] is lower semicontinuous for the
weak convergence of Lp(Ω;Rm×d), this yields for all `,

V (Λ) ≥ lim inf
k↑∞

E[V `(0,Λ + gk)] ≥ E[V `(0,Λ + g)].

We then conclude by monotone convergence that

V (Λ) ≥ E[V (0,Λ + g)] ≥ inf
f∈F ppot(Ω)m

E[V (0,Λ + f)] = P (Λ).

For Λ /∈ domV , the above inequality is trivial so that V (Λ) ≥ P (Λ) holds for all Λ ∈ Rm×d. For the
converse inequality, note that for all Λ,

P (Λ) ≥ sup
k

inf
f∈F ppot(Ω)m

E[V k(0,Λ + f)] = sup
k
V
k
(Λ) = V (Λ).

Hence, V ≡ P , as claimed.

Step 2. Proof of limt↑1 limε↓0 P
ε(tΛ, ω;O) = V (Λ).

Since for Λ ∈ domV and t ∈ [0, 1), tΛ ∈ int domV , Lemma 2.2.6 and Step 1 yield for almost all ω,

V (tΛ) = P (tΛ) ≥ lim sup
ε↓0

P ε(tΛ, ω;O). (2.41)

By (2.38) in Lemma 2.2.7, for all Λ ∈ Rm×d and almost all ω,

lim inf
ε↓0

P ε(Λ, ω;O) ≥ sup
k

lim
ε↓0

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy = sup
k
V
k
(Λ) = V (Λ). (2.42)

Combined with (2.41), this yields limε P
ε(tΛ, ω;O) = V (tΛ) for almost all ω, for all Λ ∈ domV and

t ∈ [0, 1). By convexity and lower semicontinuity of V , this implies for all Λ ∈ domV ,

lim
t↑1

lim
ε↓0

P ε(tΛ, ω;O) = lim
t↑1

V (tΛ) = V (Λ), (2.43)

and (2.42) ensures that this equality also holds for Λ /∈ domV . By convexity and by (2.43), the
function Λ 7→ limε P

ε(Λ, ω;O) is continuous outside ∂domV , so that the limit t ↑ 1 can be omitted
for Λ /∈ ∂domV .

2.2.5 Γ-convergence with Neumann boundary data

In this section, we conclude the proof of Theorem 2.1.2. It only remains to prove the following
Γ-lim sup inequality.

Proposition 2.2.10 (Γ-lim sup inequality with Neumann boundary data). Assume p > d. There
exists a subset Ω′ ⊂ Ω1, Ω′ ∈ F , of full probability with the following property: for all ω ∈ Ω′,
all bounded Lipschitz domain O ⊂ Rd, and all u ∈ W 1,p(O;Rm), there exists a sequence (uε)ε ⊂
W 1,p(O;Rm) such that uε −⇀ u in W 1,p(O;Rm) and Jε(uε, ω;O)→ J(u;O). ♦
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Proof. We split the proof into three steps. We first treat the case of affine functions, then the case
of continuous piecewise affine functions, and finally the general case. The novelty of our approach is
the careful gluing argument needed to pass from affine to piecewise affine functions.

Step 1. Recovery sequence for affine functions.
In this step, we consider the case when u = Λ · x is an affine function. More precisely, we

prove the existence of a subset Ω′ ⊂ Ω1, Ω′ ∈ F , of full probability with the following property:
given a bounded Lipschitz domain O ⊂ Rd, for all ω ∈ Ω′ and all Λ ∈ int domV , there exists a
sequence (uωΛ,ε)ε ⊂W 1,p(O;Rm) with uωΛ,ε −⇀ Λ · x weakly in W 1,p(O;Rm) such that, for all Lipschitz
subdomains O′ ⊂ O, we have Jε(uωΛ,ε, ω;O′) → J(Λ · x;O′). By Corollary 2.2.3, it suffices to prove
this for O′ = O.

By Lemma 2.2.4 and Proposition 2.2.8, there exists a sequence ϕΛ ∈ Mes(Ω;W 1,p
loc (Rd;Rm)) such

that, for all ω ∈ ΩΛ, we have εϕΛ(·/ε, ω) −⇀ 0 weakly in W 1,p(O;Rm) and, by the Birkhoff-Khinchin
ergodic theorem in the form (2.35),

V (Λ) = P (Λ) = lim
ε↓0

 
O/ε

V (y,Λ +∇ϕΛ(y, ω), ω)dy.

In particular, by a change of variables, this yields

J(Λ · x;O) = |O|V (Λ) = lim
ε↓0

Jε(Λ · x+ εϕΛ(·/ε, ω), ω;O).

The function uΛ,ω
ε (x) := Λ · x + εϕΛ(x/ε, ω) thus satisfies uΛ,ω

ε −⇀ Λ · x in W 1,p(O;Rm) and
Jε(u

Λ,ω
ε , ω;O)→ J(Λ · x;O) as ε ↓ 0, for all ω ∈ ΩΛ.
We then define Ω′ ⊂ Ω1, Ω′ ∈ F , as the (countable) intersection of all ΩΛ’s with Λ ∈ Qm×d ∩

int domV , which is still of full probability. Let Λ ∈ int domV and ω ∈ Ω′ be fixed. Choose a sequence
(Λn)n ⊂ Qm×d ∩ int domV such that Λn → Λ. For all n, we have already constructed a sequence
(uωε,n)ε ⊂ W 1,p(O;Rm) such that uωε,n ⇀ Λn · x in W 1,p(O;Rm) and Jε(u

ω
ε,n, ω;O) → J(Λn · x;O).

Since by convexity V is continuous on int domV , we have

lim sup
n↑∞

lim sup
ε↓0

(
|Jε(uωε,n, ω;O)− J(Λ · x;O)|+ ‖uωε,n − Λ · x‖Lp(O;Rm)

)
= lim sup

n↑∞

(
|J(Λn · x;O)− J(Λ · x;O)|+ ‖Λn · x− Λ · x‖Lp(O;Rm)

)
≤ lim sup

n↑∞

(
|O||V (Λn)− V (Λ)|+ CO|Λn − Λ|

)
= 0.

By Attouch’s diagonalization lemma [37, Corollary 1.16], this implies the existence of a sequence
(vωε )ε such that Jε(vωε , ω;O) → J(Λ · x;O) and vωε → Λ · x in Lp(O;Rm) for all ω ∈ Ω′. By the p-th
order lower bound for V , we conclude that vωε converges weakly to Λ · x in W 1,p(O;Rm).

Step 2. Recovery sequence for continuous piecewise affine functions.
Let ω ∈ Ω′, O ⊂ Rd be a bounded Lipschitz domain, and u be a continuous piecewise affine

function on O such that ∇u ∈ int domV pointwise. We shall prove that there exists a sequence
(uωε )ε ⊂ W 1,p(O;Rm) with uωε −⇀ u weakly in W 1,p(O;Rm), such that Jε(uωε , ω;O) → J(u;O). For
that purpose, the major issue consists in gluing the recovery sequences for the different affine parts
together, which requires a particularly careful treatment.

Consider the open partition O =
⊎k
l=1Ol associated with u (note that the Ol’s have piecewise

flat boundary outside ∂O), and define cl + Λl · x := u|Ol , with Λl ∈ int domV , for all 1 ≤ l ≤ k.
Let M := (

⋃k
l=1 ∂Ol) \ ∂O be the interior boundary of the partition of O, and for all r > 0 set

Mr := (M + Br) ∩ O = {x ∈ O : d(x,M) < r}, the r-neighborhood of this interior boundary. By
Proposition 2.A.15, for all 0 < κ ≤ 1 and r > 0, there exists a continuous piecewise affine function
uκ,r on O with the following properties:
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(i) ∇uκ,r = ∇u pointwise on O \Mr, and

lim sup
r↓0

sup
0<κ≤1

‖uκ,r − u‖L∞(O) = 0; (2.44)

(ii) ∇uκ,r ∈ conv({Λl : 1 ≤ l ≤ k}) b int domV pointwise (where conv(·) denotes the convex hull);
(iii) denoting by O :=

⊎nκ,r
l=1 O

l
κ,r the open partition associated with uκ,r, and setting clκ,r+Λlκ,r ·x :=

uκ,r|Olκ,r for all l, we have |Λiκ,r − Λjκ,r| ≤ κ for all i, j with ∂Oiκ,r ∩ ∂O
j
κ,r 6= ∅.

We shall approximate u with these refined continuous piecewise affine functions uκ,r having smoother
variations; in the sequel, we shall successively take the limits κ ↓ 0 and r ↓ 0.

Since ω ∈ Ω′ and O ⊂ Rd are fixed in the argument, we drop them from our notation. Fix
κ, r > 0. By Step 1, for all 1 ≤ i ≤ nκ,r there exists a sequence (uiε,κ,r)ε ⊂ W 1,p

loc (Rd;Rm) with
uiε,κ,r −⇀ ciκ,r + Λiκ,r · x in W 1,p

loc (Rd;Rm) and such that, for all Lipschitz subdomains O′ ⊂ O, we have
Jε(u

i
ε,κ,r, ω;O′)→ J(Λiκ,r · x;O′). For all η > 0 and all 1 ≤ i ≤ nκ,r, define the sets

Oi+κ,r,η := {x ∈ O : d(x,Oiκ,r) < η} = O ∩ (Oiκ,r +Bη),

Oi−κ,r,η := {x ∈ Oiκ,r : d(x, ∂Oiκ,r) > η}.

Let then
∑nκ,r

i=1 χ
i
κ,r,η = 1 be a partition of unity on O, where for all 1 ≤ i ≤ nκ,r the smooth cut-off

function χiκ,r,η has values in [0, 1], equals 1 on Oi−κ,r,η, vanishes outside Oi+κ,r,η, and satisfies the bound
|∇χiκ,r,η| ≤ C ′/η pointwise for some constant C ′ > 0. We now set

uε,κ,r,η := uκ,r +

nκ,r∑
i=1

(uiε,κ,r − (ciκ,r + Λiκ,r · x)) χiκ,r,η.

By the Sobolev compact embedding for p > d, we have uiε,κ,r → ciκ,r + Λiκ,r · x in L∞(O;Rm) as ε ↓ 0,
and hence lim supη lim supε ‖uε,κ,r,η − uκ,r‖L∞(O) = 0, so that (2.44) yields

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

‖tuε,κ,r,η − u‖L∞(O) = 0. (2.45)

Let us now evaluate the integral functional Jε(·, ω;O) at tuε,κ,r,η for t ∈ [0, 1). Since

t∇uε,κ,r,η =

nκ,r∑
i=1

tχiκ,r,η∇uiε,κ,r

+ (1− t) t

1− t

nκ,r∑
i=1

(
(uiε,κ,r − (ciκ,r + Λiκ,r · x))∇χiκ,r,η + (∇uκ,r − Λiκ,r)χ

i
κ,r,η

)
,

and (1− t) +
∑nκ,r

i=1 tχ
i
κ,r,η = 1, we have by convexity and non-negativity of V

Jε(tuε,κ,r,η, ω;O) ≤ (1− t)Eε,κ,r,η,t + t

nκ,r∑
i=1

ˆ
Oi+κ,r,η

χiκ,r,η(y)V (y/ε,∇uiε,κ,r(y), ω)dy

≤ (1− t)Eε,κ,r,η,t +

nκ,r∑
i=1

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η), (2.46)

where the error term takes the form

Eε,κ,r,η,t :=

ˆ
O
V

(
y/ε ,

t

1− t

nκ,r∑
i=1

(
(uiε,κ,r(y)− (ciκ,r + Λiκ,r · y))∇χiκ,r,η(y) + (∇uκ,r(y)− Λiκ,r)χ

i
κ,r,η(y)

)
, ω

)
dy.
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For all i, set N i
κ,r,η := {j : j 6= i, Oj+κ,r,η ∩ Oi+κ,r,η 6= ∅}. We then rewrite the argument of the energy

density in the error term as

Sε,κ,r,η(y) :=

∣∣∣∣∣
nκ,r∑
i=1

(
(uiε,κ,r(y)− (ciκ,r + Λiκ,r · y))∇χiκ,r,η(y) + (∇uκ,r(y)− Λiκ,r)χ

i
κ,r,η(y)

)∣∣∣∣∣
≤ C ′

η

nκ,r∑
i=1

‖uiε,κ,r − (ciκ,r + Λiκ,r · x)‖L∞(O) + sup
1≤i≤nκ,r

sup
j∈N i

κ,r,η

|Λjκ,r − Λiκ,r|.

Since by definition lim supη↓0 supj∈N i
κ,r,η
|Λjκ,r − Λiκ,r| ≤ κ for all i, we have

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

Sε,κ,r,η(y) = 0

for all r, η > 0. By assumption, there exists δ > 0 such that adhBδ ⊂ int domM . Hence, for all
r, t > 0 there exists κr,t > 0 such that for all 0 < κ < κr,t there exists ηκ,r > 0 such that for all
0 < η < ηκ,r there exists εκ,r,η,t > 0 with the following property: for all 0 < ε < εκ,r,η,t, we have∥∥∥∥ t

1− t
Sε,κ,r,η

∥∥∥∥
L∞(O)

< δ.

This yields the bound
Eε,κ,r,η,t ≤ |O| sup

|Λ′|<δ
M(Λ′) <∞,

and proves
lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

(1− t)Eε,κ,r,η,t = 0,

so that (2.46) turns into

lim sup
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

Jε(tuε,κ,r,η, ω;O)

≤ lim sup
r↓0

lim sup
κ↓0

nκ,r∑
i=1

lim sup
η↓0

lim sup
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η). (2.47)

For all i, we have by construction

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) = |Oi+κ,r,η|V (Λiκ,r),

so that, by definition of Oi+κ,r,η,

lim
η↓0

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) = |Oiκ,r|V (Λiκ,r).

Hence, summing over i, 1 ≤ i ≤ nκ,r, yields
nκ,r∑
i=1

lim
η↓0

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) =

nκ,r∑
i=1

|Oiκ,r|V (Λiκ,r).

On the one hand, ∇uκ,r = ∇u holds on O\Mr. On the other hand, for all i, κ, r, we have Λiκ,r ∈ K :=

conv({Λl : 1 ≤ l ≤ k}), which is a compact subset of int domV . Using in addition the non-negativity
of the energy density, one may then turn the above equality into
nκ,r∑
i=1

lim
η↓0

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) = J(uκ,r;O) = J(u;O \Mr) + J(uκ,r;Mr) ≤ J(u;O) + |Mr| sup

K
V .
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Combined with (2.47), this yields

lim sup
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

Jε(tuε,κ,r,η, ω;O) ≤ J(u;O). (2.48)

We are now in position to conclude. By coercivity of V , the sequence ∇(tuε,κ,r,η) is bounded in
Lp(O;Rm×d). Combined with (2.45) (convergence in L∞(O;Rm)), this shows that any weakly con-
verging subsequence of (tuε,κ,r,η)ε,η,κ,r,t inW 1,p(O;Rm) converges to u. Hence the Γ-lim inf inequality
of Proposition 2.2.2 yields

lim inf
t↑1

lim inf
r↓0

lim inf
κ↓0

lim inf
η↓0

lim inf
ε↓0

Jε(tuε,κ,r,η, ω;O) ≥ J(u;O).

These last two inequalities combine to

lim sup
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

(
|Jε(tuε,κ,r,η, ω;O)− J(u;O)|+ ‖tuε,κ,r,η − u‖Lp(O;Rm)

)
= 0,

and we conclude as before by Attouch’s diagonalization lemma [37, Corollary 1.16].

Step 3. Recovery sequence for general functions.
We claim that, for all ω ∈ Ω′, all bounded Lipschitz domains O ⊂ Rd, and all u ∈ W 1,p(O;Rm),

there is a sequence (uε)ε ⊂ W 1,p(O;Rm) with uε −⇀ u in W 1,p(O;Rm) and Jε(uε, ω;O) → J(u;O).
By the locality of recovery sequences (cf. Corollary 2.2.3), we may consider that O is a ball of Rd, to
which we may then apply the approximation result of Proposition 2.A.14. By the Γ-lim inf inequality
of Proposition 2.2.2, we can further assume that u ∈W 1,p(O;Rm) satisfies

J(u;O) =

ˆ
O
V (∇u(y))dy <∞,

so that ∇u ∈ domV almost everywhere. Let u be such a function and let ω ∈ Ω′ be fixed.
Since O is bounded, Lipschitz, and strongly star-shaped, and since V is convex with 0 ∈ int domV ,

Proposition 2.A.14(ii) shows that there exists a sequence (un)n of continuous piecewise affine functions
with ∇un ∈ int domV pointwise such that un → u (strongly) in W 1,p(O;Rm) and J(un;O) −→
J(u;O) as n ↑ ∞. By Step 2, for all n, there exists a sequence (uε,n)ε ⊂ W 1,p(O;Rm) such that
uε,n −⇀ un in W 1,p(U ;Rm) and Jε(uε,n, ω;O)→ J(un;O), as ε ↓ 0. In particular,

lim
n↑∞

lim
ε↓0

(
|Jε(uε,n, ω;O)− J(u;O)|+ ‖uε,n − u‖Lp(O;Rm)

)
= lim

n↑∞

(
|J(un;O)− J(u;O)|+ ‖un − u‖Lp(O;Rm)

)
= 0.

We then conclude as before by Attouch’s diagonalization argument [37, Corollary 1.16].

2.2.6 Lifting Dirichlet boundary data

In this section, we establish Corollary 2.1.4(i). We split the proof into two steps. We first
consider the case when J(αu;O) < ∞ for some α > 1, and then turn to the case when in addition´
OM(∇u) <∞ or

´
OM(α∇u) <∞ for some α > 1.

Step 1. Case when J(αu;O) <∞ for some α > 1.
As v ∈ u + W 1,p

0 (O;Rm) and J(αu;O) < ∞, Proposition 2.A.14(ii)(a) yields the existence of a
sequence (vk)k ⊂ u + C∞c (O;Rm) with vk → v in W 1,p(O;Rm) and J(vk;O) → J(v;O). For all
r > 0, set O1

r := {x ∈ O : d(x, ∂O) > 2r}, O2
r := {x ∈ O : d(x, ∂O) > r}, and choose smooth

cut-off functions χ1
r , χ

2
r with the following properties: the functions take values in [0, 1], χ1

r equals
1 on O1

r and 0 on Rd \ O2
r , χ2

r equals 1 on O2
r and 0 on Rd \ O, and |∇χ1

r |, |∇χ2
r | ≤ C ′/r for some
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constant C ′. For all ω ∈ Ω′, Proposition 2.2.10 provides sequences (uωε )ε and (vωε,r,k)ε in W
1,p(O;Rm)

such that uωε −⇀ u and vωε,r,k −⇀ χ1
rvk + (1 − χ1

r)u in W 1,p(O;Rm), and Jε(u
ω
ε , ω;O′) → J(u;O′)

and Jε(v
ω
ε,r,k, ω;O′) → J(χ1

rvk + (1 − χ1
r)u;O′), for any subdomain O′ ⊂ O. We then set wωε,r,k :=

χ2
rv
ω
ε,r,k + (1− χ2

r)u
ω
ε . Given t ∈ [0, 1), using the decomposition

t∇wωε,r,k = tχ2
r∇vωε,r,k + t(1− χ2

r)∇uωε + (1− t) t

1− t
∇χ2

r(v
ω
ε,r,k − uωε ),

we obtain by convexity,

Jε(tw
ω
ε,r,k, ω;O) ≤ (1− t)Eωε,r,k,t + Jε(v

ω
ε,r,k, ω;O) + Jε(u

ω
ε , ω;O \O2

r), (2.49)

where the error term reads

Eωε,r,k,t :=

ˆ
O
V

(
y/ε,

t

1− t
∇χ2

r(y)(vωε,r,k(y)− uωε (y)), ω

)
dy.

For all y ∈ O \O2
r , since χ1

r(y) = 0, we have

|vωε,r,k(y)− uωε (y)| ≤ ‖vωε,r,k − (χ1
rvk + (1− χ1

r)u)‖L∞(O) + ‖uωε − u‖L∞(O).

By assumption, there is some δ > 0 with adhBδ ⊂ int domM . Hence, for all fixed r, k, t, there exists
εr,k,t > 0 such that for all 0 < ε < εr,k,t we have∥∥∥∥ t

1− t
∇χ2

r(v
ω
ε,r,k − uωε )

∥∥∥∥
L∞(O)

< δ,

and therefore
lim sup
ε↓0

Eωε,r,k,t ≤ |O| sup
|Λ′|<δ

M(Λ′) <∞.

Inequality (2.49) then turns into

lim sup
t↑1

lim sup
k↑∞

lim sup
r↓0

lim sup
ε↓0

Jε(tw
ω
ε,r,k, ω;O)

≤ lim sup
k↑∞

lim sup
r↓0

J(χ1
rvk + (1− χ1

r)u;O) + lim sup
r↓0

J(u;O \O2
r).

The second term in the right-hand side vanishes since J(u;O) <∞, and it only remains to study the
first term. By definition, for fixed k, we have vk ∈ u+C∞c (O;Rm), so that for all r > 0 small enough
there holds χ1

rvk + (1− χ1
r)u = vk pointwise on O. This implies

lim sup
k↑∞

lim sup
r↓0

J(χ1
rvk + (1− χ1

r)u;O) = lim sup
k↑∞

J(vk;O) = J(v;O),

and thus

lim sup
t↑1

lim sup
k↑∞

lim sup
r↓0

lim sup
ε↓0

Jε(tw
ω
ε,r,k, ω;O) ≤ J(v;O).

Combined with the Γ-lim inf inequality of Proposition 2.2.2 and a diagonalization argument, this
proves the first part of the statement.

Step 2. Cases when
´
OM(∇u) <∞ or

´
OM(α∇u) <∞ for some α > 1.

If u is chosen in such a way that
´
OM(∇u(y))dy <∞, then we can repeat the argument of Step 1

with uωε := u, and bound the last term in the right-hand side of (2.49) by

lim sup
r↓0

lim sup
ε↓0

Jε(u, ω;O \O2
r) ≤ lim sup

r↓0

ˆ
O\O2

r

M(∇u(y))dy = 0.
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We conclude with the case when u satisfies
´
OM(α∇u(y))dy < ∞ for some α > 1. Let vk, χ1

r , χ
2
r

be chosen as in Step 1, and let ω ∈ Ω′ be fixed. For any t ∈ [0, 1), Proposition 2.2.10 shows
the existence of a sequence (vωε,r,k,t)ε in W 1,p(O;Rm) such that vωε,r,k,t −⇀ χ1

rvk + (1 − χ1
r)u/t in

W 1,p(O;Rm) and Jε(v
ω
ε,r,k,t, ω;O′) → J(χ1

rvk + (1 − χ1
r)u/t;O

′), for any subdomain O′ ⊂ O. Set
wωε,r,k,t := χ2

rv
ω
ε,r,k,t + (1− χ2

r)u/t. As before, we obtain by convexity

Jε(tw
ω
ε,r,k,t, ω) ≤ Jε(vωε,r,k,t, ω;O) + Jε(u/t, ω;O \O2

r)

+ (1− t)
ˆ
O
M

(
t

1− t
∇χ2

r(y)(vωε,r,k,t(y)− u(y)/t)

)
dy,

and the conclusion then follows, using the convexity once more in the following form, for t > 1/α,

lim sup
r↓0

lim sup
ε↓0

Jε(u/t, ω;O \O2
r) ≤ lim sup

r↓0

ˆ
O\O2

r

M(∇u(y)/t)dy

≤ 1

αt
lim sup
r↓0

ˆ
O\O2

r

M(α∇u(y))dy + lim sup
r↓0

|O \O2
r |M(0) = 0.

This completes the proof.

Remark 2.2.11. As can be seen in the proof, the assumption that J(αu;O) <∞ can be relaxed to
J(αu;O′) <∞ for some open neighborhood O′ ⊂ O of ∂O in O. ♦

2.2.7 Soft buffer zone for Dirichlet boundary data

In this section, we establish Corollary 2.1.4(ii). We split the proof into two steps. For all s > 0
and O ⊂ Rd, we use the notation Os := {x ∈ O : d(x, ∂O) > s}.
Step 1. Γ-lim inf inequality.

Let ω ∈ Ω′, let O ⊂ Rd be a bounded Lipschitz domain, let u ∈ W 1,p(O;Rm) with J(u;O) <∞,
and let (uε)ε ⊂W 1,p(O;Rm) be a sequence with uε −⇀ u in W 1,p(O;Rm). By the Γ-lim inf inequality
for Jε in Proposition 2.2.2,

lim inf
ε↓0

Jηε (uε, ω;O) ≥ lim inf
ε↓0

Jε(uε, ω;Oη) ≥ J(u;Oη) =

ˆ
Oη

V (∇u(y))dy,

that is, using that
´
O\Oη V (∇u(y))dy → 0 as η ↓ 0,

lim inf
η↓0

lim inf
ε↓0

Jηε (uε, ω;O) ≥ J(u;O).

Step 2. Γ-lim sup inequality.
Let ω ∈ Ω′, let O ⊂ Rd be a bounded Lipschitz domain, and let u ∈W 1,p(O;Rm) with J(u;O) <

∞. By Proposition 2.2.10, there exists a sequence (wε)ε ⊂ W 1,p(O;Rm) such that wε −⇀ 0 in
W 1,p(O;Rm) and Jε(u+ wε, ω;O)→ J(u;O). Given η > 0, choose a cut-off function χη with values
in [0, 1], such that χη equals 1 on Oη and 0 outside O, and that satisfies |∇χη| ≤ C ′/η for some
constant C ′ > 0. Set vε,η := χηwε ∈W 1,p

0 (O;Rm). For all t ∈ [0, 1), we have

t∇u+ t∇vε,η = tχη∇(u+ wε) + t(1− χη)∇u+ (1− t) t

1− t
wε∇χη,

so that by convexity and by definition of V O,η
ε ,

Jηε (tu+ tvε,η, ω;O) ≤ (1− t)Eε,η,t + Jηε (u+ wε, ω;O) +

ˆ
O

(1− χη(y))V O,η
ε (y,∇u(y), ω)dy

≤ (1− t)Eε,η,t + Jε(u+ wε, ω;O) +

ˆ
O\Oη

|∇u(y)|pdy, (2.50)
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where the error is defined by

Eε,η,t :=

ˆ
O
V O,η
ε

(
y,

t

1− t
wε(y)∇χη(y), ω

)
dy ≤ |Oη|M(0) +

ˆ
O\Oη

∣∣∣∣ t

1− t
wε(y)∇χη(y)

∣∣∣∣p dy.
(2.51)

By the Rellich-Kondrachov theorem, wε → 0 (strongly) in Lp(O), so that lim supεEε,η,t ≤ |O|M(0)
for all t, η. Passing to the limit in inequality (2.50) thus yields

lim sup
t↑1

lim sup
η↓0

lim sup
ε↓0

Jηε (tu+ tvε, ω;O, η) ≤ lim sup
ε↓0

Jε(u+ wε, ω;O) = J(u;O).

We then conclude by the same diagonalization argument as before and by Step 1. This proves the
first part of the statement.

Now consider the case when u satisfies J(αu;O) < ∞ for some α > 1. Then, for all t ∈ [0, 1),
Proposition 2.2.10 provides a sequence (wε,t)ε ⊂ W 1,p(O;Rm) such that wε,t −⇀ 0 in W 1,p(O;Rm)
and Jε(u/t + wε,t, ω;O) → J(u/t;O) as ε ↓ 0. Define vε,t,η := χηwε,t, where χη is the same cut-off
function as above. We then have

∇u+ t∇vε,t,η = tχη∇(u/t+ wε,t) + t(1− χη)∇u/t+ (1− t) t

1− t
wε,t∇χη,

so that by convexity and definition of V O,η
ε ,

Jηε (u+ tvε,η, ω;O) ≤ (1− t)E′ε,η,t + Jε(u/t+ wε,t, ω;O) + t1−p
ˆ
O\Oη

|∇u(y)|pdy, (2.52)

where the error is defined by

E′ε,η,t :=|Oη|M(0) +

ˆ
O\Oη

∣∣∣∣ t

1− t
wε,t(y)∇χη(y)

∣∣∣∣p dy.
By the Rellich-Kondrachov theorem, wε,t → 0 (strongly) in Lp(O) for all t, so that lim supεE

′
ε,η,t =

|Oη|M(0) for all t, η. Passing to the limit in inequality (2.52) then yields

lim sup
t↑1

lim sup
η↓0

lim sup
ε↓0

Jηε (u+ tvε,t,η, ω;O) ≤ lim sup
t↑1

lim sup
ε↓0

Jε(u/t+ wε,t, ω;O) = lim sup
t↑1

J(u/t;O).

Since u satisfies J(αu;O) <∞, we deduce by convexity that the map t 7→ J(u/t;O) is continuous on
(1/α, 1]. This implies lim supt↑1 J(u/t;O) = J(u;O), and the conclusion follows.

Remark 2.2.12. As can be seen in the proof, the assumption that J(αu;O) <∞ can be relaxed to
J(αu;O′) <∞ for some open neighborhood O′ ⊂ O of ∂O in O. ♦

2.3 Proof of the results for nonconvex integrands

In this section, we study the case when W is nonconvex but admits a two-sided estimate by a
convex function (which may depend on the space variable), and we prove Theorem 2.1.6. Let W be
a (nonconvex) τ -stationary normal random integrand, which is further assumed to be ru-usc (in the
sense of Definition 2.1.5, with respect to some τ -stationary integrable random field a) and to satisfy
Hypothesis 2.1.1. Up to a translation, for simplicity of notation, we can restrict to the following
stronger version of (2.7) and (2.13): for almost all ω, y, we have for all Λ,

1

C
|Λ|p ≤ V (y,Λ, ω) ≤W (y,Λ, ω) ≤ C(1 + V (y,Λ, ω)), (2.53)
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for some C > 0 and d < p <∞, and for some convex τ -stationary normal random integrand V . Also
assume that 0 belongs to the interior of the domain of the convex function M := sup essy,ω V (y, ·, ω).
We can then apply Theorem 2.1.2 to V , yielding a homogenized energy density V with the following
property: defining

Jε(u, ω;O) =

ˆ
O
V (y/ε,∇u(y), ω)dy, J(u;O) =

ˆ
O
V (∇u(y))dy,

for almost all ω, the integral functionals Jε(·, ω;O) Γ-converge to J(·;O) on W 1,p(O;Rm), for any
bounded Lipschitz domain O ⊂ Rd. Let Ω0 ∈ F be a subset of full probability on which all these
assumptions and properties (of V,W ) are simultaneously pointwise satisfied.

2.3.1 Definition of the homogenized energy density

We need to define in this section a candidate for the homogenized energy density W . As before,
the standard homogenization formula with Dirichlet boundary conditions does not hold because of
the generality of the growth conditions considered here. Instead, we use the corrector for the convex
problem as a boundary condition for the nonconvex problem, which is indeed admissible because of
the two-sided growth condition (2.53).

More precisely, for all Λ ∈ Rm×d, Lemma 2.2.4 yields a function ϕΛ ∈ Mes(Ω;W 1,p
loc (Rd;Rm)) such

that ∇ϕΛ(0, ·) ∈ F ppot(Ω)m and

V (Λ) = E[V (0,Λ +∇ϕΛ(0, ·), ·)].

Now, for any t ∈ [0, 1), consider the function µtΛ defined by

µtΛ(O,ω) := inf
v∈W 1,p

0 (O;Rm)

ˆ
O
W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy.

As this quantity is stationary and subadditive, the Ackoglu-Krengel ergodic theorem leads to the
following.

Lemma 2.3.1 (Definition of the homogenized energy density). Let t ∈ [0, 1) be fixed. Then there
exists a function W t : domV → [0,∞) such that, for all Λ ∈ domV , for almost all ω ∈ Ω0, we have
for all bounded Lipschitz domain O ⊂ Rd,

W t(Λ) = lim
ε↓0

µtΛ(O/ε, ω)

|O/ε|
, (2.54)

where the convergence also holds for expectations. Now define W (Λ) := lim inft↑1 lim infΛ′→ΛW t(Λ
′)

for Λ ∈ domV , and set W (Λ) = ∞ for Λ /∈ domV . Then, W satisfies V ≤ W ≤ C(1 + V ) on the
whole of Rm×d, and for all Λ ∈ Rm×d, for almost all ω, we have for all bounded Lipschitz domain
O ⊂ Rd,

W (Λ) = lim inf
t↑1

lim inf
Λ′→Λ

lim
ε↓0

µtΛ′(O/ε, ω)

|O/ε|
, (2.55)

where the lim inf as t ↑ 1 can further be restricted to t ∈ Q. Finally, in the particular case when W
is convex, then W coincides with the various definitions for the homogenized integrand as given by
Theorem 2.1.2. ♦
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Proof. We split the proof into three steps.

Step 1. Definition of W t(Λ) and proof of (2.54).
First consider the case when Λ ∈ domV . Let t ∈ [0, 1) be fixed. The upper bound in (2.53)

then implies E[µtΛ(O, ·)] ≤ C|O|(1 + tV (Λ) + (1 − t)M(0)) < ∞. As the function µtΛ is obviously
stationary and subadditive, and as µtΛ(O, ·) is measurable by Hypothesis 2.1.1, the Ackoglu-Krengel
subadditive ergodic theorem (see e.g. [275, Section 6.2]) can be applied and asserts the existence of
some W t(Λ) ∈ [0,∞) such that, for almost all ω, we have

W t(Λ) = lim
n↑∞

µtΛ(In, ω)

|In|
,

for any regular sequence (In)n ⊂ I := {[a, b) : a, b ∈ Zd} such that limn↑∞ In = Rd (in the usual
sense of [275, Section 6.2]), and moreover this convergence also holds for expectations. In particular,
we easily see that the same result must hold for the choice In = nQ0, where Q0 is any cube aligned
with the axes. Further note that, for all bounded Lipschitz subsets O′ ⊂ O ⊂ Rd, we can estimate,
as W 1,p

0 (O′/ε;Rm) ⊂W 1,p
0 (O/ε;Rm),

εdµtΛ(O/ε, ω) ≤ εdµtΛ(O′/ε, ω) + εd
ˆ

(O\O′)/ε
W (y, tΛ + t∇ϕΛ(y, ω), ω)dy

≤ εdµtΛ(O′/ε, ω) + C|O \O′|

(
1 +

 
(O\O′)/ε

V (y,Λ +∇ϕΛ(y, ω), ω)dy

)
,

where the last expression in brackets converges to 1 + V (Λ) < ∞ as ε ↓ 0. Now based on this
estimate, an easy approximation argument (see e.g. [213, Step 4 of the proof of Theorem 3.1]) allows
us to conclude as follows: for almost all ω (for all ω ∈ ΩΛ, for some subset ΩΛ ∈ F of full probability,
say), we have for all bounded Lipschitz domains O ⊂ Rd,

lim
ε↓0

µtΛ(O/ε, ω)

|O/ε|
= W t(Λ). (2.56)

Step 2. Definition of W and proof of the bounds V (Λ) ≤W (Λ) ≤ C(1 + V (Λ)) for Λ ∈ domV .
Let Λ ∈ domV be fixed, and let O ⊂ Rd be some bounded Lipschitz domain. As in the statement,

we define W (Λ) := lim inft lim infΛ′→ΛW t(Λ
′). The bounds V (Λ) ≤ W (Λ) ≤ C(1 + V (Λ)) directly

follow from the two-sided estimate (2.53) together with the following equality, for almost all ω,

V (Λ) = V 0(Λ, ω) := lim inf
t↑1

lim inf
Λ′→Λ

lim
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
V (y/ε, tΛ′ + t∇ϕΛ′(y/ε, ω) +∇v(y), ω)dy.

(2.57)

Let us give the argument for (2.57). On the one hand, we can estimate

V 0(Λ, ω) ≥ lim inf
t↑1

lim inf
Λ′→Λ

lim inf
ε↓0

inf
v∈W1,p(O;Rm)ffl

O ∇v=0

 
O
V (y/ε, tΛ′ + tΛ′ε(ω) +∇v(y), ω)dy,

where we have set Λ′ε(ω) :=
ffl
O∇ϕΛ′(·/ε, ω). For almost all ω, since Λ′ε(ω)→ 0, we can write for any

κ > 0,

V 0(Λ, ω) ≥ inf
Λ′:|Λ′−Λ|≤κ

lim inf
t↑1

lim inf
ε↓0

inf
v∈W1,p(O;Rm)ffl

O ∇v=0

 
O
V (y/ε, tΛ′ +∇v(y), ω)dy,

64



so that formula (2.11) yields V 0(Λ, ω) ≥ infΛ′:|Λ′−Λ|≤κ V (Λ′). Passing to the limit κ ↓ 0, the lower
semicontinuity of V directly gives V 0(Λ, ω) ≥ V (Λ). On the other hand, the convexity of V , the
Birkhoff-Khinchin ergodic theorem, and the definition of ϕΛ′ give for all t ∈ [0, 1] and all Λ′ ∈ Rm×d,

lim
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
V (y/ε, tΛ′ + t∇ϕΛ′(y/ε, ω) +∇v(y), ω)dy

≤ lim
ε↓0

 
O
V (y/ε,Λ′ +∇ϕΛ′(y/ε, ω), ω)dy + (1− t)M(0) = V (Λ′) + (1− t)M(0).

Passing to the limit Λ′ → Λ and t ↑ 1, and using the lower semicontinuity of V in the form of
V (Λ) = lim infΛ′→Λ V (Λ′), this yields V 0(Λ, ω) ≤ V (Λ). The desired identity (2.57) is proven.

Step 3. Case when Λ /∈ domV .
For Λ /∈ domV , arguing as in Step 2 above, we can estimate, using the pointwise bound V ≤W ,

lim inf
t↑1

lim inf
Λ′→Λ

lim inf
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇v(y), ω)dy ≥ V (Λ) =∞,

so that (2.55) trivially holds with W (Λ) := ∞. Moreover, the bounds V ≤ W ≤ C(1 + V ) holds as
well.

Although the definition of the homogenized energy density W (Λ) may a priori depend on the
choice of a corrector ϕΛ, it would follow a posteriori from the Γ-convergence result that the value of
W (Λ) is independent of that choice. As this independence will actually be useful in the proof of the
Γ-lim sup inequality (cf. proof of Lemma 2.3.4(c) below), we display a direct proof.

Lemma 2.3.2 (Independence upon the choice of a corrector). Assume p > d, and let t ∈ [0, 1),
Λ ∈ domV be fixed. For almost all ω, given a bounded domain O ⊂ Rd, if (uε)ε ⊂ W 1,p(O;Rm)
satisfies ‖uε‖L∞(O) → 0 and lim supε

´
D V (y/ε,Λ +∇uε(y), ω)dy ≤ CΛ|D| for all subdomains D ⊂ O

and some constant CΛ > 0, then we have for all Lipschitz subdomains D ⊂ O,

W t(Λ) = lim
ε↓0

inf
v∈W 1,p

0 (D;Rm)

 
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy, (2.58)

where in particular the limit is well-defined. ♦

Proof. Let t ∈ [0, 1) and Λ ∈ domV be fixed. Let ω ∈ Ω be fixed such that (2.54) holds on all
bounded Lipschitz domains and such that moreover, for all bounded domains D ⊂ Rd,

‖εϕΛ(·/ε, ω)‖L∞(D) → 0,

ˆ
D
V (y/ε,Λ +∇ϕΛ(y/ε, ω), ω)dy → V (Λ),

which follows from Lemma 2.2.4, the Sobolev embedding, and the Birkhoff-Khinchin ergodic theorem.
Let (uε)ε be as in the statement of the lemma. Also denote vωε := εϕΛ(·/ε, ω) ∈ W 1,p

loc (Rd;Rm). By
the choice of ω, the sequence (vωε )ε satisfies the same properties as uε on any bounded domain, with
CΛ replaced by C ′Λ = V (Λ), and moreover, for all bounded Lipschitz domains D ⊂ Rd,

W t(Λ) = lim
ε↓0

inf
v∈W 1,p

0 (D;Rm)

 
D
W (y/ε, tΛ + t∇vωε (y) +∇v(y), ω)dy. (2.59)

Let D ⊂ O be some fixed Lipschitz subdomain. On the one hand, define

W
′
t(Λ, ω;D) = lim sup

ε↓0
inf

v∈W 1,p
0 (D;Rm)

 
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy. (2.60)
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Given η > 0, set Dη := {x ∈ D : d(x, ∂D) > η} and consider the difference

∆ω
ε,t,η := inf

v∈W 1,p
0 (D;Rm)

ˆ
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy

− inf
w∈W 1,p

0 (Dη ;Rm)

ˆ
Dη

W (y/ε, tΛ + t∇vωε (y) +∇w(y), ω)dy. (2.61)

Choose a smooth cut-off function χη such that χη equals 1 on Dη and vanishes outside D, with
|∇χη| ≤ C ′/η for some constant C ′ > 0, and define wωε,η := χηv

ω
ε + (1 − χη)uε. Restricting the first

infimum in (2.61) to those v’s that are equal to t(vε − uε) on ∂Dη, we obtain

∆ω
ε,t,η ≤ inf

v∈W 1,p
0 (D\Dη ;Rm)

ˆ
D\Dη

W (y/ε, tΛ + t∇wωε,η(y) +∇v(y), ω)dy.

Hence, choosing v = 0, using the upper bound W ≤ C(1 + V ) and decomposing

t∇wωε,η = tχη∇vωε + t(1− χη)∇uε + (1− t) t

1− t
∇χη(vωε − uε),

we obtain by convexity

∆ω
ε,t,η ≤ C|D \Dη|

(
1 +

 
D\Dη

V (y/ε,Λ +∇uε(y), ω)dy +

 
D\Dη

V (y/ε,Λ +∇vωε (y), ω)dy + Eωε,t,η

)
,

where the error is given by

Eωε,t,η :=

 
D\Dη

V

(
y/ε,

t

1− t
∇χη(y)(vωε (y)− uε(y)), ω

)
dy.

Since vωε and uε go to 0 in L∞(D;Rm), we can prove that, for any t ∈ (0, 1),

lim sup
η↓0

lim sup
ε↓0

∆ω
ε,t,η ≤ lim sup

η↓0
C|D \Dη|(1 + CΛ + C ′Λ) = 0.

In view of equalities (2.59) and (2.60), this implies W ′t(Λ, ω;D) ≤W t(Λ).
On the other hand, define

W
′′
t (Λ, ω;D) = lim inf

ε↓0
inf

v∈W 1,p
0 (D;Rm)

 
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy,

and repeat the same argument as above with Dη := {x : d(x,D) < η} and

∆̃ω
ε,t,η := inf

v∈W 1,p
0 (Dη ;Rm)

ˆ
Dη
W (y/ε, tΛ + t∇vωε (y) +∇v(y), ω)dy

− inf
w∈W 1,p

0 (D;Rm)

ˆ
D
W (y/ε, tΛ + t∇uε(y) +∇w(y), ω)dy,

which then yieldsW ′′t (Λ, ω;D) ≥W t(Λ). This shows thatW ′′t (Λ, ω;D) = W
′
t(Λ, ω;D) = W t(Λ), and

the result is proven.

Let Ω1 ⊂ Ω0, Ω1 ∈ F , a subset of full probability such that (2.54) holds for all ω ∈ Ω1, t ∈ Q∩[0, 1),
and Λ ∈ Qm×d∩domV , such that (2.55) holds for all ω ∈ Ω1 and Λ ∈ Qm×d, and such that we further
have, for all ω ∈ Ω1, Λ ∈ Qm×d, and all bounded domains O ⊂ Rd,

V (Λ) = lim
ε↓0

 
O/ε

V (y,Λ +∇ϕΛ(y, ω), ω)dy.
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2.3.2 Γ-lim inf inequality by blow-up

In this section, we prove the Γ-lim inf inequality for Theorem 2.1.6 by adapting the blow-up
method introduced by Fonseca and Müller [183] (see also [25, Section 4.1] and [80]). In the present
context, a subtle use of the corrector for the convex problem is further needed.

Proposition 2.3.3 (Γ-lim inf inequality). For all ω ∈ Ω1, all bounded Lipschitz domain O ⊂ Rd, and
all sequence (uε)ε ⊂W 1,p(O;Rm) with uε −⇀ u in W 1,p(O;Rm), we have

lim inf
ε↓0

Iε(uε, ω;O) ≥ I(u;O).

In addition, for all Λ ∈ Rm×d, for almost all ω ∈ Ω1, for all bounded Lipschitz domain O ⊂ Rd, and
all sequence (uε)ε ⊂W 1,p(O;Rm) with uε −⇀ u in W 1,p(O;Rm), we have

lim inf
ε↓0

Iε(uε, ω;O) ≥ |O| lim inf
t↑1

lim
R↑∞

inf
v∈W 1,p

0 (O;Rm)

 
QR

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy ≥ I(u;O).

♦

Proof. For all r > 0 and x ∈ Rd, define Qr(x) = x+ rQ and Sr,κ(x) = Qr(x) \Qrκ(x) for all κ > 0.
For all ε > 0 and all Λ, ω, define χωε,Λ = εϕΛ(·/ε, ω). For all ω ∈ Ω1 and Λ ∈ Qm×d, the sequence
(χωε,Λ)ε satisfies χωε,Λ −⇀ 0 in W 1,p(O;Rm) and Jε(χωε,Λ + Λ · x, ω; O′) → J(Λ · x; O′) = |O′|V (Λ) as
ε ↓ 0, for any subdomain O′ ⊂ O.

From now on, let ω ∈ Ω1 be fixed, let O ⊂ Rd be some bounded Lipschitz subset, and let
(uε)ε ⊂W 1,p(O;Rm) be some fixed sequence with uε −⇀ u in W 1,p(O;Rm). We need to prove

lim inf
ε↓0

Iε(uε, ω;O) ≥ I(u;O). (2.62)

It does not restrict generality to assume lim infε Iε(uε, ω;O) = limε Iε(uε, ω;O) < ∞ and also
supε Iε(uε, ω;O) < ∞. Hence, ∇uε(x) ∈ domW (x/ε, ·, ω) = domV (x/ε, ·, ω) for almost all x. Fur-
thermore, the Γ-convergence result for V yields J(u;O) ≤ lim infε Jε(uε, ω;O) ≤ limε Iε(uε, ω;O) <
∞, so that ∇u(x) ∈ domV for almost all x.

Step 1. Localization by blow up: we prove that it suffices to show that for almost all x0,

lim inf
t↑1

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy ≥W (∇u(x0)). (2.63)

For all ε > 0, consider the positive Radon measure on O defined by dρε(x) = W (x/ε,∇uε(x), ω)dx.
As supε ρε(adhO) < ∞ by hypothesis, the Prokhorov theorem asserts the convergence ρε

∗−⇀ ρ up to
extraction of a subsequence, for some positive Radon measure ρ on adhO. (The extraction will remain
implicit in our notation in the sequel.) By Lebesgue’s decomposition theorem, we can consider the
absolutely continuous part of the positive measure ρ, and the Radon-Nikodym theorem allows to
define the density f ∈ L1(U) of the latter. As O is open, we then have by the portmanteau theorem
(see e.g. [62, Theorem 2.1]),

lim inf
ε

Iε(uε, ω;O) = lim inf
ε

ρε(O) ≥ ρ(O) ≥
ˆ
O
f(x)dx.

Hence, in order to prove (2.62), it suffices to show that f(x) ≥ W (∇u(x)) for almost all x. Since
ρ(adhO) <∞, we have ρ(∂Qr(x)) = 0 for all r ∈ (0, 1) \Dx, where Dx is at most countable, so that,
for almost all x, Lebesgue’s differentiation theorem and the portmanteau theorem successively give

f(x) = lim
r↓0
r/∈Dx

ρ(Qr(x))

rd
= lim

r↓0
r/∈Dx

lim
ε↓0

ρε(Qr(x))

rd
.
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Hence, it suffices to show that for almost all x0,

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy ≥W (∇u(x0)).

Using the ru-usc assumption on W , we easily deduce the following inequality,

lim sup
t↑1

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy ≤ lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy. (2.64)

Indeed, as ∇uε(y) ∈ domW (y/ε, ·, ω) for almost all y, we can write

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy

≤ (1 + ∆a
W (t))

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy + ∆a
W (t)

 
Qr(x0)

a(y/ε, ω)dy,

and thus, by τ -stationarity of a, the Birkhoff-Khinchin ergodic theorem yields

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy

≤ (1 + ∆a
W (t)) lim inf

r↓0
lim
ε↓0

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy + ∆a
W (t)E[a(0, ·)],

so that inequality (2.64) now directly follows from the ru-usc assumption with respect to a (meaning
indeed that lim supt↑1 ∆a

W (t) ≤ 0). Using (2.64), we finally conclude that it is sufficient to show (2.63)
for almost all x0.

Step 2. Proof of (2.63) by truncation.
The idea is to truncate uε at the boundary, in order to make appear in the left-hand side of (2.63)

precisely W (t∇u(x0)), which will then allow us to conclude.
Let t, κ ∈ (0, 1) be fixed. Since p > d, the Sobolev embedding yields uε → u in L∞(O;Rm).

Moreover, combining the Lebesgue differentiation theorem for ∇u and the Sobolev embedding for
p > d, we deduce that for all x0 /∈ N (for some null set N ⊂ Rd, |N | = 0),

lim
r↓0

1

r
‖u− u(x0)−∇u(x0) · (x− x0)‖L∞(Qr(x0)) = 0. (2.65)

Enlarging the null set N , we can also assume that ∇u(x0) ∈ domV for any x0 /∈ N . From now
on, let x0 ∈ O \ N be fixed and write for simplicity Λ := ∇u(x0). Since V is convex and lower
semicontinuous, we have V (Λ) = lim infΛ′→Λ,Λ′∈Qm×d V (Λ′), and a diagonalization argument then
allows us to choose a sequence (Λr)r ⊂ Qm×d such that Λr → Λ and V (Λr) → V (Λ) as r ↓ 0, and
simultaneously

lim
r↓0

1

r
‖u− u(x0)− Λr · (x− x0)‖L∞(Qr(x0)) = 0. (2.66)

Let φr,κ be a smooth cut-off function with values in [0, 1], such that φr,κ equals 1 on Qrκ(x0), vanishes
outside Qr(x0), and satisfies ‖∇φr,κ‖L∞ ≤ 2

r(1−κ) . We then set

vε,r,κ := φr,κuε + (1− φr,κ)(u(x0) + Λr · (x− x0) + χωε,Λr(x)).
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Since vε,r,κ coincides with uε on Qrκ(x0) and 0 ≤W ≤ C(1 + V ), we have

 
Qr(x0)

W (y/ε, t∇vε,r,κ(y), ω)dy

≤
 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy +
C

rd

ˆ
Sr,κ(x0)

V (y/ε, t∇vε,r,κ(y), ω)dy + C(1− κd). (2.67)

Defining Ψε,r,κ(x) := ∇φr,κ(x)⊗ (uε(x)− u(x0)− Λr · (x− x0)− χωε,Λr) and decomposing

t∇vε,r,κ = tφr,κ∇uε + t(1− φr,κ)(Λr +∇χωε,Λr) + (1− t) t

1− t
Ψε,r,κ,

we obtain by convexity of V ,

V (y/ε, t∇vε,r,κ(y), ω) ≤ tφr,κV (y/ε,∇uε(y), ω) + t(1− φr,κ)V (y/ε,Λr +∇χωε,Λr(y), ω)

+(1− t)V
(
y/ε,

t

1− t
Ψε,r,κ(y), ω

)
≤ W (y/ε,∇uε(y), ω) + V (y/ε,Λr +∇χωε,Λr(y), ω)

+(1− t)V
(
y/ε,

t

1− t
Ψε,r,κ(y), ω

)
. (2.68)

Combined with

‖Ψε,r,κ‖L∞(Sr,κ(x0))

≤ 2

r(1− κ)

(
‖uε − u‖L∞(O) + ‖u− u(x0)− Λr · (x− x0)‖L∞(Qr(x0)) + ‖χωε,Λr‖L∞(O)

)
,

and with (2.66), the convergences uε → u and χωε,Λr → 0 in L∞(O;Rm) lead to

lim sup
r↓0

lim sup
ε↓0

‖Ψε,r,κ‖L∞(Sr,κ(x0)) = 0.

By assumption, we can find δ > 0 with adhBδ ⊂ int domM . Hence, for all t, κ ∈ (0, 1), there exists
rκ,t > 0 such that, for all 0 < r < rκ,t, there exists some εr,κ,t > 0 such that for all 0 < ε < εr,κ,t,∥∥∥∥ t

1− t
Ψε,r,κ

∥∥∥∥
L∞(Sr,κ(x0))

< δ.

This implies
ˆ
Sr,κ(x0)

V

(
y/ε,

t

1− t
Ψε,r,κ(y), ω

)
dy ≤ |Sr,κ(x0)| sup

|Λ′|<δ
M(Λ′) = rd(1− κd)| sup

|Λ′|<δ
M(Λ′),

where the supremum is finite, by virtue of the convexity of M and our choice of δ > 0. Combined
with inequality (2.68) and with the definition of the correctors χωε,Λr (with limr V (Λr) = V (Λ) <∞),
this yields

lim inf
κ↑1

lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

ˆ
Sr,κ(x0)

V (y/ε, t∇vε,r,κ(y), ω)dy

≤ lim inf
κ↑1

lim inf
r↓0

lim inf
ε↓0

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy.
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This turns inequality (2.67) into

lim inf
κ↑1

lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇vε,r,κ(y), ω)dy

≤ lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy

+ lim inf
κ↑1

lim inf
r↓0

lim inf
ε↓0

C

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy. (2.69)

Since we have chosen ω ∈ Ω1, t ∈ Q ∩ (0, 1), and Λr ∈ Qm×d, the convergence (2.54) yields

W t(Λr) = lim inf
ε↓0

inf
v∈W 1,p

0 (Qr(x0);Rm)

 
Qr(x0)

W (y/ε, tΛr + t∇ϕΛr(·/ε, ω) +∇v(y), ω)dy.

Hence, since vε,r,κ − u(x0)− Λr · (x− x0) ∈ χωε,Λr +W 1,p
0 (Qr(x0);Rm) with χωε,Λr = εϕΛr(·/ε, ω), the

inequality (2.69) yields

W (∇u(x0)) = W (Λ) ≤ lim inf
t↑1

lim inf
r↓0

W t(Λr)

≤ lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇vε,r,κ(y), ω)dy

≤ lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy

+ lim sup
κ↑1

lim sup
r↓0

lim sup
ε↓0

C

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy. (2.70)

It remains to get rid of the second right-hand side term. By the portmanteau theorem,

lim sup
ε↓0

1

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy = lim sup
ε↓0

ρε(Sr,κ(x0))

rd

≤ lim sup
ε↓0

ρε(adhSr,κ(x0))

rd
≤ ρ(adhSr,κ(x0))

rd
.

Since the singular part of ρ must be supported in a closed subset of adhO of Lebesgue measure 0, we
deduce for almost all x0 ∈ O \N the existence of some r0 > 0 sufficiently small such that adhQr(x0)
has no intersection with that support for all 0 < r < r0. Hence, for all 0 < r < r0,

lim sup
ε↓0

1

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy

≤ ρ(adhSr,κ(x0))

rd
=

1

rd

ˆ
Sr,κ(x0)

f(y)dy =

 
Qr(x0)

f(y)dy − κd
 
Qrκ(x0)

f(y)dy,

where for almost all x0 the right-hand side converges to (1 − κd)f(x0) as r ↓ 0 by Lebesgue’s differ-
entiation theorem. Hence, for almost all x0, (2.70) turns into

W (∇u(x0)) ≤ lim sup
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy,

and the desired result (2.63) is proven.
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2.3.3 Γ-lim sup inequality with Neumann boundary data

In this section, we prove the Γ-lim sup inequality, first considering the affine case, and then
deducing the general case by approximation. For this approximation argument to hold, we would
however need to know a priori that the homogenized energy W satisfies good regularity properties
(i.e. lower semicontinuity on Rm×d and continuity on int domV ). Since this is not clear at all a priori,
our strategy (inspired by Anza Hafsa and Mandallena [25]) consists in introducing some relaxations
of W that enjoy the required properties, and then in deducing a posteriori from Γ-convergence (or a
weaker form of it) the equality ofW with its relaxations (so thatW itself has all the desired properties).
Motivated by the work of Fonseca [182] (see also [25]), we consider the following relaxation of W ,

ZW (Λ) := inf

{ 
O
W (Λ +∇φ(y))dy : φ continuous piecewise affine on O and φ|∂O = 0

}
,

where the definition does clearly not depend on the chosen underlying (nonempty) bounded Lipschitz
domain O ⊂ Rd. Also write ẐW for the lower semicontinuous envelope of ZW (defined by ẐW (Λ) :=
lim infΛ′→ΛZW (Λ′) for all Λ). Now define the integral functionals corresponding to all these relaxed
integrands: for any bounded domain O ⊂ Rd and u ∈W 1,p(O;Rm),

ZI(u;O) :=

ˆ
O
ZW (∇u(y))dy, ẐI(u;O) :=

ˆ
O
ẐW (∇u(y))dy.

The following result gives some properties of these relaxations, which will be crucial in the sequel.

Lemma 2.3.4 (Properties of relaxations). Assume p > d. Then the following holds.

(a) ZW (and thus also ẐW ) is continuous on int domZW .

(b) V ≤ ẐW ≤W ≤ C(1 + V ).

(c) W and ZW are ru-usc.

(d) For all t ∈ (0, 1) we have t adh domZW ⊂ int domZW , and the following representation result
holds,

ẐW (Λ) = lim inf
t→1

ZW (tΛ) =


ZW (Λ), if Λ ∈ int domZW ;
limt↑1ZW (tΛ), if Λ ∈ ∂ domZW ;
∞, otherwise;

where in particular the limit exists.

(e) Let Λ ∈ Rm×d and let O ⊂ Rd be a bounded Lipschitz domain. Then there exists a sequence
(φk)k ⊂W 1,p

0 (O;Rm) of piecewise affine functions such that φk → 0 in L∞(O;Rm) and

lim
k↑∞

 
O
W (Λ +∇φk(y))dy = ZW (Λ). ♦

Proof. Continuity of ZW on int domZW is a result due to Fonseca [182], which yields part (a) (even
without any ru-usc assumption on W ). The inequalities stated in part (b) directly follow from the
definitions of V , W and ẐW . Part (e) is standard (see [25, Proposition 3.17] for detail). It remains
to prove properties (c) and (d).

Step 1. Proof of (c).
We first prove that W t is ru-usc for all t ∈ [0, 1). Let s > 0, Λ ∈ domW = domV , and let

O ⊂ Rd be some bounded Lipschitz domain. For almost all ω, note that by convexity we have for all
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subdomains D ⊂ O,

lim sup
ε↓0

ˆ
D
V (y/ε, sΛ + s∇ϕΛ(y/ε, ω), ω)dy

≤ lim
ε↓0

ˆ
D
V (y/ε,Λ +∇ϕΛ(y/ε, ω), ω)dy + (1− s)M(0) = V (Λ) + (1− s)M(0) <∞.

Hence for almost all ω we can apply equality (2.58) at sΛ with uε = sεϕΛ(·/ε, ω), which yields

W t(sΛ) = lim
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
W (y/ε, stΛ + st∇ϕΛ(y/ε, ω) +∇v(y), ω)dy.

Given ω ∈ Ω such that this convergence and (2.54) both hold, and choosing a sequence (vωε )ε ⊂
W 1,p

0 (O;Rd) such that

W t(Λ) = lim
ε↓0

 
O
W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y), ω)dy,

we deduce

W t(sΛ)−W t(Λ) ≤ lim
ε↓0

 
O

(
W (y/ε, s(tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y)), ω)

−W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y), ω)
)
dy

≤ ∆a
W (s) lim

ε↓0

 
O

(a(y/ε, ω) +W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y), ω))dy

= ∆a
W (s)(E[a(0, ·)] +W t(Λ)), (2.71)

using the Birkhoff-Khinchin ergodic theorem for the stationary field a. As W t and the field a are
nonnegative, as α := E[a(0, ·)] is finite, and as lim sups↑1 ∆a

W (s) ≤ 0 by assumption, we deduce that
W t is also ru-usc. Now rewriting inequality (2.71) in the form

W t(sΛ) ≤ α∆a
W (s) + (1 + (−1) ∨∆a

W (s))W t(Λ),

and taking the suitable lim inf, we directly deduce W (sΛ) −W (Λ) ≤ (−1) ∨∆a
W (s)(α + W (Λ)) for

all Λ ∈ domV and s ∈ [0, 1), proving that W is itself ru-usc with ∆α
W

= (−1) ∨∆a
W (s).

We now show that ZW is also ru-usc. Take s > 0 and Λ ∈ domV . By definition, there exists a
sequence of piecewise affine functions (φk)k ⊂W 1,p

0 (O) such that

ZW (Λ) = lim
k↑∞

 
O
W (Λ +∇φk(y))dy.

As Λ ∈ domV , the left-hand side is finite, and we can thus assume Λ + ∇φk ∈ domW almost
everywhere. Hence the ru-usc property satisfied by W gives

ZW (sΛ)−ZW (Λ) ≤ lim
k↑∞

 
O

(W (s(Λ +∇φk(y)))−W (Λ +∇φk(y)))dy

≤ ∆α
W

(s) lim
k↑∞

 
O

(α+W (Λ +∇φk(y))dy = ∆α
W

(s)(α+ ZW (Λ)).

Step 2. Proof of (d).
Since domZW = domV is a convex set containing 0, it is clear that, for all t ∈ [0, 1), t adhdomZW

is contained in int domZW . We first show that the limit limt↑1ZW (tΛ) exists for all Λ ∈ adhdomV .
Given some fixed Λ ∈ adhdomV , choose two sequences sn ↑ 1 and tn ↑ 1 with tn/sn ↑ 1 such that

lim
n↑∞
ZW (snΛ) = lim inf

t↑1
ZW (tΛ) and lim

n↑∞
ZW (tnΛ) = lim sup

t↑1
ZW (tΛ).
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As snΛ, tnΛ ∈ domV for all n, and as ZW is ru-usc, we have

lim
n↑∞
ZW (tnΛ) ≤ lim sup

n↑∞
(α+ ZW (snΛ))∆a

W (tn/sn) + lim
n↑∞
ZW (snΛ)

≤ lim
n↑∞
ZW (snΛ) ≤ lim

n↑∞
ZW (tnΛ),

which thus proves the existence of the limit limt↑1ZW (tΛ) for all Λ ∈ adhdomV .
We now prove the claimed representation result. First, if Λ ∈ int domV , then lim inft→1ZW (tΛ) =

ZW (Λ) = ẐW (Λ) follows from part (a). Second, if Λ /∈ adhdomV , then ZW (tΛ) = ∞ for any t
sufficiently close to 1, and thus lim inft→1ZW (tΛ) =∞ = ẐW (Λ). Now it only remains to consider
Λ ∈ ∂ domZW . Then ZW (tΛ) = ∞ whenever t > 1, so that we simply have lim inft→1ZW (tΛ) =
lim inft↑1ZW (tΛ) = limt↑1ZW (tΛ), since we have already proven the existence of this limit. Hence,
it suffices to prove that ẐW (Λ) = lim inft↑1ZW (tΛ). By definition of the lower semicontinuous
envelope ẐW of ZW , this equality would follow if we could show that, for any sequence Λn → Λ, we
have

lim inf
n↑∞

ZW (Λn) ≥ lim inf
t↑1

ZW (tΛ). (2.72)

It is of course sufficient to assume lim infnZW (Λn) = limnZW (Λn) < ∞ and supnZW (Λn) < ∞.
Hence, Λn ∈ domV for all n, and thus, for all t ∈ [0, 1), tΛ ∈ int domV , so that, using part (a) as
well as the ru-usc property satisfied by ZW , we have

ZW (tΛ) = lim
n↑∞
ZW (tΛn) ≤ lim

n↑∞
ZW (Λn) + ∆a

W (t) lim
n↑∞

(α+ ZW (Λn)).

This yields
lim sup
t↑1

ZW (tΛ) ≤ lim inf
n↑∞

ZW (Λn),

and proves (2.72).

Combining the Γ-lim inf inequality for Iε towards I with a Γ-lim sup argument, we manage to
identify W with its relaxations.

Lemma 2.3.5 (Regularity of the homogenized energy density). Assume p > d. Then W (Λ) =
ZW (Λ) = ẐW (Λ) for all Λ ∈ Rm×d. In particular, W is lower semicontinuous on Rm×d and is
continuous on int domV . ♦

Proof. We split the proof into four steps.

Step 1. Recovery sequence for I(Λ · x;O).
Let Λ ∈ int domV and let t ∈ [0, 1). In this step, for almost all ω, for all bounded Lipschitz domain

O ⊂ Rd, we prove the existence of sequences tε ↑ 1, Λε → Λ and (wε)ε ⊂ W 1,p
0 (O;Rm) such that

εϕΛε(·/ε, ω) −⇀ 0, wε −⇀ 0 in W 1,p(O;Rm) and Iε(tεΛε · x+ εtεϕΛε(·/ε, ω) + wε, ω;O)→ |O|W (Λ) =
I(Λ · x;O).

By definition of W and a diagonalization argument, for almost all ω and all bounded Lipschitz
domains O ⊂ Rd, it suffices to prove the existence of a sequence (vε)ε ⊂ W 1,p

0 (O;Rm) such that
vε −⇀ 0 in W 1,p(O;Rm) and Iε(tΛ · x+ εtϕΛ(·/ε, ω) + vε, ω;O)→ |O|W t(Λ) as ε ↓ 0.

Let O be some fixed bounded Lipschitz domain. Given ε > 0, consider the cubes of the form
k(z + Q), z ∈ Zd, that are contained in O/ε, and denote by zj ∈ Zd, j = 1, . . . , Nε,k, the centers
of these cubes (the enumeration of which can be chosen independent of ε, k). Since O is Lipschitz,
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we have Nε,k(εk)d → |O| as ε ↓ 0, for all k. For all j, ω, we can choose a sequence (vj,ωk )k with
vj,ωk ∈W 1,p

0 (k(zj +Q);Rm) such that
 
k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω) +∇vj,ωk (y), ω)dy

≤ 1

k
+ inf
v∈W 1,p

0 (k(zj+Q);Rm)

 
k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy.

For all ε, k, ω, we then consider the function vωε,k :=
∑Nε,k

j=1 v
j,ω
k 1k(zj+Q) ∈ W 1,p

0 (O/ε;Rm), and we
define wωε,k := εvωε,k(·/ε) ∈ W

1,p
0 (O;Rm). Up to a diagonalization argument, it suffices to show that,

for almost all ω (independent of the choice of O, as it is clear in the proof below),

lim sup
k↑∞

lim sup
ε↓0

(∣∣Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O)− |O|W t(Λ)
∣∣+ ‖wωε,k‖Lp(O)

)
= 0. (2.73)

First we argue that for almost all ω,

lim sup
k↑∞

lim sup
ε↓0

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O) ≤ |O|W t(Λ). (2.74)

Indeed, by definition of wωε,k,

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O)

≤ 1

k
(εk)dNε,k + (εk)d

Nε,k∑
j=1

inf
v∈W 1,p

0 (k(zj+Q);Rm)

 
k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy

+ εd
ˆ

(O/ε)\
⋃Nε,k
j=1 k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω), ω)dy.

Since W ≤ C(1 + V ), the last term of the right-hand side goes to 0 as ε ↓ 0 for almost all ω by
construction of the cubes k(zj + Q) and definition of ϕΛ. The Birkhoff-Khinchin ergodic theorem
(which we apply to a measurable map by Hypothesis 2.1.1) then gives for almost all ω,

lim sup
ε↓0

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O)

≤ |O|
k

+ |O|E

[
inf

v∈W 1,p
0 (kQ;Rm)

 
kQ
W (y, tΛ + t∇ϕΛ(y, ·) +∇v(y), ·)dy

]
. (2.75)

Lemma 2.3.1 then yields the desired result (2.74) as k ↑ ∞. On the other hand, by definition (2.54)
of W t, for all k and almost all ω, we have

lim inf
ε↓0

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wε,k(·, ω), ω;O)

≥ |O| lim inf
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O/ε

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω;O) = |O|W t(Λ).

We now show that wωε,k → 0 in Lp(O;Rm) as ε ↓ 0, for almost all ω. Combining inequality (2.75)
with the bound W ≤ C(1 + V ), the p-th order lower bound for W and the convexity of V , we indeed
have

lim sup
ε↓0

‖tΛ + t∇ϕΛ(·/ε, ω) +∇wωε,k‖
p
Lp(O) ≤

|O|
k

+ C|O|(1 + V (Λ) + (1− t)M(0)) <∞.
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For almost all ω, the weak Lp convergence of the sequence (∇ϕΛ(·/ε, ω))ε to 0 implies the boundedness
of this sequence in Lp(O;Rm×d), so that (∇wωε,k)ε is also bounded in Lp(O;Rm×d), for any fixed k.
By Poincaré’s inequality on cubes of side length kε, this implies

‖wωε,k‖Lp(O) ≤ Ck(ω)ε,

for some (random) constant Ck(ω). Combined with (2.74), this proves (2.73).

Step 2. Recovery sequence for ZI(Λ · x;O).
Let Λ ∈ int domV and let O ⊂ Rd be a bounded Lipschitz domain. In this step, for almost all

ω, we prove the existence of a sequence (uε)ε ⊂ W 1,p(O;Rm) such that uε −⇀ 0 in W 1,p(O;Rm) and
Iε(Λ · x+ uε, ω;O)→ ZI(Λ · x;O).

Lemma 2.3.4(e) gives a sequence (φk)k ⊂ W 1,p
0 (O;Rm) of piecewise affine functions such that

φk → 0 in Lp(O;Rm) (and even in L∞(O;Rm)), and

I(φk + Λ · x;O) =

ˆ
O
W (Λ +∇φk(y))dy

k↑∞−−−→ |O|ZW (Λ).

Denote by (P ik)
nk
i=1 the partition of O associated with the piecewise affine function φk. For all k and

1 ≤ i ≤ nk, considering Λik := Λ + ∇φk|P ik on P ik, Step 1 above gives, for almost all ω, a sequence

tε ↑ 1, a sequence Λik,ε → Λik and a sequence (viε,k)ε ⊂W
1,p
0 (P ik;Rm) such that εϕΛiε,k

(·/ε, ω), viε,k −⇀ 0

inW 1,p(P ik;Rm) and Iε(tεΛiε,k ·x+εtεϕΛiε,k
(·/ε, ω)+viε,k, ω;P ik)→ I(Λik ·x;P ik) = I(φk+Λ ·x;P ik). As

the viε,k’s satisfy Dirichlet boundary conditions, they can be directly glued together, while for the ϕΛ’s
we need to repeat the more complicated gluing argument of Step 2 of the proof of Proposition 2.2.10,
with p > d. Although the functional Iε is not convex here, as in the proof of Proposition 2.3.3, the
idea is to use the bound W ≤ C(1 + V ) at all points where the cut-off functions are different from 1
or 0, then use the convexity of V and estimate the corresponding error terms as before. We leave the
detail to the reader.

Step 3. Recovery sequence for ẐI(Λ · x;O).
Let Λ ∈ domV and let O ⊂ Rd be a bounded Lipschitz domain. In this step, for almost all ω,

we prove the existence of a sequence (uωε )ε ⊂ W 1,p(O;Rm) such that uωε −⇀ 0 in W 1,p(O;Rm) and
Iε(Λ · x+ uωε , ω;O)→ ẐI(Λ · x;O).

By Lemma 2.3.4(d), ZW and ẐW coincide on int domV , and hence the result on int domV
already follows from Step 2. Let now Λ ∈ ∂domZW . Lemma 2.3.4(d) then asserts ẐW (Λ) =
limt↑1ZW (tΛ). By convexity of domV , for all t ∈ [0, 1), we have tΛ ∈ int domV , and hence, for
almost all ω, Step 2 above gives a sequence (uε,t)ε ⊂W 1,p(O;Rm) such that uε,t −⇀ 0 in W 1,p(O;Rm)
and Iε(tΛ · x + uε,t, ω;O) → ZI(tΛ · x;O) = |O|ZW (tΛ). The conclusion then follows from a
diagonalization argument.

Step 4. Conclusion.
Let Λ ∈ domV , let O ⊂ Rd be a bounded Lipschitz domain, and let (uωε )ε be the sequence given

by Step 3 above. As uωε −⇀ 0 in W 1,p(O;Rm), the Γ-lim inf inequality (see Proposition 2.3.3) gives,
for almost all ω,

|O|ẐW (Λ) = lim
ε↓0

Iε(Λ · x+ uωε , ω;O) ≥ I(Λ · x;O) = |O|W (Λ).

This being true for any Λ ∈ domV , we conclude that ẐW = W everywhere.

With Lemma 2.3.5 at hand, we now prove the Γ-lim sup inequality with Neumann boundary data.
(For the adaptation of Corollary 2.1.4 with Dirichlet boundary data, the approach is similar and we
leave the detail to the reader.)
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Proposition 2.3.6 (Γ-lim sup inequality). Assume p > d. There exists a subset Ω′ ⊂ Ω1, Ω′ ∈ F ,
of full probability with the following property: for all ω ∈ Ω′, all strongly star-shaped (in the sense
of Proposition 2.A.14) bounded Lipschitz domains O ⊂ Rd, and all u ∈ W 1,p(O;Rm), there exist a
sequence (uε)ε ⊂ W 1,p(O;Rm) and a sequence (vε)ε ⊂ W 1,p

0 (O;Rm) such that uε −⇀ u and vε −⇀ 0 in
W 1,p(O;Rm), and such that Iε(uε + vε, ω;O)→ I(u;O) and Jε(uε, ω;O)→ J(u;O) as ε ↓ 0. ♦

Proof. Recall that the Γ-lim inf inequality implies the locality of recovery sequences (see the proof of
Corollary 2.2.3). Hence, due to Proposition 2.3.3, the Γ-lim sup result on a Lipschitz domain O for
Neumann boundary conditions follows from the Γ-lim sup on a ball B ⊃ O. We split the proof into
three steps.

Step 1. Recovery sequence for affine functions.
In this step, we consider the case when u = Λ · x. is an affine function. More precisely, we prove

the existence of a subset Ω′ ⊂ Ω1, Ω′ ∈ F , of full probability with the following property: given
a bounded Lipschitz domain O ⊂ Rd, for all ω ∈ Ω′ and all Λ ∈ int domW , there exist sequences
(uε)ε ⊂ W 1,p

loc (Rd;Rm) and (vε)ε ⊂ W 1,p
0 (O;Rm) such that uε −⇀ Λ · x in W 1,p

loc (Rd;Rm) and vε −⇀ 0
in W 1,p(O;Rm), and such that Iε(uε + vε, ω;O)→ I(Λ · x;O) and Jε(uε, ω;O′)→ J(Λ · x;O′) for all
bounded domains O′ ⊂ Rd.

Let Λ ∈ int domV . For almost all ω ∈ Ω1, and all bounded domains O′ ⊂ Rd, we have by
convexity, the Birkhoff-Khinchin ergodic theorem, definition of ϕΛ′ , and continuity of V at Λ:

lim sup
t↑1,Λ′→Λ

lim
ε↓0

Jε(tΛ
′ · x+ εtϕΛ′(·/ε, ω), ω;O′) ≤ lim sup

Λ′→Λ
lim
ε↓0

Jε(Λ
′ · x+ εϕΛ′(·/ε, ω), ω;O′)

= |O′| lim
Λ′→Λ

V (Λ′) = |O′|V (Λ) = J(Λ · x;O′).

Combined with the Γ-lim inf inequality for Jε(·, ω;O′) towards J(·;O′) (for ω ∈ Ω1), this yields

lim
t↑1,Λ′→Λ

lim
ε↓0

Jε(tΛ
′ · x+ εtϕΛ′(·/ε, ω), ω;O′) = J(Λ · x;O′). (2.76)

By definition of W , we may choose sequences Λn → Λ and tn ↑ 1 such that W tn(Λn) → W (Λ). For
this choice, (2.76) yields for almost all ω and all bounded domain O′ ⊂ Rd

lim
n↑∞

lim
ε↓0

Jε(tnΛn · x+ εtnϕΛn(·/ε, ω), ω;O′) = J(Λ · x;O′).

For all n and almost all ω, set uωε,n := tnΛn ·x+εtnϕΛn(·/ε, ω). By Step 1 of the proof of Lemma 2.3.5,
for any bounded Lipschitz domains O ⊂ Rd, there exists a sequence (vωε,n)ε ⊂W 1,p

0 (O;Rm) such that
vωε,n −⇀ 0 in W 1,p(O;Rm) and Iε(uωε,n + vωε,n, ω;O)→ |O|W tn(Λn).

By a diagonalization argument, we then conclude that for almost all ω and all bounded Lipschitz
domains O ⊂ Rd there exist sequences (uε)ε ⊂ W 1,p

loc (Rd;Rm) and (vε)ε ⊂ W 1,p
0 (O;Rm) such that

uε −⇀ Λ · x and vε −⇀ 0 in W 1,p, and such that Iε(uε + vε, ω;O) → I(Λ · x;O) and Jε(uε, ω;O′) →
J(Λ · x;O′) for all bounded domains O′ ⊂ Rd.

Now define Ω′ ⊂ Ω1, Ω′ ∈ F , as a subset of full probability such that this result holds for all
Λ ∈ Qm×d∩int domV and all ω ∈ Ω′. Arguing as in the end of Step 1 of the proof of Proposition 2.2.10,
and using the continuity of both W and V in the interior of the domain (see Lemma 2.3.5), the
conclusion follows.

Step 2. Recovery sequence for continuous piecewise affine functions.
We now show that, for any ω ∈ Ω′, any bounded Lipschitz domain O ⊂ Rd, and any continuous

piecewise affine function u on O with ∇u ∈ int domV pointwise, there exist a sequence (uε)ε ⊂
W 1,p(O;Rm) and a sequence (vε)ε ⊂W 1,p

0 (O;Rm) such that uε −⇀ u and vε −⇀ 0 in W 1,p(O;Rm), and
such that Iε(uε + vε, ω;O)→ I(u;O) and Jε(uε, ω;O)→ J(Λ ·x;O). This follows from an immediate
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adaptation of Step 2 of the proof of Proposition 2.2.10. Again, the functional Iε is not convex, but
we may use the bound W ≤ C(1 +V ) at all points where the cut-off functions are different from 1 or
0, and use the convexity of V to estimate the corresponding error terms. We leave the detail to the
reader.

Step 3. Recovery sequence for general functions.
We show that, for all ω ∈ Ω′, all strongly star-shaped bounded Lipschitz domains O ⊂ Rd, and all

u ∈ W 1,p(O;Rm), there exist a sequence (uε)ε ⊂ W 1,p(O;Rm) and a sequence (vε)ε ⊂ W 1,p
0 (O;Rm)

such that uε −⇀ u and vε −⇀ 0 in W 1,p(O;Rm), and such that Iε(uε + vε, ω;O) → I(u;O) and
Jε(uε, ω;O) → J(u;O). Let O ⊂ Rd be some fixed strongly star-shaped bounded Lipschitz domain.
By the Γ-lim inf inequality of Proposition 2.3.3, we can restrict attention to those u ∈ W 1,p(O;Rm)
that satisfy

I(u;O) =

ˆ
O
W (∇u(y))dy <∞,

so that ∇u ∈ domV almost everywhere. Let u be such a function and let ω ∈ Ω′ be fixed.
Let t ∈ (0, 1). Since O is Lipschitz and strongly star-shaped, and since W is lower semicontinuous

on Rm×d, continuous on int domV , ru-usc, and satisfies V ≤W ≤ C(1+V ) (see indeed Lemmas 2.3.4
and 2.3.5), the nonconvex approximation result of Proposition 2.A.14(ii)(c) yields a sequence (un)n of
continuous piecewise affine functions such that un → u (strongly) inW 1,p(O;Rm), I(un;O)→ I(u;O)
and J(un;O) → J(u;O) as n ↑ ∞, and such that ∇un ∈ int domV pointwise. Now Step 2 above
gives, for any n, sequences (uε,n)ε ⊂W 1,p(O;Rm) and (vε,n)ε ⊂W 1,p

0 (O;Rm) such that uε,n −⇀ un and
vε,n −⇀ 0 inW 1,p(O;Rm), and such that Iε(uε,n+vε,n, ω;O)→ I(un;O) and Jε(uε,n, ω;O)→ J(un;O)
as ε ↓ 0. The result then follows from a diagonalization argument.

2.4 Proof of the improved results

2.4.1 Subcritical case 1 < p ≤ d

In this section, we establish Corollary 2.1.7, using truncations in the scalar case in place of the
Sobolev compact embedding. For such truncation arguments to work, we further need to assume that
the domain is fixed, i.e. domV (y, ·, ω) = domM for almost all y, ω.

Proof of Corollary 2.1.7. In the proof of Theorem 2.1.2 and Corollary 2.1.4, the Sobolev compact
embedding into bounded functions is used both in Step 2 of the proof of Proposition 2.2.10 and
in Step 1 of the proof of Corollary 2.1.4(i) (see Section 2.2.6). We only display the argument for
Proposition 2.2.10 (the argument for Step 1 of the proof of Corollary 2.1.4(i) is similar).

We use the notation of Step 2 of the proof of Proposition 2.2.10. For all s > 0, define the truncation
map Ts : R→ R as follows,

Ts(x) = sgn(x) |x| ∧ s =


s, if x ≥ s;
x, if −s ≤ x ≤ s;
−s, if x ≤ −s;

(2.77)

and for all s > 0 consider the following s-truncation of uε,κ,r,η,

uε,κ,r,η,s := Ts(uε,κ,r,η − uκ,r) + uκ,r ∈W 1,p(O;R). (2.78)

Since |tuε,κ,r,η,s − u| ≤ s+ |tuκ,r − u|, we may replace (2.45) by

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
s↓0

lim sup
ε↓0

‖tuε,κ,r,η,s − u‖L∞(O) = 0.
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Since ∇uε,κ,r,η,s = T ′s(uε,κ,r,η − uκ,r)∇uε,κ,r,η + (1− T ′s(uε,κ,r,η − uκ,r))∇uκ,r, we deduce by convexity,
noting that T ′s takes values in [0, 1],

Jε(tuε,κ,r,η,s, ω;O) ≤
ˆ
O
T ′s(uε,κ,r,η(y)− uκ,r(y))V (y/ε, t∇uε,κ,r,η, ω)dy

+

ˆ
O

(1− T ′s(uε,κ,r,η(y)− uκ,r(y)))V (y/ε, t∇uκ,r, ω)dy

≤ Jε(tuε,κ,r,η, ω;O) + |{y ∈ O : |uε,κ,r,η(y)− uκ,r(y)| > s}| max
1≤l≤k

M(tΛl)

≤ Jε(tuε,κ,r,η, ω;O) + s−p‖uε,κ,r,η − uκ,r‖pLp(O)

(
(1− t)M(0) + max

1≤l≤k
M(Λl)

)
.

Since by definition (and by the Rellich-Kondrachov theorem) we have uε,κ,r,η → uκ,r (strongly) in
Lp(O) as ε ↓ 0, since the Λl’s all belong to domV , and since by assumption domM = domV , we
deduce, combining this with (2.48), that

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
s↓0

lim sup
ε↓0

Jε(tuε,κ,r,η,s, ω;O) ≤ J(u;O).

The rest of the proof is unchanged.

2.4.2 Minimal soft buffer zone for Dirichlet boundary data

In this section, we prove Corollary 2.1.8. In view of the error term (2.51) in the proof of Corol-
lary 2.1.4, it seems that the speed of convergence of η to 0 with respect to εmust depend quantitatively
on the speed of convergence of wε to 0 in L∞(O;Rm). In the case when the target function is affine
(Λ · x, say), then wε := εϕΛ(·/ε, ·) is the rescaling of the corrector and its convergence to zero is
strictly related to the sublinearity of ϕΛ at infinity (cf. Lemma 2.2.4). Even in the linear scalar
case when V (y,Λ) = Λ ·A(y)Λ for some matrix-valued random field A, this sublinear growth can be
arbitrary: indeed, it follows from [203] that for all γ < 1 there exists a (strongly correlated) random
field A such that E

[
|ϕΛ(x)|2

]1/2 ' |x|γ as |x| � 1. Yet, if instead of using the corrector ϕΛ itself
— which is in general not stationary, nor well-behaved — we may use a stationary proxy, then the
size of the buffer zone can be (optimally) reduced, at least for affine target functions, as the following
proposition shows.

Proposition 2.4.1. If for all Λ ∈ Rm×d we have

V (Λ) = inf
φ∈W 1,p(Ω;Rm)

E[V (0,Λ +∇φ, ·)], (2.79)

then the conclusion of Corollary 2.1.8 holds (and we can further replace θε by any sequence ηε ↓ 0
satisfying lim infε ηε/ε > 0). ♦

Identity (2.79) is essentially a regularity statement on quasi-minimizers of f 7→ E[V (0,Λ+f, ·)] on
Lppot(Ω)m. By Poincaré’s inequality, periodic gradients with mean-value zero are gradients of periodic
functions, and hence in that case the space F ppot(Ω) coincide with {∇φ : φ ∈W 1,p(Ω)m}, so that (2.79)
is trivially satisfied. This already proves Corollary 2.1.8 under assumption (1).

On the other hand, the following result shows that (2.79) is also satisfied in the scalar case m = 1
if the domain of V is fixed, in which case truncations are available. This proves Corollary 2.1.8 under
the additional assumption (2).

Lemma 2.4.2. If m = 1 and if domV (y, ·, ω) = domM is open for almost all y, ω, then assump-
tion (2.79) holds true for all Λ ∈ Rm×d. ♦

78



We start with the proof of Proposition 2.4.1.

Proof of Proposition 2.4.1. For all Λ ∈ Rm×d, by assumption (2.79), there exists for all δ > 0 a
stationary random field ϕΛ,δ ∈ W 1,p(Ω;Rm) such that E[V (0,Λ + ∇ϕΛ,δ(0, ·), ·)] ≤ V (Λ) + δ. Set
uΛ,δ,ω
ε := εϕΛ,δ(·/ε, ω). By stationarity, for almost all ω, the Birkhoff-Khinchin ergodic theorem

asserts that, for any bounded domain O ⊂ Rd,

lim
ε↓0

ˆ
O
|uΛ,δ,ω
ε /ε|p = |O|E[|ϕΛ,δ|p], lim

ε↓0

ˆ
O
|∇uΛ,δ,ω

ε |p = |O|E[|∇ϕΛ,δ|p]. (2.80)

Let O ⊂ Rd be some fixed bounded domain. For η > 0, set Oη := {x ∈ O : d(x, ∂O) > η}. For any
sequence ηε ↓ 0, (2.80) yields

lim
ε↓0

ˆ
O\Oηε

|uΛ,δ,ω
ε /ε|p = 0 = lim

ε↓0

ˆ
O\Oηε

|∇uΛ,δ,ω
ε |p. (2.81)

Fix such a sequence ηε ↓ 0. As in Step 1 of the proof of Proposition 2.2.10, for all Λ ∈ Rm×d,
we obtain the following, for some subset ΩΛ ∈ F of full probability: for all ω ∈ ΩΛ and all δ >
0, there is a sequence (uΛ,δ,ω

ε )ε ⊂ W 1,p(O;Rm) such that uΛ,δ,ω
ε −⇀ 0 in W 1,p(O;Rm) as ε ↓ 0,

lim supε Jε(Λ · x+ uΛ,δ,ω
ε , ω;O) ≤ J(Λ · x;O) + δ, and such that (2.81) is satisfied.

Let Λ and ω ∈ ΩΛ be fixed, and let (uΛ,δ,ω
ε )ε be as above. For all ε > 0, choose a smooth cut-off

function χε with values in [0, 1], equal to 1 on Oηε = {x ∈ O : d(x, ∂O) > ηε}, vanishing outside O,
and with |∇χε| ≤ C ′/ηε for some constant C ′. Defining vΛ,δ,ω

ε := χεu
Λ,δ,ω
ε ∈W 1,p

0 (O;Rm), we obtain

Jηεε (Λ · x+ vΛ,δ,ω
ε , ω;O) = Jε(Λ · x+ vΛ,δ,ω

ε , ω;Oηε) +

ˆ
O\Oηε

|Λ +∇vΛ,δ,ω
ε |p

≤ Jε(Λ · x+ vΛ,δ,ω
ε , ω;O) + 3p−1|Λ|p|O \Oηε |

+ 3p−1

ˆ
O\Oηε

(|∇uΛ,δ,ω
ε |p + |C ′uΛ,δ,ω

ε /ηε|p),

and hence, if the sequence ηε ↓ 0 is further chosen such that lim infε ηε/ε > 0,

lim sup
ε↓0

Jηεε (Λ · x+ vΛ,δ,ω
ε , ω;O) ≤ lim sup

ε↓0
Jε(Λ · x+ vΛ,δ,ω

ε , ω;O) ≤ J(Λ · x;O) + δ.

Therefore, lim supδ lim supε J
ηε
ε (Λ · x + vΛ,δ,ω

ε , ω;O) ≤ J(Λ · x;O). Combined with the Γ-lim inf
inequality of Proposition 2.2.2 and a diagonalization argument, this proves the result.

We now establish Lemma 2.4.2.

Proof of Lemma 2.4.2. We split the proof into two steps.

Step 1. Preliminary.
We claim that it suffices to prove that, for all Λ ∈ domV ,

lim sup
t↑1

inf
φ∈W 1,p(Ω)

E[V (0, tΛ +∇φ, ·)] ≤ V (Λ). (2.82)

Define V ′(Λ) := infφ∈W 1,p(Ω) E[V (0,Λ +∇φ, ·)]. By definition V ′(Λ) ≥ V (Λ) for all Λ, and hence
property (2.82) together with the lower semicontinuity of V directly yields V (Λ) = limt↑1 V

′
(tΛ) for

all Λ (and in particular the limit exists). Since V ′ is obviously convex, it is continuous on the interior
of its domain. Since the domain is assumed to be open, this yields V (Λ) = V

′
(Λ) for all Λ.
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Step 2. Proof of (2.82).
Let Λ ∈ domV be fixed. Lemma 2.2.4 gives a measurable corrector u := ϕΛ ∈ Mes(Ω;W 1,p

loc (Rd))
such that ∇u ∈ F ppot(Ω) and V (Λ) = E[V (0,Λ + ∇u(0, ·), ·)]. For all R > r > 0, choose a smooth
cut-off function χR,r taking values in [0, 1], equal to 1 on QR−r, vanishing outside QR and satisfying
|∇χR,r| ≤ 2/r. Also recall the definition (2.77) of the truncation Ts. We then set

uR(x, ω) = u(x, ω)−
 
QR

u(·, ω), vsR,r(x, ω) = χR,r(x)TsuR(x, ω),

and
wsR,r(x, ω) =

1

|QR|

ˆ
Rd
vsR,r(x+ y, τyω)dy =

 
−x+QR

vsR,r(x+ y, τyω)dy.

Clearly, wsR,r is well-defined, stationary, and belongs to W 1,p(Ω), with

∇wsR,r(x, ω) =

 
−x+QR

∇vsR,r(x+ y, τyω)dy.

Let t ∈ [0, 1). By Jensen’s inequality,

Ks
R,r(t) := E[V (0, tΛ + t∇wsR,r(0, ·), ·)] = E

[
V

(
0, tΛ + t

 
QR

∇vsR,r(y, τy·)dy, ·
)]

≤ E
[ 

QR

V (0, tΛ + t∇vsR,r(y, τy·), ·)dy
]
,

and hence, by stationarity and the Fubini theorem,

Ks
R,r(t) ≤ E

[ 
QR

V (y, tΛ + t∇vsR,r(y, ·), ·)dy
]
.

Decomposing

tΛ + t∇vsR,r(y, ω) = tΛ + tχR,r(y)∇TsuR(y, ω) + (1− t) t

1− t
∇χR,r(y)TsuR(y, ω)

= tχR,r(y)T ′s(uR(y, ω))(Λ +∇u(y, ω)) + t(1− χR,r(y))T ′s(uR(y, ω))Λ

+ t(1− T ′s(uR(y, ω)))Λ + (1− t) t

1− t
∇χR,r(y)TsuR(y, ω),

with T ′s taking values in [0, 1], we may then bound by convexity

Ks
R,r(t) ≤ E

[ 
QR

V (y,Λ +∇u(y, ·), ·)dy
]

+ (1− t)EsR,r(t)

+M(Λ)

 
QR

(1− χR,r) +M(Λ)E
[ 

QR

(1− T ′s(uR(y, ·)))
]
, (2.83)

where the error term reads

EsR,r(t) = E
[ 

QR

M

(
t

1− t
∇χR,r(y)TsuR(y, ω)

)
dy

]
.

By stationarity of ∇u, note that

E
[ 

QR

V (y,Λ +∇u(y, ·), ·)dy
]

= E[V (0,Λ +∇u(0, ·), ·)] = V (Λ). (2.84)
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For the error term, note that∥∥∥∥ t

1− t
∇χR,r(·)TsuR(·, ω)

∥∥∥∥
L∞(O)

≤ 2t

1− t
s

r
. (2.85)

It remains to treat the last two terms of (2.83). Noting that
ffl
QR

(1− χR,r) = R−d(Rd − (R− r)d) ≤
dr/R, we obtain

 
QR

(1− χR,r) + E
[ 

QR

(1− T ′s(uR(y, ·)))
]
≤ dr

R
+ E

[ 
QR

1|uR(y)|≥sdy

]
(2.86)

≤ dr

R
+

ˆ
Q
P
[

1

R

∣∣∣u(Ry, ·)−
 
Q
u(Rz, ·)dz

∣∣∣ ≥ s

R

]
dy.

Lemma 2.2.4 (together with the Rellich-Kondrachov theorem) gives 1
R |u(R·, ω)−

ffl
Q u(Rz, ω)dz| → 0

(strongly) in Lp(Q) as R ↑ ∞, for almost all ω. Hence up to an extraction in R (implicit in the
sequel) we deduce that, for almost all y ∈ Q, 1

R |u(Ry, ·) −
ffl
Q u(Rz, ·)dz| → 0 almost surely. Since

almost sure convergence implies convergence in probability, we deduce by dominated convergence, for
all ε > 0,

lim
R↑∞

ˆ
Q
P
[

1

R

∣∣∣u(Ry, ·)−
 
Q
u(Rz, ·)dz

∣∣∣ ≥ ε] dy = 0.

A diagonalization argument then gives a sequence εR ↓ 0 such that

lim
R↑∞

ˆ
Q
P
[

1

R

∣∣∣u(Ry, ·)−
 
Q
u(Rz, ·)dz

∣∣∣ ≥ εR] dy = 0. (2.87)

Choose s = sR := RεR and r = rR := R
√
εR. By assumption, there exists some δ > 0 with

adhBδ ⊂ int domM . By (2.85), for all t ∈ [0, 1), there is some Rt > 0 such that for all R > Rt∥∥∥∥ t

1− t
∇χR,rR(·)TsRuR(·, ω)

∥∥∥∥
L∞(O)

≤ 2t

1− t
√
εR < δ. (2.88)

Combining this with (2.83), (2.84), (2.86), (2.87), and noting that M(Λ) <∞ follows from the choice
Λ ∈ domV , we obtain

lim sup
t↑1

lim sup
R↑∞

KsR
R,rR

(t) ≤ V (Λ),

and the result (2.82) follows.

2.A Appendix: Some technical results

2.A.1 Normal random integrands

In this appendix, we briefly recall the precise definition of normal random integrands (as defined
e.g. in [177, Section VIII.1.3]) and we prove their main properties, mentioned in Section 2.1.2 and
used throughout this chapter. Let (Ω,F , P ) be a complete probability space. Recall that we denote
by B(Rk) the (not completed!) Borel σ-algebra on Rk.

Definition 2.A.1. A normal random integrand is a map W : Rd × Rm×d × Ω→ [0,∞] such that

(a) W is jointly measurable (i.e. with respect to the completion of B(Rd)× B(Rm×d)×F);
(b) for almost all ω, there exists a map Vω : Rd×Rm×d → [0,∞] that is B(Rd)×B(Rm×d)-measurable

and such that W (y, ·, ω) = Vω(y, ·) for almost all y;
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(c) for almost all y, there exists a map Vy : Rm×d×Ω→ [0,∞] that is B(Rm×d)×F-measurable and
such that W (y, ·, ω) = Vy(·, ω) for almost all ω;

(d) for almost all y, ω, the map W (y, ·, ω) is lower semicontinuous on Rm×d.
It is said to be τ -stationary if it satisfies (2.4) for all Λ, y, z, ω. ♦

As shown e.g. in [177, Section VIII.1.3], a simple example of normal random integrands is given by
the so-called Carathéodory random integrands, that are maps W : Rd×Rm×d×Ω→ [0,∞] such that
W (y, ·, ω) is continuous on Rm×d for almost all y, ω, and such that W (·,Λ, ·) is jointly measurable on
Rd × Ω for all Λ.

As already advertised in Section 2.1.2, the reason for these technical assumptions is that they are
particularly weak but still guarantee the following key properties.

Lemma 2.A.2. Let W : Rd × Rm×d × Ω→ [0,∞] be a normal random integrand. Then,
(i) for almost all ω, the map y 7→W (y, u(y), ω) is measurable for all u ∈ Mes(Rd,Rm×d);
(ii) for almost all y, the map ω 7→W (y, u(ω), ω) is measurable for all u ∈ Mes(Ω,Rm×d). ♦

Proof. For almost all ω, part (b) of Definition 2.A.1 gives a B(Rd) × B(Rm×d)-measurable map Vω
on Rd × Rm×d such that W (y, ·, ω) = Vω(y, ·) for almost all y. Hence, for u ∈ Mes(Rd;Rm×d), the
map y 7→ W (y, u(y), ω) is equal almost everywhere to the map y 7→ Vω(y, u(y)), which is necessarily
measurable since Id×u : Rd×Rd → Rd×Rm×d is measurable and since Vω is Borel-measurable. This
proves (i), and (ii) is similar.

If W is τ -stationary, we may write W (y,Λ, ω) = W (0,Λ, τ−yω), which thus receives a pointwise
meaning in the first variable, and Lemma 2.A.2(ii) may obviously be strengthened as follows.

Lemma 2.A.3. Let W : Rd × Rm×d × Ω → [0,∞] be a τ -stationary normal random integrand. For
all y and all u ∈ Mes(Ω;Rm×d), the map ω 7→W (y, u(ω), ω) is measurable. ♦

2.A.2 Stationary differential calculus in probability

In this appendix, we precisely define the notion of measurable action that is used throughout
this chapter as well as in the sequel of this thesis to induce the stationarity. We further discuss the
properties of the stationary derivatives defined in Section 2.2.1, and prove in particular the useful
identity (2.19).

Stationary random fields

As usual, the standard notion of stationarity of random fields (defined as the translation invariance
of all the finite-dimensional distributions) is strictly equivalent to a formulation of stationarity as
the invariance under some (measure-preserving) action of the group of translations (Rd,+) on the
probability space (see e.g. [272, Section 16.1]). This point of view is of great interest, since it puts us
into the realm of ergodic theory.

Because we focus on jointly measurable random fields, which is standard in stochastic homoge-
nization theory (see also Remark 2.A.6 below), a further measurability requirement is added in our
definition of an action (similarly as e.g. in [265, Section 7.1]).

Definition 2.A.4. A measurable action of the group (Rd,+) on (Ω,F ,P) is a collection τ := (τx)x∈Rd
of measurable transformations of Ω such that
(i) τx ◦ τy = τx+y for all x, y ∈ Rd;
(ii) P[τxA] = P[A] for all x ∈ Rd and all A ∈ F ;
(iii) the map Rd × Ω→ Ω : (x, ω) 7→ τxω is measurable. ♦
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For any random variable f ∈ Mes(Ω;R), we may define its τ -stationary extension f : Rd×Ω→ R
by f(x, ω) := f(τ−xω), which is a τ -stationary random field on Rd (in the sense that f(x + y, ω) =
f(x, τ−yω) for all x, y, ω) and which is by definition jointly measurable on Rd×Ω. For f ∈ Lp(Ω), 1 ≤
p <∞, the τ -stationary extension f belongs to Lp(Ω; Lploc(R

d)). In this way, we get a bijection between
the random variables (resp. in Lp(Ω)) and the τ -stationary random fields (resp. in Lp(Ω; Lploc(R

d))).
We may also naturally consider the associated action T := (Tx)x∈Rd of (Rd,+) on Mes(Ω;R),

defined by (Txf)(ω) = f(τ−xω) for all ω ∈ Ω and f ∈ Mes(Ω;R). Let 1 ≤ p < ∞. The following
gives elementary properties of this action (see e.g. [265, Section 7.1]).

Lemma 2.A.5. The action T defined above is unitary and strongly continuous on Lp(Ω). ♦

In the context of stochastic homogenization theory, the measurability hypotheses made above (as
in e.g. [265, Section 7.1]) are sometimes replaced by stochastic continuity hypotheses (see e.g. [354,
Section 2]). As the following remark explains, both are actually equivalent.

Remark 2.A.6 (Measurability or continuity). It should be noted that the additional measurability
assumption (iii) in Definition 2.A.4 above is not inoffensive at all. Indeed, a stochastic version of the
Lusin theorem can easily be proven: a random field h on Rd is jointly measurable if and only if for
almost all x ∈ Rd it satisfies for all δ > 0,

lim
y→0

P[|h(x+ y, ω)− h(x, ω)| > δ] = 0.

Hence, for a stationary random field h on Rd, joint measurability is actually equivalent to stochastic
continuity (and even to continuity in the p-th mean, in the case when h(0, ·) ∈ Lp(Ω)). In the
same vein, the measurability property (iii) in Definition 2.A.4 is equivalent to the strong continuity
of the action T of (Rd,+) on Lp(Ω), and also to the property that all τ -stationary extensions are
stochastically continuous. ♦

Stationary Sobolev spaces

Let 1 ≤ p < ∞, and let the stationary gradient D and the space W 1,p(Ω) be defined as in
Section 2.2.1. Now we present another useful vision for derivatives of stationary random fields.

Given a random variable f ∈ Lp(Ω), the τ -stationary extension is an element f ∈ Lploc(R
d; Lp(Ω)) =

Lp(Ω; Lploc(R
d)) and can thus be seen as an Lp(Ω)-valued distribution on Rd. We may then de-

fine its distributional gradient ∇f in the usual way. Note that by definition, for almost all ω,
∇f(·, ω) is nothing but the usual distributional gradient of f(·, ω) ∈ Lploc(R

d). As usual, the Sobolev
space W 1,p

loc (Rd; Lp(Ω)) is defined as the space of functions f ∈ Lploc(R
d; Lp(Ω)) such that ∇f ∈

Lploc(R
d; Lp(Ω;Rd)), and in that case ∇f is called the weak gradient. The following result shows the

link with stationary gradients and with the space W 1,p(Ω), in particular proving identity (2.19).

Lemma 2.A.7. Modulo the correspondence between random variables and τ -stationary random fields,
we have

W 1,p(Ω) = {f ∈W 1,p
loc (Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω),∀x, y, ω},

and moreover ∇f = Df for all f ∈W 1,p(Ω). ♦

Proof. Denote for simplicity Ep := {f ∈W 1,p
loc (Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω),∀x, y, ω}. For all

i, the stationary derivativeDif is defined as the strong derivative of the map R→ Lp(Ω) : h 7→ T−heif ,
so that

W 1,p(Ω) = {f ∈ C1(Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω),∀x, y, ω}.

Hence, for all f ∈W 1,p(Ω), we have f ∈ Ep, and ∇f = Df , since weak derivatives are generalizations
of strong derivatives.
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We now turn to the converse statement. Let f ∈ W 1,p(Ω). As in [265, Section 7.2], choose a
nonnegative even function ρ ∈ C∞c (Rd) with

´
ρ = 1 and supp ρ ⊂ B1, write ρδ(x) = δ−dρ(x/δ) for

all δ > 0, and define a regularization Rδ[f ] ∈ Lp(Ω) by

Rδ[f ](ω) =

ˆ
Rd
ρδ(y)f(y, ω)dy, (2.89)

or equivalently, as ρδ is even,

Rδ[f ](x, ω) =

ˆ
Rd
ρδ(y)f(x+ y, ω)dy =

ˆ
Rd
ρδ(y − x)f(y, ω)dy = (ρδ ∗ f(·, ω))(x).

Clearly, Rδ[f ] → f in Lp(Ω), and hence by stationarity Rδ[f ](x, ·) → f(x, ·) in Lp(Ω) uniformly in
x. As by definition Rδ[f ] ∈ C∞(Rd; Lp(Ω)), we have Rδ[f ] ∈ W 1,p(Ω) and the stationary gradient is
simply DRδ[f ] = Rδ[∇f ]. This proves DRδ[f ]→ ∇f in Lp(Ω;Rd), and thus DRδ[f ](x, ·)→ ∇f(x, ·)
in Lp(Ω;Rd) uniformly in x. Hence Rδ[f ] → f in C1(Rd; Lp(Ω)), so f ∈ C1(Rd; Lp(Ω)), from which
we conclude f ∈W 1,p(Ω).

2.A.3 Measurability results

This appendix is concerned with various measurability properties.

Measurable potentials for random fields

The following result complements the equivalent definition (2.21) of Lppot(Ω), and shows that
potentials associated with potential random fields may be chosen in a measurable way with respect
to the alea.

Proposition 2.A.8. Let τ be an ergodic measurable action on a complete probability space (Ω,F ,P),
and let 1 < p < ∞. For all f ∈ Lppot(Ω) there exists a random field φ ∈ Mes(Ω;W 1,p

loc (Rd)) such that
f(·, ω) = ∇φ(·, ω) for almost all ω. ♦

Proof. Let f ∈ Lppot(Ω) be fixed. For all n, k ≥ 1, define the space

Xn,k :=
{
φ ∈W 1,p(Bn) : ‖∇φ‖Lp(Bn) ≤ k,

ˆ
Bn

φ = 0
}
,

endowed with the weak topology. By Poincaré’s inequality and by the Banach-Alaoglu theorem, this
space is metrizable and compact, hence Polish. Consider the multifunction Γn,k : Ω ⇒ Xn,k defined
by

Γn,k(ω) := {φ ∈ Xn,k : ∇φ|Bn = f(·, ω)|Bn}.

Clearly Γn,k(ω) is closed for all ω. We first prove further properties of this multifunction, and the
conclusion will then follow by applying the Rokhlin–Kuratowski–Ryll Nardzewski theorem [371, 278].

Step 1. For all n ≥ 1, we claim the existence of an increasing sequence of events Ωn,k ⊂ Ω such that
P[Ωn,k] ↑ 1 as k ↑ ∞ for fixed n, and such that Γn,k(ω) 6= ∅ for all ω ∈ Ωn,k.

By Definition 2.21, there is a set Ω′ ∈ F of full probability, such that for all ω ∈ Ω′ the function
f(·, ω) is a potential field in Lploc(R

d;Rd), and hence there exists φω ∈ W 1,p
loc (Rd) such that f(·, ω) =

∇φω. For all n ≥ 1, define φωn := φω −
ffl
Bn
φω(z)dz ∈ W 1,p(Bn). By definition,

´
Bn
φωn = 0 and

∇φωn = f(·, ω) on Bn. Moreover, ‖∇φωn‖Lp(Bn) ≤M holds for all ω ∈ Ωn,k, where we define the event

Ωn,k := {ω ∈ Ω′ : ‖f(·, ω)‖Lp(Bn) ≤ k}.

Integrability and stationarity of f easily imply that P[Ωn,k] ↑ 1 as k ↑ ∞.
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Step 2. Proof that Γn,k is measurable, in the sense that Γ−1
n,k(O) ∈ F for all open subset O ⊂ Xn,k,

where we have set
Γ−1
n,k(O) := {ω ∈ Ω : Γn,k(ω) ∩O 6= ∅}.

As Xn,k is metrizable, it suffices to check Γ−1
n,k(F ) ∈ F for all closed subset F ⊂ Xn,k (see e.g. [10,

Lemma 18.2]). Given a closed subset F ⊂ Xn,k, we may write, using Poincaré’s inequality and the
weak lower semicontinuity of the norm,

Γ−1
n,k(F ) = {ω ∈ Ω : ∃φ ∈ F,∇φ = f(·, ω)|Bn}

=

∞⋂
j=1

{ω ∈ Ω : ∃φ ∈ F, ‖∇φ− f(·, ω)‖Lp(Bn) ≤ 1/j}.

Separability of the Polish space Xn,k implies that F is itself separable, and there exists a countable
dense subset F0 ⊂ F . Hence

Γ−1
n,k(F ) =

∞⋂
j=1

⋃
φ∈F0

{ω ∈ Ω : ‖∇φ− f(·, ω)‖Lp(Bn) ≤ 1/j},

and measurability of Γ−1
n,k(F ) then follows from measurability of f .

Step 3. Conclusion.
By steps 1 and 2, for all n, k ≥ 1, the restricted multifunction Γn,k|Ωn,k : Ωn,k ⇒ Xn,k is measurable

and has nonempty closed values. As Xn,k is a Polish space, we may apply the Rokhlin–Kuratowski–
Ryll Nardzewski theorem (see e.g. [10, Theorem 18.13]), which gives a measurable function φn,k :
Ωn,k → Xn,k such that φn,k(ω) ∈ Γn,k(ω), that is ∇φn,k(·, ω) = f(·, ω)|Bn for all ω ∈ Ωn,k. For all
n > 0, define a measurable function φn : Ω→W 1,p(Bn) by

φn(ω) = 1Ω1(ω)φ1,n(ω) +
∞∑
k=2

1Ωn,k\Ωn,k−1
(ω)φn,k(ω).

By definition, we have ∇φn(·, ω) = f(·, ω)|Bn for all ω ∈ Ωn, where Ωn :=
⋃∞
k=1 Ωn,k ∈ F is a subset

of full probability. Denote Ω′′ :=
⋂∞
n=1 Ωn.

Let n ≥ 1. By definition, ∇φn − ∇φ1 vanishes on B1, hence the difference δn(ω) := φn(·, ω) −
φ1(·, ω) is constant on B1 for all ω ∈ Ω′′ and defines a measurable function δn : Ω′′ → R. Then
consider the measurable function ψn : Ω → W 1,p(Bn) defined by ψn(x, ω) := φn(x, ω) − δn(ω). By
construction, for all m > n ≥ 1, we have ψn = ψm on Bn, so the ψn’s can be glued together and yield
a measurable function ψ : Ω′′ →W 1,p

loc (Rd) such that ∇ψ(·, ω) = f(·, ω) for all ω ∈ Ω′′.

Sufficient conditions for Hypothesis 2.1.1

As shown below, the measurability Hypothesis 2.1.1 is automatically satisfied if the integrand is
quasiconvex and satisfies following useful approximation property.

Definition 2.A.9. A normal random integrandW : Rd×Rm×d×Ω→ [0,∞] is said to be quasiconvex
if W (y, ·, ω) is quasiconvex for almost all y, ω. Given p ≥ 1, it is further said to be p-sup-quasiconvex
if there exists a sequence (Wk)k of quasiconvex normal random integrands such that Wk(y,Λ, ω) ↑
W (y,Λ, ω) pointwise as k ↑ ∞, and such that, for all k, for almost all y, ω, and for all Λ,Λ′,

1

C
|Λ|p − C ≤Wk(y,Λ, ω) ≤ Ck(1 + |Λ|p), (2.90)

for some constants C,Ck > 0. ♦

85



Note that Tartar [409] has proven the existence of quasiconvex functions that are not p-sup-
quasiconvex for any p ≥ 1. Before stating our measurability result, let us examine some important
particular cases.

Lemma 2.A.10. Let W : Rd×Rm×d×Ω→ [0,∞] be a normal random integrand. Assume that there
exist C > 0 and p > 1 such that, for almost all ω, y, for all Λ,

1

C
|Λ|p − C ≤W (y,Λ, ω). (2.91)

Also assume that one of the following holds:
(1) W = V is a convex normal random integrand, and the convex function M := sup essy,ω V (y, ·, ω)

has 0 in the interior of its domain;
(2) W satisfies Hypothesis 2.1.9, with a convex part V such that M := sup essy,ω V (y, ·, ω) has 0 in

the interior of its domain.
Then, W is a p-sup-quasiconvex normal random integrand. ♦

Proof. Case (2) directly follows from the approximation result of case (1) applied to the convex part
V . We may thus focus on case (1). Let W = V be a convex normal random integrand. For all k ≥ 0,
consider the following Yosida transform,

Vk(y,Λ, ω) = inf
Λ′∈Rm×d

(
V (y,Λ′, ω) + k|Λ− Λ′|p

)
. (2.92)

For almost all y, ω, convexity of Vk(y, ·, ω) easily follows from convexity of V (y, ·, ω). For almost all
y, ω, the lower semicontinuity of V (y, ·, ω) ensures that Vk(y, ·, ω) ↑ V (y, ·, ω) pointwise as k ↑ ∞.
Moreover we have by definition Vk(y,Λ, ω) ≤ M(0) + k|Λ|p, while the lower bound (2.91) implies
Vk(y,Λ, ω) ≥ 1

C |Λ|
p − C.

It remains to check that the Vk’s are normal random integrands. For almost all y, ω, the function
V (y, ·, ω) is convex and lower semicontinuous, hence it is continuous on its domain Dy,ω (not only on
the interior). As by assumption 0 ∈ intDy,ω, the set Dy,ω is a convex subset of maximal dimension,
and hence points with rational coordinates are dense in Dy,ω. The infimum (2.92) defining Vk may
thus be restricted to Qm×d. As a countable infimum, the required measurability properties follow.

We now turn to the validity of the measurability Hypothesis 2.1.1 for p-sup-quasiconvex integrands.

Proposition 2.A.11. Let O ⊂ Rd be a bounded domain, let (Ω,F ,P) be a complete probability space,
and let W : Rd×Rm×d×Ω→ [0,∞] be a p-sup-quasiconvex normal random integrand for some p > 1
(in the sense of Definition 2.A.9). Given some fixed function f ∈ Lp(Ω; Lp(O;Rm×d)), consider the
random integral functional I : W 1,p(O;Rm)× Ω→ [0,∞] defined by

I(u, ω) =

ˆ
O
W (y, f(y, ω) +∇u(y), ω)dy. (2.93)

Then, I is weakly lower semicontinuous on W 1,p(O;Rm). Moreover, for all weakly closed subsets
F ⊂ W 1,p

0 (O;Rm) or F ⊂ {u ∈ W 1,p(O;Rm) :
´
O u = 0}, the function ω 7→ infv∈F I(v, ω) is

F-measurable. In particular, Hypothesis 2.1.1 is satisfied. ♦

Proof. For all k, define the approximated random functional Ik : W 1,p(O;Rm)× Ω→ [0,∞] by

Ik(u, ω) =

ˆ
O
Wk(y, f(y, ω) +∇u(y), ω)dy.

As the Wk’s are nonnegative, monotone convergence yields that Ik ↑ I pointwise. Moreover, for all
k, and almost all ω, the quasiconvexity and the upper bound (2.90) satisfied by Wk(·, ·, ω) imply
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the weak lower semicontinuity of Ik(·, ω) on W 1,p(O;Rm) (see [3]). As a pointwise supremum of
weakly lower semicontinuous functions, we deduce that I(·, ω) is itself weakly lower semicontinuous
on W 1,p(O;Rm).

Combining the weak lower semicontinuity of Ik with the uniform coercivity assumption (cf. lower
bound in (2.90)) and with Poincaré’s inequality, we easily conclude, for any weakly closed subset
F ⊂W 1,p

0 (O;Rm) or F ⊂ {u ∈W 1,p(O;Rm) :
´
O u = 0},

lim
k↑∞

inf
v∈F

Ik(v, ω) = inf
v∈F

I(v, ω). (2.94)

For all k, as Wk is quasiconvex hence rank-1 convex in its second variable (see [43]), the p-growth
condition (2.90) implies the following local Lipschitz condition: for almost all y, ω, for all Λ,Λ′,

|Wk(y,Λ, ω)−Wk(y,Λ
′, ω)| ≤ Ck|Λ− Λ′|(1 + |Λ|p−1 + |Λ′|p−1),

for some constant Ck > 0. The Hölder inequality then gives, for all u, v, for almost all ω,

|Ik(u, ω)− Ik(v, ω)| ≤ CkC‖∇(u− v)‖Lp(O)(1 + ‖∇u‖p−1
Lp(O) + ‖∇v‖p−1

Lp(O) + ‖f(·, ω)‖p−1
Lp(O)).

This proves that the map Ik(·, ω) is strongly continuous on W 1,p(O;Rm), for almost all ω. Given a
weakly (hence strongly) closed subset F ⊂W 1,p

0 (O;Rm) or F ⊂ {u ∈W 1,p(O;Rm) :
´
O u = 0}, strong

separability ofW 1,p(O;Rm) implies strong separability of F , so there exists a countable strongly dense
subset F0 ⊂ F . Therefore, the map

ω 7→ inf
v∈F

Ik(v, ω) = inf
v∈F0

Ik(v, ω)

is F-measurable, and the conclusion follows from (2.94).

Measurable minimizers

We show that in the convex case (or more generally in the p-sup-quasiconvex case) the random
functional (2.93) admits a measurable minimizer. For that purpose, we begin with the following
useful reformulation of the Rokhlin–Kuratowski–Ryll Nardzewski theorem [371, 278], which essentially
asserts that the measurability of the infimum implies the measurability of minimizers.

Lemma 2.A.12. Let X be a Polish space, let (Ω,F , µ) be a complete measure space, and let I :
X × Ω→ [0,∞]. Assume that
(i) for all ω, I(·, ω) is lower semicontinuous on X;
(ii) for all ω, I(·, ω) is coercive on X (i.e. the sublevel sets {u ∈ X : I(u, ω) ≤ c} are compact for

all c > 0);
(iii) for all closed subset F ⊂ X, the map φF : Ω → [0,∞] defined by φF (ω) := minv∈F I(v, ω) is

F-measurable.
Then, there exists an F-measurable map u : Ω→ X such that, for all ω ∈ Ω,

I(u(ω), ω) = min
v∈X

I(v, ω) = φX(ω). ♦

Proof. By coercivity and lower semicontinuity, the minima of I(·, ω) are always attained on all closed
subsets F , so that the function φF is always well-defined.

Consider the multifunction Γ : Ω⇒ X defined by Γ(ω) = {u ∈ X : I(u, ω) = φX(ω)}. By lower
semicontinuity, Γ(ω) ⊂ X is nonempty and closed for all ω. Moreover, we claim that Γ is measurable,
in the sense that

Γ−1(O) := {ω ∈ Ω : Γ(ω) ∩O 6= ∅}
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belongs to F for all open subsets O ⊂ X. As X is metrizable, it actually suffices to check Γ−1(F ) ∈ F
for all closed subsets F ⊂ X (see e.g. [10, Lemma 18.2]). By the coercivity and the lower semiconti-
nuity of I, we may write

Γ−1(F ) = {ω ∈ Ω : ∃u ∈ F, I(u, ω) = φX(ω)}

=
∞⋂
n=1

{
ω ∈ Ω : ∃u ∈ F, I(u, ω) ≤ φX(ω) +

1

n

}

=
∞⋂
n=1

{
ω ∈ Ω : φF (ω) ≤ φX(ω) +

1

n

}
,

where the right-hand side belongs to F , by measurability of φX and φF . Hence, Γ is measurable,
and we may thus apply the Rokhlin–Kuratowski–Ryll Nardzewski measurable selection theorem (see
e.g. [10, Theorem 18.13]), which states the existence of a F-measurable map u : Ω → X such that
u(ω) ∈ Γ(ω) for all ω.

Combining this measurable selection lemma with the measurability result of Proposition 2.A.11,
we obtain the following.

Proposition 2.A.13. Let O be some bounded domain, let (Ω,F ,P) be a complete probability space,
and let W : Rd ×Rm×d ×Ω→ [0,∞] be a normal random integrand. Assume that there exists C > 0
and p > 1 such that, for almost all y, ω and for all Λ,

1

C
|Λ|p − C ≤W (y,Λ, ω). (2.95)

Also assume that W satisfies Hypothesis 2.1.1 and that I(·, ω) is weakly lower semicontinuous on
W 1,p(O;Rm) for almost all ω (in particular this is the case if W is convex or p-sup-quasiconvex in the
sense of Definition 2.A.9). Given some fixed function f ∈ Lp(Ω; Lp(O;Rm×d)), consider the random
integral functional I : W 1,p(O;Rm)× Ω→ [0,∞] defined by

I(u, ω) =

ˆ
O
W (y, f(y, ω) +∇u(y), ω)dy.

Then, for all nonempty weakly closed subsets F ⊂W 1,p
0 (O;Rm) or F ⊂ {u ∈W 1,p(O;Rm) :

´
O u = 0},

there exists a F-measurable map u : Ω→ F such that, for almost all ω,

I(u(ω), ω) = inf
v∈F

I(v, ω). ♦

Proof. Let X denote the Banach space W 1,p
0 (O;Rm) or {u ∈W 1,p(O;Rm) :

´
O u = 0}, endowed with

the weak topology, and, for all k ≥ 1, consider the subset Xk := {u ∈ X : ‖∇u‖Lp(O) ≤ k}, endowed
with the induced weak topology. By Poincaré’s inequality and by the Banach-Alaoglu theorem, Xk is
easily seen to be metrizable and compact, hence Polish. Let F ⊂ X be a nonempty (weakly) closed
subset.

Let Ω′ ∈ F denote a subset of full probability such that I(·, ω) is weakly lower semicontinuous on
W 1,p(O;Rm) for all ω ∈ Ω′. Since Xk ⊂ X is (weakly) closed, the intersection Xk∩F is also (weakly)
closed, and hence Hypothesis 2.1.1 asserts that the map ω → infv∈F∩Xk I(v, ω) is F-measurable.
Applying Lemma 2.A.12 on the compact Polish space Xk and on Ω′ then yields a F-measurable map
uk : Ω′ → Xk such that, for all ω ∈ Ω′,

I(uk(ω), ω) = min
v∈F∩Xk

I(v, ω).
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The lower bound (2.95) and the triangle inequality give
ˆ
O
|∇u|p ≤ C22p−1 + C2p−1I(u, ω) + 2p−1

ˆ
O
|f(·, ω)|p.

Define for all k ≥ 1,

Ωk :=

{
ω ∈ Ω′ : C22p−1 + C2p−1 inf

v∈F
I(v, ω) + 2p−1

ˆ
O
|f(·, ω)|p ≤ k

}
,

and note that Ωk ∈ F by Hypothesis 2.1.1. By definition, for all ω ∈ Ωk we have

I(uk(ω), ω) = min
v∈F∩Xk

I(v, ω) = min
v∈F

I(v, ω).

The sequence (Ωk)k is increasing, Ωk ↑ Ω′′ :=
⋃∞
k=1 Ωk. By integrability of f , Ω′′ ⊂ Ω′′′ and P[Ω′′′ \

Ω′′] = 0, where we have defined the event Ω′′′ := {ω ∈ Ω : infv∈F I(v, ω) < ∞}. Given some fixed
w ∈ F , the measurable map u : Ω→ X defined by

u(ω) := 1Ω\Ω′′w + 1Ω1u1(ω) +

∞∑
k=2

1Ωk\Ωk−1
uk(ω)

satisfies by definition I(u(ω), ω) = infv∈F I(v, ω) for all ω ∈ Ω′′ ∪ (Ω \ Ω′′′).

2.A.4 Approximation results

In this appendix, we prove two general approximation results that are crucially needed in this
chapter. The first one is an extension of [331, Lemma 3.6] and [177, Proposition 2.6 of Chapter X].

Proposition 2.A.14. Let O ⊂ Rd be a bounded Lipschitz domain, which is also strongly star-shaped,
in the sense that there exists x0 ∈ O such that

−x0 +O ⊂ α(−x0 +O), for all α > 1.

Let Θ : Rm×d → [0,∞] be a convex lower semicontinuous function with 0 ∈ int domΘ, and let
u ∈W 1,1(O;Rm) such that

´
O Θ(∇u) <∞. Then,

(i) there is a sequence (vn)n ⊂ C∞(adhO;Rm) such that ∇vn ∈ int domΘ pointwise,

vn → u in W 1,1(O;Rm), and
ˆ
O

Θ(∇vn(y))dy →
ˆ
O

Θ(∇u(y))dy;

(ii) there is a sequence (wn)n of (continuous) piecewise affine functions such that ∇wn ∈ Qm×d ∩
int domΘ pointwise,

wn → u in W 1,1(O;Rm), and
ˆ
U

Θ(∇wn(y))dy →
ˆ
O

Θ(∇u(y))dy.

If in addition u belongs to W 1,p(O;Rm) for some 1 ≤ p < ∞, then the sequences (vn)n and (wn)n
can be chosen such that vn → u and wn → u in W 1,p(O;Rm). Moreover,
(a) if u belongs to W 1,1

0 (O;Rm), then we can choose vn ∈ C∞c (O;Rm) and wn|∂O = 0 (and in that
case the assumption that O be strongly star-shaped can be relaxed);

(b) if O = Q and u ∈W 1,1
per(Q;Rm), then vn and wn can be both chosen to be Q-periodic;

(c) if Ξ : Rm×d → [0,∞] is a (nonconvex) ru-usc lower semicontinuous function which is continuous
on int domΘ and satisfies 0 ≤ Ξ ≤ Θ pointwise, then the sequences (vn)n and (wn)n can be chosen
in such a way that

´
O Ξ(∇vn)→

´
O Ξ(∇u) and

´
O Ξ(∇wn)→

´
O Ξ(∇u). ♦
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Proof. We divide the proof into four steps.

Step 1. Proof of (i).
First, we show that we can assume ∇u ∈ int domΘ almost everywhere. Indeed, assume that (i) is

proven for such u’s, and let us deduce the general case. Given u ∈W 1,p(O;Rm) with
´
O Θ(∇u) <∞,

we have ∇u ∈ domΘ almost everywhere, and hence by convexity t∇u ∈ domΘ almost everywhere for
all t ∈ [0, 1). As convexity also implies

´
O Θ(t∇u) ≤ t

´
O Θ(∇u) + (1− t)Θ(0) <∞, we can apply the

result (i) to tu, for any t ∈ [0, 1): this gives a sequence (vn,t)n ⊂ C∞(adhO;Rm) such that vn,t → tu
in W 1,1(O;Rm) and

´
O Θ(∇vn,t(y))dy →

´
O Θ(t∇u(y))dy. Weak lower semicontinuity of the integral

functional u 7→
´
O Θ(∇u) on W 1,1(O;Rm) (which follows from convexity and lower semicontinuity of

Θ) implies lim inft↑1
´
O Θ(t∇u) ≥

´
O Θ(∇u). As the converse inequality follows from convexity, we

obtain

lim sup
t↑1

lim sup
n↑∞

(
‖vn,t − u‖W 1,1(O) +

∣∣∣∣ˆ
O

Θ(∇vn,t)−
ˆ
O

Θ(∇u)

∣∣∣∣)
= lim sup

t↑1

(
‖tu− u‖W 1,1(O) +

∣∣∣∣ˆ
O

Θ(t∇u)−
ˆ
O

Θ(∇u)

∣∣∣∣) = 0,

and hence a standard diagonalization argument gives a sequence (vn)n ⊂ C∞(adhO;Rm) such that
∇vn ∈ int domΘ almost everywhere, vn → u in W 1,1(O;Rm), and

´
O Θ(∇vn) →

´
O Θ(∇u), and

proves the general version of (i).
Hence, from now on, we assume ∇u ∈ int domΘ almost everywhere. Moreover, without loss

of generality, we may also assume that O is strongly star-shaped with respect to x0 = 0. Choose
(αk)k ⊂ (1,∞) a decreasing sequence of positive numbers converging to 1, sufficiently slowly so that
1
k <

1
2d(adhO, ∂(αkO)) for all k, and define

uk : αkO → Rm : x 7→ uk(x) = u(x/αk).

Take ρ ∈ C∞c (Rd) such that
´
ρ = 1, ρ ≥ 0 and supp ρ ⊂ B(0, 1), and write ρk(x) = k−dρ(kx), for

all k ≥ 1. Consider the sequence (vk)k defined by vk = ρk ∗ (αkuk) (which is well-defined by virtue of
the condition on the αk’s). Note that vk ∈ C∞(adhO;Rm) and ∇vk = ρk ∗ (∇u)k, where we use the
notation (∇u)k(x) = ∇u(x/αk). Moreover, we then observe vk → u in W 1,1(O;Rm) since uk → u et
(∇u)k → ∇u in L1(O;Rm). Now, Jensen’s inequality yields

0 ≤ Θ(∇vk) = Θ(ρk ∗ (∇u)k) ≤ ρk ∗ (Θ((∇u)k)) = ρk ∗ (Θ(∇u))k.

As the sequence (ρk ∗ (Θ(∇u))k)k converges to Θ ◦ ∇u in L1(O;Rm), it is uniformly integrable, and
the same thus holds for the sequence (Θ(∇vk))k. As ∇vk → ∇u in L1(O;Rm), the convergence
holds almost everywhere up to an extraction. Since by convexity Θ is continuous on int domΘ, since
∇u ∈ int domΘ almost everywhere, and since ∇vk → ∇u almost everywhere up to an extraction, we
deduce Θ(∇vk)→ Θ(∇u) almost everywhere up to an extraction. By uniform integrability the latter
convergence also holds in L1(O;Rm), which allows us to get rid of the extraction. In particular,ˆ

O
Θ(∇vk)→

ˆ
O

Θ(∇u).

Moreover, (∇u)k ∈ int domΘ almost everywhere, and thus ∇vk = ρk ∗ (∇u)k ∈ int domΘ everywhere
for all k, since int domΘ is a convex set containing 0. This proves part (i).

Let us now assume that u ∈W 1,p(O;Rm) for some 1 ≤ p <∞, and consider the sequences (uk)k,
((∇u)k)k and (vk)k defined above. First, Lebesgue’s dominated convergence theorem implies uk → u
and (∇u)k → ∇u in Lp(O;Rm). Further, since the Jensen inequality givesˆ

O
|vk − u|p =

ˆ
O
|αkρk ∗ uk − u|p ≤

ˆ
O

ˆ
B1/k

ρk(t)|αkuk(x− t)− u(x)|pdt dx,
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and likewise for gradients, we conclude that the sequence (vk)k converges to u in W 1,p(O;Rm). This
proves part (i) in the case when u ∈W 1,p(O;Rm).

Step 2. Proof of (ii).
For all k, since vk ∈ C∞(adhO;Rm), there exists a sequence (wk,j)j of piecewise affine functions

such that wk,j → vk in W 1,∞(O;Rm) as j ↑ ∞ and ‖∇wk,j‖L∞ ≤ ‖∇vk‖L∞ for all j, k (see e.g. [177,
Proposition 2.1 of Chapter X]). Further, these functions wk,j can (simply remember their construction
by triangulation) be chosen taking their values in int domΘ, since we have constructed∇vk ∈ int domΘ
everywhere for all k. Another approximation argument further allows us to choose wk,j such that
∇wk,j only takes rational values. The desired result then follows from Step 1 and a diagonalization
argument. Finally, the particular case when u belongs to W 1,p(O;Rm) is obtained similarly as in
Step 1.

Step 3. Proof of the additional statements.
It remains to address the particular cases (a) and (b). First assume that u belongs toW 1,1

0 (O;Rm).
For the corresponding result, we refer to [177, Proposition 2.6 of Chapter X]. The only difference is
that the argument in [177] requires continuity of Θ. Instead, we replace u by tu for t < 1 as in Step 1,
so that by convexity t∇u ∈ int domΘ almost everywhere, hence all the constructed quantities have
almost all their values in int domΘ, on which Θ is continuous by convexity. No further continuity
assumption is then needed.

Finally, if we assume O = Q with u ∈ W 1,1
per(Q;Rm), then we can consider the periodic extension

of u on Rd and repeat the arguments in such a way that periodicity is conserved.

Step 4. Proof in the nonconvex case.
Let u ∈W 1,p(O;Rm) be such that

´
U Θ(∇u) <∞, which implies ∇u ∈ domΘ almost everywhere.

Let t ∈ (0, 1). The approximation result given by point (i) gives a sequence (un,t)n of smooth functions
such that un,t → tu (strongly) in W 1,p(O;Rm) and

´
O Θ(∇un,t) →

´
O Θ(t∇u) as n ↑ ∞, and such

that ∇un,t ∈ int domΘ pointwise. Up to an extraction, we have ∇un,t → t∇u almost everywhere,
and thus Ξ(∇un,t) → Ξ(t∇u) almost everywhere, which follows from continuity of Ξ on the interior
of its domain, with indeed t∇u ∈ int domΞ almost everywhere. Then noting that

0 ≤ Ξ(∇un,t) ≤ C(1 + Θ(∇un,t)),

and invoking both Lebesgue’s dominated convergence theorem (for Ξ(∇un,t)) and its converse (for
Θ(∇un,t)), we deduce convergence

´
O Ξ(∇un,t)→

´
O Ξ(t∇u) as n ↑ ∞. As Ξ is lower semi-continuous

and also ru-usc, we compute, by Fatou’s lemma,
ˆ
O

Ξ(∇u(y))dy ≤
ˆ
O

lim inf
t↑1

Ξ(t∇u(y))dy ≤ lim inf
t↑1

ˆ
O

Ξ(t∇u(y))dy

≤ lim sup
t↑1

ˆ
O

Ξ(t∇u(y))dy ≤
ˆ
O

Ξ(∇u(y))dy.

Hence,

lim
t↑1

lim
n↑∞

ˆ
O

Ξ(∇un,t) = lim
t↑1

ˆ
O

Ξ(t∇u) =

ˆ
O

Ξ(∇u),

and similarly

lim
t↑1

lim
n↑∞

ˆ
O

Θ(∇un,t) =

ˆ
O

Θ(∇u),

so that the conclusion follows from a standard diagonalization argument. The other properties are
deduced in a similar way.
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For technical reasons, we need in the proof of Proposition 2.2.10 to further approximate piecewise
affine functions by refined ones with smoother variations. The precise approximation result that we
need is the following.

Proposition 2.A.15. Let u be an Rm-valued continuous piecewise affine function on a bounded
Lipschitz domain O ⊂ Rd. Consider the open partition O =

⊎k
l=1O

l associated with u (i.e. u is affine
on each piece Ol). Define M := (

⋃k
l=1 ∂O

l)\∂O the interior boundary of this partition of O, and, for
fixed r > 0, also define Mr := (M +Br) ∩O the r-neighborhood of this interior boundary. Then, for
all κ > 0, there exists a continuous piecewise affine function uκ,r on O with the following properties:

(i) ∇uκ,r = ∇u pointwise on O \Mr, and lim supr↓0 sup0<κ≤1 ‖uκ,r − u‖L∞(O) = 0;

(ii) ∇uκ,r ∈ conv({∇u(x) : x ∈ O}) pointwise (where conv(·) denotes the convex hull);

(iii) denoting by O :=
⊎nκ,r
l=1 O

l
κ,r the open partition associated with uκ,r, and Λlκ,r := ∇uκ,r|Olκ,r for

all l, we have |Λiκ,r − Λjκ,r| ≤ κ for all i, j with ∂Oiκ,r ∩ ∂O
j
κ,r 6= ∅. ♦

Proof. Let u, O and r be fixed. Without loss of generality, we can assume 0 ∈ O. Denote r0 :=
d(0, ∂O) and R0 := maxx∈∂O |x|, and define αr > 1 by (αr − 1)R0 = r/2. Choose a nonnegative
smooth function ρr supported in B(αr−1)r0 with

´
ρr = 1, and consider the smooth function ur on O

defined by ur = ρr ∗ [αru(·/αr)]. Since by definition inequality |αrx − x| ≤ (αr − 1)R0 = r/2 holds
for any x ∈ O, we easily check ∇ur = ∇u on the set O \Mr. As ur is smooth, we can consider
Lr := maxx∈adhO |∇∇ur(x)| < ∞. Choose a triangulation (Olκ,r)

nκ,r
l=1 of O which is a refinement

of the partition {Ol \ Mr : l = 1, . . . , k} ∪ {Mr}, such that the diameter of each of the Olκ,r’s
is at most κ/(2Lr). Now construct as usual the piecewise affine approximation uκ,r of ur with
respect to the triangulation (Olκ,r)l (see e.g. [177, Proposition 2.1 of Chapter X]). By construction,
∇uκ,r = ∇ur = ∇u on O\Mr, since ur is affine on each connected component of O\Mr. Also note that
the construction ensures that∇uκ,r belongs pointwise to the set {∇ur(x) : x ∈ O} (as a consequence of
the mean value theorem), which is by definition included in the convex hull conv({∇u(x) : x ∈ O}).
Moreover, if ∂Oiκ,r ∩ ∂O

j
κ,r 6= ∅, it implies that Oiκ,r ∪ O

j
κ,r has diameter bounded by κ/Lr. The

construction of uκ,r then gives∣∣∣∇uκ,r|Oiκ,r −∇uκ,r|Ojκ,r ∣∣∣ ≤ sup
x∈Oiκ,r

sup
y∈Ojκ,r

|∇ur(x)−∇ur(y)| ≤ κ

Lr
sup
x∈O
|∇∇ur(x)| ≤ κ,

which proves property (iii). Finally, the last property of (i) directly follows from the construction.
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Chapter 3

Pathwise structure of fluctuations
in stochastic homogenization

Four quantities are fundamental in homogenization of elliptic systems in divergence form and in
its applications: the field and the flux of the solution operator (applied to a general deterministic
right-hand side), and the field and the flux of the corrector. Homogenization is the study of the
large-scale properties of these objects. For random coefficients, these quantities fluctuate and their
fluctuations are a priori unrelated. Depending on the law of the coefficient field, and in particular
on the decay of its correlations on large scales, these fluctuations may display different scalings and
different limiting laws (if any). In this chapter, we identify a fifth and crucial intrinsic quantity, a
random 2-tensor field, which we refer to as the homogenization commutator and which is related to
variational quantities first considered by Armstrong and Smart. In the model framework of discrete
linear elliptic equations in divergence form with independent and identically distributed coefficients,
we show what we believe to be a general principle, namely that the homogenization commutator drives
at leading order the fluctuations of each of the four other quantities in a strong norm in probability,
which reveals the pathwise structure of fluctuations in stochastic homogenization. In addition, we
show in this framework that the (rescaled) fluctuations of the homogenization commutator converge
in law to a (2-tensor) Gaussian white noise, the distribution of which is thus characterized by some
4-tensor, and we analyze to which precision this tensor can be extracted from the representative
volume element method. All these results are optimally quantified and hold in any dimension. This
constitutes the first complete theory of fluctuations in stochastic homogenization. As a consequence,
we retrieve (optimal quantitative versions of) all the previously known results according to which the
solution operator satisfies a functional central limit theorem, and the field and flux of the corrector
converge to the Helmholtz and Leray projections of a Gaussian white noise, respectively.

This chapter corresponds to a thoroughly revised version of the paper [167] jointly written with
Antoine Gloria and Felix Otto.
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3.1 Introduction

This chapter constitutes the first part of a series of joint works with Antoine Gloria and Felix
Otto that develops a theory of fluctuations in stochastic homogenization of elliptic (non-necessarily
symmetric) systems. In this first part, using an elementary approach, we provide a complete picture of
our theory (with optimal error estimates and convergence rates) in the model framework of discrete
elliptic equations with independent and identically distributed (i.i.d.) conductances. Links to the
literature are discussed in Section 3.1.3 below, while the extension to more general situations is
postponed to forthcoming work and is shortly described in Section 3.1.4.

3.1.1 General overview

Although in the sequel we shall focus on the case of discrete equations, we use non-symmetric
continuum notation in this introduction. Let A be a stationary and ergodic random coefficient field
on Rd that satisfies the boundedness and ellipticity properties

|A(x)ξ| ≤ |ξ|, ξ ·A(x)ξ ≥ λ|ξ|2, for all x, ξ ∈ Rd,

for some λ > 0. For all ε > 0 we set Aε := A( ·ε), and for all deterministic vector fields f ∈ C∞c (Rd)d,
we consider the random family (uε)ε>0 of unique Lax-Milgram solutions in Rd (which, in the rest of
this chapter, means the unique weak solutions in Ḣ1(Rd)) of the rescaled problems

−D ·AεDuε = D · f, (3.1)

where D denotes the continuum gradient (while the notation ∇ is reserved in this chapter for the
discrete gradient). It is known since the pioneering works by Papanicolaou and Varadhan [354] and by
Kozlov [273] that, almost surely, uε converges weakly (in Ḣ1(Rd)) as ε ↓ 0 to the unique Lax-Milgram
solution ū in Rd of

−D ·AhomDū = D · f, (3.2)

where Ahom is a deterministic and constant matrix that only depends on A. More precisely, for any
direction ξ ∈ Rd, the projection Ahomξ is the expectation of the flux of the corrector in the direction
ξ,

Ahomξ = E [A(Dφξ + ξ)] ,

where the corrector φe is the unique (up to a random additive constant) almost-sure solution of the
corrector equation in Rd,

−D ·A(Dφξ + ξ) = 0,

in the class of functions the gradient of which is stationary and has finite second moment. We denote
by φ = (φi)

d
i=1 the vector field the entries of which are the correctors φi in the canonical directions

ei of Rd. Note that the convergence of Duε to Dū in L2(Rd)d is only weak since Duε typically
displays spatial oscillations at scale ε, which are not captured by the limit Dū. These oscillations
are however well-described by those of the corrector field Dφ( ·ε) through the two-scale expansion (we
systematically use Einstein’s summation rule on repeated indices)

Duε ≈ (Dφi(
·
ε) + ei)Diū, (3.3)

in the sense that Duε − (Dφi(
·
ε) + ei)Diū converges strongly to zero in L2(Rd)d. In the random

setting, this theory of oscillations was recently optimally quantified in [205], [203, Theorem 3], [208,
Corollary 3], and [30, Chapter 6].

As opposed to periodic homogenization, which boils down to the sole understanding of the (spa-
tial) oscillations of Duε, the stochastic setting involves the (random) fluctuations of Duε on top of its
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oscillations. More precisely, whereas oscillations are concerned with the (almost sure) lack of strong
compactness for Duε in L2(Rd)d, fluctuations are concerned with the leading-order probabilistic be-
havior of weak-type expressions of the form

´
Rd g ·Duε for g ∈ C∞c (Rd)d. Let us emphasize that in

the case of a weakly correlated coefficient field A the error in the two-scale expansion (3.3) is of order
ε in L2(Rd)d (or ε|log ε|

1
2 for d = 2) while fluctuations of Duε display the central limit theorem (CLT)

scaling ε
d
2 , so that (3.3) is not expected to be accurate in that scaling. This was indeed first checked

in dimension d ≥ 3 by Gu and Mourrat [225, Section 3.2] (see also the last item in Remarks 3.2.12
below for d = 2), who further argue that accuracy in (3.3) in the fluctuation scaling cannot even be
reached by the use of higher-order correctors. The corrector field Dφ is therefore the driving quantity
for oscillations but a priori not for fluctuations.

In the present chapter, we develop a complete theory of fluctuations in stochastic homogenization
in line with the known theory of oscillations, and our main achievement is the identification of the
driving quantity for fluctuations. The key in our theory consists in focusing on the homogeniza-
tion commutator of the solution AεDuε − AhomDuε and in studying its relation to the (standard)
homogenization commutator Ξ := (Ξi)

d
i=1 defined by

Ξi := A(Dφi + ei)−Ahom(Dφi + ei), Ξij := (Ξi)j . (3.4)

This stationary random (non-symmetric) 2-tensor field Ξ enjoys the following three crucial properties,
which lead to our complete theory of fluctuations:

(I) First and most importantly, the two-scale expansion of the homogenization commutator of the
solution

AεDuε −AhomDuε − E [AεDuε −AhomDuε] ≈ Ξi(
·
ε)Diū (3.5)

is (generically) accurate in the fluctuation scaling in the sense of

E
[∣∣∣ˆ

Rd
g ·
(
AεDuε −AhomDuε − E [AεDuε −AhomDuε]

)
−
ˆ
Rd
g · Ξi( ·ε)Diū

∣∣∣2] 1
2

≤ o(1)E
[∣∣∣ ˆ

Rd
g · Ξi( ·ε)Diū

∣∣∣2] 1
2

, (3.6)

where o(1) ↓ 0 as ε ↓ 0, for all g ∈ C∞c (Rd)d. Let us emphasize again that this property is
nontrivial and is due to the form of the commutator.

(II) Second, both the fluctuations of the field Duε and of the flux AεDuε can be recovered through
deterministic projections of those of the homogenization commutator AεDuε−AhomDuε of the
solution, which shows that no information is lost by passing to the homogenization commutator.
More precisely,ˆ

Rd
g ·D(uε − E [uε])

= −
ˆ
Rd

(P̄∗Hg) ·
(
AεDuε −AhomDuε − E

[
AεDuε −AhomDuε

])
, (3.7)

ˆ
Rd
g · (AεDuε − E [AεDuε])

=

ˆ
Rd

(P̄∗Lg) ·
(
AεDuε −AhomDuε − E

[
AεDuε −AhomDuε

])
,

in terms of the Helmholtz and Leray projections in L2(Rd)d,

P̄H := D(D ·AhomD)−1D·, P̄L := Id−P̄HAhom, (3.8)

P̄∗H := D(D ·A∗homD)−1D·, P̄∗L := Id−P̄HA∗hom,
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where A∗hom denotes the transpose of Ahom. In addition, the fluctuations of the field Dφ( ·ε) and
of the flux AεDφ( ·ε) of the corrector are clearly determined by those of the standard commutator
Ξ( ·ε). Indeed, the definition of Ξ leads to −D ·AhomDφi = D ·Ξi and A(Dφi + ei)−Ahomei =
Ξi +AhomDφi, to the effect of Dφi = −P̄Hei and A(Dφi + ei)−Ahomei = (Id−AhomP̄H)Ξi in
the stationary sense, and hence, formally,ˆ

Rd
F : Dφ( ·ε) = −

ˆ
Rd
P̄∗HF : Ξ( ·ε), (3.9)

ˆ
Rd
F :

(
Aε(Dφ( ·ε) + Id)−Ahom

)
=

ˆ
Rd
P∗LF : Ξ( ·ε),

where P̄∗H and P̄∗L act on the second index of the tensor field F . A suitable sense to these
identities is given as part of Corollary 3.2.4 below.
Let us highlight the pathwise structure of fluctuations revealed here. Combined with (3.6),
identities (3.7) and (3.9) imply that the fluctuations of Duε, AεDuε, Dφ( ·ε), and AεDφ( ·ε) are
determined at leading order by those of Ξ( ·ε) in a strong norm in probability. This almost
sure (“pathwise” in the language of SPDE) relation thus reduces the leading-order fluctuations
of all quantities of interest to those of the sole homogenization commutator Ξ in a pathwise
sense. Besides its theoretical importance, this pathwise structure is bound to affect multi-scale
computing and uncertainty quantification in an essential way.

(III) Third, the standard homogenization commutator Ξ is an approximately local function of the
coefficients A, which allows to infer the large-scale behavior of Ξ from the large-scale behavior
of A itself. This locality is best seen when formally computing partial derivatives of Ξ with
respect to A: letting φ∗ denote the corrector associated with the pointwise transpose coefficient
field A∗, and letting σ∗ denote the corresponding flux corrector (cf. (3.30) below), we obtain
(cf. (3.47))

∂

∂A(x)
Ξij = (Dφ∗j + ej) ·

∂A

∂A(x)
(Dφi + ei)

−D ·
(
φ∗j

∂A

∂A(x)
(Dφi + ei)

)
−D ·

(
(φ∗jA+ σ∗j )

∂Dφi
∂A(x)

)
. (3.10)

The first right-hand side term reveals an exactly local dependence upon A. The second term is
exactly local as well, but since it is written in divergence form its contribution is negligible when
integrating on large scales. The only non-local effect comes from the last term due to ∂Dφ

∂A ,
which is given by the mixed derivative of the Green’s function for −D ·AD and thus is expected
to have only borderline integrable decay. However, it appears inside a divergence, hence is also
negligible on large scales. (In fact, in this paper, the accuracy in (3.5) is established relying on
a similar representation of ∂

∂A(AεDuε −AhomDuε − Ξi(
·
ε)Diū), cf. Lemma 3.3.2.)

We quickly comment on the form of the homogenization commutator, which was simultaneously inde-
pendently introduced by Armstrong, Kuusi, and Mourrat [32] formalizing previous ideas by Armstrong
and Smart [36]. As well-known in applications, homogenization is the rigorous version of averaging
fields and fluxes in a consistent way. This is best seen in the very definition of H-convergence by
Murat and Tartar [333], which requires both weak convergence of the fields Duε ⇀ Dū and of the
fluxes AεDuε ⇀ AhomDū in L2(Rd)d, to the effect of

AεDuε −AhomDuε ⇀ 0.

This weak convergence of the homogenization commutator is the mathematical formulation of the
so-called Hill-Mandel relation in mechanics [240, 242]. Applied to the corrector, this justifies the
definition of the (standard) homogenization commutator Ξ, cf. (3.4), which is seen as a natural and
intrinsic measure of the accuracy of homogenization for large-scale averages.
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Remark 3.1.1. If a suitable rescaling ε−
β
2 Ξ( ·ε) of the homogenization commutator converges in law

to some random functional Γ, then combining (3.6) with identities (3.7) and (3.9) leads to the joint
convergence in law(

ε−
β
2

ˆ
Rd
F : Ξ( ·ε) , ε

−β
2

ˆ
Rd
g · (Duε − E [Duε]) , ε

−β
2

ˆ
Rd
g · (AεDuε − E [AεDuε]) ,

ε−
β
2

ˆ
Rd
F : Dφ( ·ε) , ε

−β
2

ˆ
Rd
F :

(
Aε(Dφ( ·ε) + Id)−Ahom

))
→
(

Γ(F ) , Γ
(
P̄Hf ⊗ P̄∗Hg

)
, −Γ(P̄Hf ⊗ P̄∗Lg) , −Γ

(
P̄∗HF

)
, Γ(P̄∗LF )

)
, (3.11)

thus establishing the non-trivial fact that the limiting joint law is degenerate. This almost sure relation
between the marginals is precisely the manifestation of the pathwise structure (I)–(II) above. For a
weakly correlated coefficient field A we expect from property (III) that Ξ( ·ε) displays the CLT scaling
β = d and that its rescaling converges in law to a Gaussian white noise Γ, so that the convergence
in (3.11) then leads to the known (or expected) scaling limit results for the different quantities of
interest in stochastic homogenization. We however emphasize that the main novelty of the present
contribution does not rely in such convergence results in themselves, but rather in the mechanism
behind, which is summarized in items (I)–(III) above. ♦

3.1.2 Main results

In order to present our complete theory of fluctuations and address items (I)–(III), we place our-
selves in the simplest setting possible and consider discrete elliptic equations with i.i.d. conductances,
which we think of as the prototype for weakly correlated coefficient fields. Although conceptually sim-
pler on the stochastic side, the discrete setting has some technical inconveniences on the deterministic
side, including a discretization error.

Our main results take on the following guise. Precise notation and assumptions are postponed to
Section 3.2, as well as many remarks and corollaries. While items (i) and (ii) below (together with the
non-degeneracy in (iv)) imply property (I) in the form (3.6) with the optimal rate o(1) 'f,g εµd(1

ε )
1
2 ,

items (iii) and (iv) are manifestations of property (III). Regarding the proofs, items (i) and (ii) are
established using a Poincaré inequality in the probability space, which holds in the i.i.d. setting (cf.
Lemma 3.3.1), item (iii) using a second-order Poincaré inequality due to Chatterjee [112, 113] (cf.
Lemma 3.4.1), and item (iv) using (an i.i.d. version of) the so-called Helffer-Sjöstrand representation
formula for covariances [238, 399, 335] (cf. Lemma 3.5.1). Apart from these simplifying tools (which
can be either extended or avoided in more general contexts, cf. Section 3.1.4), the proofs only rely on
arguments that extend to the continuum setting and to the case of systems. At a technical level, we
make strong use of the (quenched) large-scale weighted Calderón-Zygmund theory for the operator
−∇ ·A∇ (cf. [29, 204]).

Theorem 3.1.2. Consider the discrete i.i.d. setting, and assume that the law is non-degenerate.
Then the following hold for all ε > 0,

(i) CLT scaling: for all F ∈ C∞c (Rd)d×d,

E
[∣∣∣ε− d2 ˆ

Rd
F : Ξ( ·ε)

∣∣∣2] 1
2

.F 1.

(ii) Pathwise structure (with optimal error estimates): for all f, g ∈ C∞c (Rd)d, letting uε and ū
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denote the solutions of (the discrete version of) (3.1) and of (3.2),

E
[∣∣∣ε− d2 ˆ

Rd
g ·
(
Aε∇εuε −Ahom∇εuε − E [Aε∇εuε −Ahom∇εuε]

)
− ε−

d
2

ˆ
Rd
g · Ξi( ·ε)Diū

∣∣∣2] 1
2

.f,g εµd(
1
ε )

1
2 , (3.12)

where we set for all r > 0,

µd(r) :=


r : d = 1,

log(2 + r) : d = 2,

1 : d > 2.

(3.13)

(iii) Asymptotic normality (with nearly optimal rate): for all F ∈ C∞c (Rd)d×d,

δN

(
ε−

d
2

ˆ
Rd
F : Ξ( ·ε)

)
.F ε

d
2 log(2 + 1

ε ),

where for a random variable X ∈ L2(Ω) its distance to normality is defined by

δN (X) := dW

(
X

Var [X]
1
2

,N

)
+ dK

(
X

Var [X]
1
2

,N

)
, (3.14)

with N a standard Gaussian random variable and with dW (·, ·) and dK (·, ·) the Wasserstein and
Kolmogorov metrics.

(iv) Convergence of the covariance structure (with optimal rate): there exists a non-degenerate sym-
metric 4-tensor Q such that for all F ∈ C∞c (Rd)d×d,∣∣∣Var

[
ε−

d
2

ˆ
Rd
F : Ξ( ·ε)

]
−
ˆ
Rd
F : QF

∣∣∣ .F εµd(
1
ε )

1
2 .

In particular, combined with item (iii), this yields the convergence of ε−
d
2 Ξ( ·ε) in law to a 2-

tensor Gaussian white noise Γ with covariance structure Q, and the (discrete version of the)
joint convergence result (3.11) follows. ♦

This fluctuation theory is complemented by the following characterization of the fluctuation tensor
Q by periodization in law. This characterization comes in form of a representative volume element
(RVE) method, of which we give the optimal error estimate. In particular, comparing with the results
for the RVE approximation Ahom,L,N of the homogenized coefficients Ahom (cf. [209, 210, 206]), and
choosing N ' Ld below, we may conclude that an RVE approximation for Q with accuracy O(L−

d
2 )

(up to logarithmic corrections) is extracted at the same cost as an RVE approximation for Ahom with
accuracy O(L−d). Precise assumptions and notation are again postponed to Section 3.2.

Theorem 3.1.3. Consider the discrete i.i.d. setting. Define

Ahom,Lei :=

 
QL

AL(∇φL,i + ei), (3.15)

in terms of the L-periodized coefficient field AL and corrector φL. Then the fluctuation tensor Q
defined in Theorem 3.1.2(iv) satisfies

Q = lim
L↑∞

Var
[
L
d
2A∗hom,L

]
. (3.16)
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In addition, considering i.i.d. realizations (A
(n)
L )Nn=1 of AL and setting A(n)

hom,L := Ahom,L(A
(n)
L ), we

define the RVE approximation as the square of the sample standard deviation

QL,N :=
Ld

N − 1

N∑
n=1

(
A

(n)
hom,L −Ahom,L,N

)∗ ⊗ (A(n)
hom,L −Ahom,L,N

)∗
, (3.17)

Ahom,L,N :=
1

N

N∑
n=1

A
(n)
hom,L,

and for all L,N ≥ 2 there holds

|Var [QL,N ] |
1
2 . N−

1
2 , |E [QL,N ]−Q| . L−

d
2 log

d
2 L. ♦

3.1.3 Relation to previous works

Uniform moment bounds on ε−
d
2

´
Rd g · ∇εuε were first obtained by Conlon and Naddaf [124]

and by Gloria [198] in weaker forms, and were established in their optimal form in any dimension
d ≥ 2 by Marahrens and Otto [313] for discrete elliptic equations with i.i.d. conductances; see also
[201] for continuum scalar equations. The proof of a CLT result classically splits into two parts: the
approximate normality of fluctuations and the convergence of the rescaled variance towards some
limiting variance. The latter part requires to go beyond the scaling of the variance by identifying
the limiting “prefactor”, which is a finer quantity. The first CLT result in stochastic homogenization
concerned the fluctuations of Ahom,L (cf. (3.15)) by Biskup, Salvi, and Wolff [63] in the discrete setting
with i.i.d. conductances in the regime of small ellipticity contrast. The corresponding asymptotic
normality result without restriction on the ellipticity contrast was obtained by Rossignol [375] and
by Nolen [346, 347] (who was the first in stochastic homogenization to make use of Chatterjee’s
second-order Poincaré inequalities [112, 113]), while the convergence of the rescaled variance was
later established by Gloria and Nolen [207]. CLT results for ε−

d
2

´
Rd g · ∇εuε and ε−

d
2

´
Rd F : ∇φ( ·ε)

were subsequently established in dimensions d > 2 for discrete elliptic equations with i.i.d. Gaussian
conductances by Mourrat and Otto [329], Mourrat and Nolen [328], and Gu and Mourrat [225], —
based on the Helffer-Sjöstrand representation formula [238, 399, 335] and on tools introduced by
Gloria, Marahrens, Neukamm, and Otto [209, 210, 313, 206, 205] (inspired by the unpublished work
by Naddaf and Spencer [334]).

These various results indicated some intriguing link between the different limiting laws: the scaling
limit of the gradient of the corrector is the Helmholtz projection of a Gaussian white noise with
some particular covariance tensor, and the same tensor appears in the scaling limit of the solution
operator. The pathwise convergence result in the form (3.11) was then partially discovered by Gu
and Mourrat [225]. The mechanism behind this relation was initially quite mysterious: as emphasized
in [225], such a relation between limiting laws is quite surprising since the fluctuations of the solution
operator cannot be inferred from those of the corrector via the usual two-scale expansion (3.3).
The pathwise character of fluctuations nevertheless appeared to be consistent with the variational
approach to quantitative stochastic homogenization initiated by Armstrong and Smart [36], which
indeed consists in extracting all information from energy-based quantities by deterministic arguments.
In this spirit, together with a renormalization perspective in line with [33, 32, 31], Armstrong, Gu,
and Mourrat [225, 326] proposed an interesting heuristics which suggests the validity of a pathwise
theory of fluctuations. However, this heuristics — which was proposed shortly before the present
contribution [167] appeared online — has not yet led to any rigorous proof of the pathwise link
between the fluctuations of the solution operator and those of the corrector.

A variational quantity related to the homogenization commutator can be traced back to the
work [36] by Armstrong and Smart. The stationary version of this quantity, which is key to study
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fluctuations and essentially coincides with the standard homogenization commutator Ξ that we define
here, was independently introduced by Armstrong, Kuusi, and Mourrat in [32, Definition 5.3 and
Paragraph 8.1] around the same time as the first version of the present work [167]. In their work,
they established a functional CLT result for the homogenization commutator and for the corrector
field under the assumption of a finite range of dependence of the coefficient field A (which could be
further relaxed into weaker mixing-type assumptions) rather than using functional inequalities in the
probability space. The same result was recovered shortly after by different methods by Gloria and
Otto [208]. In contrast, the use of functional inequalities for the pathwise link between the solution
operator and the corrector is more challenging to bypass, and functional inequalities are moreover
particularly convenient if one wishes to obtain sharp error estimates. We refer to Section 3.1.4 for
future perspectives on these questions.

Although this list of works is already quite long, the pathwise structure of fluctuations revealed in
this contribution and the underlying mechanism described in (I)–(III) are made precise and rigorous
here for the first time — in any setting.

3.1.4 Perspectives

In the case of (non-symmetric) continuum systems, we may extend our fluctuation theory in two
different directions, which are postponed to the forthcoming works [168, 161, 160].

A first extension concerns the case of a coefficient field with strong correlations. In [168, 161], we
consider the model framework of a coefficient field given by (the image by a Lipschitz function of) a
Gaussian field that has algebraically decaying (but not necessarily integrable) covariance function c,
say at some fixed (yet arbitrary) rate c(x) ' (1 + |x|)−β parametrized by β > 0. For such coefficient
fields, we establish in [168] the accuracy (3.12) of the two-scale expansion of the homogenization
commutator in the suitable fluctuation scaling. The proof relies on a suitable weighted version of a
Poincaré inequality in the probability space (cf. [162, 163]), (quenched) large-scale Calderón-Zygmund
theory for −∇ · A∇ (cf. [204]), and moment bounds on the corrector (cf. [203]). This illustrates the
surprising robustness of the pathwise structure with respect to the large-scale behavior of the homog-
enization commutator. Indeed, in dimension d = 1 (in which case the quantities under investigation
are simpler and explicit), two typical behaviors have been identified in terms of scaling limit of the
homogenization commutator Ξ, depending on the parameter β (cf. [42]):

— For β > d = 1: The commutator Ξ displays the CLT scaling and ε−
d
2 Ξ( ·ε) converges to a

Gaussian white noise (Gaussian fluctuations, local limiting covariance structure).
— For 0 < β < d = 1: The suitable rescaling ε−

β
2 Ξ( ·ε) converges up to a subsequence to a frac-

tional Gaussian field (Gaussian fluctuations, nonlocal limiting covariance structure, potentially
no uniqueness of the limit).

(Note that a different, non-Gaussian behavior may also occur, cf. [224, 291].) In particular, the
pathwise result holds in these two examples whereas the rescaled homogenization commutator Ξ does
not necessarily converge to white noise or may even not converge at all. The identification of the
scaling limit of the homogenization commutator in higher dimensions is addressed in [161] for the
whole range of values of β > 0, where we investigate the consequences of the locality of Ξ with
respect to the coefficient field, combining techniques developed in [204, 203] with Malliavin calculus
versions of the Helffer-Sjöstrand representation formula and of a second-order Poincaré inequality.
This work extends [42] to dimensions d ≥ 2.

A second extension concerns the case of a coefficient field with finite range of dependence, for which
no functional inequality is in general satisfied. The convergence in law of ε−

d
2 Ξ( ·ε) to a Gaussian white

noise (albeit without convergence rate) was already obtained in that setting in [32, 208]. In [208], it
was achieved by combining a semi-group approach with the approximate locality of Ξ with respect
to the coefficient field and with the assumption of finite range of dependence of the coefficients. The
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proof of the accuracy (3.12) of the two-scale expansion of the homogenization commutator in the CLT
scaling is more involved and will be presented in [160] based on this semi-group approach. Optimal
rates will also be considered.

Another direction of research that we plan to investigate in the future is the possibility of pursuing
the 2-scale expansion of the homogenization commutator (3.5) to higher orders.

3.2 Main results

In this section, we introduce notation and assumptions, we state more precise versions of the
main results (and make in particular explicit the norms of the test functions in the estimates), and
we discuss various corollaries.

3.2.1 Notation and assumptions

We start by introducing the discrete i.i.d. framework in which our main results are established. We
consider a random conductance problem on the integer lattice Zd, and denote by {ei}di=1 the canonical
basis of Rd. We regard Zd as a graph with (unoriented) edge set B = {(x, z) ∈ Zd×Zd : |x− z| = 1}.
For edges (x, z) ∈ B, we also write x ∼ z. We define the set of conductances {a(b)}b∈B by Ω = [λ, 1]B

for some fixed 0 < λ ≤ 1. We endow Ω with the σ-algebra generated by cylinder sets and with a
probability measure P. We denote by E [·], Var [·], and Cov [·; ·] the associated expectation, variance,
and covariance. A random field u : Rd ×Ω→ R is said to be stationary if it is shift-covariant, in the
sense of u(x, a(· − z)) = u(x− z, a) for all x, z ∈ Rd and a ∈ Ω. In this contribution, we focus on the
case when the probability measure P is a product measure, that is, when the conductances {a(b)}b∈B
are i.i.d. random variables, and we shall make use of available functional inequalities in this product
probability space.

A realization a ∈ Ω is by definition a countable set {a(b)}b∈B of conductances and is called an
environment. Let ∇ denote (in this chapter only) the forward discrete gradient (u : Zd → R) 7→
(∇u : Zd → Rd) defined component-wise by ∇iu(x) = u(x + ei) − u(x) for 1 ≤ i ≤ d, and let ∇∗
denote the backward discrete gradient (u : Zd → R) 7→ (∇∗u : Zd → Rd) defined component-wise by
∇∗iu(x) = u(x)− u(x− ei) for all 1 ≤ i ≤ d. The operator −∇∗· is thus the adjoint of ∇ on `2(Zd),
and we consider the elliptic operator −∇∗ ·A∇ with coefficients

A : x 7→ A(x) := diag [a(x, x+ ξ1), . . . , a(x, x+ ξd)] ,

acting on functions u : Zd → R as

−∇∗ ·A∇u(x) :=
∑
z:z∼x

a(x, z)(u(x)− u(z)).

In order to state the standard qualitative homogenization result [277, 274] for the corresponding
discrete elliptic equation, we consider for all ε > 0 the rescaled operator −∇∗ε ·Aε∇ε, where Aε(·) :=
A( ·ε), and where ∇ε and ∇∗ε act on functions uε : Zdε := εZd → R and are defined componentwise
by ∇ε,iuε(x) = ε−1(uε(x+ εei)− uε(x)) and ∇∗ε,iuε(x) = ε−1(uε(x)− uε(x− εei)) for all i. We shall
also let ∇ε and ∇∗ε act on continuous functions u : Rd → R, so that ∇εu and ∇∗εu are continuous
functions as well. If u ∈ C1(Rd), then ∇εu(x) and ∇∗εu(x) converge to the continuum gradient Du(x)
for all x ∈ Rd as ε ↓ 0. In what follows, for all m ≥ 1, we systematically extend maps v : Zd → Rm
to piecewise constant maps Rd → Rm (still denoted by v) by setting v|Q(x) := v(x) for all x ∈ Zd

(where Q(x) is the unit cube centered at x), and we use this notation e.g. for A : Zd → Rd×d (but
also for φ : Zd → Rd and Ξ : Zd → Rd×d defined below). This systematic extension of functions
on the lattice Zd allows to state all discrete results in a form that would hold mutatis mutandis in
the continuum setting. In addition, although in the discrete setting it is more natural to consider a
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symmetric coefficient field A, we use non-symmetric notation in the statement of the results in view of
the non-symmetric continuum setting, and we denote by A∗ the pointwise transpose field associated
with A.

Qualitative stochastic homogenization [277, 274] ensures that for all f, g ∈ C∞c (Rd)d the unique
Lax-Milgram solutions uε and vε in Rd of 1

−∇∗ε ·Aε∇εuε = ∇∗ε · f, −∇∗ε ·A∗ε∇εvε = ∇∗ε · f, (3.18)

almost surely converges weakly as ε ↓ 0 to the unique Lax-Milgram solutions ū and v̄ in Rd of the
(continuum) elliptic equations

−D ·AhomDū = D · f, −D ·A∗homDū = D · g, (3.19)

respectively, where Ahom is the homogenized matrix characterized by

Ahomei = E [A(∇φi + ei)] , (3.20)

for all 1 ≤ i ≤ d, where φi is the so-called corrector in direction ei. It is defined, for almost every
realization A, as the unique solution in Zd of

−∇∗ ·A(∇φi + ei) = 0, (3.21)

with ∇φi stationary and φi(0) = 0. We then set φ := (φi)
d
i=1. We denote by φ∗ the corrector

associated with the coefficient field A∗, and note that (A∗)hom = (Ahom)∗. For symmetric coefficient
fields, A∗ = A, φ∗ = φ, and A∗hom = Ahom.

We consider the fluctuations of the field ∇uε and of the flux Aε∇uε, as encoded in the random
functionals Iε1 : (f, g) 7→ Iε1(f, g) and Iε2 : (f, g) 7→ Iε2(f, g) defined for all f, g ∈ C∞c (Rd) by

Iε1(f, g) := ε−
d
2

ˆ
Rd
g · ∇ε(uε − E [uε]),

Iε2(f, g) := ε−
d
2

ˆ
Rd
g ·
(
Aε∇εuε − E [Aε∇εuε]

)
.

We further encode the fluctuations of the corrector field ∇φ and flux A(∇φ + Id) in the random
funcitonals Jε1 : F 7→ Jε1(F ) and Jε2 : F 7→ Jε2(F ) defined for all F ∈ C∞c (Rd)d×d by

Jε1(F ) := ε−
d
2

ˆ
Rd
F (x) : ∇φ(xε ) dx,

Jε2(F ) := ε−
d
2

ˆ
Rd
F (x) :

(
Aε(x)(∇φ(xε ) + Id)−Ahom

)
dx.

As explained above, a crucial role is played by the (standard) homogenization commutator, which in
the present discrete setting takes the form Ξ := (Ξi)

d
i=1 with

Ξi := A(∇φi + ei)−Ahom(∇φi + ei), Ξij := (Ξi)j , (3.22)

and by the error in the two-scale expansion of the homogenization commutator of the solution. These
quantities are encoded in the random functionals Iε0 : F 7→ Iε0(F ) and Eε : (f, g) 7→ Eε(f, g) defined
for all F ∈ C∞c (Rd)d×d and all f, g ∈ C∞c (Rd)d by

Iε0(F ) := ε−
d
2

ˆ
Rd
F (x) : Ξ(xε ) dx,

Eε(f, g) := ε−
d
2

ˆ
Rd
g ·
(
Aε∇εuε −Ahom∇εuε − E [Aε∇εuε −Ahom∇εuε]

)
− ε−

d
2

ˆ
Rd
g · ei( ·ε)Diū.

1. These equations are understood as follows: for all x ∈ Q the function uε(εx + ·) on Zdε is the solution of the
discrete elliptic equation with coefficient Aε and with right-hand side ∇∗ε · f(εx + ·). This definition allows to state
results in a form that holds in the continuum setting, in terms of norms of the right-hand side that do not need to
embed into the space of continuous functions.
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Since the case d = 1 is much simpler and well-understood [223], we shall only focus in the sequel on
dimensions d ≥ 2.

We first recall the following uniform boundedness result for Iε0 , establishing the CLT scaling
for the fluctuations of the homogenization commutator (cf. Theorem 3.1.2(i)). Although essentially
contained in the main result of the first contribution of Gloria and Otto to the field [209], a short
proof is included for completeness in Section 3.3.

Proposition 3.2.1. Let d ≥ 2 and let P be a product measure, and let w1(z) := 1 + |z|. For all ε > 0
and all F ∈ C∞c (Rd)d×d we have for all 0 < p− 1� 1 and all α > dp−1

4p ,

E
[
|Iε0(F )|2

] 1
2 .α,p ‖w2α

1 F‖L2p(Rd). ♦

3.2.2 Pathwise structure

Our first main result establishes the smallness of the rescaled error Eε in the two-scale expansion
of the homogenization commutator (cf. Theorem 3.1.2(ii)), which is the key to the pathwise struc-
ture (3.11). As for Proposition 3.2.1, the proof relies on the Poincaré inequality in the probability
space that is satisfied for i.i.d. coefficients. From a technical point of view, we exploit the large-scale
Calderón-Zygmund theory for the operator −∇∗ ·A∇ in the form developed in [204].
Proposition 3.2.2. Let d ≥ 2, let P be a product measure, let µd be defined in (3.13), and let
w1(z) := 1 + |z|. For all ε > 0 and all f, g ∈ C∞c (Rd)d we have for all 0 < p − 1 � 1 and all
α > dp−1

4p ,

E
[
|Eε(f, g)|2

] 1
2 .α,p εµd(

1
ε )

1
2

(
‖f‖L4(Rd)‖w

α
1Dg‖L4p(Rd) + ‖g‖L4(Rd)‖w

α
1Df‖L4p(Rd)

)
. ♦

Remark 3.2.3. For simplicity the estimates in Propositions 3.2.1 and 3.2.2 above are stated and
proved for second moments only, but the same arguments yield similar estimates for all algebraic (and
even stretched exponential) moments (cf. [168, 161]). ♦

In view of identity (3.7) (which indeed holds in the discrete setting up to a higher-order discretiza-
tion error), the above result implies that the large-scale fluctuations of Iε1 and Iε2 are driven by those
of Iε0 in a pathwise sense. Identity (3.9) (which again holds up to a discretization error) yields a
similar pathwise result for Jε1 and Jε2 .

Corollary 3.2.4. Let d ≥ 2, let P be a product measure, let P̄H , P̄∗H , and P̄∗L be defined in (3.8),
let µd be defined in (3.13), and let w1(z) := 1 + |z|. For all ε > 0, all f, g ∈ C∞c (Rd)d, and all
F ∈ C∞c (Rd)d×d, we have for all 0 < p− 1� 1 and all α > dp−1

4p ,

E
[
|Iε1(f, g)− Iε0(P̄Hf ⊗ P̄∗Hg)|2

] 1
2 + E

[
|Iε2(f, g) + Iε0(P̄Hf ⊗ P̄∗Lg)|2

] 1
2

.α,p εµd(
1
ε )

1
2

(
‖f‖L4(Rd)‖w

α
1Dg‖L4p(Rd) + ‖g‖L4(Rd)‖w

α
1Df‖L4p(Rd)

)
, (3.23)

and also

E
[
|Jε1(F ) + Iε0(P̄∗HF )|2

] 1
2 + E

[
|Jε2(F )− Iε0(P̄∗LF )|2

] 1
2 .α,p ε‖w2α

1 DF‖L2p(Rd), (3.24)

where by definition we have P̄Hf = −Dū and P̄∗Hg = −Dv̄. In particular, we give a sense to
Iε0(P̄∗HF ) and Iε0(P̄∗LF ) in L2(Ω) for all F ∈ C∞c (Rd)d×d, even when P̄∗HF and P̄∗LF do not have
integrable decay. ♦
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Remark 3.2.5. For all f, g ∈ C∞c (Rd)d, we may also consider the unique Lax-Milgram solutions u◦ε
and v◦ε in Rd of

−∇∗ε ·Aε∇εu◦ε = ∇∗ε ·Aεf, −∇∗ε ·A∗ε∇εv◦ε = ∇∗ε ·A∗εg,

which, almost surely, converge weakly as ε ↓ 0 to the unique Lax-Milgram solutions ū◦ and v̄◦ in Rd
of

−D ·AhomDū
◦ = D ·Ahomf, −D ·A∗homDv̄

◦ = D ·A∗homg,

respectively. Similar considerations as in the proof of Proposition 3.2.2 and Corollary 3.2.4 then
lead to a pathwise result for the fluctuations of the random functionals Iε3 : (f, g) 7→ Iε3(f, g) and
Iε4 : (f, g) 7→ Iε4(f, g) defined for all f, g ∈ C∞c (Rd)d by

Iε3(f, g) := ε−
d
2

ˆ
Rd
g · ∇ε(u◦ε − E [u◦ε]),

Iε4(f, g) := ε−
d
2

ˆ
Rd
g ·
(
Aε(∇εu◦ε + f)− E [Aε(∇εu◦ε + f)]

)
,

and it takes the form

E
[∣∣Iε3(f, g) + Iε0

(
P̄Lf ⊗ P̄∗Hg

)∣∣2] 1
2

+ E
[∣∣Iε4(f, g)− Iε0

(
P̄Lf ⊗ P̄∗Lg

)∣∣2] 1
2
.f,g εµd(

1
ε )

1
2 ,

where by definition P̄Hf = −Dū, P̄Lf = Dū◦ + f , P̄∗Hg = −Dv̄, and P̄∗Lg = Dv̄◦ + g. ♦

Incidentally, as a consequence of our analysis, combining the two-scale expansion of the homoge-
nization commutator (3.5) with identity (3.7), we obtain a new (nonlocal) two-scale expansion for the
solution uε that is not only accurate in the strong L2(Rd)-norm but also in the fluctuation scaling,
in contrast with the usual two-scale expansion (3.3) (cf. [225]). (The second estimate below is a
reformulation of Proposition 3.2.2, whereas the first estimate is a corollary of [203, Theorem 3].)

Corollary 3.2.6. Let d ≥ 2, let P be a product measure, and let µd be defined in (3.13). For all ε > 0
and all f ∈ C∞c (Rd)d, we set

rε(f) := uε −
(
E [uε] + (−∇∗ε ·Ahom∇ε)−1(∇∗ε · Ξ( ·ε)∇εū)︸ ︷︷ ︸

nonlocal two-scale expansion of uε

)
.

Then, this (nonlocal) two-scale expansion correctly captures
— the spatial oscillations of ∇εuε in a strong norm: for all f ∈ C∞c (Rd)d,

E
[
‖∇εrε(f)‖2

L2(Rd)

] 1
2
.f εµd(

1
ε )

1
2 ;

— the random fluctuations of ∇εuε in the CLT scaling: for all f, g ∈ C∞c (Rd)d,

E
[∣∣∣ε− d2 ˆ

Rd
g · ∇εrε(f)

∣∣∣2] 1
2

.f,g εµd(
1
ε )

1
2 . ♦

3.2.3 Approximate normality

We turn to the normal approximation result for the homogenization commutator (cf. Theo-
rem 3.1.2(iii)), which states that the fluctuations of ε−

d
2 Ξ( ·ε) are asymptotically Gaussian (up to

a non-degeneracy condition that is elucidated in Proposition 3.2.9 below). The approach is inspired
by previous works by Nolen [346, 347], based on a second-order Poincaré inequality à la Chatter-
jee [112, 282], which is key to optimal convergence rates. Since such functional inequalities are not
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easily amenable to the use of large-scale Calderón-Zygmund theory for the operator −∇∗ · A∇, we
rather have to exploit optimal annealed estimates on mixed gradients of the Green’s function [313],
which leads to an additional log(2 + 1

ε ) factor in the rate below (we do not know whether this is op-
timal). The proof exploits the approximate locality of the homogenization commutator Ξ. Note that
the norms of the test function below are substantially weaker than L1(Rd) in terms of integrability and
are thus compatible with the behavior of Helmholtz projections of smooth and compactly supported
functions, which is crucial in view of the combination with the pathwise result of Corollary 3.2.4.

Proposition 3.2.7. Let d ≥ 2, let P be a product measure, and let µd and δN be defined in (3.13)
and (3.14). For all ε > 0 and all F ∈ C∞c (Rd)d×d with Var [Iε0(F )] > 0, we have for all α > 0,

δN (Iε0(F )) . ε
d
2

‖F‖3
L3(Rd)

+ ‖wα1DF‖3L3(Rd)

Var [Iε0(F )]
3
2

+ ε
d
2 log(2 + 1

ε )
‖wα1F‖2L4(Rd)

+ ‖wα1DF‖2L4(Rd)

Var [Iε0(F )]
. ♦

Remark 3.2.8. In the case of i.i.d. conductances that are (smooth transformations of) Gaussian
random variables, a nicer version of a second-order Poincaré inequality is available (cf. [113, Theo-
rem 2.2]), which further gives a control on the total variation distance and is amenable to the use
of large-scale Calderón-Zygmund theory, thus avoiding the use of Green’s functions for the operator
−∇∗ · A∇ and leading to the optimal rate ε

d
2 (without the spurious logarithmic factor). Such an

argument is detailed in the continuum case in the forthcoming work [161]. ♦

3.2.4 Covariance structure

Since Iε0 is asymptotically Gaussian, it remains to identify the limit of its covariance structure (cf.
Theorem 3.1.2(iv)). The following shows that the limiting covariance is that of a (tensorial) white noise
with some non-degenerate covariance tensor Q. The convergence rate in (3.25) below is new in any
dimension and is expected to be optimal. The proof crucially relies on the approximate locality of the
homogenization commutator and on (an i.i.d. version of) the Helffer-Sjöstrand representation formula
for the variance [238, 399, 335], which is a stronger tool than the Poincaré inequality in the probability
space. As for the pathwise result, the proof exploits the large-scale Calderón-Zygmund theory for the
operator −∇∗ · A∇. Again note that the norms of the test functions below are substantially weaker
than L1(Rd) in terms of integrability, as is required in view of the combination with the pathwise
result of Corollary 3.2.4.

Proposition 3.2.9. Let d ≥ 2, let P be a product measure, let µd be defined in (3.13), and let
w1(z) := 1 + |z|.
(i) There exists a symmetric 2 4-tensor Q such that for all ε > 0 and all F,G ∈ C∞c (Rd)d×d we

have for all 0 < p− 1� 1 and all α > dp−1
4p ,∣∣∣∣Cov [Iε0(F ); Iε0(G)]−

ˆ
Rd
F (x) : QG(x)dx

∣∣∣∣ .α,p εµd(1
ε )

1
2

×
(
‖F‖L2(Rd) + ‖w2α

1 DF‖L2p(Rd)

)(
‖G‖L2(Rd) + ‖w2α

1 DG‖L2p(Rd)

)
. (3.25)

Moreover, for all 1 ≤ i, j, k, l ≤ d and all δ > 0, we have for all L ≥ 1,∣∣∣∣Qijkl − ˆ
Q2L

|QL ∩ (x+QL)|
|QL|

Cov [Ξij(x); Ξkl(0)] dx

∣∣∣∣ .δ Lδ− 1
2 , (3.26)

where QL denotes the cube of sidelength L centered at the origin.

2. Since Q is a (limiting) covariance, it is of course symmetric in the sense of Qijkl = Qklij . If the coefficients A are
symmetric, then it has the additional symmetry Qijkl = Qjikl (hence also Qijkl = Qijlk).
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(ii) If in addition P = π⊗B with π a nontrivial probability measure on [λ, 1], then this effective
fluctuation tensor Q is non-degenerate in the sense that (ξ ⊗ ξ) : Q (ξ ⊗ ξ) > 0 for all ξ ∈
Rd \ {0}. ♦

Remarks 3.2.10. Comments are in order.
— When applying a covariance inequality (cf. Lemma 3.5.1 below) to the argument of the limit

in the Green-Kubo formula (3.26), we end up with the bound
ˆ
Q2L

|QL ∩ (x+QL)|
|QL|

|Cov [Ξij(x); Ξkl(0)]| dx . logL,

which is sharp. The main difficulty to characterize the limiting covariance structure is that,
as usual for Green-Kubo formulas, the covariance of the homogenization commutator Ξ is not
an integrable function, and cancellations have to be unravelled.

— The optimal rate (3.25) for the convergence of the covariance structure of Iε0 owes to the very
local structure of the homogenization commutator Ξ, and, combined with the pathwise result
of Corollary 3.2.4, it carries over to Iε1 , Iε2 , Jε1 , and Jε2 . In [329, 225, 328], the usual Gaussian
Helffer-Sjöstrand representation formula for the variance [238, 399, 335] was already used in
order to prove the convergence of the covariance structure of Iε1 and Jε1 for d > 2, but the
obtained convergence rate was suboptimal in every dimension. ♦

The combination of Propositions 3.2.7 and 3.2.9 leads to a complete scaling limit result for Iε0 ,
which thus converges in law to a Gaussian white noise. As in Proposition 3.2.7, we do not know
whether the full logarithmic factor is optimal for d = 2.

Corollary 3.2.11. Let d ≥ 2, let P be a product measure, and let µd be defined as in (3.13). Let Q
be the 4-tensor defined in Proposition 3.2.9(i), and let Γ denote the 2-tensor Gaussian white noise
with covariance tensor Q, that is, the Gaussian random Schwartz distribution with zero expectation
E [Γ(F )] = 0 and with covariance structure Cov [Γ(F ); Γ(G)] =

´
Rd F : QG for all F,G ∈ C∞c (Rd)d×d.

Then for all F ∈ C∞c (Rd)d×d the random variable Iε0(F ) converges in law to Γ(F ), and for
´
Rd F :

QF 6= 0 there holds
(dW + dK) (Iε0(F ),Γ(F )) .F εµd(

1
ε ). ♦

Remarks 3.2.12. Comments are in order.
— Combined with the pathwise result of Corollary 3.2.4, this result further leads to a proof of the

joint convergence (3.11) and implies in particular quantitative versions of the known scaling
limit results for Iε1 and Jε1 : For all f, g ∈ C∞c (Rd)d and all F ∈ C∞c (Rd)d×d the random
variables Iε1(f, g) and Jε1(F ) converge in law to Γ(P̄Hf ⊗ P̄∗Hg) and −Γ(P̄∗HF ), respectively,
and moreover for

´
Rd(P̄Hf ⊗ P̄

∗
Hg) : Q (P̄Hf ⊗ P̄∗Hg) 6= 0 and

´
Rd P̄

∗
HF : QP̄∗HF 6= 0 there

hold

(dW + dK)
(
Iε1(f, g),Γ(P̄Hf ⊗ P̄∗Hg)

)
.f,g εµd(

1
ε ),

(dW + dK)
(
Jε1(F ),−Γ(P̄∗HF )

)
.F εµd(

1
ε ).

This extends and unifies [207, 329, 328, 225], and yields the first scaling limit results in the
critical dimension d = 2. Convergence rates are new in any dimension, and are optimal at
least for d > 2.

— SPDE representation for the scaling limit of the solution operator. The scaling limit result for
Iε1 above indicates that ε−

d
2∇ε(uε − E [uε]) (seen as a random functional) converges in law to

the formal solution DU in Rd of

−D ·AhomDU = D · (ΓiDiū).
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This justifies a posteriori the conclusion (although not the strategy) of the heuristics due to
Armstrong, Gu, and Mourrat [225] in dimensions d ≥ 2. (See also [223] for a rigorous treatment
of the easier case of dimension d = 1.)

— Scaling limit of the corrector. The scaling limit result for Jε1 above shows that the rescaled cor-
rector field ε−

d
2Dφ( ·ε) (seen as a random functional) converges in law toD(−D·AhomD)−1D·Γ,

that is, to the gradient of a variant of the so-called Gaussian free field. This variant involves
both Ahom and Q. As pointed out in [329], it is easily checked in Fourier space that this variant
does in general not coincide with the standard Gaussian free field (unless the compatibility
condition Qijkl = ηikAhom,lj is satisfied for some matrix η, which however does not hold in
general, see e.g. [226, Section 3] and (5.35)). This variant of the Gaussian free field is studied
in [226], where it is in particular shown that it is Markovian only in the standard case. In the
critical dimension d = 2, since the whole-space Gaussian free field is not well-defined (only its
gradient is), this implies the non-existence of stationary correctors.

— Gu and Mourrat’s observation. With the above results at hand, we recover the observation
by Gu and Mourrat [225] that the usual two-scale expansion (3.3) of uε is not accurate in
the fluctuation scaling. The above indeed shows that the fluctuations of ε−

d
2

´
Rd g · ∇ε(uε −

E [uε]) and of ε−
d
2

´
Rd g · ∇φi(

·
ε)∇ε,iū are asymptotically given by Γ(P̄Hf ⊗ P̄∗Hg) and by

Γ(P̄∗H((P̄Hf)⊗ g)), respectively, and therefore do not coincide. ♦

3.2.5 Approximation of the fluctuation tensor

We finally turn to the representative volume element (RVE) approximation of Q (cf. Theo-
rem 3.1.3). Indeed, the Green-Kubo formula (3.26) for the fluctuation tensor Q is of no practical
use in applications since it requires to solve the corrector equation on the whole space and for every
realization of the random coefficient field. It is then natural to look for a suitable RVE approximation.
This consists in introducing an artificial period L > 0 and in considering an L-periodized coefficient
field AL, typically given by a suitable periodization in law (cf. [174]). In the present i.i.d. setting, we
simply define AL(x + Ly) := A(x) for all y ∈ Zd and x ∈ QL. Note that the map Ω → Ω : A 7→ AL
pushes forward the measure P to a measure PL concentrated on L-periodic coefficients, so that we
may view AL as an element of ΩL = [λ, 1]BL equipped with the product measure PL = π⊗BL , where
BL := {(x, x + ei) : x ∈ QL ∩ Zd, 1 ≤ i ≤ d}. We then define the L-periodized corrector φL,i in the
direction ei as the unique L-periodic solution in QL ∩ Zd of

−∇∗ ·AL(∇φL,i + ei) = 0, (3.27)

satisfying
∑

z∈QL∩Zd φL,i(z) = 0, and we set φL := (φL,i)
d
i=1 (which we implicitly extend as usual into

a periodic piecewise constant map on Rd). The spatial average of the flux,

Ahom,Lei :=

 
QL

AL(∇φL,i + ei),

is then an RVE approximation for the homogenized coefficient Ahomei = E [A(∇φi + ei)]. The optimal
numerical analysis of this approximation was originally performed in [209, 210, 206], where it was
established that for all L ≥ 2 there holds

|Var [Ahom,L]|
1
2 . L−

d
2 , |E [Ahom,L]−Ahom| . L−d logd L. (3.28)

In Theorem 3.1.3, we claim that the fluctuation tensor Q coincides with the limit of the rescaled
variance of A∗hom,L. In addition, this characterization naturally leads to an RVE approximation QL,N
for Q, cf. (3.17), of which we obtain the optimal error estimate.
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Remarks 3.2.13. Comments are in order.
— Definition (3.17) for QL,N is equivalent to

QL,N =
Ld

N − 1

N∑
n=1

( 
QL

Ξ
(n)
L,N

)
⊗
( 

QL

Ξ
(n)
L,N

)
, (3.29)

in terms of

Ξ
(n)
L,N,i := A

(n)
L (∇φ(n)

L,i + ei)−Ahom,L,N (∇φ(n)
L,i + ei),

with the obvious notation ∇φ(n)
L := ∇φL(A

(n)
L ). Since by stationarity

ˆ
QL

Cov [ΞL,N (x); ΞL,N (0)] dx = Ld Var

[ 
QL

ΞL,N

]
,

formula (3.29) is in the spirit of the Green-Kubo formula (3.26).

— In (3.28) the standard deviation |Var [Ahom,L]|
1
2 of the RVE approximation for Ahom is seen

to be O(L
d
2 ) times larger than the systematic error |E [Ahom,L] − Ahom| (up to a logarithmic

correction). In practice, we rather use Ahom,L,N as an approximation for Ahom,

|Var [Ahom,L,N ]|
1
2 . N−

1
2L−

d
2 , |E [Ahom,L,N ]−Ahom| . L−d logd L,

since in the regime N ' Ld the standard deviation becomes of the same order as the systematic
error O(L−d). Combining this with the estimates in Theorem 3.1.3, since QL,N is extracted
at no further cost than Ahom,L,N itself, we may infer that an RVE approximation for Q with
accuracy O(L−

d
2 ) is extracted at the same cost as an RVE approximation for Ahom with

accuracy O(L−d).
— In [346, 347, 207] (see also [63, 375]), the fluctuations of the RVE approximation Ahom,L for

the homogenized coefficient Ahom was investigated. Combined with the characterization (3.16)
of the limit of the rescaled variance, the main result in [207] takes on the following guise, for
all L ≥ 2 and all N ≥ 1,

sup
ξ∈Rd\{0}

(dW + dK)

(
N

1
2L

d
2
ξ · (Ahom,L,N −Ahom)ξ

(ξ ⊗ ξ : Q : ξ ⊗ ξ)
1
2

,N

)
. N−

1
2L−

d
2 logd L. ♦

3.3 Pathwise structure

Henceforth we place ourselves in the discrete setting of Section 3.2. In the present section, we
establish the pathwise result stated in Proposition 3.2.2, that is, the main novelty of this contribution.
Similar estimates also lead to the CLT scaling result stated in Proposition 3.2.1, and we further deduce
Corollary 3.2.4.

3.3.1 Structure of the proof and auxiliary results

The main tool that we use to prove Propositions 3.2.1 and 3.2.2 is the following Poincaré inequality
(or spectral gap estimate) in the probability space, which holds for any product measure P on Ω (see
e.g. [209, Lemma 2.3] or Chapter 4 for a proof). Let us first fix some notation. Let X = X(A) be
a random variable on Ω, that is, a measurable function of (a(b))b∈B. We choose an i.i.d. copy A′ of
A, 3 and for all b ∈ B we denote by Ab the random field that coincides with A on all edges b′ 6= b and

3. Although we are then working on a product probability space, we use for simplicity the same notation P (and E)
for the product probability measure (and expectation), that is, with respect to both A and A′.
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with A′ on edge b. In particular, A and Ab have the same law. We use the abbreviation Xb = X(Ab)
and define the difference operator ∆bX := X −Xb, which we call the Glauber vertical derivative at
edge b (with a slight abuse of terminology).

Lemma 3.3.1 (e.g. [209]). Let P be a product measure. For all X = X(A) ∈ L2(Ω) we have

Var [X] ≤ 1

2
E

[∑
b∈B
|∆bX|2

]
. ♦

Next to the corrector φ, we need to recall the notion of flux corrector σ, which was recently
introduced in [204] in the continuum stochastic setting (see also [345, Proposition III.2.2] for the
discrete case) and was crucially used in [203, 208]. It allows to put the equation for the two-scale
homogenization error in divergence form (cf. (3.58)). Let σ = (σijk)

d
i,j,k=1 be the 3-tensor defined as

the unique solution in Zd of

−4σijk := −∇∗ · ∇σijk = ∇jqik −∇kqij , (3.30)

with ∇σ stationary and σ(0) = 0, where qi denotes the flux of the corrector

qi = A(∇φi + ei)−Ahomei, qij := (qi)j . (3.31)

Note that for all i the 2-tensor field σi := (σijk)
d
j,k=1 is skew-symmetric, that is,

σijk = −σikj , (3.32)

and it satisfies
∇∗ · σi := ej∇∗kσijk = qi. (3.33)

(Although considering a symmetric coefficient field, we use non-symmetric notation in view of the ex-
tension to the continuum case, and we denote by φ∗ and σ∗ the corrector and flux corrector associated
with the pointwise transpose coefficient field A∗.)

We now describe the string of arguments that leads to Proposition 3.2.2. We start with a suitable
decomposition of the vertical derivative of Eε(f, g), which is key to the proof. Note that we rather
consider a suitable version Eε0(f, g) of Eε(f, g), which only coincides up to some minor discretization
error (in the continuum setting ūε and v̄ε would simply coincide with ū(ε·) and v̄(ε·)). Note that as
usual it is convenient in the proofs to rescale all quantities down to scale 1.

Lemma 3.3.2. For all ε > 0 and all f, g ∈ C∞c (Rd)d, setting fε := f(ε·) and gε := g(ε·), we denote
by ūε and v̄ε the unique Lax-Milgram solutions in Rd of

−∇∗ ·Ahom∇ūε = ∇∗ · (εfε), −∇∗ ·A∗hom∇v̄ε = ∇∗ · (εgε), (3.34)

and we define

Eε0(f, g) := ε
d
2
−1

ˆ
Rd
gε ·

(
A∇(uε(ε·))−Ahom∇(uε(ε·))− E [A∇(uε(ε·))−Ahom∇(uε(ε·))]

)
− ε

d
2
−1

ˆ
Rd
gε · ei∇iūε, (3.35)

110



as well as the two-scale expansion error wf,ε := uε(ε·)− (1 + φi∇i)ūε. Then we have

∆bE
ε
0(f, g) = ε

d
2
−1

ˆ
Rd
gε,j(∇φ∗j + ej) ·∆bA(∇wbf,ε + φbi∇∇iūε)

+ ε
d
2
−1

ˆ
Rd
φ∗j (·+ ek)∇kgε,jek ·∆bA∇(ubε(ε·))

− ε
d
2
−1

ˆ
Rd
φ∗j (·+ ek)∇k(gε,j∇iūε)ek ·∆bA(∇φbi + ei)

+ ε
d
2
−1

ˆ
Rd
∇rε ·∆bA∇(ubε(ε·))− ε

d
2
−1

ˆ
Rd
∇Rε,i ·∆bA(∇φbi + ei), (3.36)

where the auxiliary fields rε and Rε are the unique Lax-Milgram solutions in Rd of

−∇∗ ·A∗∇rε = ∇∗l
(
φ∗j (·+ ek)Akl∇kgε,j + σ∗jkl(· − ek)∇∗kgε,j

)
, (3.37)

−∇∗ ·A∗∇Rε,i = ∇∗l
(
φ∗j (·+ ek)Akl∇k(gε,j∇iūε) + σ∗jkl(· − ek)∇∗k(gε,j∇iūε)

)
. (3.38)

♦

By the spectral gap estimate of Lemma 3.3.1, the desired pathwise result (3.23) would follow from
a suitable estimate of the sum over B of the squares of the right-hand side terms in (3.36). For that
purpose, we make crucial use of the following moment bounds for the extended corrector (φ, σ) and
its gradient. (These bounds are a variation of [209] and are the discrete versions of a result in [203],
the proof of which extends to the discrete setting considered here.)

Lemma 3.3.3 ([209, 203]). Let d ≥ 2, let P be a product measure, and let µd be defined in (3.13).
For all q <∞ and all z ∈ Zd we have

E [|φ(z)|q]
1
q + E [|σ(z)|q]

1
q .q µd(|z|)

1
2 ,

and
E [|∇φ(z)|q]

1
q + E [|∇σ(z)|q]

1
q .q 1. ♦

An additional crucial ingredient is the following large-scale weighted Calderón-Zygmund estimate
for the operator −∇∗ ·A∇. (A proof in the continuum setting was originally given in the first version
of this article, see now in [204], and the adaptation to the discrete setting is straightforward since it
is solely based on the energy and Caccioppoli estimates.)

Lemma 3.3.4 ([204]). Let d ≥ 1, let P be a product measure, and let wε(x) := 1 + ε|x|. There exists
a 1

2 -Lipschitz stationary random field r∗ ≥ 1 on Rd with E [rq∗] .q 1 for all q < ∞, such that the
following holds almost surely: For 1 ≤ p < ∞ and 0 ≤ γ < d(2p − 1), for any (sufficiently fast)
decaying scalar field u and vector field f related in Rd by

−∇∗ ·A∇u = ∇∗ · f,

we have ˆ
Rd
wε(x)γ

( 
B∗(x)

|∇u|2
)p
dx .γ,p r∗(0)γ

ˆ
Rd
wε(x)γ |f(x)|2pdx,

where we use the short-hand notation B∗(x) := Br∗(x)(x). ♦
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3.3.2 Proof of Proposition 3.2.1

Let F ∈ C∞c (Rd)d×d, and set Fε := F (ε·). We split the proof into two steps: we start by giving a
suitable representation formula for the vertical derivative ∆bI

ε
0(F ), and then apply the spectral gap

estimate.

Step 1. Representation formula for ∆bI
ε
0(F ):

∆bI
ε
0(F ) = ε

d
2

ˆ
Rd
Fε,ijej ·∆bA(∇φbi + ei) + ε

d
2

ˆ
Rd
∇sε,i ·∆bA(∇φbi + ei), (3.39)

where the auxiliary field sε is the unique Lax-Milgram solution in Rd of

−∇∗ ·A∗∇sε,i = ∇∗ ·
(
Fε,ij(A−Ahom)ej

)
. (3.40)

By definition of the homogenization commutator,

∆bI
ε
0(F ) = ε

d
2

ˆ
Rd
Fε,ijej ·∆bA(∇φbi + ei) + ε

d
2

ˆ
Rd
Fε,ijej · (A−Ahom)∇∆bφi.

By definition (3.40) of sε,i, we find

∆bI
ε
0(F ) = ε

d
2

ˆ
Rd
Fε,ijej ·∆bA(∇φbi + ei)− ε

d
2

ˆ
Rd
∇sε,i ·A∇∆bφi.

Then using the vertical derivative of the corrector equation (3.21) in the form

−∇∗ ·A∇∆bφi = ∇∗ ·∆bA(∇φbi + ei), (3.41)

the claim (3.39) follows.

Step 2. Conclusion.
For b ∈ B we use the notation b = (zb, zb + ξb). Inserting the representation formula (3.39) in the

spectral gap estimate of Lemma 3.3.1, and noting that |∆bA(x)| . 1Q(zb)(x), we obtain

Var [Iε0(F )] . εd
∑
b∈B

E
[
|∇φb(zb) + Id |2

]ˆ
Q(zb)

|Fε|2 + εd E

[∑
b∈B
|∇φb(zb) + Id |2

ˆ
Q(zb)

|∇sε|2
]
,

and hence, appealing to Lemma 3.3.3 in the form E
[
|∇φb|2

]
= E

[
|∇φ|2

]
. 1,

Var [Iε0(F )] . εd‖Fε‖2L2(Rd)
+ εd E

[∑
b∈B
|∇φb(zb) + Id |2

ˆ
Q(zb)

|∇sε|2
]
. (3.42)

It remains to estimate the last right-hand side term. Using equation (3.41) in the form −∇∗ ·Ab∇(φb−
φ) = ∇∗ · (Ab −A)(∇φ+ Id), an energy estimate yields

|∇(φb − φ)(zb)|2 ≤
ˆ
Rd
|∇(φb − φ)|2 .

ˆ
Rd
|Ab −A|2|∇φ+ Id |2 . |∇φ(zb) + Id |2, (3.43)

hence |∇φb(zb) + Id | . |∇φ(zb) + Id |. Further estimating in (3.42) integrals over unit cubes by
integrals over balls at the scale r∗ (cf. Lemma 3.3.4), smuggling in a power αp−1

p of the weight
wε(z) := 1 + ε|z|, and applying Hölder’s inequality in space with exponent p, we deduce for all p > 1,

εd E

[∑
b∈B
|∇φb(zb) + Id |2

ˆ
Q(zb)

|∇sε|2
]
. εd E

[ˆ
Rd
|∇φ(z) + Id |2

(ˆ
Q2(z)

|∇sε|2
)
dz

]

. εd E

[( ˆ
Rd
|∇φ(z) + Id |

2p
p−1 r∗(z)

dp
p−1wε(z)

−αdz

) p−1
p
(ˆ

Rd
wε(z)

α(p−1)
(  

B∗(z)
|∇sε|2

)p
dz

) 1
p

]
.

112



Applying Hölder’s inequality in the probability space, using Lemmas 3.3.3 and 3.3.4 in the form
E
[
|∇φ + Id |q + rq∗

]
.q 1 for all q < ∞, and noting that

´
Rd wε(z)

−αdz .α ε−d provided α > d, we
obtain for all p > 1 and all α > d,

εd E

[∑
b∈B
|∇φb(zb) + Id |2

ˆ
Q(zb)

|∇sε|2
]
.α,p ε

d
p E

[ˆ
Rd
wε(z)

α(p−1)
(  

B∗(z)
|∇sε|2

)p
dz

] 1
p

. (3.44)

By large-scale weighted Calderón-Zygmund theory (cf. Lemma 3.3.4) applied to equation (3.40) for
sε with α(p− 1) < d(2p− 1), using again the moment bounds on r∗, and rescaling spatial integrals,
we deduce for all 0 < p− 1� 1 and all 0 < α− d� 1,

εdE

[∑
b∈B
|∇φb(zb) + Id |2

ˆ
Q(zb)

|∇sε|2
]
.α,p ε

d
p E
[
r∗(0)α(p−1)

ˆ
Rd
wα(p−1)
ε |Fε|2p

] 1
p

.α,p ε
d
p ‖w

α p−1
2p

ε Fε‖2L2p(Rd)
. (3.45)

Inserting this into (3.42) and rescaling spatial integrals, we deduce for all 0 < p − 1 � 1 and all
0 < α− d� 1,

Var [Iε0(F )] .α,p ‖F‖2L2(Rd)
+ ‖w

α p−1
2p

1 F‖2
L2p(Rd)

.

Further using Hölder’s inequality in the form

‖F‖L2(Rd) ≤
(ˆ

Rd
w−α1

) p−1
2p
(ˆ

Rd
w
α(p−1)
1 |F |2p

) 1
2p
.α,p ‖w

α p−1
2p

1 F‖L2p(Rd),

the conclusion follows (after replacing the exponent αp−1
2p with 2α).

3.3.3 Proof of Lemma 3.3.2

We split the proof into two steps. To simplify notation, in this proof only, we write u := uε(ε·).
Step 1. Representation formula for ∆b((A−Ahom)∇u):

∆b

(
ej · (A−Ahom)∇u

)
= (∇φ∗j + ej) ·∆bA∇ub −∇∗k

(
φ∗j (·+ ek)ek ·∆bA∇ub

)
−∇∗k

(
φ∗j (·+ ek)ek ·A∇∆bu

)
−∇k

(
σ∗jkl(· − ek)∇l∆bu

)
. (3.46)

In particular, replacing x 7→ u(x) by x 7→ φi(x)+xi, we deduce the following discrete version of (3.10),

∆bΞij = (∇φ∗j + ej) ·∆bA(∇φbi + ei)−∇∗k
(
φ∗j (·+ ek)ek ·∆bA(∇φbi + ei)

)
−∇∗k

(
φ∗j (·+ ek)Akl∇l∆bφi

)
−∇k

(
σ∗jkl(· − ek)∇l∆bφi

)
(3.47)

Using the definition (3.33) of σj in the form (A∗ −A∗hom)ej = −A∗∇φ∗j +∇∗ · σ∗j , we find

∆b

(
ej · (A−Ahom)∇u

)
= ej ·∆bA∇ub + ej · (A−Ahom)∇∆bu

= ej ·∆bA∇ub + (∇∗ · σ∗j ) · ∇∆bu−∇φ∗j ·A∇∆bu. (3.48)

On the one hand, using the following discrete version of the Leibniz rule, for all χ1, χ2 : Zd → R,

∇(χ1χ2) = χ1∇χ2 + el χ2(·+ el)∇lχ1, (3.49)

we obtain
(∇∗ · σ∗j ) · ∇∆bu = ∇∗l

(
σ∗jkl∇k∆bu(·+ el)

)
− σ∗jkl∇k∇l∆bu,
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so that the skew-symmetry (3.32) of σj leads to

(∇∗ · σ∗j ) · ∇∆bu = −∇∗k
(
σ∗jkl∇l∆bu(·+ ek)

)
= −∇k

(
σ∗jkl(· − ek)∇l∆bu

)
. (3.50)

On the other hand, using the vertical derivative of equation (3.18) in the form −∇∗ · A∇∆bu =
∇∗ ·∆bA∇ub, the discrete Leibniz rule (3.49) yields

∇φ∗j ·A∇∆bu = −φ∗j∇∗ ·A∇∆bu+∇∗k
(
φ∗j (·+ ek)ek ·A∇∆bu

)
= −∇φ∗j ·∆bA∇ub +∇∗k

(
φ∗j (·+ ek)ek ·∆bA∇ub

)
+∇∗k

(
φ∗j (·+ ek)ek ·A∇∆bu

)
. (3.51)

Inserting (3.50) and (3.51) into (3.48), the claim (3.46) follows.

Step 2. Conclusion.
Integrating identities (3.46) and (3.47) with the test functions gε and ∇ūε ⊗ gε, respectively, and

integrating by parts, we obtain by definition of Eε0,

∆bE
ε
0(f, g) = ε

d
2
−1

ˆ
Rd
gε,j(∇φ∗j + ej) ·∆bA

(
∇ub − (∇φbi + ei)∇iūε

)
+ ε

d
2
−1

ˆ
Rd
φ∗j (·+ ek)∇kgε,jek ·∆bA∇ub − ε

d
2
−1

ˆ
Rd
φ∗j (·+ ek)∇k(gε,j∇iūε)ek ·∆bA(∇φbi + ei)

+ ε
d
2
−1

ˆ
Rd

(
φ∗j (·+ ek)Akl∇kgε,j + σ∗jkl(· − ek)∇∗kgε,j

)
∇l∆bu

− ε
d
2
−1

ˆ
Rd

(
φ∗j (·+ ek)Akl∇k(gε,j∇iūε) + σ∗jkl(· − ek)∇∗k(gε,j∇j ūε)

)
∇l∆bφi.

The first right-hand side term is reformulated using the definition of wf,ε in the form ∇ub − (∇φbi +
ei)∇iūε = ∇wbf,ε + φbi∇∇iūε. It remains to post-process the last two right-hand side terms. Using
equation (3.37) for rε and using the vertical derivative of equation (3.18) for uε in the form −∇∗ ·
A∇∆bu = ∇∗ ·∆bA∇ub, we find
ˆ
Rd

(
φ∗j (·+ ek)Akl∇kgε,j + σ∗jkl(· − ek)∇∗kgε,j

)
∇l∆bu = −

ˆ
Rd
∇rε ·A∇∆bu =

ˆ
Rd
∇rε ·∆bA∇ub.

Similarly, equations (3.38) and (3.41) lead to
ˆ
Rd

(
φ∗j (·+ ek)Akl∇k(gε,j∇iūε) + σ∗jkl(· − ek)∇∗k(gε,j∇iūε)

)
∇l∆bφi

= −
ˆ
Rd
∇Rε,i ·A∇∆bφi =

ˆ
Rd
∇Rε,i ·∆bA(∇φbi + ei),

and the conclusion follows.

3.3.4 Proof of Proposition 3.2.2

Using the representation formula (3.36), and recalling that for symmetric coefficients we have
(φ∗, σ∗) = (φ, σ), the spectral gap estimate of Lemma 3.3.1 leads to

Var [Eε0(f, g)] . T ε1 + T ε2 + T ε3 + T ε4 + T ε5 , (3.52)

where we have set

T ε1 :=
∑
b∈B

E
[(
ε
d
2
−1

ˆ
Rd
gε,j(∇φj + ej) ·∆bA(∇wbf,ε + φbi∇∇iūε)

)2
]
,
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T ε2 :=
∑
b∈B

E
[(
ε
d
2
−1

ˆ
Rd
φj(·+ ek)∇kgε,jek ·∆bA∇(ubε(ε·))

)2
]
,

T ε3 :=
∑
b∈B

E
[(
ε
d
2
−1

ˆ
Rd
φj(·+ ek)∇k(gε,j∇iūε)ek ·∆bA(∇φbi + ei)

)2
]
,

T ε4 :=
∑
b∈B

E
[(
ε
d
2
−1

ˆ
Rd
∇rε ·∆bA∇(ubε(ε·))

)2
]
,

T ε5 :=
∑
b∈B

E
[(
ε
d
2
−1

ˆ
Rd
∇Rε,i ·∆bA(∇φbi + ei)

)2
]
,

with the auxiliary fields rε and Rε defined in (3.37) and in (3.38). The conclusion of Proposition 3.2.2
is a consequence of the following five estimates: for all 0 < p− 1� 1 and all 0 < α− d� 1,

T ε1 .α,p ε2µd(
1
ε ) ‖g‖2

L4(Rd)
‖w

α p−1
4p

1 µd(| · |)
1
2Df‖2

L4p(Rd)
, (3.53)

T ε2 .α,p ε2µd(
1
ε ) ‖f‖2

L4(Rd)
‖µd(| · |)

1
2Dg‖2

L4(Rd)
, (3.54)

T ε3 .α,p ε2µd(
1
ε )
(
‖f‖2

L4(Rd)
‖µd(| · |)

1
2Dg‖2

L4(Rd)
+ ‖g‖2

L4(Rd)
‖µd(| · |)

1
2Df‖2

L4(Rd)

)
, (3.55)

T ε4 .α,p ε2µd(
1
ε ) ‖f‖2

L4(Rd)
‖w

α p−1
4p

1 µd(| · |)
1
2Dg‖2

L4p(Rd)
, (3.56)

T ε5 .α,p ε2µd(
1
ε )
(
‖f‖2

L4(Rd)
‖w

α p−1
4p

1 µd(| · |)
1
2Dg‖2

L4p(Rd)

+‖g‖2
L4(Rd)

‖w
α p−1

4p

1 µd(| · |)
1
2Df‖2

L4p(Rd)

)
. (3.57)

We split the proof into three steps, proving the above five estimates in the first two steps, and deducing
the conclusion in the third one.

Step 1. Equation for the two-scale expansion error wf,ε on Rd:

−∇∗ ·A∇wf,ε = ∇∗l
(
σjkl(· − ek)∇∗k∇j ūε + φj(·+ ek)Alk∇k∇j ūε

)
. (3.58)

This is the discrete counterpart of similar identities in [204, 203].
Using equations (3.18) and (3.34) in the form −∇∗ ·A∇(uε(ε·)) = −∇∗ ·Ahom∇ūε, and using the

discrete Leibniz rule (3.49), we obtain

−∇∗ ·A∇wf,ε = −∇∗ ·A∇(uε(ε·)− ūε − φj∇j ūε)
= −∇∗ ·Ahom∇ūε +∇∗ ·A∇ūε +∇∗ · (A∇φj∇j ūε) +∇∗ · (Aekφj(·+ ek)∇k∇j ūε).

Rearranging the terms and using the definition (3.33) of σj , this turns into

−∇∗ ·A∇wf,ε = ∇∗ ·
(
(A(∇φj + ej)−Ahomej)∇j ūε

)
+∇∗ · (Aekφj(·+ ek)∇k∇j ūε)

= ∇∗ ·
(
(∇∗ · σj)∇j ūε

)
+∇∗ · (Aekφj(·+ ek)∇k∇j ūε).

Using again the discrete Leibniz rule (3.49) and the skew-symmetry (3.32) of σj , we find

∇∗ ·
(
(∇∗ · σj)∇j ūε

)
= ∇∗k(∇∗l σjkl∇j ūε) = ∇∗k∇∗l σjkl∇j ūε︸ ︷︷ ︸

=0

+∇∗l σjkl(· − ek)∇∗k∇j ūε

= ∇∗l (σjkl(· − ek)∇∗k∇j ūε)− σjkl(· − ek − el)∇∗k∇∗l∇j ūε︸ ︷︷ ︸
=0

,
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and the conclusion (3.58) follows.

Step 2. Proof of estimates (3.53)–(3.57).
We start with the first term T ε1 . For b ∈ B we use the notation b = (zb, zb + ξb). Since |∆bA(x)| .

1Q(zb)(x), the Cauchy-Schwarz inequality yields

T ε1 . εd−2
∑
b∈B

E

[
|∇φ(zb) + Id |2

(ˆ
Q(zb)

|gε||∇wbf,ε + φbi∇∇iūε|
)2
]

. εd−2 E

[∑
b∈B
|∇φ(zb) + Id |4

(ˆ
Q(zb)

|gε|2
)2
] 1

2

E

[∑
b∈B

(ˆ
Q(zb)

|∇wbf,ε + φbi∇∇iūε|2
)2
] 1

2

,

and hence, using the moment bounds of Lemma 3.3.3 and the exchangeability of (A,Ab),

T ε1 . ε
d−2 ‖gε‖2L4(Rd)

E

[∑
b∈B

(ˆ
Q(zb)

|∇wf,ε + φi∇∇iūε|2
)2
] 1

2

.

We argue as in (3.44), rewriting the second right-hand side factor as a norm of averages at the scale r∗,
smuggling in a suitable power of the weight wε, and applying Hölder’s inequality, for all p > 1 and
all α > d,

T ε1 .α,p ε
d
2

(1+ 1
p

)−2 ‖gε‖2L4(Rd)
E

[ˆ
Rd
wε(z)

α(p−1)
( 

B∗(z)
|∇wf,ε|2

)2p
dz +

ˆ
Rd
wα(p−1)
ε |φ|4p|∇2ūε|4p

] 1
2p

.

(3.59)

By large-scale weighted Calderón-Zygmund theory (cf. Lemma 3.3.4) applied to equation (3.58) for
wf,ε, we deduce for all 0 < p− 1� 1 and all 0 < α− d� 1,

T ε1 .α,p ε
d
2

(1+ 1
p

)−2 ‖gε‖2L4(Rd)
E

[
r∗(0)α(p−1)

ˆ
Rd
wα(p−1)
ε

(
|σ|4p + |φ|4p +

d∑
k=1

|φ(·+ ek)|4p
)
|∇2ūε|4p

] 1
2p

.

By the moment bounds of Lemmas 3.3.3 and 3.3.4, this yields

T ε1 .α,p ε
d
2

(1+ 1
p

)−2 ‖gε‖2L4(Rd)
‖w

α p−1
4p

ε µd(| · |)
1
2∇2ūε‖2L4p(Rd)

.

Using the standard weighted Calderón-Zygmund theory applied to the discrete constant-coefficient
equation (3.34) for ūε (cf. Lemma 3.3.4 with r∗ = 1), noting that for all χ, ζ ∈ C∞c (Rd) and all q <∞
the inequality |∇(ζ(εx))| ≤ ε

´ 1
0 |Dζ(εx+ εtek)|dt leads to

ˆ
Rd
χ|∇(ζ(ε·))|q ≤ εq

ˆ
Rd

(
sup
B(x)
|χ|
)
|Dζ(εx)|qdx ≤ εq−d

ˆ
Rd

(
sup
B(x

ε
)
|χ|
)
|Dζ(x)|qdx, (3.60)

rescaling the integrals, and estimating µd(| ·ε |) ≤ µd(
1
ε )µd(| · |), the conclusion (3.53) follows.

We turn to the second term T ε2 . Since |∆bA(x)| . 1Q(zb)(x), the Cauchy-Schwarz inequality yields

T ε2 . ε
d−2 E

[∑
b∈B
|φ(zb + ek)|2

( ˆ
Q(zb)

|∇kgε|2
)(ˆ

Q(zb)
|∇(ubε(ε·))|2

)]
.
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Bounding the second local integral by an integral at the scale rb∗, using the notation Bb
∗(z) := Brb∗(z)(z),

applying the Cauchy-Schwarz inequality, and using the moment bounds of Lemmas 3.3.3 and 3.3.4,
we find

T ε2 . ε
d−2 ‖µd(| · |)

1
2∇gε‖2L4(Rd)

E

[∑
b∈B

( 
Bb∗(zb)∪Q(zb)

|∇(ubε(ε·))|2
)2
] 1

2

,

and hence, by exchangeability of (A,Ab),

T ε2 . ε
d−2 ‖µd(| · |)

1
2∇gε‖2L4(Rd)

E

[ˆ
Rd

( 
B∗(z)

|∇(uε(ε·))|2
)2
dz

] 1
2

.

By large-scale weighted Calderón-Zygmund theory (cf. Lemma 3.3.4) applied to equation (3.18) for
uε in the form −∇∗ ·A∇(uε(ε·)) = ∇∗ · (εfε), we deduce

T ε2 . ε
d ‖µd(| · |)

1
2∇gε‖2L4(Rd)

‖fε‖2L4(Rd)
,

and the conclusion (3.54) follows similarly as above.
The proof of (3.55) for T ε3 is more direct. Indeed, using the moment bounds of Lemma 3.3.3,

decomposing ∇(gε,i∇uε) = ∇gε,i ⊗∇uε + gε,i(·+ ek)ek ⊗∇k∇uε, and applying the Cauchy-Schwarz
inequality, we find

T ε3 . εd−2
d∑

k=1

E

[∑
b∈B
|φ(zb + ek)|2|∇φb(zb) + Id |2

( ˆ
Q(zb)

|∇(gε∇ūε)|
)2
]

. εd−2

ˆ
Rd
µd(| · |)|∇(gε∇ūε)|2

. εd−2
(
‖∇ūε‖2L4(Rd)

‖µd(| · |)∇gε‖2L4(Rd)
+ ‖gε‖2L4(Rd)

‖µd(| · |)∇2ūε‖2L4(Rd)

)
,

and the conclusion (3.55) follows as above.
We turn to the fourth term T ε4 . Smuggling a power αp−1

2p of the weight wε, applying Hölder’s
inequality with exponents ( 2p

p−1 , 2p, 2), using the moment bounds of Lemma 3.3.4, and the exchange-
ability of (A,Ab), we obtain for all p > 1 and all α > d,

T ε4 . εd−2 E

[∑
b∈B

r∗(zb)
drb∗(zb)

d
( 

B∗(zb)∪Q(zb)
|∇rε|2

)( 
Bb∗(zb)∪Q(zb)

|∇(ubε(ε·))|2
)
dz

]

. ε
d
2

(1+ 1
p

)−2 E

[ˆ
Rd
wε(z)

α(p−1)
( 

B∗(z)
|∇rε|2

)2p
dz

] 1
2p

E

[ˆ
Rd

( 
B∗(z)

|∇(uε(ε·))|2
)2
dz

] 1
2

.

Using the large-scale weighted Calderón-Zygmund theory (cf. Lemma 3.3.4) applied to equation (3.37)
for rε and to equation (3.18) for uε, and using the moment bounds of Lemma 3.3.3, we deduce for all
0 < p− 1� 1 and all 0 < α− d� 1,

T ε4 . ε
d
2

(1+ 1
p

) ‖w
α p−1

4p
ε µd(| · |)

1
2∇gε‖2L4p(Rd)

‖fε‖2L4(Rd)
,

and the conclusion (3.56) follows as before.
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Finally, we turn to the last term T ε5 . Using (3.43) in the form |∇φb(zb) + Id | . |∇φ(zb) + Id |,
smuggling in a power αp−1

2p of the weight wε, applying Hölder’s inequality with exponents ( 2p
p−1 ,

2p
p+1),

using the moment bounds of Lemmas 3.3.3 and 3.3.4, we obtain for all p > 1 and all α > d,

T ε5 . εd−2 E

[ˆ
Rd
|∇φ(z) + Id |2

(ˆ
Q2(z)

|∇Rε|2
)
dz

]

. ε
d
2

(1+ 1
p

)−2 E

[ˆ
Rd
wε(z)

α p−1
p+1

( 
B∗(z)

|∇Rε|2
) 2p
p+1

dz

] p+1
2p

.

Using the large-scale weighted Calderón-Zygmund theory (cf. Lemma 3.3.4) applied to equation (3.38)
for Rε, and using the moment bounds of Lemma 3.3.3, we deduce for all 0 < p − 1 � 1 and all
0 < α− d� 1,

T ε5 . ε
d
2

(1+ 1
p

)−2 ‖w
α p−1

4p
ε µd(| · |)

1
2∇(gε∇ūε)‖2

L
4p
p+1 (Rd)

.

Decomposing ∇(gε,i∇uε) = ∇gε,i ⊗ ∇uε + gε,i(· + ek)ek ⊗ ∇k∇uε and suitably applying Hölder’s
inequality with exponents (p+1

p , p+ 1), the conclusion (3.57) follows as before.

Step 3. Conclusion.
Inserting estimates (3.53)–(3.57) into (3.52) yields for all 0 < p− 1� 1 and all α > dp−1

4p ,

‖Eε0(f, g)‖L2(Ω) .α,p εµd(
1
ε )

1
2

(
‖f‖L4(Rd)‖w

α
1Dg‖L4p(Rd) + ‖g‖L4(Rd)‖w

α
1Df‖L4p(Rd)

)
, (3.61)

and it remains to deduce the corresponding result for Eε(f, g). In terms of ũε := ūε(
·
ε) and ṽε := v̄ε(

·
ε),

equations (3.34) take the form

−∇∗ε ·Ahom∇εũε = ∇∗ε · f, −∇∗ε ·A∗hom∇εṽε = ∇∗ε · g. (3.62)

The definitions of Eε and Eε0 then lead to the relation

Eε(f, g) = Eε0(f, g) + Iε0
(
(∇εũε −Dū)⊗ g

)
, (3.63)

and it remains to treat the discretization error Iε0((∇εũε−Dū)⊗g). By Proposition 3.2.1, it is enough
to establish for all 1 < p <∞ and all 0 ≤ α < dp−1

p ,

‖wα1 (∇εũε −Dū)‖Lp(Rd) .α,p ε‖wα1Df‖Lp(Rd). (3.64)

For that purpose, we note that ū is an approximate solution of the discrete equation (3.62). Indeed,
integrating equation (3.19) for ū on a unit cube yields

0 =

ˆ
[−1,0]d

D · (AhomDū+ f)(·+ εy)dy = ∇∗ε · (AhomDū+ f) +∇∗ε · Tε, (3.65)

where error term Tε satisfies, for all 1 ≤ p <∞ and all 0 ≤ α <∞,

‖wα1 Tε‖Lp(Rd) .α ε‖wα1D(AhomDū+ f)‖Lp(Rd) . ε‖wα1Df‖Lp(Rd) + ε‖wα1D2ū‖Lp(Rd). (3.66)

Comparing equations (3.62) and (3.65), the difference ū− ũε satisfies

−∇∗ε ·Ahom∇ε(ū− ũε) = ∇∗ε · Tε −∇∗ε ·Ahom(∇εū−Dū).
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Hence, using the standard weighted Calderón-Zygmund theory applied to this discrete constant-
coefficient equation, we obtain, for all 1 < p <∞ and all 0 ≤ α < dp−1

p ,

‖wα1∇ε(ū− ũε)‖Lp(Rd) .α,p ‖wα1 Tε‖Lp(Rd) + ‖wα1 (∇εū−Dū)‖Lp(Rd).

Noting that the second right-hand side term is bounded by ε‖wα1D2ū‖Lp(Rd), and applying (3.66), we
deduce

‖wα1 (∇εũε −Dū)‖Lp(Rd) .α,p ε‖wα1Df‖Lp(Rd) + ε‖wα1D2ū‖Lp(Rd).

Using the standard weighted Calderón-Zygmund theory applied to the constant-coefficient equa-
tion (3.19) for ū, the claim (3.64) follows.

3.3.5 Proof of Corollary 3.2.4

We start with the proof of (3.23) for Iε1 . By integration by parts, equations (3.62) and (3.18) for
ṽε, ũε, and uε lead to
ˆ
g · ∇ε(uε − ũε)

(3.62)
= −

ˆ
∇εṽε ·Ahom∇ε(uε − ũε)

(3.62)
= −

ˆ
∇εṽε · f −

ˆ
∇εṽε ·Ahom∇εuε

(3.18)
=

ˆ
∇εṽε · (Aε∇εuε −Ahom∇εuε).

Subtracting the expectation of both sides yields a discrete version of identity (3.7). In terms of Iε0 ,
Iε1 , and Eε0 (cf. Section 3.2 and (3.35)), this takes on the following guise,

Iε1(f, g)− Iε0(Dū⊗Dv̄) = Iε0(∇εũε ⊗∇εṽε −Dū⊗Dv̄) + Eε0(f,∇εṽε). (3.67)

Using (3.64) and the standard weighted Calderón-Zygmund theory applied to the constant-coefficient
equations (3.19) and (3.62), the conclusion (3.23) for Iε1 follows from (3.61) together with Proposi-
tion 3.2.1.

We turn to the proof of (3.23) for Iε2 . By definition of Iε0 , Iε1 , Iε2 , and Eε (cf. Section 3.2), we find

Iε2(f, g) = Eε(f, g) + Iε1(f,A∗homg) + Iε0(Dū⊗ g).

Inserting identities (3.63) and (3.67) (with g replaced by A∗homg and thus v̄ replaced by the solution
v̄◦ of −D ·A∗homDv̄

◦ = D ·A∗homg, so that P̄∗Lg = Dv̄◦ + g), the conclusion (3.23) follows similarly as
for Iε1 .

We now turn to the proof of (3.24). Let S(Rd) denote the Schwartz space of rapidly decaying
functions, and consider the subspace Kε := {g ∈ S(Rd)d : v̄ε ∈ S(Rd)}, cf. (3.34). Given some fixed
χ ∈ C∞c (Rd), set χL := χ(L·) for L ≥ 1. For g ∈ Kε, we compute by integration by parts, using
equation (3.21) for φj and equation (3.34) for v̄ε, together with the discrete Leibniz rule (3.49),

ˆ
Rd
χL∇v̄ε · ei =

ˆ
Rd
χL∇v̄ε ·

(
A(∇φi + ei)−Ahom(∇φi + ei)

)
(3.21)

= −
ˆ
Rd
∇(v̄εχL) ·Ahom∇φi −

ˆ
Rd
v̄ε(·+ ej)∇jχL Ξij

(3.34)
= ε

ˆ
Rd
χLgε · ∇φi + ε

ˆ
Rd
φi(·+ ej)gε,j∇jχL +

ˆ
Rd
φi(·+ ej)∇jχLej ·Ahom∇v̄ε

−
ˆ
Rd
v̄ε(·+ ej)∇jχLej ·Ahom∇φi −

ˆ
Rd
v̄ε(·+ ej)∇jχL Ξij .
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For fixed ε and g ∈ Kε, using the moment bounds of Lemma 3.3.3 and the rapid decay at infinity of
g and v̄ε, we may pass to the limit L ↑ ∞ in both sides in L2(Ω), and we deduce almost surely

ˆ
Rd
∇v̄ε : ej = ε

ˆ
Rd
gε · ∇φj ,

that is, after rescaling,

Jε1(ej ⊗ g) = Iε0(ej ⊗∇εṽε). (3.68)

We now argue that for all ε > 0 this almost-sure identity can be extended to hold in L2(Ω) for all
g ∈ C∞c (Rd)d. First note that Proposition 3.2.1 combined with the standard weighted Calderón-
Zygmund theory for the constant-coefficient equation (3.62) yields for all 0 < p − 1 � 1 and all
dp−1

4p < α < d2p−1
4p ,

E
[
|Iε0(ej ⊗∇εṽε)|2

] 1
2 .α,p ‖w2α

1 ∇εṽε‖L2p(Rd) .α,p ‖w
2α
1 g‖L2p(Rd),

and similarly, arguing as in the proof of Proposition 3.2.1,

E
[
|Jε1(ej ⊗ g)|2

] 1
2 . ‖w2α

1 g‖L2p(Rd).

Hence, it suffices to check the following density result: for all test functions g ∈ C∞c (Rd)d there exist a
sequence (gn)n of elements of Kε such that ‖w2α

1 (gn−g)‖L2p(Rd) → 0 holds for some 0 < p−1� 1 and
some α > dp−1

4p . Let g ∈ C∞c (Rd)d be fixed. Up to a convolution argument on large scales, we may
already assume that the Fourier transform ĝ has compact support, say contained in BR. Since the
(continuum) Fourier symbol of the discrete Helmholtz projection ∇ε(∇∗ε · ā∇ε)−1∇∗ε · is bounded and
smooth outside of the dual lattice (2π

ε Z)d, a function gn ∈ S(Rd)d actually belongs to Kε whenever
its Fourier transform ĝn vanishes in a neighborhood of (2π

ε Z)d. Choosing χ ∈ C∞c (Rd) with χ = 1 in
a neighborhood of 0, and defining

χn := 1−
∑

z∈( 2π
ε
Z)d

χ(n(· − z)),

the function gn ∈ S(Rd)d defined by ĝn := χnĝ thus belongs to Kε. For p ≥ 1, setting q := 2p−1
2p ,

since ĝ is compactly supported in BR, the Hausdorff-Young inequality leads to

‖w2α
1 (gn − g)‖L2p(Rd) ≤ ‖(χn − 1)ĝ‖W 2α,q(Rd) .α ‖χn − 1‖W 2α,q(BR)‖ĝ‖W 2α,∞(Rd)

. ‖χn − 1‖W 2α,q(BR)‖w2α
1 g‖L1(Rd).

For 2α < d
q = d2p−1

2p , reflecting the fact that the Sobolev spaceW 2α,q(Rd) fails to embed into the space
of continuous functions, there holds χn → 1 inW 2α,q

loc (Rd) as n ↑ ∞, and hence ‖w2α
1 (gn−g)‖L2p(Rd) →

0. This establishes the claimed density result, and we conclude that identity (3.68) can be extended
in L2(Ω) to all g ∈ C∞c (Rd)d. The estimate (3.24) for Jε1 then follows from the discretization error
estimate (3.64) together with Proposition 3.2.1. The estimate (3.24) for Jε2 is obtained in a similar
way.
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3.4 Asymptotic normality

We turn to the normal approximation result for the homogenization commutator Ξ as stated in
Proposition 3.2.7.

3.4.1 Structure of the proof and auxiliary results

The main tool to prove Proposition 3.2.7 is the following suitable form of a second-order Poincaré
inequality à la Chatterjee [112]. Based on Stein’s method, it can be shown to hold for any product
measure P on Ω. (The proof follows from [112, Theorem 2.2] and from [282, Theorem 4.2] in the
case of the Wasserstein and of the Kolmogorov metric, respectively, combined with the spectral gap
estimate of Lemma 3.3.1; see also Theorem 4.6.2 in Chapter 4.) Let us first fix some more notation.
Let X = X(A) be a random variable on Ω, that is, a measurable function of (a(b))b∈B. For all E ⊂ B
we denote by AE the random field that coincides with A on all edges b /∈ E and with the i.i.d. copy
A′ on all edges b ∈ E. In particular, A and AE always have the same law. We use the abbreviation
XE := X(AE) and define ∆bX

E := XE − XE∪{b}. As before, we write for simplicity Xb := X{b},
and similarly Xb,b′ := X{b,b

′}. In particular, ∆b∆b′X = X −Xb −Xb′ +Xb,b′ .

Lemma 3.4.1 ([112, 282]). Let P be a product measure. For all X = X(A) ∈ L2(Ω), we have

(dW + dK)

(
X − E [X]

Var [X]
1
2

,N

)
.

1

Var [X]
3
2

∑
b∈BL

E
[
|∆bX|6

] 1
2

+
1

Var [X]

(∑
b∈B

(∑
e′∈B

E
[
|∆b′X|4

] 1
4 E
[
|∆b∆b′X|4

] 1
4

)2
) 1

2

. ♦

In addition, we make crucial use of the following optimal annealed estimate on the mixed gradient
of the Green’s function, first proved by Marahrens and Otto [313].

Lemma 3.4.2 ([313]). Let d ≥ 2 and let P be a product measure. For all y ∈ Zd there exists a
function ∇G(·, y) that is the unique decaying solution in Zd of

−∇∗ ·A∇G(·, y) = δ(· − y).

It satisfies the following moment bound: for all q <∞ and all x, y ∈ Zd,

E [|∇∇G(x, y)|q]
1
q .q (1 + |x− y|)−d,

where ∇∇ denotes the mixed second gradient. ♦

3.4.2 Proof of Proposition 3.2.7

Let F ∈ C∞c (Rd)d×d, and set Fε := F (ε·). By Lemma 3.4.1, it is enough to estimate the following
two contributions,

Kε
1 :=

∑
b∈B

E
[
|∆bI

ε
0(F )|6

] 1
2 , Kε

2 :=
∑
b∈B

(∑
b′∈B

E
[
|∆b′I

ε
0(F )|4

] 1
4 E
[
|∆b∆b′I

ε
0(F )|4

] 1
4

)2

.

We split the proof into three steps: we start with an auxiliary estimate, and then estimate Kε
1 and

Kε
2 separately.

Step 1. Auxiliary result: for all ζ ∈ C∞c (Rd), all 1 ≤ p <∞, and all r ≥ 0,
ˆ
Rd

logr(2 + |z|)
( ˆ

Rd

|ζ(x)|
(1 + |x− z|)d

dx

)p
dz .p,r

ˆ
Rd

logp+r(2 + |x|) |ζ(x)|p dx. (3.69)
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Let α > 0 be fixed. Smuggling in a power αp−1
p of the weight 1 + |x|, and applying Hölder’s

inequality with exponent p, we find

ˆ
Rd

logr(2 + |z|)
( ˆ

Rd

|ζ(x)|
(1 + |x− z|)d

dx

)p
dz

≤
ˆ
Rd

logr(2 + |z|)
( ˆ

Rd

(1 + |x|)α(p−1)|ζ(x)|p

(1 + |x− z|)d
dx

)( ˆ
Rd

dx

(1 + |x− z|)d(1 + |x|)α

)p−1

dz.

Estimating the last integral in brackets leads to
ˆ
Rd

logr(2 + |z|)
(ˆ

Rd

|ζ(x)|
(1 + |x− z|)d

dx

)p
dz

.α,p

ˆ
Rd

logp+r−1(2 + |z|)
(1 + |z|)α(p−1)

( ˆ
Rd

(1 + |x|)α(p−1)|ζ(x)|p

(1 + |x− z|)d
dx

)
dz

=

ˆ
Rd

(1 + |x|)α(p−1)|ζ(x)|p
( ˆ

Rd

logp+r−1(2 + |z|)
(1 + |x− z|)d(1 + |z|)α(p−1)

dz

)
dx.

Estimating the last integral in brackets yields the conclusion (3.69).

Step 2. Proof of
Kε

1 . ε
d
2
(
‖F‖3

L3(Rd)
+ ‖ log(2 + | · |)µd(| · |)

1
2DF‖3

L3(Rd)

)
.

After integration by parts, the representation formula for the vertical derivative ∆bΞ in (3.47)
leads to

∆bI
ε
0(F ) = ε

d
2

ˆ
Rd
Fε,ij(∇φ∗j + ej) ·∆bA(∇φbi + ei) + ε

d
2

ˆ
Rd
φ∗j (·+ ek)∇kFε,ijek ·∆bA(∇φbi + ei)

+ ε
d
2

ˆ
Rd

(
φ∗j (·+ ek)Akl∇kFε,ij + σ∗jkl(· − ek)∇∗kFε,ij

)
∇l∆bφi.

Given b = (zb, zb+ ξb), noting that the Green representation formula applied to equation (3.41) yields
for all x ∈ Zd,

∇∆bφi(x) = −∇∇G(x, zb)∆bA(zb)(∇φbi(zb) + ei), (3.70)

inserting this into the above representation formula for ∆bI
ε
0(F ), noting that |∆bA(x)| . 1Q(zb)(x),

and using the moment bounds of Lemmas 3.3.3 and 3.4.2, we obtain for all q <∞,

E [|∆bI
ε
0(F )|q]

1
q .q ε

d
2

ˆ
Q(zb)

|Fε|+ ε
d
2

ˆ
Rd

µd(|x|)
1
2 |∇Fε(x)|

(1 + |x− zb|)d
dx. (3.71)

Inserting this estimate into the definition of Kε
1 , and appealing to (3.69) with p = 3, r = 0, and

ζ = µd(| · |)
1
2∇Fε, we deduce

Kε
1 . ε

3d
2

ˆ
Rd
|Fε|3 + ε

3d
2

ˆ
Rd

( ˆ
Rd

µd(|x|)
1
2 |∇Fε(x)|

(1 + |x− z|d)
dx

)3

dz

. ε
3d
2

ˆ
Rd
|Fε|3 + ε

3d
2

ˆ
Rd

log3(2 + | · |)µd(| · |)
3
2 |∇Fε|3.

Rescaling the integrals and using (3.60), the conclusion follows.
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Step 3. Proof of

Kε
2 . ε

d log2(2 + 1
ε )
(
‖F‖4

L4(Rd)
+ ‖ log(2 + | · |)F‖4

L4(Rd)

)
+ εd+2 log4(2 + 1

ε )µd(
1
ε )
(
‖ log(2 + | · |)F‖4

L4(Rd)
+ ‖ log2(2 + | · |)µd(| · |)

1
2DF‖4

L4(Rd)

)
+ εd+4 log6(2 + 1

ε )µd(
1
ε )2‖ log2(2 + | · |)µd(| · |)

1
2DF‖4

L4(Rd)
.

We need to iterate the vertical derivative and estimate ∆b∆b′I
ε
0(F ). By definition of the homog-

enization commutator, we find

∆b∆b′I
ε
0(F ) = ε

d
2 ∆b′

ˆ
Rd
Fε,ijej ·∆bA(∇φbi + ei) + ε

d
2 ∆b′

ˆ
Rd
Fε,ijej · (A−Ahom)∇∆bφi

= ε
d
2

ˆ
Rd
Fε,ijej ·∆b∆b′A(∇φb,b

′

i + ei) + ε
d
2

ˆ
Rd
Fε,ijej ·

(
∆bA∇∆b′φ

b
i + ∆b′A∇∆bφ

b′
i

)
+ε

d
2

ˆ
Rd
Fε,ijej · (A−Ahom)∇∆b∆b′φi. (3.72)

In order to avoid additional logarithmic factors, we need to suitably rewrite the last right-hand side
term, and we argue similarly as in the proof of (3.47). Using the definition (3.33) of σ∗j in the
form (A∗ − A∗hom)ej = −A∗∇φ∗j + ∇∗ · σ∗j , applying the discrete Leibniz rule (3.49), and using the
skew-symmetry (3.32) of σi, we find

ej · (A−Ahom)∇∆b∆b′φi = (∇∗ · σ∗j ) · ∇∆b∆b′φi −∇φ∗j ·A∇∆b∆b′φi

= ∇k
(
σ∗jlk(· − ek)∇l∆b∆b′φi

)
−∇∗k

(
φ∗j (·+ ek)ek ·A∇∆b∆b′φi

)
+ φ∗j∇∗ ·A∇∆b∆b′φi.

Noting that the vertical derivative of equation (3.41) takes the form

−∇∗ ·A∇∆b∆b′φi = ∇∗ ·∆b′A∇∆bφ
b′
i +∇∗ ·∆b∆b′A(∇φb,b

′

i + ei) +∇∗ ·∆bA∇∆b′φ
b
i , (3.73)

and combining this with the above yields

ej · (A−Ahom)∇∆b∆b′φi = ∇k
(
σ∗jlk(· − ek)∇l∆b∆b′φi

)
−∇∗k

(
φ∗j (·+ ek)ek ·A∇∆b∆b′φi

)
− φ∗j∇∗ ·∆b′A∇∆bφ

b′
i − φ∗j∇∗ ·∆b∆b′A(∇φb,b

′

i + ei)− φ∗j∇∗ ·∆bA∇∆b′φ
b
i .

Inserting this into (3.72), integrating by parts, and applying the discrete Leibniz rule (3.49), we are
led to the following representation formula,

∆b∆b′I
ε
0(F ) = ε

d
2

ˆ
Rd
Fε,ij(∇φ∗j + ej) ·∆b∆b′A(∇φb,b

′

i + ei)

+ ε
d
2

ˆ
Rd
Fε,ij(∇φ∗j + ej) ·

(
∆bA∇∆b′φ

b
i + ∆b′A∇∆bφ

b′
i

)
+ ε

d
2

ˆ
Rd

(
σ∗jkl(· − ek)∇∗kFε,ij + φ∗j (·+ ek)Akl∇kFε,ij

)
∇l∆b∆b′φi

+ ε
d
2

ˆ
Rd
φ∗j (·+ ek)∇kFε,ijek ·

(
∆bA∇∆b′φ

b
i + ∆b′A∇∆bφ

b′
i

)
+ ε

d
2

ˆ
Rd
φ∗j (·+ ek)∇kFε,ijek ·∆b∆b′A(∇φb,b

′

i + ei). (3.74)

We need to estimate the moment of each right-hand side term. Fix momentarily b = (zb, zb + ξb) and
b′ = (zb′ , zb′ + ξb′). Applying Lemmas 3.3.3 and 3.4.2 to the Green representation formula (3.70) for
∇∆bφ, we find for all q <∞,

E [|∇∆bφ(x)|q]
1
q .q (1 + |x− zb|)−d.
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We then turn to the second vertical derivatives. We obviously have ∆b∆b′A = 1b=b′∆bA. Next, the
Green representation formula applied to equation (3.73) yields

∇∆b∆b′φj(x) = −∇∇G(x, zb′) ·∆b′A(zb′)∇∆bφ
b′
j (zb′)−∇∇G(x, zb) ·∆bA(zb)∇∆b′φ

b
j(zb)

− 1b=b′∇∇G(x, zb) ·∆bA(zb)(∇φbj + ej),

so that, for all q <∞, Lemmas 3.3.3 and 3.4.2 lead to

E [|∇∆b∆b′φ(x)|q]
1
q .q (1 + |zb − zb′ |)−d

(
(1 + |x− zb′ |)−d + (1 + |x− zb|)−d

)
.

Inserting these estimates into (3.74), we obtain

E
[
|∆b∆b′I

ε
0(F )|4

] 1
4 .

ε
d
2

(1 + |zb − zb′ |)d

(ˆ
Q(zb)

|Fε|+
ˆ
Q(zb′ )

|Fε|

+

ˆ
Rd

µd(|x|)
1
2 |∇Fε(x)|

(1 + |x− zb′ |)d
dx+

ˆ
Rd

µd(|x|)
1
2 |∇Fε(x)|

(1 + |x− zb|)d
dx

)
.

Combining this with (3.71) and with the definition of Kε
2 , using the short-hand notation

I(ζ)(z) :=

ˆ
Rd

|ζ(x)|
(1 + |x− z|)d

dx, Gε := µd(| · |)
1
2∇Fε,

we deduce

Kε
2 . ε

2d

ˆ
Rd

(
|Fε|2|I(Fε)|2 + |I(|Fε|2)|2 + |I(Fε)|2|I(Gε)|2 + |I(FεI(Gε))|2

+ |Fε|2|I(I(Gε))|2 + |I(|I(Gε)|2)|2 + |I(Gε)|2|I(I(Gε))|2
)
.

Using the Cauchy-Schwarz inequality, and making a multiple use of (3.69) in the form

‖ logr(2 + | · |) I(ζ)‖Lp(Rd) .p,r ‖ logr+1(2 + | · |) ζ‖Lp(Rd),

we are led to

Kε
2 . ε

2d
(
‖Fε‖2L4(Rd)

‖ log(2 + | · |)Fε‖2L4(Rd)
+ ‖ log

1
2 (2 + | · |)Fε‖4L4(Rd)

+ ‖Fε‖2L4(Rd)
‖ log2(2 + | · |)Gε‖2L4(Rd)

+ ‖ log(2 + | · |)Fε‖2L4(Rd)
‖ log(2 + | · |)Gε‖2L4(Rd)

+ ‖ log
3
2 (2 + | · |)Gε‖4L4(Rd)

+ ‖ log(2 + | · |)Gε‖2L4(Rd)
‖ log2(2 + | · |)Gε‖2L4(Rd)

)
.

Inserting the definition of Gε, rescaling the integrals, and using (3.60), the conclusion follows.
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3.5 Covariance structure

In this section, we turn to the limiting covariance structure of the homogenization commutator,
as stated in Proposition 3.2.9.

3.5.1 Structure of the proof and auxiliary results

The main tool to prove Proposition 3.2.9 is the following stronger version of the spectral gap
estimate of Lemma 3.3.1, which gives an identity (rather than a bound) for the variance of a random
variable in terms of its variations. This is an i.i.d. version of the so-called Helffer-Sjöstrand represen-
tation formula [238, 399] (see also [335, 329]) and it holds for any product measure P on Ω. A proof
is included for completeness in Subsection 3.5 below. It is more conveniently formulated in terms
of ∆̃bX := X − Ea(b)[X], where Ea(b)[·] := E

[
· ‖ (a(b′))b′ 6=b

]
denotes the expectation with respect to

the random variable a(b) only. This is a natural variant of the vertical derivative ∆b and satisfies
E
[
|∆̃bX|2

]
= 1

2E
[
|∆bX|2

]
. Note that by definition ∆̃bX = Eab(b)[∆bX], where Eab(b)[·] denotes the

expectation with respect to the random variable ab(b) only.

Lemma 3.5.1. Let P be a product measure. For all X = X(A) ∈ L2(Ω) we have

Var [X] =
∑
b∈B

E
[
(∆̃bX) T (∆̃bX)

]
,

where T := (
∑

b∈B ∆̃b∆̃b)
−1 is a self-adjoint positive operator on L2(Ω)/R := {X ∈ L2(Ω) : E [X] =

0} with operator norm bounded by 1. In particular, it implies the following covariance inequality: for
all X,Y ∈ L2(Ω) we have

Cov [X;Y ] ≤ 1

2

∑
b∈B

E
[
|∆bX|2

] 1
2 E
[
|∆bY |2

] 1
2 . ♦

The proof of Proposition 3.2.9(i) below further implies that the effective fluctuation tensor Q is
given by the following formula, with the notation bn := (0, en),

Qijkl :=

d∑
n=1

E
[(
Mn
ij − E

[
Mn
ij

])
T
(
Mn
kl − E

[
Mn
kl

])]
, (3.75)

Mn
ij := Eabn (bn)

[
(a(bn)− abn(bn))

(
en · (∇φ∗j (0) + ej)

)(
en · (∇φbni (0) + ei)

)]
,

in terms of the abstract operator T defined above. Although not convenient for numerical approx-
imation of Q, this formula allows to easily deduce the non-degeneracy result contained in Proposi-
tion 3.2.9(ii). In addition, this is key to the proof of Theorem 3.1.3 on the RVE method.

3.5.2 Proof of Lemma 3.5.1

We start with some observations on the difference operator ∆̃b on L2(Ω). For all X,Y ∈ L2(Ω),
by exchangeability of (A,Ab), we find

E
[
X∆̃bY

]
= E

[
XY

]
− E

[
XEa(b)[Y ]

]
= E

[
XY

]
− E

[
Ea(b)[X]Ea(b)[Y ]

]
= E

[
XY

]
− E

[
Y Ea(b)[X]

]
= E

[
Y ∆̃bX

]
,

so that ∆̃b is symmetric on L2(Ω). In addition, we easily compute, for all b, b′ ∈ B,

∆̃b∆̃b = ∆̃b, ∆̃b∆̃b′ = ∆̃b′∆̃b. (3.76)
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With these observations at hand, we now turn to the study of the (densely defined) operator S :=∑
b∈B ∆̃b∆̃b on L2(Ω). More precisely, we consider the space L2(Ω)/R := {X ∈ L2(Ω) : E [X] = 0}

of mean-zero square-integrable random variables, and we show that S is an essentially self-adjoint,
non-negative operator on L2(Ω)/R with dense image. First, since E

[
∆̃bX

]
= 0 for all b ∈ B and

X ∈ L2(Ω), the image ImS is clearly contained in L2(Ω)/R. Second, for all X ∈ L2(Ω) in the domain
of S, we compute

E [XSX] =
∑
b∈B

E
[
|∆̃bX|2

]
≥ 0,

which shows that S is non-negative. Third, if X ∈ L2(Ω)/R in the domain of S is orthogonal to the
image ImS, then we deduce

0 = E [XSX] =
∑
b∈B

E
[
|∆̃bX|2

]
,

so that ∆̃bX = 0 almost surely for all b ∈ B, which implies that X is constant.
These properties of S allow us to define (densely) the inverse T := S−1 as an essentially self-

adjoint, non-negative operator on L2(Ω)/R. Finally, the spectral gap of Lemma 3.3.1 implies, for all
X ∈ L2(Ω)/R in the domain of S,

‖X‖2
L2(Ω)

= Var [X] ≤
∑
b∈B

E
[
|∆̃bX|2

]
= E [XSX] ≤ ‖X‖L2(Ω)‖SX‖L2(Ω),

and hence ‖X‖L2(Ω) ≤ ‖SX‖L2(Ω), which implies that T = S−1 on L2(Ω)/R has operator norm
bounded by 1.

It remains to establish the representation formula for the variance. By density, it suffices to prove
it for all X ∈ ImS. Writing X = SY for some Y ∈ L2(Ω)/R, we decompose

Var [X] = E [XSY ] =
∑
b∈B

E
[
∆̃bX∆̃bY

]
=
∑
b∈B

E
[
(∆̃bX)(∆̃bT X)

]
.

Since the commutation relations (3.76) ensure that ∆̃bS = S∆̃b holds on the domain of S in L2(Ω),
we deduce ∆̃bT = T ∆̃b on L2(Ω)/R, and the above then leads to the desired representation

Var [X] =
∑
b∈B

E
[
(∆̃bX)T (∆̃bX)

]
.

3.5.3 Proof of Proposition 3.2.9(i)

By polarization and linearity, it is enough to prove (3.25) with F = G ∈ C∞c (Rd)d×d. We thus
need to establish the convergence of the variance

νε := Var

[
ε−

d
2

ˆ
Rd
F : Ξ( ·ε)

]
= Var

[
ε
d
2

ˆ
Rd
Fε : Ξ

]
,

where we have set Fε := F (ε·). We split the proof into two steps.

Step 1. Proof of (3.25).
Applying the Helffer-Sjöstrand representation of Lemma 3.5.1 to the variance νε, we are led to

νε = εd
∑
b∈B

E
[(

∆̃b

ˆ
Rd
Fε : Ξ

)
T
(

∆̃b

ˆ
Rd
Fε : Ξ

)]
. (3.77)
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We now appeal to (3.47) in the form

∆b

ˆ
Rd
Fε : Ξ =

ˆ
Rd
Fε,ij(∇φ∗j + ej) ·∆bA(∇φbi + ei)

+

ˆ
Rd
φ∗j (·+ ek)∇kFε,ijek ·∆bA(∇φbi + ei) +

ˆ
Rd
∇hε,i ·∆bA(∇φbi + ei),

where the auxiliary field hε,i is the unique Lax-Milgram solution in Rd of

−∇∗ ·A∗∇hε,i = ∇∗l
(
φ∗j (·+ ek)Akl∇kFε,ij + σ∗jkl(· − ek)∇∗kFε,ij

)
. (3.78)

Recalling that ∆̃bX = Eab(b)[∆bX], inserting this representation formula into (3.77), extracting the
first term Uε defined below, and using that T on L2(Ω)/R has operator norm bounded by 1, we find

|νε − εdUε| ≤ εd
∑
b∈B

(
SbεT

b
ε +

1

2
(T bε )2

)
, (3.79)

where for convenience we define

Uε :=
∑
b∈B

E
[

(V b
ε − E

[
V b
ε

]
) T (V b

ε − E
[
V b
ε

]
)
]
,

V b
ε := Eab(b)

[ ˆ
Rd
Fε,ij(∇φ∗j + ej) ·∆bA(∇φbi + ei)

]
,

while for all b ∈ B the error terms are given by

Sbε := E
[(ˆ

Rd
|∆bA||∇φ∗ + Id ||∇φb + Id ||Fε|

)2
] 1

2

,

and by T bε := T bε,1 + T bε,2 with

T bε,1 :=
d∑

k=1

E
[(ˆ

Rd
|∆bA||φ∗(·+ ek)||∇φb + Id ||∇Fε|

)2
] 1

2

,

T bε,2 := E
[( ˆ

Rd
|∆bA||∇φb + Id ||∇hε|

)2
] 1

2

.

We start with the analysis of Uε. Writing ∆bA(x) = (a(b) − ab(b))1Q(zb)(x)ξb ⊗ ξb for b =
(zb, zb + ξb), we may compute

V b
ε =

( ˆ
Q(zb)

Fε,ij

)
Eab(b)

[
(a(b)− ab(b))

(
ξb · (∇φ∗j (zb) + ej)

)(
ξb · (∇φbi(zb) + ei)

)]
,

so that, by stationarity,

εdUε = Qijkl εd
∑
z∈Zd

(ˆ
Q(z)

Fε,ij

)(ˆ
Q(z)

Fε,kl

)
,

where the coefficient Qijkl is defined in (3.75) above. Since T on L2(Ω)/R has operator norm bounded
by 1, the moment bounds of Lemma 3.3.3 yield

|Qijkl| .
d∑

n=1

E
[
|∇φ∗ + Id |2|∇φbn + Id |2

]
. 1.
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We may then estimate the discretization error∣∣∣εdUε −Qijkl ˆ
Rd
FijFkl

∣∣∣ =
∣∣∣εdUε −Qijkl εd ˆ

Rd
Fε,ijFε,kl

∣∣∣ . εd
∑
z∈Zd

ˆ
Q(z)

∣∣∣Fε(x)−
ˆ
Q(z)

Fε

∣∣∣2dx
. εd

ˆ
Rd
|DFε|2 = ε2

ˆ
Rd
|DF |2.(3.80)

We now turn to the estimate of the right-hand side of (3.79). Using |∆bA(x)| . 1Q(zb)(x) and the
moment bounds of Lemma 3.3.3, we obtain

Sbε . E
[
|∇φ∗ + Id |2|∇φb + Id |2

] 1
2

ˆ
Q(zb)

|Fε| .
ˆ
Q(zb)

|Fε|.

Hence, by the Cauchy-Schwarz inequality,∑
b∈B

SbεT
b
ε .

∑
b∈B

T bε

ˆ
Q(zb)

|Fε| . ‖Fε‖L2(Rd)

(∑
b∈B

(T bε )2
) 1

2
. ε−

d
2 ‖F‖L2(Rd)

(∑
b∈B

(T bε )2
) 1

2
, (3.81)

and it remains to estimate ∑
b∈B

(T bε )2 ≤ 2
∑
b∈B

(T bε,1)2 + 2
∑
b∈B

(T bε,2)2.

First, using |∆bA(x)| . 1Q(zb)(x) and the moment bounds of Lemma 3.3.3, we find

εd
∑
b∈B

(T bε,1)2 .α,p ε
d‖µd(| · |)

1
2∇Fε‖2L2(Rd)

. (3.82)

Second, arguing as in the proof of Proposition 3.2.1 (cf. (3.45)), using the large-scale weighted
Calderón-Zygmund theory (cf. Lemma 3.3.4) applied to equation (3.78) for hε, we obtain for all
0 < p− 1� 1 and all α > d,

εd
∑
b∈B

(T bε,2)2 .α,p ε
d
p ‖w

α p−1
2p

ε µd(| · |)
1
2∇Fε‖2L2p(Rd)

. (3.83)

Rescaling the integrals and using (3.60) and Hölder’s inequality, we find

εd
∑
b∈B

(T bε )2 .α,p ε
2µd(

1
ε )‖w

α p−1
2p

1 µd(| · |)
1
2DF‖2

L2p(Rd)
.

and the conclusion (3.25) follows.

Step 2. Proof of the Green-Kubo formula (3.26).
In order to establish (3.26), it suffices to repeat the argument of Step 1 with the test function

F = 1Q ei ⊗ ej (hence Fε = 1 1
ε
Q ei ⊗ ej), for some fixed 1 ≤ i, j ≤ d. Lemma 3.5.1 again leads

to (3.79), and we briefly indicate how to analyze the different terms in the present setting. First, the
estimate (3.80) is replaced by the following (no summation over repeated indices),

|εdUε −Qijij | . εd
∑
z∈Zd

ˆ
Q

(
1 1
ε
Q(z + x)−

ˆ
Q
1 1
ε
Q(z + y)dy

)2
dx

≤ εd
∑
z∈Zd

1(z+Q)∩∂( 1
ε
Q)6=∅ . ε.
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Second, the estimate (3.81) remains unchanged. Third, using estimates (3.82) and (3.83), and noting
that |∇Fε| . 1Aε with Aε := B + ∂Q 1

ε
and that wε . 1 and µd(| · |) . µd(1

ε ) on Aε, we deduce∑
b∈B

(T bε,1)2 . µd(
1
ε )|Aε| . ε1−dµd(

1
ε ),

∑
b∈B

(T bε,2)2 . ε
−d p−1

p µd(
1
ε )|Aε|

1
p . ε

1
p
−d
µd(

1
ε ),

and the conclusion (3.26) follows.

3.5.4 Proof of Proposition 3.2.9(ii)

We turn to the proof of the non-degeneracy of Q. Given a fixed direction ξ ∈ Rd \{0}, and letting
φξ denote the corrector in this direction, we may write, in view of formula (3.75) (with φ∗ξ = φξ by
symmetry of the coefficients),

(ξ ⊗ ξ) : Q (ξ ⊗ ξ) =
d∑

n=1

E
[
(ξ ·Mnξ)T (ξ ·Mnξ)

]
, (3.84)

ξ ·Mnξ := Eabn (bn)

[
(a(bn)− abn(bn))

(
en · (∇φξ(0) + ξ)

)(
en · (∇φbnξ (0) + ξ)

)]
,

since the exchangeability of (A,Abn) indeed yields E
[
ξ ·Mnξ

]
= 0 for all n. We start with a suitable

reformulation of ξ ·Mnξ. Considering the difference of the corrector equation (3.21) for φξ and φbnξ
in the form −∇∗ ·Abn∇(φbnξ − φξ) = ∇∗ · (Abn −A)(∇φξ + ξ), an integration by parts yields

ˆ
Rd
∇(φbnξ − φξ) ·A

bn∇(φbnξ − φξ) = −
ˆ
Rd
∇(φbnξ − φξ) · (A

bn −A)(∇φξ + ξ)

= (a(bn)− abn(bn))(en · ∇(φbnξ − φξ)(0))(en · (∇φξ(0) + ξ)).

Hence, by definition of ξ ·Mnξ,

ξ ·Mnξ = Eabn (bn)

[ˆ
Rd
∇(φbnξ − φξ) ·A

bn∇(φbnξ − φξ)
]

+ (a(bn)− E [a(bn)])(en · (∇φξ(0) + ξ))2.

(3.85)

We now argue by contradiction. If (ξ⊗ ξ) : Q (ξ⊗ ξ) = 0, then by formula (3.84) and by the non-
negativity of T we would have E

[
(ξ ·Mnξ)T (ξ ·Mnξ)

]
= 0 for all n. Let 1 ≤ n ≤ d be momentarily

fixed. Recalling that T = S−1 with S =
∑

b∈B ∆̃b∆̃b, this would imply

0 = E [(T (ξ ·Mnξ))S(T (ξ ·Mnξ))] =
∑
b∈B

E
[∣∣∆̃bT (ξ ·Mnξ)

∣∣2] ,
hence T (ξ ·Mnξ) = 0, and thus ξ ·Mnξ = 0 almost surely. Formula (3.85) would then imply

(a(bn)− E [a(bn)])(en · (∇φξ(0) + ξ))2 = −Eabn (bn)

[ˆ
Rd
∇(φbnξ − φξ) ·A

bn∇(φbnξ − φξ)
]
, (3.86)

almost surely. Since the law of a(bn) is non-degenerate, the event a(bn) > E [a(bn)] occurs with a
positive probability. Conditioning on this event, the left-hand side in (3.86) is non-negative, and the
non-positivity of the right-hand side would then imply that both sides vanish, that is,

en · (∇φξ(0) + ξ) = 0 and Eabn (bn)

[ˆ
Rd
∇(φbnξ − φξ) ·A

bn∇(φbnξ − φξ)
]

= 0,
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almost surely. Since the integrand in this last expectation is non-negative, we would deduce that
the event a(bn) > E [a(bn)] entails en · (∇φξ(0) + ξ) = 0 and ∇φξ(0) = ∇φbnξ (0), and thus also
en · (∇φbnξ (0) + ξ) = 0 almost surely. Since this last event is independent of a(bn), hence of the
conditioning event, we would deduce unconditionally en · (∇φbnξ (0) + ξ) = 0 almost surely. By
exchangeability of (A,Abn), this means en · (∇φξ(0) + ξ) = 0 almost surely. As this holds for any
n, we would conclude ∇φξ(0) + ξ = 0 almost surely, and taking the expectation would lead to a
contradiction.

3.6 Approximation of the fluctuation tensor

In this section, we analyze the RVE method for the approximation of the fluctuation tensor Q as
stated in Theorem 3.1.3.

3.6.1 Structure of the proof and auxiliary results

The estimate on the standard deviation is obtained similarly as the CLT scaling in Proposi-
tion 3.2.1, noting that the large-scale Calderón-Zygmund result of Lemma 3.3.4 also holds for the
periodized operator −∇∗ · AL∇ on QL. 4 The characterization (3.16) of Q and the estimate on the
systematic error are deduced as corollaries of formula (3.75) for the fluctuation tensorQ, together with
the following crucial estimates on the periodized corrector φL. (The first estimate on ∇φL is stated
as such in [206, Proposition 1], and the second estimate follows from a decomposition of the difference
∇φL−∇φ via massive versions of the corrector, applying [207, Lemma 2.3 and equation (2.68)], and
optimizing the mass.)

Lemma 3.6.1 ([206, 207]). Let d ≥ 2 and let P be a product measure. For all L ≥ 2 and all q <∞
we have

E [|∇φL|q]
1
q .q 1, and E [|∇(φL − φ)(0)|q]

1
q .q L

− d
2 log

d
2 L. ♦

3.6.2 Proof of Theorem 3.1.3

We split the proof into two steps: we first estimate the variance of the RVE approximation, and
then we turn to the characterization (3.16) ofQ and to the systematic error of the RVE approximation.

Step 1. Proof of |Var [QL,N ] |
1
2 . N−

1
2 .

Since the realizations A(n)
hom,L are i.i.d. copies of Ahom,L, the definition (3.17) of QL,N leads after

straightforward computations to

Var [QL,N ] = N−1Var
[(
L
d
2A∗hom,L − E

[
L
d
2A∗hom,L

])⊗2
]
,

and hence,

|Var [QL,N ]| . N−1 E
[∣∣L d

2 (Ahom,L − E [Ahom,L])
∣∣4] .

Arguing as in [206, Lemma 2] (see also Proposition 4.3.1 in Chapter 4), the spectral gap estimate of
Lemma 3.3.1 is seen to imply the following inequality: for all X = X(A) ∈ L4(Ω),

E
[
(X − E [X])4

]
≤ 4E

[(∑
b∈B
|∆bX|2

)2
]
.

4. The only issue concerns the corresponding moment bound E
[
rq∗,L

]
.q 1 for all q <∞, which by definition of r∗,L

(cf. [204]) is a consequence of a sup-bound based on the version of Lemma 3.3.3 for the periodized correctors (φL, σL)
(cf. [206]).
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Applying this inequality to (each component of) X = Ahom,L, we deduce

|Var [QL,N ]| . N−1 E

( ∑
b∈BL

(
L−

d
2

ˆ
QL

∆b

(
AL(∇φL + Id)

))2
)2
 .

Arguing as in the proof of Proposition 3.2.1 (with ε replaced by 1
L and Fε replaced by Id), using the

periodized version of Lemma 3.3.4 and the moment bounds of Lemma 3.6.1, the conclusion follows.

Step 2. Proof of (3.16) and of |E [QL,N ]−Q| . L−
d
2 log

d
2 L.

Since the realizations A(n)
hom,L are i.i.d. copies of Ahom,L, the definition (3.17) of QL,N yields after

straightforward computations E [QL,N ] = Var
[
L
d
2A∗hom,L

]
, that is,

E [(QL,N )ijkl] = Cov
[
L
d
2Ahom,L,ji;L

d
2Ahom,L,lk

]
= L−d Cov

[ˆ
QL

ej ·AL(∇φL,i + ei);

ˆ
QL

el ·AL(∇φL,k + ek)

]
. (3.87)

For b ∈ B, we write b = (zb, zb + ξb). Using the periodized corrector equation (3.27) and its vertical
derivative, and recalling that ∆bAL(x) = (a(b) − ab(b))1Q(zb)(x)ξb ⊗ ξb for b ∈ BL and x ∈ QL, we
find

∆b

ˆ
QL

ej ·AL(∇φL,i + ei) =

ˆ
QL

ej ·∆bAL(∇φbL,i + ei) +

ˆ
QL

ej ·AL∇∆bφL,i

=

ˆ
QL

ej ·∆bAL(∇φbL,i + ei)−
ˆ
QL

∇φ∗L,j ·AL∇∆bφL,i

=

ˆ
QL

(∇φ∗L,j + ej) ·∆bAL(∇φbL,i + ei)

= (a(b)− ab(b))(ξb · (∇φ∗L,j(zb) + ej))(ξb · (∇φbL,i(zb) + ei)). (3.88)

Applying the Helffer-Sjöstrand representation formula of Lemma 3.5.1 to the covariance in (3.87), we
thus find by stationarity, as in the proof of Proposition 3.2.9(i),

E [(QL,N )ijkl] =

d∑
n=1

E
[
Mn
ij,L T Mn

kl,L

]
,

where we have set

Mn
ij,L := Eabn (bn)

[
(a(bn)− abn(bn))(en · (∇φ∗L,j(0) + ej))(en · (∇φbnL,i(0) + ei))

]
.

Noting that (3.88) implies E
[
Mn
ij,L

]
= 0, comparing the above identity for E [(QL,N )ijkl] with for-

mula (3.75) for Q, and using that the operator T on L2(Ω)/R has operator norm bounded by 1, we
deduce ∣∣E [(QL,N )ijkl]−Qijkl

∣∣ . E
[
|∇(φL − φ)(0)|4

] 1
4
(
E
[
|∇φL|4

]
+ E

[
|∇φ|4

] ) 3
4 ,

and the conclusion follows from Lemmas 3.3.3 and 3.6.1.
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3.A Appendix: Massive-term approximation

This appendix is devoted to the analysis of the approximation of the fluctuation tensor Q by
replacing the corrector φ by its massive approximations. More precisely, for all T > 0, we denote by
φT,i the so-called massive corrector in the direction ei, defined as the unique stationary solution in
Zd of

1

T
φT,i −∇∗ ·A(∇φT,i + ei) = 0, (3.89)

and we set φT := (φT,i)
d
i=1. The massive approximation of the homogenization commutator Ξ is then

naturally defined by

ΞT,i := A(∇φT,i + ei)−Ahom(∇φT,i + ei), ΞT,ij := (ΞT,i)j , (3.90)

and we consider the random functional Iε0,T : F 7→ Iε0,T (F ) given for all F ∈ C∞c (Rd)d×d by

Iε0,T (F ) := ε−
d
2

ˆ
Rd
F (x) : ΞT (xε )dx. (3.91)

We establish the following result for the massive approximation of the homogenization commutator
and of the fluctuation tensor. (Note that the use of Richardson extrapolations for the massive correc-
tor [202, 199, 206] could be shown to improve the suboptimal convergence rate in (3.95) below into
T−

d
4 in all dimensions d ≥ 2.)

Proposition 3.A.1. Let d ≥ 2, let P be a product measure, and let µd be defined in (3.13). For all
T ≥ 1,
(i) We define the symmetric 4-tensor QT by

QT :=

ˆ
Rd

Cov [ΞT (x); ΞT (0)] dx,

where the integral is absolutely convergent.
(ii) For all ε > 0 and all F,G ∈ C∞c (Rd)d×d we have∣∣∣∣Cov

[
Iε0,T (F ); Iε0,T (G)

]
−
ˆ
Rd
F (x) : QT G(x)dx

∣∣∣∣ . (ε
√
T )2‖(DF,DG)‖2

L2(Rd)
, (3.92)

and for all L ≥ 1 we have∣∣∣∣QT,ijkl − ˆ
Q2L

|QL ∩ (x+QL)|
|QL|

Cov [ΞT,ij(x); ΞT,kl(0)] dx

∣∣∣∣ .
√
T

L
. (3.93)

(iii) For all ε > 0 and all F ∈ C∞c (Rd)d×d, we have for all 0 < p− 1 � 1 and all α > dp−1
4p , in the

regime
√
T ≤ C−1

α,pε
−1 for some (large enough) constant Cα,p 'α,p 1,

Var
[
Iε0,T (F )− Iε0(F )

]
.p

µd(
1
ε )

T

(
‖w2α

1 F‖2
L2p(Rd)

+ ‖w2α
1 DF‖2

L2p(Rd)

)
. (3.94)

In particular, combined with Proposition 3.2.9, this leads to

|QT −Q| .
√
µd(T )

T
. (3.95)

♦
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3.A.1 Structure of the proof and auxiliary lemmas

The proof of Proposition 3.A.1 makes crucial use of the spectral gap estimate of Lemma 3.3.1, as
well as of the following estimates on the massive corrector φT (cf. [210, 206]).

Lemma 3.A.2 ([210, 206]). Let d ≥ 2, let P ba a product measure, and let µd be defined in (3.13).
For all T ≥ 1 and all q <∞ we have

E [|∇φT |q]
1
q .q 1, E [|φT |q]

1
q .q µd(T )

1
2 ,

and

E [|∇(φT − φ)|q]
1
q .q


T−

d
4 : 2 ≤ d < 4,

T−1 log
1
2 T : d = 4,

T−1 : d > 4.

♦

In addition, the proof requires an Lp-regularity result for the massive operator 1
T − ∇

∗ · A∇,
at least in a perturbative regime. This is achieved in the form of the following weighted Meyers’
estimate. In the case T = ∞, such an estimate was first used in the context of homogenization by
Conlon and Spencer [125]. For the massive case T < ∞ a proof is included in Section 3.A for the
reader’s convenience.

Lemma 3.A.3. Let d ≥ 1 and let wε(x) := 1 + ε|x|. For all |p− 2| � 1 and |α| � 1, in the regime√
T ≤ C−1

α,pε
−1 for some (large enough) constant Cα,p 'α,p 1, for all (sufficiently fast) decaying scalar

fields uT , h and vector field f related in Rd by

1

T
uT −∇∗ ·A∇uT =

1

T
h+∇∗ · f,

we have
1√
T
‖wαε uT ‖Lp(Rd) + ‖wαε∇uT ‖Lp(Rd) .α,p

1√
T
‖wαε h‖Lp(Rd) + ‖wαε f‖Lp(Rd).

The same result holds in the limiting case T =∞, for all ε > 0. ♦

On top of the spectral gap estimate, we need for the proof of items (i) and (ii) to make use of
the covariance inequality of Lemma 3.5.1. Finally, in order to reach the optimal convergence rate in
item (ii), we make use of the following annealed massive Green’s function estimates by Marahrens
and Otto [313] (see also [201] for the adaptation to the massive Green’s function).

Lemma 3.A.4. Let d ≥ 2 and let P be a product measure. For all T ≥ 1 and all y ∈ Zd, there exists
a function GT (·, y) that is the unique decaying solution in Zd of

T−1GT (·, y)−∇∗ ·A∇GT (·, y) = δ(· − y),

and for some C > 0 it satisfies the following moment bound, for all q <∞ and all x, y ∈ Zd,

E [|∇∇GT (x, y)|q]
1
q .q (1 + |x− y|)−de−

1

C
√
T
|x−y|

,

where ∇∇ denotes the mixed second gradient. ♦
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3.A.2 Proof of Proposition 3.A.1

We split the proof into three steps, proving each item separately.

Step 1. Proof of (i).
Define KT : Rd → Rd×d×d×d as KT (x) := Cov [ΞT (x); ΞT (0)]. We claim that KT ∈ L1(Rd) and

shall define QT :=
´
Rd KT . In order to prove the desired integrability, we appeal to the covariance

inequality of Lemma 3.5.1,

|KT (x)| ≤
∑
b∈B

E
[
|∆bΞT (x)|2

] 1
2 E
[
|∆bΞT (0)|2

] 1
2 . (3.96)

We compute the vertical derivative

∆bΞT,i = ∆bA(∇φbT,i + ei) + (A−Ahom)∇∆bφT,i.

For b ∈ B, taking the vertical derivative of the massive corrector equation (3.89) in the form

T−1∆bφT,i −∇∗ ·A∇∆bφT,i = ∇∗ ·∆bA(∇φbT,i + ei), (3.97)

writing b = (zb, zb + ξb), and recalling that |∆bA(x)| . 1Q(zb)(x), the Green representation formula
yields for all x ∈ Zd,

∇∆bφT,i(x) = −∇∇GT (x, zb)∆bA(x)(∇φbT,i(zb) + ei).

Using the moment bounds of Lemmas 3.A.2 and 3.A.4, we deduce in particular

E
[
|∆bΞT (x)|2

] 1
2 . (1 + |x− zb|)−d e

− 1

C
√
T
|x−zb|,

and (3.96) then leads to the rough bound

|KT (x)| .
ˆ
Rd

(1 + |x− z|)−de−
1

C
√
T
|x−z|

(1 + |z|)−de−
1

C
√
T
|z|
dz . (1 + |x|)−de−

1

C
√
T
|x|
, (3.98)

hence
´
Rd |KT | . log T , and the conclusion follows.

Step 2. Proof of (ii).
We start with the proof of (3.92). By polarization and linearity, it is enough to prove the result

for F = G. In this case, by stationarity, the definition of QT leads to

Cov
[
Iε0,T (F ); Iε0,T (F )

]
−
ˆ
Rd
F (x) : QT F (x)dx

= ε−d
ˆ
Rd

ˆ
Rd
F (x) : KT

(y − x
ε

)
F (y)dxdy − ε−d

ˆ
Rd

ˆ
Rd
F (x) : KT

(y
ε

)
F (x)dxdy

= −ε
−d

2

ˆ
Rd

ˆ
Rd

(F (x+ y)− F (x)) : KT

(y
ε

)
(F (x+ y)− F (x))dxdy,

and hence,∣∣∣Cov
[
Iε0,T (F ); Iε0,T (F )

]
−
ˆ
Rd
F (x) : QT F (x)dx

∣∣∣ ≤ 1

2
‖DF‖2

L2(Rd)

ˆ
Rd
|εy|2|KT (y)|dy.

The conclusion (3.92) then follows from (3.98) and a direct computation. We turn to the proof
of (3.93). For any Lipschitz domain U ⊂ Rd, computing

Cov
[
Iε0,T (1Uei ⊗ ej); Iε0,T (1Uek ⊗ el)

]
− |U |QT,ijkl

= ε−d
ˆ
Rd

ˆ
Rd
1U (x)(1U (x+ y)− 1U (x))KT,ijkl

(y
ε

)
dxdy = −

ˆ
U

ˆ
z:x+εz /∈U

KT,ijkl(z)dzdx,
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the estimate (3.98) leads to∣∣∣Cov
[
Iε0,T (1Uei ⊗ ej); Iε0,T (1Uek ⊗ el)

]
− |U |QT,ijkl

∣∣∣ . ˆ
U

ˆ
z:x+εz /∈U

(1 + |z|)−de−
1

C
√
T
|z|
dzdx

.
ˆ
U

ˆ
|z|> 1

ε
d(x,∂U)

(1 + |z|)−de−
1

C
√
T
|z|
dzdx

. |∂U |
ˆ ∞

0

ˆ
|z|> t

ε

(1 + |z|)−de−
1

C
√
T
|z|
dzdt . |∂U |ε

√
T ,

and (3.93) follows for the choice U = Q and ε = 1
L .

Step 3. Proof of (iii).
We split this step into two further substeps: first we carefully decompose the vertical derivative

of the difference ΞT − Ξ, and then we apply the spectral gap estimate. Let F ∈ C∞c (Rd)d×d and set
Fε := F (ε·).

Substep 3.1. Representation formula for the vertical derivative of the difference ΞT −Ξ: for all e ∈ B,

∆e

ˆ
Rd
Fε : (ΞT − Ξ) =

ˆ
Rd

(
Fε,ij(∇φ∗j + ej) + φ∗j (·+ ek)∇kFε,ijek

)
·∆bA∇(φbT,i − φbi)

−
ˆ
Rd
∇sε,T,i ·∆bA(∇φbT,i + ei) +

ˆ
Rd
∇sε,i ·∆bA(∇φbi + ei), (3.99)

where sε,T,i and sε,i denote the unique decaying solutions in Rd of

1

T
sε,T,i −∇∗ ·A∗∇sε,T,i =

1

T
Fε,ijφ

∗
j −∇∗l

(
φ∗j (·+ ek)∇kFε,ijAkl + σ∗jkl(· − ek)∇∗kFε,ij

)
,(3.100)

−∇∗ ·A∗∇sε,i = −∇∗l
(
φ∗j (·+ ek)∇kFε,ijAkl + σ∗jkl(· − ek)∇∗kFε,ij

)
.

By the definitions (3.22) and (3.90) of the homogenization commutators Ξ and ΞT , using the
definition (3.33) of the flux corrector σj in the form (A∗ −A∗hom)ej = −A∗∇φ∗j +∇∗ · σ∗j , we deduce

∆b(ΞT,ij − Ξij) = ej ·∆bA∇(φbT,i − φbi) + ej · (A−Ahom)∇(∆bφT,i −∆eφi)

= e·∆bA∇(φbT,i − φbi)−∇φ∗j ·A∇(∆bφT,i −∆bφi) + (∇∗ · σ∗j ) · ∇(∆bφT,i −∆bφi). (3.101)

Integrating by parts, using the discrete Leibniz rule (3.49), taking the vertical derivative of the
corrector equations (3.21) and (3.89) in the form

1

T
∆bφT,i −∇∗ ·A∇(∆bφT,i −∆bφi) = ∇∗ ·∆bA∇(φbT,i − φbi),

and using the skew-symmetry (3.32) of σ∗j , we are led to

∆e

ˆ
Rd
Fε : (ΞT−Ξ) =

ˆ
Rd
Fε,ij(∇φ∗j+ej)·∆bA∇(φbT,i−φbi)+

ˆ
Rd
φ∗j (·+ek)∇kFε,ijek·∆bA∇(φbT,i−φbi)

+
1

T

ˆ
Rd
Fε,ijφ

∗
j∆bφT,i +

ˆ
Rd
φ∗j (·+ ek)∇kFε,ijAkl∇l(∆bφT,i −∆bφi)

+

ˆ
Rd
σ∗jkl(· − ek)∇∗kFε,ij∇l(∆bφT,i −∆bφi).

Injecting the definitions (3.100) of sε,T,i and sε,i, and using equations (3.41) and (3.97), the conclusion
follows.
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Substep 3.2. Application of the spectral gap and conclusion.
For b ∈ B write b = (zb, zb + ξb). Applying the spectral gap estimate of Lemma 3.3.1, injecting

formula (3.99), recalling that |∆bA(x)| . 1Q(zb)(x), applying the moment bounds of Lemma 3.3.3,
and noting that the argument in (3.43) implies |∇φb(zb) + Id | . |∇φ(zb) + Id | and |∇φbT (zb) + Id | .
|∇φT (zb) + Id |, we obtain

Var

[
ε
d
2

ˆ
Rd
Fε : (ΞT − Ξ)

]
. εd E

[
|∇(φT − φ)|4

] 1
2

ˆ
Rd

(
|Fε|2 + µd(| · |)|∇Fε|2

)
+ εd E

[ˆ
Rd
|∇φT + Id |2|∇sε,T |2

]
+ εd E

[ˆ
Rd
|∇φ+ Id |2|∇sε|2

]
. (3.102)

Smuggling in a power αp−1
p of the weight wε(z) := 1+ε|z|, applying Hölder’s inequality with exponent

p, and using the moment bounds of Lemma 3.A.2, we obtain for all p > 1 and α > d,

εd E
[ˆ

Rd
|∇φT + Id |2|∇sε,T |2

]
≤ εd E

[ˆ
Rd
wα(p−1)
ε |∇sε,T |2p

] 1
p

E
[ˆ

Rd
w−αε |∇φT + Id |

2p
p−1

] p−1
p

.α,p ε
d
p E
[ˆ

Rd
wα(p−1)
ε |∇sε,T |2p

] 1
p

.

By the weighted Meyers’ estimate of Lemma 3.A.3 applied to equation (3.100) and by the moment
bounds of Lemma 3.3.3, this yields for all 0 < p− 1� 1 and all 0 < α− d� 1,

εd E
[ˆ

Rd
|∇φT + Id |2|∇sε,T |2

]
.p T−1ε

d
p

(ˆ
Rd
wα(p−1)
ε µd(| · |)p|Fε|2p

) 1
p

+ ε
d
p

( ˆ
Rd
w2d(p−1)
ε µd(| · |)p|∇Fε|2p

) 1
p

.p T−1µd(
1
ε )‖w

d p−1
p

1 µd(| · |)
1
2F‖2

L2p(Rd)
+ ε2µd(

1
ε )‖w

α p−1
2p

1 µd(| · |)
1
2DF‖2

L2p(Rd)
.

The last right-hand side term in (3.102) can be estimated similarly, applying Lemma 3.A.3 in the
limiting case T =∞ (or equivalently, repeating the argument in Step 2 of the proof of Proposition 3.2.1
using the large-scale weighted Calderón-Zygmund theory for −∇∗ ·A∇). Combining this with (3.102)
and with Lemma 3.A.2, the conclusion (3.94) follows.

3.A.3 Proof of Lemma 3.A.3

For simplicity we only treat the continuum case. (The adaptation to the present discrete setting
requires to argue that the discrete Fourier multipliers are controlled by their continuum counterparts
introduced below, see e.g. [206, Section 7.4] for similar arguments.) For that purpose, let us consider
the solution uT to

1

T
uT −4uT =

1

T
h+D · f,

where 4 = D ·D denotes the continuum Laplacian. First, the energy estimate takes the form∥∥∥ 1√
T
uT

∥∥∥2

L2(Rd)
+ ‖DuT ‖2L2(Rd)

≤
∥∥∥ 1√

T
h
∥∥∥2

L2(Rd)
+ ‖f‖2

L2(Rd)
. (3.103)

Second, we show that the following extended weighted Calderón-Zygmund estimate holds: for all
α ∈ R and 1 < r < ∞, in the regime ε

√
T ≤ C−1

α,r for some (large enough) constant Cα,r 'α,r 1, we
have

1√
T
‖w−αε uT ‖Lr(Rd) + ‖w−αε DuT ‖Lr(Rd) .α,r

1√
T
‖w−αε h‖Lr(Rd) + ‖w−αε f‖Lr(Rd). (3.104)
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Indeed, the Fourier symbol relating ( 1√
T
uT , DuT ) to ( 1√

T
h, f) is given by

MT (k) :=

 1
T

1
1
T

+|k|2
1√
T

k′
1
T

+|k|2
1√
T

k
1
T

+|k|2
k⊗k

1
T

+|k|2

 ,

or equivalently, MT (k) = M̃(
√
Tk), in terms of

M̃(k) =

(
1

1+|k|2
k′

1+|k|2
k

1+|k|2
k⊗k

1+|k|2

)
.

We note that MT is well-behaved: we have |DmM̃(k)| .m (1 + |k|)−m, hence |DmMT (k)| .m |k|−m
for all m ≥ 0. An extended Calderón-Zygmund estimate then follows from Mikhlin’s multiplier
theorem: for all 1 < r <∞,∥∥∥ 1√

T
uT

∥∥∥
Lr(Rd)

+ ‖DuT ‖Lr(Rd) .r
∥∥∥ 1√

T
h
∥∥∥

Lr(Rd)
+ ‖f‖Lr(Rd). (3.105)

It remains to note that this estimate allows to deal directly with the Leibniz terms when smuggling
in the weight wαε . More precisely, we define w̃ε(x) := (1 + (ε|x|)2)

1
2 , and we write the equation for uT

as
1

T
w̃αε uT −4(w̃αε uT ) =

1

T
w̃αε h+D · (w̃αε f)− (f + 2DuT ) ·Dw̃αε − uT4w̃αε .

Applying (3.105) to this equation, we obtain

1√
T
‖w̃αε uT ‖Lr(Rd) + ‖w̃αεDuT ‖Lr(Rd) .r

1√
T
‖w̃αε h‖Lr(Rd) + ‖w̃αε f‖Lr(Rd)

+ ‖uTDw̃αε ‖Lr(Rd) +
√
T‖|Dw̃αε |(f + 2DuT )‖Lr(Rd) +

√
T‖uT4w̃αε ‖Lr(Rd),

and, for all α ∈ R, the bounds |Dw̃αε | .α εw̃αε and |4w̃αε | .α ε2w̃αε then lead to

1√
T
‖w̃αε uT ‖Lr(Rd) + ‖w̃αεDuT ‖Lr(Rd) .α,r

1√
T
‖w̃αε h‖Lr(Rd) + (1 + ε

√
T )‖w̃αε f‖Lr(Rd)

+ ε
√
T‖w̃αεDuT ‖Lr(Rd) +

ε
√
T + (ε

√
T )2

√
T

‖w̃αε uT ‖Lr(Rd).

Noting that w̃ε ' wε, the claim (3.104) follows.
Meyers’ perturbative argument [322] requires that the constant in the extended weighted Calderón-

Zygmund estimate (3.104) converges to 1 as r → 2 and α→ 0. The energy estimate (3.103) ensures
that this constant equals 1 for r = 2 and α = 0. The (upper semi-)continuity in r for fixed α
follows from complex interpolation (see e.g. [52, Theorem 4.4.1]) of Lebesgue spaces (see e.g. [52,
Theorem 5.1.1]). The continuity in α for fixed r follows from the real interpolation theorem of
Stein and Weiss (see e.g. [52, Theorem 5.4.1]). Since both moduli of continuity are (locally) uniform
(in fact, uniformly Lipschitz in the logarithmic scale), one so obtains joint continuity in r and α.
This allows to then carry out Meyers’ perturbative argument [322] to pass from the constant to the
variable-coefficient case, and the conclusion follows.
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Chapter 4

Weighted functional inequalities
for correlated random fields

Consider an ergodic stationary random field A on the ambient space Rd. As experienced in the
previous chapter, functional inequalities in the probability space (like spectral gaps, covariance in-
equalities, logarithmic Sobolev inequalities, or second-order Poincaré inequalities à la Chatterjee)
provide a sensitivity calculus with respect to A that is a very convenient tool to establish quantitative
error estimates e.g. in the field of stochastic homogenization. In addition, these inequalities (in partic-
ular spectral gaps and logarithmic Sobolev inequalities) are also well-known in mathematical physics
as powerful tools to prove nonlinear concentration of measure properties for nonlinear functions X(A)
in terms of assumptions on A.

These inequalities are however very stringent: they require A to have an integrable covariance
function and they are only known to hold for a restricted class of laws (like product measures, Gaussian
measures, or more general Gibbs measures with nicely behaved Hamiltonians). In the present chapter,
we introduce new weighted versions of these inequalities that relax the integrability condition for the
covariance function and broaden the class of admissible laws, while still ensuring strong concentration
properties.

We then develop a constructive approach to produce random fields that satisfy such weighted
functional inequalities. The construction is based on product structures in higher-dimensional spaces
and relies on devising approximate chain rules for nonlinear and random changes of variables for
random fields. This approach allows us to treat all the examples of heterogeneous materials en-
countered in the applied sciences [413], covering in particular Gaussian fields with non-necessarily
integrable covariance function, Poisson random inclusions with (unbounded) random radii, random
parking and Matérn-type processes, as well as Poisson random tessellations (Voronoi or Delaunay).
These weighted functional inequalities, which we primarily develop here in view of their application
to quantitative stochastic homogenization, are of independent interest.

As an application, we prove specific concentration results for averages of approximately local
functions of the field A, which constitutes the main stochastic ingredient to the quenched large-scale
regularity theory for random elliptic operators by Armstrong, Mourrat, and Smart [36, 34] and by
Gloria, Neukamm, and Otto [204]. In addition, applied to random sequential adsorption models in
stochastic geometry, weighted second-order Poincaré inequalities allow us to complete and improve
previous results by Penrose and Yukich [360, 391] on the jamming limit, and to propose and fully
analyze a more efficient algorithm to approximate the latter.

This chapter corresponds to the three articles [162, 163, 164] jointly written with Antoine Gloria.
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4.1 Introduction

4.1.1 General overview

We consider a stationary random field A on the ambient space Rd. Functional inequalities like
spectral gaps, covariance, or logarithmic Sobolev inequalities are powerful tools to prove nonlinear
concentration of measure properties and CLT scalings for nonlinear functions X(A) of the random
field. Besides their well-known applications in mathematical physics (e.g. for the study of interacting
particle systems like the Ising model or for interface models), these inequalities provide a sensitivity
calculus that is a very convenient tool and was recently used to establish quantitative stochastic
homogenization results, starting with the inspiring unpublished work by Naddaf and Spencer [334],
successfully followed by [209, 210, 206, 212, 205, 204, 203] and by our contribution in Chapter 3.

These functional inequalities have nevertheless two main limitations. On the one hand, whereas
only few examples are known to satisfy them (besides product measures, Gaussian measures with
integrable covariance function, and more general Gibbs measures with nicely behaved Hamiltonians),
these inequalities are not robust with respect to various simple constructions: for instance, a Poisson
point process satisfies a spectral gap, but the random field corresponding to the Voronoi tessellation
of a Poisson point process does not. On the other hand, these functional inequalities require random
fields to have an integrable covariance, which prevents one from considering fields with heavier tails.
The aim of this chapter is to introduce a weaker notion of weighted functional inequalities, which is
at the same time more robust to perturbations and less restrictive in terms of integrability of the
covariance function, while still ensuring strong concentration properties. The main motivation is that
most arguments making use of standard functional inequalities could be adapted to the very general
setting of weighted functional inequalities that we develop here, under reasonable decay assumptions
on the weight (see e.g. [203] in the context of stochastic homogenization).

In many fields of mathematics, complex objects in a low-dimensional space can be described as
the projection of a simpler object that lives in a higher-dimensional space. A prototypical example is
given by quasi-periodic structures. Conversely, suitable projections can be a powerful way to generate
many (possibly complex) lower-dimensional objects from simpler higher-dimensional objects while
preserving some essential properties, which is a useful point of view for modeling. For quasi-periodic
functions, the simple high-dimensional objects are periodic functions (on a high-dimensional torus),
the projection corresponds to the composition with a winding matrix, and the preserved essential
property is some quantitative averaging property. In the present chapter, we apply this approach to
functional inequalities.

Consider a random field A = Φ(A0) on Rd obtained as the image by some “projection” Φ of some
higher-dimensional random field A0 on Rd × Rl. A first natural question is to understand in what
sense a (standard) functional inequality satisfied by A0 can be transferred to A. A possible answer is
given by the class of weighted functional inequalities that we introduce in Section 4.1.2 below. These
functional inequalities are to be seen as a fine quantification of ergodicity, and indeed we quickly
establish in Section 4.2 the relation between the weight and the decay of correlations as well as the
relation to standard notions of mixing.

A second natural question is to understand to what extent such weighted functional inequalities
ensure concentration properties. This is addressed in Section 4.3, and our analysis shows in particular
that the concentration properties implied by weighted functional inequalities are in general stronger
than those implied by the corresponding α-mixing (cf. applications in Section 4.7.2).

A third natural question is whether such inequalities are indeed more robust and less restrictive
than standard functional inequalities. We answer this question in Section 4.4 by developing an abstract
yet constructive approach to weighted inequalities, which amounts to making suitable assumptions
on the “projection operator” Φ. In Section 4.5, we make use of this constructive approach to prove
the validity of weighted functional inequalities for various examples of random fields considered in the
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literature (and cover in particular the above mentioned Voronoi tessellation of a Poisson point process).
More precisely, our results allow to establish weighted functional inequalities for the following three
classes of random fields,

(I) Gaussian-like fields: A is (possibly the image by a Lipschitz function of) the convolution of
some white noise with some kernel, which leads to Gaussian fields with arbitrary covariance
function.

(II) Independent coloring of random geometric patterns: A is characterized by a random geometric
pattern completed by an independent product structure. The random geometric pattern is
typically constructed starting from a point process (e.g. Poisson, random parking, or Matérn-
type processes) by considering inclusions centered at the points, or (Voronoi or Delaunay)
tessellations. The associated product structure then determines the values of A on the cells of
the random pattern, or even completes the description of the random pattern (e.g. conferring
random sizes and shapes to the inclusions). This leads to possibly long-range correlations of
the geometric pattern.

(III) Dependent coloring of random geometric patterns: This corresponds to (II) for a coloring that
does not come from a product structure but from a field that is itself correlated (e.g. of the
class (I)). This leads to possibly long-range correlations of the colors of the inclusions (in the
sense of e.g. value of A, size, or orientation of the inclusions), on top of the correlations of the
geometric pattern.

The above three classes of random fields encompass all the examples considered in [413], a reference
textbook on random heterogeneous structures for materials science, which brings the use of func-
tional inequalities (in their weighted versions) in stochastic homogenization to the state-of-the-art of
materials science.

In Section 4.6 we turn to Chatterjee’s version of Stein’s method in the form of second-order
Poincaré inequalities [112, 113]: while first-order functional inequalities (like spectral gap or logarith-
mic Sobolev inequality) quantify the distance to constants for nonlinear functions X(A) in terms of
their local dependence on the random field A, the so-called second-order inequalities quantify their
distance to normality. In the study of fluctuations in stochastic homogenization, the first use of
second-order Poincaré inequalities is due to Nolen [346, 347], successfully followed by [207, 225, 328]
and by our contribution in Chapter 3. Like first-order inequalities, second-order Poincaré inequalities
are very restrictive and are only known to hold for product measures [112] and for Gaussian measures
with integrable covariance function [113, 349]. Adapting our constructive approach of Section 4.4,
we go beyond these examples and similarly establish the validity of suitable weighted versions of
second-order Poincaré inequalities for various prototypical random fields with strong correlations.

In Section 4.7 we appeal to these weighted functional inequalities in order to study the simplest
random variables possible, that is, (linear) spatial averages of (a possibly nonlinear yet approximately
local transformation of) the random field A itself. Although the point of first- and second-order
functional inequalities is to address concentration and approximate normality properties for general
nonlinear functions of correlated random fields, this application to linear random variables is non-
trivial, and is motivated by two different applications: quantitative stochastic homogenization, and
fluctuations in stochastic geometry.

First, in the field of quantitative stochastic homogenization of random elliptic operators in di-
vergence form, various quantities of interest are known to behave essentially like spatial averages of
(an approximately local function of) the random field. In particular, the concentration properties
of such spatial averages happen to be precisely the stochastic ingredient needed to establish sharp
integrability estimates on the validity of the quenched large-scale regularity theory for random elliptic
systems in divergence form as developed by Armstrong, Mourrat, and Smart [36, 34] and by Gloria,
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Neukamm, and Otto [204]. The added value of our results in this chapter is to emphasize that con-
centration properties implied by weighted functional inequalities are in general stronger than those
implied by the corresponding α-mixing.

Second, regarding fluctuations in stochastic geometry, we are more precisely interested in random
sequential adsorption (RSA) models and in fluctuations of the jamming limit. In that context, Stein’s
method was first used in combination with stabilization properties by Penrose and Yukich [360], and
followed by [391, 286]. In order to analyze RSA processes, Penrose and Yukich [359] introduced a
crucial notion of stabilization radius having its origins in the works of Lee [294, 295] (which is also
our main inspiration for the constructive approach to weighted functional inequalities that we develop
in Section 4.4), and this paved the way to a series of strong results on the jamming limit [357, 359,
358, 360, 391, 286]. Based on weighted first- and second-order functional inequalities, we revisit and
complete this series of articles.

4.1.2 Weighted first-order functional inequalities

Let A : Rd×Ω→ R be a jointly measurable random field on Rd, constructed on some probability
space (Ω,A,P). A spectral gap in probability for A is a functional inequality which allows one to
control the variance of any function X(A) in terms of its local dependence on A, that is, in terms
of some “derivative” of X(A) with respect to local restrictions of A. In this section, we briefly recall
the precise definitions of standard first-order functional inequalities and introduce their weighted
versions. (The formulation of second-order functional inequalities is less canonical and is postponed
to Section 4.6.)

A map ∂̃ : B(Rd) ×Mes(Ω;R) → Mes(Ω; [0,∞]) is called a (wide-sense) derivative with respect
to A if, for all σ(A)-measurable random variables X(A), Y (A), all λ, µ ∈ R, and all Borel subsets
S ⊂ Rd,
(i) the random variable ∂̃A,SX(A) is σ(A)-measurable, and it vanishes a.s. whenever X(A) is

σ(A|Rd\S)-measurable;

(ii) we have ∣∣∂̃A,S(λX(A) + µY (A))
∣∣ ≤ |λ| ∂̃A,SX(A) + |µ| ∂̃A,SY (A);

(iii) for all R > 0 the maps Rd × Ω → [0,∞] : (x, ω) 7→
(
∂̃A,BR(x)X(A)

)
(ω) and R+ × Rd × Ω →

[0,∞] : (r, x, ω) 7→
(
∂̃A,Br(x)X(A)

)
(ω) are measurable.

We then call ∂̃A,SX(A) a (wide-sense) derivative of X(A) with respect to A on S, which we think of
as a quantification of the functional dependence of X(A) with respect to the restriction A|S of A on
S. Given such a (wide-sense) derivative ∂̃ (see below for typical choices), we recall the definition of
the following standard functional inequalities (cf. Lemma 3.3.1 in the i.i.d. discrete setting).

Definition 4.1.1. We say that A satisfies the (standard) spectral gap (∂̃-SG) with radius R > 0 and
constant C <∞ if for all σ(A)-measurable random variable X(A) we have

Var [X(A)] ≤ C
ˆ
Rd

E
[(
∂̃A,BR(x)X(A)

)2
]
dx; (4.1)

it satisfies the (standard) covariance inequality (∂̃-CI) with radius R > 0 and constant C < ∞ if for
all σ(A)-measurable random variables X(A) and Y (A) we have

Cov [X(A);Y (A)] ≤ C
ˆ
Rd

E
[(
∂̃A,BR(x)X(A)

)2
] 1

2

E
[(
∂̃A,BR(x)Y (A)

)2
] 1

2

dx; (4.2)
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it satisfies the (standard) logarithmic Sobolev inequality (∂̃-LSI) with radius R > 0 and constant
C <∞ if for all σ(A)-measurable random variable Z(A) we have

Ent
[
Z(A)2

]
:= E

[
Z(A)2 logZ(A)2

]
− E

[
Z(A)2

]
logE

[
Z(A)2

]
≤ C

ˆ
Rd

E
[(
∂̃A,BR(x)Z(A)

)2
]
dx. (4.3)

♦

Recall that (∂̃-CI) and (∂̃-LSI) both imply (∂̃-SG). The spectral gap (4.1) indeed follows from
the covariance inequality (4.2) for the choice Y = X, while it follows from the logarithmic Sobolev
inequality (4.3) for the choice Z = 1 + εX in the limit ε ↓ 0.

In the continuum setting that we consider in this chapter, there is no canonical choice of a
derivative with respect to the field A, and we describe below three such possible notions. We start
with the derivative most commonly used in the literature (see e.g. [293]).

— As in the discrete setting, the so-called Glauber derivative ∂G is defined as follows, letting A′

denote an i.i.d. copy of A, and denoting by E′ [·] the expectation with respect to A′ only,

∂G
A,SX(A) := E′

[(
X(A)−X(A′)

)2 ∥∥A′|Rd\S = A|Rd\S
] 1

2 , (4.4)

or equivalently, expanding the square,

∂G
A,SX(A) =

(
X(A)2 − 2X(A)E

[
X(A)

∥∥A|Rd\S]+ E
[
X(A)2

∥∥A|Rd\S]) 1
2
.

— The oscillation ∂osc, as used for instance in [211, 212], is formally defined by

∂osc
A,S X(A) := sup ess

A,S
X(A)− inf ess

A,S
X(A)

“=” sup ess
{
X(Ã) : Ã ∈ Mes(Rd;R), Ã|Rd\S = A|Rd\S

}
− inf ess

{
X(Ã) : Ã ∈ Mes(Rd;R), Ã|Rd\S = A|Rd\S

}
, (4.5)

where the essential supremum and infimum are taken with respect to the measure induced by
the field A on the space Mes(Rd;R) (endowed with the cylindrical σ-algebra). This definition
(4.5) of ∂osc

A,SX(A) is not measurable in general, and we rather define

∂osc
A,S X(A) :=M[X‖A|Rd\S ] +M[−X‖A|Rd\S ]

in terms of the conditional essential supremum M[·‖ARd\S ] given σ(A|Rd\S), as introduced
in [47] (using a Radon-Nikodym theorem in L∞ due to [46]). Alternatively, we may simply
define ∂osc

A,SX(A) as the measurable envelope of (4.5) (as e.g. in [211, 212]).
— The (integrated) functional (or Malliavin-type) derivative ∂fct, as used in the first version

of [204] and in [181], is the closest generalization of the usual partial derivatives often used
in the discrete setting. Let us denote by M ⊂ L∞(Rd) some open set such that the random
field A takes its values in M . Given a σ(A)-measurable random variable X(A), and given
an extension X̃ : M → R, its Fréchet derivative ∂X̃(A)/∂A ∈ L1

loc(Rd) is defined for any
compactly supported perturbation δA ∈ L∞(Rd) by

lim
t→0

X̃(A+ tδA)− X̃(A)

t
=

ˆ
Rd
δA(x)

∂X̃(A)

∂A
(x) dx,
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if the limit exists. Since we are interested in the local averages of this derivative, we rather
define for all bounded Borel subset S ⊂ Rd,

∂fct
A,SX(A) =

ˆ
S

∣∣∣∂X̃(A)

∂A
(x)
∣∣∣dx.

This derivative is additive with respect to the set S: for all disjoint Borel subsets S1, S2 ⊂ Rd
we have ∂fct

A,S1∪S2
X(A) = ∂fct

A,S1
X(A) + ∂fct

A,S2
X(A).

It is clear by definition that the oscillation ∂osc dominates the Glauber derivative ∂G. Henceforth we
use the notation ∂̃ for any of the above-defined (wide-sense) derivatives with respect to the random
field A.

Let us now briefly discuss the applicability of these standard functional inequalities. On the one
hand, classical arguments yield the following sufficient criterion. A standard proof is included for
completeness in Appendix 4.A and will be referred to at several places in the sequel of this chapter.
(Note that the logarithmic Sobolev inequality (LSI) is only established with the oscillation ∂osc,
while the version with the Glauber derivative ∂G is well-known to be much more restrictive, crucially
depending on the law of the underlying product structure.)

Proposition 4.1.2. Let A0 be a random field on Rd with values in some measurable space such that
restrictions A0|S and A0|T are independent for all disjoint Borel subsets S, T ⊂ Rd. Let A be a random
field on Rd that is an R-local transformation of A0, in the sense that for all S ⊂ Rd the restriction A|S
is σ(A0|S+BR)-measurable. Then the field A satisfies (∂G-SG), (∂G-CI), and (∂osc-LSI) with radius
R+ ε for all ε > 0. ♦

Note that any field satisfying the assumption in this criterion has finite range of dependence. Con-
versely any field that satisfies (CI) has necessarily finite range of dependence (cf. Proposition 4.2.1(iii)
below). One does not expect, however, finite range of dependence to be a sufficient condition for the
validity of (SG) in general (compare indeed with the constructions in [91, 76]).

On the other hand, in the Gaussian setting, a complete characterization of standard functional
inequalities is available: if A is a jointly measurable stationary Gaussian random field on Rd with
covariance function C(x) := Cov [A(x);A(0)], then (∂fct-SG) and (∂fct-LSI) are essentially equivalent
to the integrability of the covariance function, while (∂fct-CI) is equivalent to the finiteness of the
range of dependence (cf. Proposition 4.2.1 and Corollary 4.5.1(i) below).

As these examples show (see also the necessary conditions in Proposition 4.2.1 below), the standard
functional inequalities (SG), (LSI), and (CI) are very restrictive in the sense that they can only hold for
fields with sufficiently fast decaying correlations, which excludes many examples of practical interest
(typically to stochastic homogenization, cf. [413]). One possible explanation why these standard
functional inequalities are particularly restrictive is that the right-hand sides in (4.1), (4.2), and (4.3)
only take into account functional dependences at distance at most R. The definition below relaxes
these standard functional inequalities by explicitly taking into account dependences upon derivatives
with respect to A restricted on arbitrarily large sets, according to some given weight.

Definition 4.1.3. Given an integrable function π : R+ → R+, we say that A satisfies the weighted
spectral gap (∂̃-WSG) with weight π if for all σ(A)-measurable random variable X(A) we have

Var [X(A)] ≤ E
[ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`) d`

]
; (4.6)

it satisfies the weighted covariance inequality (∂̃-WCI) with weight π if for all σ(A)-measurable random
variables X(A) and Y (A) we have

Cov [X(A);Y (A)] ≤
ˆ ∞

0

ˆ
Rd

E
[(
∂̃A,B`+1(x)X(A)

)2
] 1

2

E
[(
∂̃A,B`+1(x)Y (A)

)2
] 1

2

dx (`+ 1)−dπ(`) d`;
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it satisfies the weighted logarithmic Sobolev inequality (∂̃-WLSI) with weight π if for all σ(A)-measurable
random variable Z(A) we have

Ent
[
Z(A)2

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)Z(A)

)2
dx (`+ 1)−dπ(`) d`

]
. ♦

Note that, as for standard functional inequalities, (∂̃-WCI) and (∂̃-WLSI) both imply (∂̃-WSG).
The standard functional inequalities of Definition 4.1.1 are recovered by taking a compactly supported
weight π.

Although the Glauber derivative ∂G and the functional derivative ∂fct are particularly convenient
measures of sensitivity of a random variable X(A) with respect to local restrictions of A, they are
essentially only adapted to product structures and to Gaussian-like random fields, respectively. On
the other hand, the oscillation ∂osc is adapted to a much larger variety of fields (cf. Section 4.4.2),
but it involves taking (essential) suprema, which might be difficult to control in some applications.

In the course of this chapter, we consider various classes of random fields on Rd that can be
constructed as (possibly random) projections of random fields having a product structure in a higher-
dimensional space Rd ×Rl. Such projections naturally allow one to “deform” the underlying Glauber
derivative in a way that cannot be strictly speaking written as a Glauber derivative, but which shares
important properties (and in particular avoids taking suprema). The following definition (which can
be skipped at the first reading) gives such a proxy for the Glauber derivative, which can typically be
used in functional inequalities with a loss of integrability.

Definition 4.1.4. Given l ≥ 0, let X be some random field on Rd ×Rl with values in some measure
space, and assume that the random field A under consideration is σ(X )-measurable, A = A(X ).
Choose X ′ an i.i.d. copy of the field X , and for all x, t let the perturbed field X x,t be defined by
X x,t|(Rd×Rl)\(Qd(x)×Ql(t)) = X|(Rd×Rl)\(Qd(x)×Ql(t)) and X x,t|Qd(x)×Ql(t) = X ′|Qd(x)×Ql(t). We use the
short-hand notation

∂dis
`,x,tX(A) := (X(A)−X(A(X x,t))1A|Rd\Q2`+1(x)

=A(Xx,t)|Rd\Q2`+1(x)
, (4.7)

which we abusively call a discrete derivative. Given a family (πλ)λ of integrable functions πλ :
Rl × R+ → R+, we say that A satisfies the spectral gap with loss (∂dis-WSG’) with weights (πλ)λ if
for all σ(A)-measurable random variables X(A) and all λ ∈ (0, 1) we have

Var [X(A)] ≤
ˆ ∞

0

ˆ
Rd

ˆ
Rl

E
[(
∂dis
`,x,tX(A)

) 2
1−λ
]1−λ

πλ(t, `)dtdxd`.

Likewise, we define the corresponding weighted covariance inequality (∂dis-WCI’) and weighted loga-
rithmic Sobolev inequality (∂dis-WLSI’). ♦

4.2 Link to mixing properties

4.2.1 Decay of correlations

In this subsection we quantify the relation between the decay of correlations of the random field and
the decay of the weight π in the corresponding weighted inequalities, extending the well-known result
that the standard spectral gap and covariance inequality imply the integrability of the covariance and
the finiteness of the range of dependence, respectively. Note in particular that (∂̃-WCI) gives much
more information than (∂̃-WSG) on the covariance function. As shown in Corollary 4.5.1, this result
is sharp: in the Gaussian case each of the necessary conditions below is (essentially) sufficient.
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Proposition 4.2.1. Let A be a jointly measurable stationary random field on Rd with E
[
|A|2

]
<∞,

and let C(x) := Cov [A(0);A(x)] denote its covariance function. When using the derivative ∂̃ = ∂osc,
further assume that A is bounded (except in item (iii)).
(i) If A satisfies (∂̃-SG), and if the covariance function C is nonnegative, then C is integrable.
(ii) If A satisfies (∂̃-WSG) with weight π, and if the covariance function C is nonnegative, then C is

integrable whenever
´∞

0 `dπ(`)d` <∞. More generally, C satisfies

ˆ
Rd

(1 + |x|)−αC(x)dx ≤ Cα


´∞

0 (`+ 1)d−απ(`)d`, if 0 ≤ α < d;´∞
0 log2(2 + `)π(`)d`, if α = d;´∞
0 π(`)d`, if α > d.

(iii) If A satisfies (∂̃-CI) with radius R+ε for all ε > 0, then the range of dependence of A is bounded
by 2R (that is, for all Borel subsets S, T ⊂ Rd the restrictions A|S and A|T are independent
whenever d(S, T ) > 2R).

(iv) If A satisfies (∂̃-WCI) with weight π, then the covariance function satisfies for all x ∈ Rd,

|C(x)| ≤ C
ˆ ∞

1
2

(|x|−2)∨0
π(`)d`. ♦

Proof. We split the proof into four steps.

Step 1. Proof of (i).
Let the field A satisfy (∂̃-SG) with radius R. For any L ≥ 1, the standard spectral gap applied

to the σ(A)-measurable random variable X(A) =
´
BL

A (which is well-defined by measurability and
moment bounds on A) yields

Var

[ˆ
BL

A

]
≤ CE

[ˆ
Rd

(
∂̃A,BR(x)

ˆ
BL

A
)2
dx

]
.

For each choice of the derivative ∂̃ (further assuming that A is bounded in the case ∂̃ = ∂osc), we
have

E
[(
∂̃A,BR(x)

ˆ
BL

A
)2
]
≤ C|BR(x) ∩BL|2 ≤ CR1|x|≤R+L.

Hence, for L ≥ 1,
ˆ
BL

ˆ
BL

Cov [A(x);A(y)] dxdy = Var

[ˆ
BL

A

]
≤ CR|BR+L| ≤ CR|BL|.

Therefore, if C is nonnegative, we deduceˆ
BL

C .
ˆ
BL

 
BL

C(x− y)dydx =

ˆ
BL

 
BL

Cov [A(x);A(y)] dydx ≤ CR.

Letting L ↑ ∞, we conclude that C is integrable.

Step 2. Proof of (ii).
Let the field A satisfy (∂̃-WSG) with weight π, and assume that C is nonnegative. Repeating the

argument of Step 1, we deduce for all L ≥ 1,

Ld
ˆ
BL

C(x)dx . E
[(ˆ

BL

(A(x)− E [A])dx
)2
]
≤

ˆ ∞
0

ˆ
Rd
|B`+1(x) ∩BL|2dx (`+ 1)−dπ(`)d`

.
ˆ L

0
Ld(`+ 1)dπ(`)d`+

ˆ ∞
L

L2dπ(`)d` . Ld
ˆ ∞

0
(`+ 1)dπ(`)d`,
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which shows that C is integrable if
´∞

0 (`+ 1)dπ(`)d` <∞.
Let now α > 0 be fixed, and let γ := 1

2(d+α). Assume that α 6= d (the case α = d can be treated
similarly and yields the logarithmic correction). For all L ≥ 1, the weighted spectral gap applied to
the σ(A)-measurable random variable X(A) =

´
BL

(1 + |y|)−γA(y)dy yields

Var

[ˆ
BL

(1 + |y|)−γA(y)dy

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

ˆ
BL

(1 + |y|)−γA(y)dy
)2
dx (`+ 1)−dπ(`)d`

]
≤ C

ˆ ∞
0

ˆ
Rd

(ˆ
BL∩B`+1(x)

(1 + |y|)−γdy
)2
dx (`+ 1)−dπ(`)d`.

Hence,
ˆ
B2L

( ˆ
BL(−x)

(1 + |x+ y|)−γ(1 + |y|)−γdy
)
C(x)dx

= Var

[ˆ
BL

(1 + |y|)−γA(y)dy

]
≤ Cα

ˆ ∞
0

(`+ 1)(d−α)∨0π(`)d`,

which yields the claim by passing to the limit L ↑ ∞.

Step 3. Proof of (iii).
Let the field A satisfy (∂̃-CI) with radius R+ ε for any ε > 0. Given two Borel subsets S, T ⊂ Rd

with d(S, T ) > 2R, choosing ε := 1
3(d(S, T )− 2R), and noting that the sets S +BR+ε and T +BR+ε

are disjoint, the covariance inequality (∂̃-CI) with radius R + ε implies for any G ∈ σ(A|S) and
H ∈ σ(A|T ),

|Cov [1G;1H ] | ≤ Cε
ˆ

(S+BR+ε)∩(T+BR+ε)
E
[(
∂̃A,BR+ε(x)1G)

)2
] 1

2

E
[(
∂̃A,BR+ε(x)1H

)2
] 1

2

dx = 0.

This shows that the σ-algebras σ(A|S) and σ(A|T ) are independent.

Step 4. Proof of (iv).
Let the field A satisfy (∂̃-WCI) with weight π. For all x ∈ Rd and all ε > 0, the covariance

inequality applied to the σ(A)-measurable random variables
ffl
Bε(x)A and

ffl
Bε
A yields∣∣∣∣ 

Bε(x)

 
Bε

C(y − z)dydz
∣∣∣∣ =

∣∣∣∣Cov

[ 
Bε(x)

A;

 
Bε

A

] ∣∣∣∣
≤

ˆ ∞
0

ˆ
Rd

E

[(
∂̃A,B`+1(y)

 
Bε(x)

A
)2
] 1

2

E
[(
∂̃A,B`+1(y)

 
Bε

A
)2
] 1

2

dy (`+ 1)−dπ(`)d`

≤
ˆ ∞

0

ˆ
Rd
ε−d|Bε(x) ∩B`+1(y)|ε−d|Bε ∩B`+1(y)|dy (`+ 1)−dπ(`)d`.

Letting ε ↓ 0 and using the continuity of the function C (as a consequence of the stochastic continuity
of the field A, which follows from its joint measurability), we deduce the claim: for all x ∈ Rd,

|C(x)| ≤ C
ˆ ∞

0
|B`+1(x) ∩B`+1| (`+ 1)−dπ(`)d` ≤ C

ˆ ∞
1
2

(|x|−2)∨0
π(`)d`.

As the above proposition shows, if the weight π satisfies
´∞

0 (` + 1)dπ(`)d` < ∞, both (∂̃-SG)
and (∂̃-WSG) with weight π imply that C is integrable. The following proposition establishes that
(∂fct-SG) and (∂fct-WSG) are actually equivalent for such weights π. This result does not hold if ∂fct

is replaced by another derivative or if SG is replaced by CI.
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Proposition 4.2.2. Let A satisfy (∂fct-WSG) (resp. (∂fct-WLSI)) with some weight π. If
´∞

0 (` +
1)dπ(`)d` <∞, then A satisfies (∂fct-SG) (resp. (∂fct-LSI)) with any radius R > 0. ♦

Proof. Let ε ∈ (0, 1) be fixed. Let X(A) be some σ(A)-measurable random variable. Cover the cube
Q`(x) with the cubes Qε(z

x,`
i ), i = 1, . . . , dr/εed, where zx,`i ∈ εZd is an enumeration of Qεd`/εe(x) ∩

εZd. We then estimate(ˆ
Q`(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

≤
( d`/εed∑

i=1

ˆ
Qε(z

x,`
i )

∣∣∣∂X(A)

∂A

∣∣∣)2

≤ (1 + `/ε)d
d`/εed∑
i=1

(ˆ
Qε(z

x,`
i )

∣∣∣∂X(A)

∂A

∣∣∣)2

.

For all ` > 0, and y ∈ εZd, there are at most d`ed possible values of x ∈ Zd such that y ∈ {zx,`i : i =
1, . . . , `d}, so that we obtain

∑
x∈Zd

(ˆ
Q`(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

≤ (`+ 1)d

εd

∑
x∈Zd

d`/εed∑
i=1

(ˆ
Qε(z

x,`
i )

∣∣∣∂X(A)

∂A

∣∣∣)2

≤ (`+ 1)2d

εd

∑
y∈εZd

(ˆ
Qε(y)

∣∣∣∂X(A)

∂A

∣∣∣)2

,

which directly yields, bounding integrals on cubes by integral on balls, and sums by integrals,
ˆ
Rd

(  
B`+1(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

dx ≤ (`+ 1)−2d
∑
x∈Zd

(ˆ
Q1+

√
d+`(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

. ε−d
∑

y∈εZd/
√
d

(ˆ
Qε/
√
d(y)

∣∣∣∂X(A)

∂A

∣∣∣)2

.
ˆ
Rd

( 
Bε(y)

∣∣∣∂X(A)

∂A

∣∣∣)2

dy. (4.8)

If A satisfies (∂fct-WSG) with weight π, we deduce from the above inequality that for all ε ∈ (0, 1),

Var [X(A)] ≤
ˆ ∞

0

ˆ
Rd

E

[( ˆ
B`+1(x)

∣∣∣∂X(A)

∂A

∣∣∣)2
]
dx (`+ 1)−dπ(`)d`

. ε−2d

(ˆ ∞
0

(`+ 1)dπ(`)d`

) ˆ
Rd

E

(ˆ
Bε(x)

∣∣∣∣∂X(A)

∂A

∣∣∣∣
)2

dx,

which shows that the field A also satisfies (∂fct-SG) if
´∞

0 (`+ 1)dπ(`)d` <∞.

4.2.2 Ergodicity and mixing

In the previous subsection we established the link between weighted functional inequality and the
decay of the covariance function. We now turn to ergodicity properties, and further investigate the
relation between weighted spectral gaps and standard mixing conditions.

Let us first recall some terminology. The random field A is said to be strongly mixing if for all
σ(A)-measurable random variable X(A) and all Borel subsets E,E′ ⊂ R we have

P
[
X(A) ∈ E, X(A(·+ x)) ∈ E′

] |x|↑∞−−−→ P [X(A) ∈ E] P
[
X(A) ∈ E′

]
.

This qualitative property can be quantified into strong mixing conditions. A classical way to measure
the dependence between two sub-σ-algebras G1,G2 ⊂ A is the following α-mixing coefficient, first
introduced by Rosenblatt [373],

α(G1,G2) := sup
{
|P[G1 ∩G2]− P[G1]P[G2]| : G1 ∈ G1, G2 ∈ G2

}
.
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Applied to the random field A, this leads to the following measure of mixing: For all diameters
D ∈ (0,∞] and distances R > 0, we set

α̃(R,D;A)

:= sup
{
α(σ(A|S1), σ(A|S2)) : S1, S2 ∈ B(Rd), d(S1, S2) ≥ R, diam(S1), diam(S2) ≤ D

}
. (4.9)

We say that the field A is α-mixing if for all diameter D ∈ (0,∞) we have α̃(R,D;A)
R↑∞−→ 0. Note

that α-mixing is the weakest of the usual strong mixing conditions (see e.g. [156]), although it is in
general strictly stronger than qualitative strong mixing.

The following result makes explicit the connection between weighted spectral gaps and α-mixing
properties. Note that this result is essentially sharp: on the one hand, in the Gaussian case, as shown
in Corollary 4.5.1, each of the necessary conditions in (i), (ii), and (iv) below is (essentially) sufficient,
and on the other hand the R-scaling in the estimate in (iii) can be checked to be sharp at least in
some specific examples.

Proposition 4.2.3. Let A be a jointly measurable stationary random field on Rd.
(i) If A satisfies (∂̃-WSG) with integrable weight π, then A is ergodic.

(ii) If A satisfies (∂̃-WCI) with integrable weight π, then A is strongly mixing.

(iii) If A satisfies (∂̃-WCI) with weight π and with derivative ∂̃ = ∂G or ∂osc, then A is α-mixing
with coefficient α̃(R,D;A) . (1 + D

R )d
´∞
R−1 π(`)d`.

(iv) If A satisfies (∂̃-CI) with radius R+ ε > 0 for all ε > 0, then α̃(r,∞;A) = 0 for all r > 2R. ♦

Remark 4.2.4. Item (iii) is expected to fail in general for the derivative ∂̃ = ∂fct. Indeed, as shown
in Corollary 4.5.1, if A is a stationary Gaussian random field with covariance function C satisfying
|C(x)| ' (1 + |x|)−α for all x, for some α > 0, then the field A satisfies (∂fct-WCI) with weight
π(r) ' (1 + r)−α−1. Therefore, if item (iii) above was true with ∂̃ = ∂fct, we would deduce in this
Gaussian example α̃(R,D;A) . (1 + (D/R)d)R−α, which is however expected to fail (the correct
scaling is rather expected to be Rd−α for α > d, cf. [156, Corollary 2 of Section 2.1.1] or [249,
Corollary p.195]). ♦

Proof of Proposition 4.2.3. Item (iv) follows from Proposition 4.2.1. We split the rest of the proof
into three steps.

Step 1. Proof of (i).
Let the field A satisfy (∂̃-WSG) with weight π. To prove ergodicity, it suffices to show that for

all integrable σ(A)-measurable random variables X(A) we have

lim
L↑∞

E
[∣∣∣ 

BL

X(A(x+ ·))dx− E [X(A)]
∣∣∣] = 0.

By an approximation argument in L2(Ω), we may assume that X(A) is bounded and is σ(A|BR)-
measurable for some R > 0. The spectral gap (∂̃-WSG) applied to the σ(A)-measurable random
variable

ffl
BL

X(A(·+ x))dx yields

SL := E
[∣∣∣ 

BL

X(A(x+ ·))dx− E [X(A)]
∣∣∣]2

≤ Var

[ 
BL

X(A(x+ ·))dx
]
≤ E

[ˆ ∞
0

ˆ
Rd

( 
BL

∂̃A,B`+1(y)X(A(x+ ·))dx
)2
dy (`+ 1)−dπ(`)d`

]
,
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and therefore

SL ≤ E
[ˆ ∞

0

ˆ
Rd

 
BL

 
BL

∂̃A,B`+1(y)X(A(x+ ·)) ∂̃A,B`+1(y)X(A(x′ + ·))dxdx′dy(`+ 1)−dπ(`)d`

]
.

By assumption, ∂̃A,B`+1(y)X(A(x + ·)) = 0 whenever BR(x) ∩ B`+1(y) = ∅, i.e. whenever |x − y| >
R + ` + 1. For the choices ∂̃ = ∂osc and ∂G, we also have ∂̃A,B`+1(y)X(A(x + ·)) ≤ 2‖X‖L∞ , so that
the above yields

SL ≤ 4‖X‖2L∞
ˆ ∞

0

ˆ
Rd

 
BL

 
BL

1|x−y|≤R+`+11|x′−y|≤R+`+1dxdx
′dy (`+ 1)−dπ(`)d`

= 4‖X‖2L∞L−2d

ˆ ∞
0

(ˆ
BL

ˆ
BR+`+1(x)

|BL ∩BR+`+1(y)|dydx
)

(`+ 1)−dπ(`)d`

≤ 4‖X‖2L∞
ˆ ∞

0
(R+ `+ 1)d

(R+ `

L
∧ 1
)d

(`+ 1)−dπ(`)d`,

where the right-hand side obviously goes to 0 as L ↑ ∞ whenever
´∞

0 π(`)d` < ∞. This proves
ergodicity for the choices ∂̃ = ∂osc and ∂G.

It remains to treat the case ∂̃ = ∂fct. An additional approximation argument is then needed in
order to restrict attention to those random variables X(A) such that the derivative ∂̃A,B`+1(x)X(A) is
pointwise bounded. The stochastic continuity of the field A (which follows from its joint measurability)
ensures that the σ(A|BR)-measurable random variable X(A) is actually σ(A|Qd∩BR)-measurable. A
standard approximation argument then allows to construct a sequence (xn)n ⊂ BR and a sequence
(Xn(A))n of random variables such that Xn(A) is σ((A(xk))

n
k=1)-measurable and converges to X(A)

in L2(Ω). By definition, we may write Xn(A) = fn(A(x1), . . . , A(xn)) for some Borel function fn :
(Rk)n → R. Another standard approximation argument now allows to replace the Borel maps fn’s
by smooth functions. We end up with a sequence that approximates X(A) in L2(Ω), and such that
the elements have pointwise bounded ∂̃-derivative. For these approximations, the conclusion follows
as before.

Step 2. Proof of (ii).
Let the field A satisfy (∂̃-WCI) with weight π. To prove strong mixing, it suffices to show that for

all bounded σ(A)-measurable random variablesX(A) and Y (A) we have Cov [X(A);Y (A(x+ ·))]→ 0
as |x| → ∞ (since the desired property then follows by choosing the random variables X(A), Y (A) to
be any pair of indicator functions). Again, a standard approximation argument allows one to consider
bounded σ(A|BR)-measurable random variables X(A), Y (A) for some R > 0. Given x ∈ Rd, apply
the covariance inequality (∂̃-WCI) to X(A) and Y (A(·+ x)) to obtain∣∣Cov [X(A);Y (A(x+ ·))]

∣∣
≤
ˆ ∞

0

ˆ
Rd

E
[(
∂̃A,B`+1(y)X(A)

)2
] 1

2

E
[(
∂̃A,B`+1(y)Y (A(x+ ·))

)2
] 1

2

dy (`+ 1)−dπ(`)d`.

By assumption, ∂̃A,B`+1(y)X(A) = 0 whenever BR ∩ B`+1(y) = ∅, i.e. whenever |y| > R + ` + 1.
For the choices ∂̃ = ∂osc and ∂G, we have in addition ∂̃A,B`+1(y)X(A) ≤ 2‖X‖L∞ , so that the above
directly yields

∣∣Cov [X(A);Y (A(x+ ·))]
∣∣ ≤ 4‖X‖L∞‖Y ‖L∞

ˆ ∞
0

ˆ
Rd
1|y|≤R+`+11|x−y|≤R+`+1 dy (`+ 1)−dπ(`)d`

. ‖X‖L∞‖Y ‖L∞
ˆ ∞

0
(R+ `+ 1)d(`+ 1)−dπ(`)d`
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where the right-hand side goes to 0 as |x| → ∞ whenever
´∞

0 π(`)d` < ∞. This proves strong
mixing for the choices ∂̃ = ∂osc and ∂G. In the case ∂̃ = ∂fct, an additional approximation argument
is needed as in Step 1 in order to restrict to random variables X(A) such that ∂̃A,B`+1(y)X(A) is
pointwise bounded.

Step 3. Proof of (iii).
Let the field A satisfy (∂̃-WCI) with weight π, and with derivative ∂̃ = ∂osc or ∂G. Given Borel

subsets S, T ⊂ Rd with diameter ≤ D and with d(S, T ) ≥ 2R, the covariance inequality (∂̃-WCI)
for this choice of derivatives yields for all bounded random variables X(A) and Y (A), respectively
σ(A|S)-measurable and σ(A|T )-measurable,∣∣Cov [X(A);Y (A)]

∣∣
≤

ˆ ∞
0

ˆ
Rd

E
[(
∂̃A,B`+1(x)X(A)

)2
] 1

2

E
[(
∂̃A,B`+1(x)Y (A)

)2
] 1

2

dx (`+ 1)−dπ(`)d`

≤ 4‖X(A)‖L∞‖Y (A)‖L∞
ˆ ∞

0

∣∣(S +B`+1) ∩ (T +B`+1)
∣∣ (`+ 1)−dπ(`)d`

. ‖X(A)‖L∞‖Y (A)‖L∞
ˆ ∞
R−1

(`+D + 1)d(`+ 1)−dπ(`)d`

≤ ‖X(A)‖L∞‖Y (A)‖L∞
(

1 +
D

R

)d ˆ ∞
R−1

π(`)d`,

from which the claim follows by choosing for X(A), Y (A) any pair of indicator functions.

4.3 Moment bounds and concentration properties

In this section, we investigate the concentration properties that are implied by weighted spectral
gaps, according to both the choice of the derivative and the decay of the weight. Although the results
are new, the proofs rely mainly on standard Herbst-type arguments.

4.3.1 Control of higher moments

As for standard functional inequalities, weighted functional inequalities allow one to control higher
moments of random variables. Note that these properties depend crucially on the choice of the
derivative.

Proposition 4.3.1. Assume that the random field A satisfies (∂̃-WSG) with integrable weight π :
R+ → R+. Then there exists C < ∞ (depending only on π and d) such that for all 1 ≤ p < ∞ and
all σ(A)-measurable random variables X(A) we have
(i) if ∂̃ = ∂G or ∂fct,

E
[(
X(A)− E [X(A)]

)2p] ≤ (Cp2)p E
[(ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
,

where the multiplicative factor (Cp2)p can be upgraded to (Cp)p if the field A further satisfies
(∂̃-WLSI);

(ii) if ∂̃ = ∂osc,

E
[(
X(A)− E [X(A)]

)2p]
≤ (Cp2)p E

[ˆ ∞
0

(ˆ
Rd

(
∂̃A,B2(`+1)(x)X(A)

)2
dx

)p
(`+ 1)−dpπ(`)d`

]
. ♦
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Proof. Let X(A) be σ(A)-measurable. We may assume without loss of generality that E [X(A)] = 0.
We split the proof into two steps.

Step 1. Proof of (i) and (ii) for (∂̃-WSG).
Applying the spectral gap (∂̃-WSG) to the σ(A)-measurable random variable |X(A)|p yields

E
[
X(A)2p

]
≤ E [|X(A)|p]2 + E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
. (4.10)

For p > 2, Hölder’s and Young’s inequalities with exponents (2(p−1)
p−2 , 2(p−1)

p ) and (p−1
p−2 , p− 1), respec-

tively, imply for all δ > 0,

E [|X(A)|p]2 = E
[
|X(A)|p

p−2
p−1 |X(A)|

p
p−1

]2
≤ E

[
X(A)2p

] p−2
p−1 E

[
X(A)2

] p
p−1

≤ p− 2

p− 1
δ E
[
X(A)2p

]
+

1

p− 1
δ2−p E

[
X(A)2

]p
.

while for p ≤ 2 Jensen’s inequality simply yields E [|X(A)|p]2 ≤ E
[
X(A)2

]p. Injecting these estimates
into (4.10) for some δ & 1 small enough, we conclude for all 1 ≤ p <∞,

E
[
X(A)2p

]
≤ p−1Cp E

[
X(A)2

]p
+ C E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
.

Since E
[
X(A)2

]
= Var [X(A)] follows from the centering assumption, the first right-hand side term

is estimated by the spectral gap (∂̃-WSG). Further using Jensen’s inequality, this leads to

E
[
X(A)2p

]
≤ p−1Cp E

[(ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
+ C E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
. (4.11)

We split the rest of this step into three further substeps, and treat separately ∂fct, ∂G, and ∂osc.

Substep 1.1. Proof of (i) for ∂̃ = ∂fct.
By the Leibniz rule, ∂fct

A,S(|X(A)|p) = p|X(A)|p−1∂fct
A,SX(A), so that Hölder’s inequality with

exponents ( p
p−1 , p) yields

E
[ˆ ∞

0

ˆ
Rd

(
∂fct
A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
≤ p2 E

[
X(A)2(p−1)

ˆ ∞
0

ˆ
Rd

(
∂fct
A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

]
≤ p2 E

[
X(A)2p

]1− 1
p E
[(ˆ ∞

0

ˆ
Rd

(
∂fct
A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

. (4.12)

Combined with (4.11) and Young’s inequality with exponents ( p
p−1 , p) to absorb the factor E

[
X(A)2p

]
into the left-hand side, the conclusion of item (i) follows with the prefactor (Cp2)p.

Substep 1.2. Proof of (i) for ∂̃ = ∂G.
The inequality ||a|p − |b|p| ≤ p|a − b|(|a|p−1 + |b|p−1) for all a, b ∈ R easily implies, by definition

of the Glauber derivative (4.4),

E
[(
∂G
A,S

(
|X(A)|p

))2
]

= E
[
E′
[(
|X(A′)|p − |X(A)|p

)2 ∥∥A′|Rd\S = A|Rd\S
]]

≤ 2p2E
[
E′
[(
X(A)2(p−1) +X(A′)2(p−1)

)(
X(A′)−X(A)

)2 ∥∥A′|Rd\S = A|Rd\S
]]

= 4p2E
[
X(A)2(p−1)

(
∂G
A,SX(A)

)2
]
,
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and we are now back to the situation of Substep 1.1.

Substep 1.3. Proof of (ii).
Again, the inequality ||a|p − |b|p| ≤ p|a− b|(|a|p−1 + |b|p−1) for all a, b ∈ R implies

∂osc
A,S |X(A)|p ≤ 2p

(
sup
A,S
|X(A)|p−1

)
∂osc
A,S X(A) ≤ 2p

(
|X(A)|+ ∂osc

A,S X(A)

)p−1

∂osc
A,S X(A). (4.13)

We then make use of the following inequality that holds for some constant C ' 1 large enough
(independent of p): for all a, b ≥ 0, (a+ b)p−1 ≤ 2ap−1 + (Cp)pbp−1. This allows one to rewrite (4.13)
in the form

∂osc
A,S |X(A)|p ≤ 4p|X(A)|p−1 ∂osc

A,S X(A) + (Cp)p(∂osc
A,S X(A))p. (4.14)

Arguing as in Substep 1.1, we obtain by Hölder’s inequality,

E
[ˆ ∞

0

ˆ
Rd

(
∂osc
A,B`+1(x) |X(A)|p

)2
dx (`+ 1)−dπ(`)d`

]
≤ Cp2 E

[
X(A)2p

]1− 1
p E
[(ˆ ∞

0

ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

+ (Cp2)p E
[ˆ ∞

0

ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2p
dx (`+ 1)−dπ(`)d`

]
.

Combined with (4.11) and Young’s inequality to absorb the factor E
[
X(A)2p

]
into the left-hand side,

this yields

E
[
X(A)2p

]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
+ (Cp2)p E

[ˆ ∞
0

ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2p
dx (`+ 1)−dπ(`)d`

]
.

It remains to reformulate the second right-hand side term. By the discrete `1− `p inequality, we haveˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2p
dx ≤

∑
z∈ `+1√

d
Zd

ˆ
z+ `+1√

d
Q

(
∂osc
A,B`+1(x) X(A)

)2p
dx

≤
(`+ 1√

d

)d ∑
z∈ `+1√

d
Zd

(
∂osc
A,B 3

2 (`+1)
(z) X(A)

)2p

≤
(`+ 1√

d

)d( ∑
z∈ `+1√

d
Zd

(
∂osc
A,B 3

2 (`+1)
(z) X(A)

)2
)p

≤
(`+ 1√

d

)d( ∑
z∈ `+1√

d
Zd

 
z+ `+1√

d
Q

(
∂osc
A,B2(`+1)(x) X(A)

)2
dx

)p

≤
( √d
`+ 1

)d(p−1)
( ˆ

Rd

(
∂osc
A,B2(`+1)(x) X(A)

)2
dx

)p
. (4.15)

Combined with the above, this yields

E
[
X(A)2p

]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
+ (Cp2)p E

[ˆ ∞
0

(ˆ
Rd

(
∂osc
A,B2(`+1)(x) X(A)

)2
dx

)p
(`+ 1)−dpπ(`)d`

]
.
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Since
´∞

0 π(`)d` <∞, the first right-hand side term can be absorbed into the second right-hand side
term. Indeed, the triangle inequality and the Hölder inequality with exponents (p, p

p−1) combine to

E
[(ˆ ∞

0

ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
≤

( ˆ ∞
0

E
[(ˆ

Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx

)p] 1
p

(`+ 1)−dπ(`)d`

)p
=

( ˆ ∞
0

E
[(ˆ

Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx

)p
(`+ 1)−dpπ(`)

] 1
p

π(`)
1− 1

pd`

)p
≤

( ˆ ∞
0

π(`)d`

)p−1

E
[ˆ ∞

0

( ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx

)p
(`+ 1)−dpπ(`)d`

]
,

and the conclusion of item (ii) follows.

Step 2. Improvement of (i) for (∂̃-WLSI).
In this step, we argue that the prefactor (Cp2)p in item (i) can be upgraded to (Cp)p if the field A

satisfies the corresponding logarithmic Sobolev inequality (∂̃-WLSI). Starting point is the following
observation (see [7, Theorem 3.4] and [41, Proposition 5.4.2]): if the random variable X(A) satisfies
Ent

[
X(A)2p

]
<∞, then we have

E
[
X(A)2p

] 1
p − E

[
X(A)2

]
=

ˆ p

1

1

q2
E
[
X(A)2q

] 1
q
−1

Ent
[
X(A)2q

]
dq. (4.16)

It remains to estimate the entropy Ent
[
X(A)2q

]
for all 1 ≤ q ≤ p. Applied to the σ(A)-measurable

random variable |X(A)|q, (∂̃-WLSI) yields

Ent
[
X(A)2q

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)|X(A)|q

)2
dx (`+ 1)−dπ(`)d`

]
.

For the choice ∂̃ = ∂G or ∂fct, the argument of Substeps 1.1–1.2, cf. (4.12), applied to the above
right-hand side yields

Ent
[
X(A)2q

]
≤ Cq2 E

[
X(A)2q

]1− 1
q E
[(ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)q] 1
q

.

Inserting this into (4.16), we obtain

E
[
X(A)2p

] 1
p ≤ E

[
X(A)2

]
+ C

ˆ p

1
E
[(ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)q] 1
q

dq.

We then appeal to the spectral gap (∂̃-WSG) (which follows from (∂̃-WLSI)) to estimate the first
right-hand side term, and use Jensen’s inequality on the second right-hand side to obtain

E
[
X(A)2p

] 1
p ≤ CpE

[(ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

.

This upgrades the prefactor in item (i) to (Cp)p, as claimed.
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4.3.2 Concentration properties

The following results establish concentration properties implied by weighted functional inequal-
ities, and extend the known results for standard functional inequalities. Again, these properties
depend crucially on the choice of the derivative. On the one hand, spectral gaps for the Glauber
and functional derivatives imply exponential tail concentration, and the corresponding logarithmic
Sobolev inequalities imply stronger Gaussian tail concentration. On the other hand, for other choices
of the derivative, the failure of the Leibniz rule in general only yields weaker results (except when
the weight has compact support or when additional properties are assumed on the random variable,
cf. Propositions 4.3.3(i) and 4.7.3(iii) below). Most of the following results are direct consequences of
the p-versions of Proposition 4.3.1. We start with the concentration properties for the Glauber and
functional derivatives.

Proposition 4.3.2. Assume that the random field A satisfies (∂̃-WSG) with integrable weight π :
R+ → R+ and derivative ∂̃ = ∂G or ∂fct. We define the Lipschitz norm of a σ(A)-measurable random
variable X(A) with respect to the derivative ∂̃ and the weight π as

|||X |||∂̃,π := sup ess
A

( ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

) 1
2

.

Then there exists a constant C > 0 depending only on d and π such for all σ(A)-measurable random
variables X(A) with |||X |||∂̃,π ≤ 1 we have exponential tail concentration in the form

E
[
exp

( 1

C
|X(A)− E [X(A)] |

)]
≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e−
r
C , for all r ≥ 0.

If in addition A satisfies (∂̃-WLSI) with weight π, then for all σ(A)-measurable random variables
X(A) with |||X |||∂̃,π ≤ 1 we have Gaussian tail concentration in the form

E
[
exp

( 1

C

(
X(A)− E [X(A)]

)2)] ≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e−
r2∨r
C , for all r ≥ 0. ♦

We now turn to the case of the oscillation, which yields in general weaker concentration results
due to the failure of the Leibniz rule.

Proposition 4.3.3.
(i) Assume that the random field A satisfies (∂osc-SG) with radius R > 0. Then for all σ(A)-

measurable random variables X(A) that satisfy

|||X |||∂osc,R := sup ess
A

ˆ
Rd

(
∂osc
A,BR(x) X(A)

)2
dx ≤ 1,

we have exponential tail concentration in the form

E
[
exp

( 1

C
|X(A)− E [X(A)] |

)]
≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e−
r
C , for all r ≥ 0.

If in addition A satisfies (∂osc-LSI) with radius R > 0 and if the random variable X(A) further
satisfies

L := sup
x

sup ess
A

∂osc
A,BR(x)X(A) <∞,
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we have Poisson tail concentration in the form

E
[
exp

( 1

C
ψL
(
|X(A)− E [X(A)] |

))]
≤ 2, ψL(u) :=

u

L
log
(

1 +
Lu

C

)
,

P [X(A)− E [X(A)] ≥ r] ≤ e−
1
C
ψL(r), for all r ≥ 0.

(ii) Assume that the random field A satisfies (∂osc-WSG) with integrable weight π : R+ → R+. Let
X(A) be a σ(A)-measurable random variable, and assume that, for some κ > 0, p0, α ≥ 0, we
have for all p ≥ p0,

E
[ˆ ∞

0

(ˆ
Rd

(
∂osc
A,B`+1(x) X(A)

)2
dx

)p
(`+ 1)−dpπ(`)d`

]
≤ pαpκ. (4.17)

Then there exists a constant C > 0 depending only on d, π, p0, and α (but not on κ) such that
we have concentration in the form

E
[
ψp0,α

( 1

C
|X(A)− E [X(A)] |

)]
≤ Cκ, ψp0,α(u) := (1 ∧ r2p0) exp(r

2
2+α ),

P [ |X(A)− E [X(A)] | ≥ r] ≤ Cκ
(
ψp0,α

(
r
C

))−1
, for all r ≥ 0. ♦

Remark 4.3.4. Comments are in order.
— For spatial averages of (possibly nonlinear approximately local transformations of) the random

field A, one can prove much stronger concentration results using the specific structure of
averages, cf. Proposition 4.7.3(iii) below.

— Proposition 4.3.3(ii) above is used in two contexts. When the weight π is algebraic, the decay
in (4.17) is typically independent of p (that is, α = 0, and κ is not to the power p so that
it cannot be absorbed by rescaling of X), in which case κ is the driving quantity (see e.g.
the application in Proposition 4.7.3(ii)). When the weight is super-algebraic, there can be an
interplay between the decay of the weight and the power p, and an optimization may allow
to put part of the decay to the power p at the price of losing some power of p itself — which
leads to (4.17) for some α > 0 (after rescaling of X). ♦

We start with the proof of Proposition 4.3.2.

Proof of Proposition 4.3.2. If A satisfies (∂̃-WSG) for ∂̃ = ∂G or ∂fct, the assumption |||X |||∂̃,π ≤ 1
allows to apply Proposition 4.3.1(i) in the form

E
[(
X(A)− E [X(A)]

)2p] ≤ (Cp2)p, (4.18)

for all p ≥ 1. Summing this estimate over p, and recalling that nn ≤ enn!, the exponential concen-
tration result (i) follows in the form

E
[
exp

( 1

C
|X(A)− E [X(A)] |

)]
≤ 2,

and hence by Markov’s inequality, for all r ≥ 0,

P
[∣∣X(A)− E [X(A)]

∣∣ ≥ r] ≤ 2e−
r
C .

The stronger unilateral estimate without the factor 2 is obtained by a standard application of Herbst-
type techniques as in [66, Section 4] (see also [292, Section 2.5]).
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If A further satisfies (∂̃-WLSI) for ∂̃ = ∂G or ∂fct, Proposition 4.3.1(i) asserts that the right-
hand side in (4.18) is replaced by (Cp)p, which yields after summation the corresponding Gaussian
concentration result (ii) in the form

E
[
exp

( 1

C

(
X(A)− E [X(A)]

)2)] ≤ 2,

and hence by Markov’s inequality, for all r ≥ 0,

P
[∣∣X(A)− E [X(A)]

∣∣ ≥ r] ≤ 2e−
r2

C .

The stronger unilateral estimate without the factor 2 is obtained by a standard application of Herbst’s
argument as e.g. in [293, Section 5.1].

We now turn to the proof of Proposition 4.3.3.

Proof of Proposition 4.3.3. We split the proof into two steps, and prove (i) and (ii) separately.

Step 1. Proof of (i).
The exponential concentration result in (i) follows from Proposition 4.3.1(ii) (with compactly

supported weight π) as in the proof of Proposition 4.3.2 above. Let us now turn to the Poisson
concentration result; although it could similarly be proven by first deriving suitable moment bounds,
the proof is more transparent using a variation of Herbst’s argument. Let A satisfy (∂osc-LSI) and
let X(A) satisfy L := supx sup essA ∂

osc
A,BR(x)X(A) < ∞ and |||X |||∂osc,R ≤ 1. For all t ∈ R, we apply

(∂osc-LSI) to the σ(A)-measurable random variable etX(A)/2,

Ent
[
etX(A)

]
≤ C E

[ˆ
Rd

(
∂osc
A,BR(x) e

tX(A)/2
)2
dx

]
. (4.19)

By the inequality |ea − eb| ≤ (ea + eb)|a− b| for all a, b ∈ R, the integrand turns into(
∂osc
A,S e

tX(A)/2
)2
≤ 2t2 sup

A,S
etX(A)

(
∂osc
A,S X(A)

)2
≤ 2t2etX(A) exp

(
t ∂osc

A,S X(A)
)(

∂osc
A,S X(A)

)2
.

(4.20)

Inserting this inequality into (4.19) and using the assumptions on X(A), we obtain

Ent
[
etX(A)

]
≤ Ct2etLE

[
etX(A)

]
.

Compared to the standard Herbst argument, we have to deal here with the additional exponential
factor etL. We may then appeal to [292, Corollary 2.12] which indeed yields the desired Poisson
concentration. We include a proof for the reader’s convenience. In terms of the Laplace transform
H(t) = E

[
etX(A)

]
, the above takes the form

tH ′(t)−H(t) logH(t) ≤ Ct2etLH(t),

or equivalently,
d

dt

(1

t
logH(t)

)
≤ CetL,

and hence by integration

H(t) ≤ exp
(Ct
L

(etL − 1) + t
H ′(0)

H(0)

)
= e

Ct
L

(etL−1)+tE[X(A)].
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The Markov inequality then implies for all r, t ≥ 0,

P [X(A) ≥ E [X(A)] + r] = P
[
etX(A) ≥ etE[X(A)]+tr

]
≤ e−tE[X(A)]−trE

[
etX(A)

]
≤ e

Ct
L

(etL−1)−tr.

(4.21)

Let r ≥ 0 be momentarily fixed, and denote by t∗ ≥ 0 the value of t ≥ 0 that minimizes fr(t) :=
Ct
L (etL − 1)− tr, that is the (unique) solution t∗ ≥ 0 of the equation

Cet∗L = (Lr + C)/(1 + t∗L) (4.22)

(note that fr is strictly convex, fr(0) = 0, and f ′r(0) ≤ 0). We now give two estimates on fr(t∗)
depending on the value of r. Assume first that r ≥ 2eC

L . We may then compute

fr(t∗) :=
Ct∗
L

(et∗L − 1)− t∗r
(4.22)

= − t
2
∗(Lr + C)

1 + t∗L
.

Using the bound 2t∗L ≥ t∗L + log(1 + t∗L)
(4.22)

= log(1 + Lr/C), and the fact that t 7→ − t2(Lr+C)
1+tL is

decreasing on R+, we obtain

fr(t∗) ≤ −
Lr + C

2L2

log(1 + Lr/C)2

2 + log(1 + Lr/C)
.

Hence, for r ≥ 2eC
L , we obtain using in addition log(1 + Lr/C) ≥ log(1 + 2e) > 9/5,

fr(t∗) ≤ −
r

5L
log
(

1 +
Lr

C

)
. (4.23)

We now turn to the case 0 ≤ r ≤ 2eC
L . Comparing the minimal value fr(t∗) to the choice t = r

2eC ,
and using the bound ea − 1 ≤ ea for a ∈ [0, 1], we obtain for all r ≤ 2eC

L ,

fr(t∗) ≤ fr
( r

2eC

)
=

r

2eL

(
e
rL
2eC − 1

)
− r2

2eC
≤ − r2

4eC
,

which yields, using that log(1 + a) ≤ a for all a ≥ 0,

fr(t∗) ≤ −
r

4eL
log
(

1 +
Lr

C

)
≤ − r

11L
log
(

1 +
Lr

C

)
.

Combining this with (4.21) and (4.23), we conclude

P [X(A) ≥ E [X(A)] + r] ≤ e−
r

11L
log(1+Lr

C
),

and the corresponding integrability result follows by integration.

Step 2. Proof of (ii).
Let A satisfy (∂osc-WSG) with weight π, and let the random variable X(A) satisfy (4.17) for some

κ > 0, p0, α ≥ 0. Proposition 4.3.1(ii) then yields for all p ≥ p0,

E
[(
X(A)− E [X(A)]

)2p] ≤ Cpp(2+α)pκ,

or alternatively, for all p ≥ (2 + α)p0,

E
[(∣∣X(A)− E [X(A)]

∣∣ 2
2+α

)p]
≤ Cpp!κ.

Summing this estimate over p, we obtain

E
[
ψ̃p0,α

( 1

C
|X(A)− E [X(A)] |

2
2+α

)]
≤ κ,

where we have set ψ̃p0,α(u) :=
∑∞

n=0
un+(2+α)p0

(n+(2+α)p0)! . Noting that ψ̃p0,α(u) 'p0,α (1 ∧ u)(2+α)p0eu holds
for all u ≥ 0, the conclusion follows.
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4.4 Constructive approach to weighted functional inequalities

In this section we consider random fields that can be constructed as transformations of product
structures. Under suitable assumptions we describe how the standard spectral gaps, covariance in-
equalities, and logarithmic Sobolev inequalities satisfied by “hidden product structures” are deformed
into weighted functional inequalities for the random fields of interest. The analysis of the examples
mentioned in the introduction is postponed to Section 4.5.

4.4.1 Transformation of product structures

Let the random field A on Rd be σ(X )-measurable for some random field X defined on some
measure space X and with values in some measurable space M . Assume that we have a parti-
tion X =

⊎
x∈Zd,t∈Zl Xx,t, on which X is completely independent, that is, the family of restrictions

(X|Xx,t)x∈Zd,t∈Zl are all independent.
In the sequel, the case l = 0 (that is, the case when there is no variable t) is referred to as the

non-projective case, while the case l ≥ 1 is referred to as the projective case. Note however that the
non-projective case is a particular case of the projective one, simply defining Xx,0 = Xx and Xx,t = ∅
for all t 6= 0. The random field X can be e.g. a random field on Rd ×Rl with values in some measure
space (choosing X = Rd × Rl, Xx,t = Qd(x)×Ql(t), and M the space of values), or a random point
process (or more generally a random measure) on Rd×Rl×X ′ for some measure space X ′ (choosing
X = Zd × Zl ×X ′, Xx,t = {x} × {t} ×X ′, and M the space of measures on Qd ×Ql ×X ′).

Let X ′ be some given i.i.d. copy of X . For all x, t, we define a perturbed random field X x,t
by setting X x,t|X\Xx,t = X|X\Xx,t and X x,t|Xx,t = X ′|Xx,t . By complete independence, the random
fields X and X x,t (resp. A = A(X ) and A(X x,t)) have the same law. Arguing as in the proof of
Proposition 4.1.2 (cf. (4.106) and (4.107) in Appendix 4.A), the complete independence assumption
ensures that X satisfies the following standard functional inequalities.

Proposition 4.4.1. For all σ(X )-measurable random variables Y (X ) and Z(X ), we have

Var [Y (X )] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

E
[(
Y (X )− Y (X x,t)

)2]
, (4.24)

Ent[Y (X )] ≤ 2
∑
x∈Zd

∑
t∈Zl

E
[
sup ess
X ′

(
Y (X )− Y (X x,t)

)2]
, (4.25)

Cov [Y (X );Z(X )] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

E
[(
Y (X )− Y (X x,t)

)2] 1
2 E
[(
Z(X )− Z(X x,t)

)2] 1
2
. (4.26)

♦

4.4.2 Abstract criteria and action radius

We now describe general situations for which the functional inequalities for the hidden product
structure X are deformed into weighted inequalities for the random field A. We distinguish the
following two cases:

— deterministic localization, that is, when the random field A is a deterministic convolution of
some product structure, so that the dependence pattern is prescribed deterministically a priori;
it leads to weighted functional inequalities with the functional derivative ∂fct;

— random localization, that is, when the dependence pattern is encoded by the underlying prod-
uct structure X itself (and therefore may depend on the realization, whence the terminology
“random”); the localization of the dependence pattern is then measured in terms of what we
call the action radius; it leads to weighted inequalities with the derivatives ∂osc and ∂dis, and
generalizes the idea of local transformations of Proposition 4.1.2.
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The case of deterministic localization essentially concerns Gaussian fields, which have been thoroughly
studied in the literature. Weighted functional inequalities for such random fields then follow from
standard functional inequalities (typically formulated in terms of Malliavin calculus on Wiener space,
see e.g. [248, 258, 348]) combined with a deterministic radial change of variables to reformulate the
right-hand side (extracting a 1D weight from Hilbert norms encoding the covariance structure, cf.
the proof of Theorem 4.B.2 below). The right-hand side of weighted functional inequalities is indeed
more explicit (and flexible when it turns to estimates — see e.g. bounds by duality in [203]). A
self-contained approach to deterministic localization is included in Appendix 4.B.

In the rest of this section we focus on the more original setting of random localization (which
involves a random change of variable, due to the randomness of the dependence pattern). More
precisely, we introduce the notion of action radius as a probabilistic measure of the localization of
the dependence pattern. General criteria for weighted spectral gaps are then obtained in terms of the
properties of this action radius. Various examples that are included in this framework are described
in Section 4.5 below.

We use the same notation as above: A is a σ(X )-measurable random field on Rd, where X is
a completely independent random field on some measure space X =

⊎
x∈Zd,t∈Zl Xx,t with values in

some measurable space M . The following definition is inspired by the notion of stabilization radius
first introduced by Lee [294, 295] and crucially used in the works by Penrose, Schreiber, and Yukich
on random sequential adsorption processes [359, 358, 360, 391] (see also [286]).

Definition 4.4.2. Given an i.i.d. copy X ′ of the field X , an action radius for A with respect to X on
Xx,t (with reference perturbation X ′), if it exists, is defined as a nonnegative σ(X ,X ′)-measurable
random variable ρ such that we have a.s.,

A(X x,t)
∣∣
Rd\(Q(x)+Bρ)

= A(X )|Rd\(Q(x)+Bρ) ,

where the perturbed random field X x,t is defined by X x,t|X\Xx,t := X|X\Xx,t and X x,t|Xx,t := X ′|Xx,t .
♦

Note that if X = A0 is a random field on Rd, and if for some R > 0 the random field A is an
R-local transformation of A0 in the sense of Proposition 4.1.2, then the constant ρ = R is an action
radius for A with respect to A0 on any set. Reinterpreted in the case when X = P is a random point
process on Rd×Rl×X ′ for some measure space X ′, the above definition takes on the following guise:
given a subset E × F ⊂ Rd ×Rl and given an i.i.d. copy P ′ of P, an action radius for A with respect
to P on E × F , if it exists, is a nonnegative random variable ρ such that we have a.s.,

A
((
P \ (E × F ×X ′)

)⋃(
P ′ ∩ (E × F ×X ′)

))∣∣∣
Rd\(E+Bρ)

= A(P)|Rd\(E+Bρ) .

We display two general results, Theorems 4.4.3 and 4.4.5 below. The first result is a general criterion
for the validity of weighted spectral gaps in terms of the properties of an action radius, whereas
the second result is based on more elaborate properties of action radii and is useful to avoid loss of
integrability in some situations. Note that the condition for the validity of the weighted logarithmic
Sobolev inequality below is rather stringent (see Section 4.5 for examples).

Theorem 4.4.3. Let the fields A,X be as above. Given an i.i.d. copy X ′ of the field X , assume that:

(a) For all x, t, there exists an action radius ρx,t for A with respect to X in Xx,t.

(b) The transformation A of X is stationary, that is, the random fields A(X (·+z, ·)) and A(X )(·+z)
have the same law for all z ∈ Zd. Moreover, the law of the action radius ρx,t is independent of x.

Then the following holds.
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(i) Setting
π(t, `) := P

[
`− 1 ≤ ρ0,t < `, A(X 0,t) 6= A(X )

]
,

we have for all σ(A)-measurable random variable Z(A) and all λ ∈ (0, 1),

Var [Z(A)] ≤ 1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

π(t, `)λ E
[(
∂dis
`,x,tZ(A)

) 2
1−λ
]1−λ

(4.27)

and

Cov [Y (A);Z(A)] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

( ∞∑
`=1

π(t, `)λ E
[(
∂dis
`,x,tY (A)

) 2
1−λ
]1−λ) 1

2

×
( ∞∑
`′=1

π(t, `′)λ E
[(
∂dis
`′,x,tZ(A)

) 2
1−λ
]1−λ) 1

2

, (4.28)

where ∂dis
`,x,tZ(A) is the notation defined in (4.7), that is,

∂dis
`,x,tZ(A) :=

(
Z(A)− Z(A(X x,t)

)
1A|Rd\Q2`+1(x)

=A(Xx,t)|Rd\Q2`+1(x)
.

In particular, for all λ ∈ (0, 1), if we set

πλ(`) := (`+ 1)d
∑
t∈Zl

P
[
`− 1 ≤ ρ0,t < `, A(X 0,t) 6= A(X )

]λ
,

we obtain for all σ(A)-measurable random variables Z(A),

Var [Z(A)] ≤ 1

2

∞∑
`=1

(`+ 1)−dπλ(`)
∑
x∈Zd

E
[(

∂osc
A,Q2`+1(x) Z(A)

) 2
1−λ
]1−λ

. (4.29)

If in addition the random variable ρx,t is σ(X )-measurable for all x, t, then we have

Ent[Z(A)] ≤ 2
∞∑
`=1

(`+ 1)−dπλ(`)
∑
x∈Zd

E
[(

∂osc
A,Q2`+1(x) Z(A)

) 2
1−λ
]1−λ

. (4.30)

(ii) Assume that for all x, t the action radius ρx,t is independent of A|Rd\(Q(x)+Bf(ρx,t)
) for some

influence function f : R+ → R+ with f(u) ≥ u for all u. Then, with the convention 0/0 = 0, if
we set

π̃(t, `) := P
[
X 0,t 6= X

] P [`− 1 ≤ ρ0,t < ` ‖ X 0,t 6= X
]

P [ρ0,t < `]
, π(`) := (`+ 1)d

∑
t∈Zl

π̃(t, `),

we have for all σ(A)-measurable random variables Z(A),

Var [Z(A)] ≤ 1

2

∞∑
`=1

(`+ 1)−dπ(`)
∑
x∈Zd

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
]

(4.31)

and

Cov [Y (A);Z(A)] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

( ∞∑
`=1

π̃(t, `)E
[(

∂osc
A,Q2f(`)+1(x) Y (A)

)2
]) 1

2

×
( ∞∑
`′=1

π̃(t, `′)E
[(

∂osc
A,Q2f(`′)+1(x) Z(A)

)2
]) 1

2

. (4.32)
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If in addition the random variable ρx,t is σ(X )-measurable for all x, t, then we have

Ent[Z(A)] ≤ 2

∞∑
`=1

(`+ 1)−dπ(`)
∑
x∈Zd

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
]
. (4.33)

♦

Remark 4.4.4. The covariance inequalities (4.28) and (4.32) are not in the canonical form of Defi-
nition 4.1.3. However note that if π̃(t, `) is non-increasing with respect to ` then the inequality (4.32)
(and likewise for (4.28)) easily leads to

Cov [Y (A);Z(A)]

≤
∑
x∈Zd

∞∑
`=1

(`+ 1)−d
( ∑̀
`′=1

π(`′)
)
E
[(

∂osc
A,Q2f(`)+1(x) Y (A)

)2
] 1

2

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
] 1

2

,

which is now in the correct form, although the weight
∑`

`′=1 π(`′) seems to be suboptimal whenever
π has algebraic decay. ♦

We now turn to a more complex situation when the dependence pattern is intricate but sufficiently
well controlled in terms of a family of action radii. The aim of the following is to avoid the loss of
integrability which would follow from Theorem 4.4.3(i) in the case of the random parking process and
of Poisson tessellations.

Theorem 4.4.5. Let A = A(X ) be a σ(X )-measurable random field on Rd, where X is a completely
independent random field on some measure space X =

⊎
x∈Zd Xx with values in some measurable

space M . For all x ∈ Zd, ` ∈ N, set X`
x :=

⋃
y∈Zd:|x−y|∞≤`Xy. Given an i.i.d. copy X ′ of the field X ,

let the perturbed field X x,` be defined by

X x,`|X\X`
x

= X|X\X`
x
, and X x,`|X`

x
= X ′|X`

x
,

and assume that:
(a) For all x, `, there exists an action radius ρ`x for A with respect to X in X`

x, that is, a nonnegative
random variable ρ`x such that we have a.s.,

A(X x,`)|Rd\(Q2`+1(x)+B
ρ`x

) = A(X )|Rd\(Q2`+1(x)+B
ρ`x

).

(b) The transformation A of X is stationary, that is, the random fields A(X (·+z, ·)) and A(X )(·+z)
have the same law for all z ∈ Zd. Moreover, the law of the action radius ρ`x is independent of x.

Further assume that
(c) For all x, `, the random variable ρ`x is σ

(
X
∣∣
X
`+ρ`x
x \X`

x

)
-measurable.

(In particular, for all x, `,R, given the event ρ`x ≤ R, the random variables ρ`x and ρ`+Rx are
independent.)

Let R ≥ 1 be chosen large enough so that

sup
`≥R

P
[
ρ`x ≥ `

]
≤ 1

4
, (4.34)

let π0 : R+ → R+ be a non-increasing function such that P
[
`/4 ≤ ρ`0x < `

]
≤ π0(`) holds for all

0 ≤ `0 ≤ `/4, and define the weight

π(`) := (`+ 1)d

{
1, if ` ≤ 4R;

8`−1π0(`/4), if ` > 4R.
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Then for all σ(A)-measurable random variables Y (A), Z(A), we have

Var [Z(A)] ≤ 1

2

ˆ ∞
0

ˆ
Rd

E
[(

∂osc
A,B√d(2`+3)(x) Z(A)

)2
]
dx (`+ 1)−dπ(`)d`, (4.35)

Ent[Z(A)] ≤ 2

ˆ ∞
0

ˆ
Rd

E
[(

∂osc
A,B√d(2`+3)(x) Z(A)

)2
]
dx (`+ 1)−dπ(`)d`, (4.36)

Cov [Y (A);Z(A)] ≤ 1

2

ˆ
Rd

(ˆ ∞
0

E
[(

∂osc
A,B√d(2`+3)(x) Y (A)

)2
]

(`+ 1)−dπ(`)d`

) 1
2

×
( ˆ ∞

0
E
[(

∂osc
A,B√d(2`+3)(x) Z(A)

)2
]

(`+ 1)−dπ(`)d`

) 1
2

dx. (4.37)

♦

We start with the proof of Theorem 4.4.3, and then turn to the proof of Theorem 4.4.5.

Proof of Theorem 4.4.3. Recall that for all x, t the perturbed field X x,t is defined by X x,t|X\Xx,t =
X|X\Xx,t and X x,t|Xx,t = X ′|Xx,t . By complete independence of X , the fields X and X x,t (hence
A = A(X ) and A(X x,t)) have the same law. The strategy of the proof consists in deforming the
functional inequalities of Proposition 4.4.1 with respect to the transformation A(X ) in terms of the
action radius. We split the proof into four steps.

Step 1. Proof of the spectral gap (4.27).
Conditioning the right-hand side of (4.24) with respect to the values of the action radius ρx,t,

applying the Hölder inequality, and using the stationarity assumption (b) to recognize the weight
π(t, `), we obtain for all 0 < λ < 1,

Var [Z(A)] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

E
[(
Z(A)− Z(A(X x,t))

)2]
=

1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[(
Z(A)− Z(A(X x,t))

)2
1`−1≤ρx,t<`

]
≤ 1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

π(t, `)λ E
[(
Z(A)− Z(A(X x,t))

) 2
1−λ1ρx,t<`

]1−λ
.

Noting that the event ρx,t < ` entails that A|Rd\Q2`+1(x) = A(X x,t)|Rd\Q2`+1(x), the above can be
rewritten as follows,

Var [Z(A)] ≤ 1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

π(t, `)λ E
[(
∂dis
`,x,tZ

) 2
1−λ
]1−λ

,

that is, (4.27).

Step 2. Proof of the spectral gap (4.31).
For all x, t, conditioning with respect to the values of ρx,t, we may decompose

E
[(
Z(A)− Z(A(X x,t))

)2]
= g1

x(t) + g2
x(t), (4.38)

g1
x(t) :=

∞∑
`=2

E
[(
Z(A)− Z(A(X x,t))

)2
1`−1≤ρx,t<`

]
,

g2
x(t) := E

[(
Z(A)− Z(A(X x,t))

)2
1ρx,t<1

]
.
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We first estimate the term g1
x(t). Recalling that the influence function f satisfies f(u) ≥ u for all u,

we obtain

g1
x(t) =

∞∑
`=2

E
[(
Z(A)− Z(A(X x,t))

)2
1X|Xx,t 6=X ′|Xx,t1`−1≤ρx,t<`

]
≤

∞∑
`=2

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
1X|Xx,t 6=X ′|Xx,t1`−1≤ρx,t<`

]

=
∞∑
`=2

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
1X|Xx,t 6=X ′|Xx,t

∥∥∥∥ `− 1 ≤ ρx,t < `

]
P [`− 1 ≤ ρx,t < `] .

By definition, given ρx,t < `, the restriction A|Rd\Q2f(`)+1(x) is independent of X|Xx,t and X ′|Xx,t . The
above thus yields

g1
x(t) ≤

∞∑
`=2

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
∥∥∥∥ `− 1 ≤ ρx,t < `

]
P
[
`− 1 ≤ ρx,t < `, X|Xx,t 6= X ′|Xx,t

]
.

By assumption in item (ii), the restriction A|Rd\Q2f(ρx,t)+1(x) is independent of ρx,t, so that we may
deduce

g1
x(t) ≤

∞∑
`=2

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
∥∥∥∥ ρx,t < `

]
P
[
`− 1 ≤ ρx,t < `, X|Xx,t 6= X ′|Xx,t

]
.

To simplify notation, we set for all ` ≥ 1,

Y` :=
(
∂osc
A,Q2f(`)+1(x) Z(A)

)2
.

Estimating

E [Y` ‖ ρx,t < `] ≤ E [Y`]

P [ρx,t < `]
,

and using the stationarity assumption (b) for the action radius, we may conclude

g1
x(t) ≤

∞∑
`=2

E [Y`]

P [ρx,t < `]
P
[
`− 1 ≤ ρx,t < `, X|Xx,t 6= X ′|Xx,t

]
=

∞∑
`=2

E [Y`]

P [ρ0,t < `]
P
[
`− 1 ≤ ρ0,t < `, X|X0,t 6= X ′|X0,t

]
=

∞∑
`=2

E
[(

∂osc
A,Q2f(`)+1(x) Z(A)

)2
]
P
[
X|X0,t 6= X ′|X0,t

] P [`− 1 ≤ ρ0,t < ` ‖ X |X0,t 6= X ′|X0,t

]
P [ρ0,t < `]

.

(4.39)

We now turn to the estimate of the term g2
x(t). Since the influence function f satisfies f(u) ≥ u for

all u, we find

g2
x(t) = E

[(
Z(A)− Z(A(X x,t))

)2
1X|Xx,t 6=X ′|Xx,t1ρx,t<1

]
≤ E

[(
∂osc
A,Q2f(1)+1(x) Z(A)

)2
1X|Xx,t 6=X ′|Xx,t

∥∥∥∥ ρx,t < 1

]
P [ρx,t < 1] .
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By definition, given ρx,t < 1, the restriction A|Rd\Q2f(1)+1(x) is independent of X|Xx,t and X ′|Xx,t . The
above thus yields

g2
x(t) ≤ E

[(
∂osc
A,Q2f(1)+1(x) Z(A)

)2
]
P
[
X|Xx,t 6= X ′|Xx,t

∥∥ ρx,t < 1
]

= E
[(

∂osc
A,Q2f(1)+1(x) Z(A)

)2
]
P
[
X|Xx,t 6= X ′|Xx,t

] P [ρx,t < 1 ‖ X |Xx,t 6= X ′|Xx,t
]

P [ρx,t < 1]
.

Using the stationarity assumption (b) again, and combining this with (4.38) and (4.39), the conclu-
sion (4.31) follows.

Step 3. Proof of the logarithmic Sobolev inequalities (4.30) and (4.33).
Conditioning the right-hand side of (4.25) with respect to the values of the action radius ρx,t, we

obtain

Ent[Z(A)] ≤ 2
∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[
sup ess
X ′

((
Z(A(X ))− Z(A(X x,t))

)2
1`−1≤ρx,t<`

)]

≤ 2
∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[(

∂osc
A,Q2`+1(x) Z(A)

)2
sup ess
X ′

(
1`−1≤ρx,t<`

)]
.

Hence, if for all x, t the random variable ρx,t is σ(X )-measurable, we may deduce

Ent[Z(A)] ≤ 2
∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[(

∂osc
A,Q2`+1(x) Z(A)

)2
1`−1≤ρx,t<`

]
.

The result (4.30) follows from the Hölder inequality, while the result (4.33) follows as in Step 2.

Step 4. Proof of the covariance inequalities (4.28) and (4.32).
Conditioning the right-hand side of (4.26) with respect to the values of the action radius ρx,t, we

obtain

Cov [Y (A);Z(A)] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

( ∞∑
`=1

E
[(
Y (A)− Y (A(X x,t))

)2
1`−1≤ρx,t<`

]) 1
2

×
( ∞∑
`′=1

E
[(
Z(A)− Z(A(X x,t))

)2
1`′−1≤ρx,t<`′

]) 1
2

.

Now the sums over `, `′ are estimated exactly as in Steps 1 and 2, and the results (4.28) and (4.32)
follow.

We now prove Theorem 4.4.5.

Proof of Theorem 4.4.5. We only prove the spectral gap (4.35). The proof of the logarithmic Sobolev
inequality (4.36) and of the covariance inequality (4.37) is similar, based on (4.25) and (4.26), respec-
tively. For all x, let the field X x be defined by X x|X\Xx = X|X\Xx and X x|Xx = X ′|Xx , and recall
that the spectral gap (4.24) for X takes the form

Var [Z(A)] ≤ 1

2

∑
x∈Zd

E
[(
Z(A)− Z(A(X x))

)2]
.
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The conclusion (4.35) then follows provided we prove that for all x ∈ Zd,

E
[(
Z(A)− Z(A(X x))

)2] ≤ ˆ ∞
0

E
[(

∂osc
A,Q2`+1(x) Z(A)

)2
]

(`+ 1)−dπ(`)d`. (4.40)

Without loss of generality, it suffices to consider the case x = 0. Moreover, by an approximation
argument, we may assume that the random variable Z(A) is bounded. For simplicity, we set ρ(r) :=
r + ρr0 and ∂osc

r :=∂osc
A,Q2r+1

. Note that the choice (4.34) of R then takes the form

sup
`≥R

P
[
ρ(`) ≥ 2`

]
≤ 1

4
. (4.41)

We split the proof into two steps.

Step 1. Conditioning argument.
In this step, we prove for all r2 ≥ 2r1 ≥ 2R,

E
[(

∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

]
≤ 2P

[
1
2r2 ≤ ρ(r1) < r2

]
×
(
E
[(

∂osc
2r2 Z(A)

)2
]

+

∞∑
`=2

E
[(

∂osc
2`r2

Z(A)
)2
12`−1r2≤ρ(r2)<2`r2

])
. (4.42)

Conditioning the left-hand side with respect to the value of ρ(r2), we decompose

E
[(

∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

]
≤ E

[(
∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

1ρ(r2)<2r2

]
+

∞∑
`=2

E
[(

∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

12`−1r2≤ρ(r2)<2`r2

]
. (4.43)

We estimate each of the right-hand side terms separately. For that purpose, note that the definition
of ρ and assumption (c) ensure that, given ρ(`1) ≤ `2 and ρ(`2) ≤ `3, the random variable ρ(`1) is
independent of ∂osc

`3
Z(A). This observation directly yields

E
[(

∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

1ρ(r2)<2r2

]
≤ E

[(
∂osc

2r2 Z(A)
)2
1ρ(r1)≥ 1

2
r2

∥∥∥∥ ρ(r1) < r2, ρ(r2) < 2r2

]
P
[
ρ(r1) < r2, ρ(r2) < 2r2

]
≤ E

[(
∂osc

2r2 Z(A)
)2
] P

[
1
2r2 ≤ ρ(r1) < r2

]
P [ρ(r1) < r2, ρ(r2) < 2r2]

≤ E
[(

∂osc
2r2 Z(A)

)2
] P

[
1
2r2 ≤ ρ(r1) < r2

]
1− P [ρ(r1) ≥ r2]− P [ρ(r2) ≥ 2r2]

.

For r2 ≥ 2r1 ≥ 2R, the choice (4.41) of R yields

P [ρ(r1) ≥ r2] + P [ρ(r2) ≥ 2r2] ≤ P [ρ(r1) ≥ 2r1] + P [ρ(r2) ≥ 2r2] ≤ 1

2
,

so that the above takes the simpler form

E
[(

∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

1ρ(r2)<2r2

]
≤ 2E

[(
∂osc

2r2 Z(A)
)2
]
P
[

1
2r2 ≤ ρ(r1) < r2

]
. (4.44)
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On the other hand, further recalling that assumption (c) ensures that given ρ(`1) ≤ `2 the random
variables ρ(`1) and ρ(`2) are independent, we similarly obtain

E
[(

∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

12`−1r2≤ρ(r2)<2`r2

]
≤ E

[(
∂osc

2`r2
Z(A)

)2
1ρ(r2)≥2`−1r2

∥∥∥∥ ρ(r1) < r2, ρ(r2) < 2`r2

]
×P
[
ρ(r1) ≥ 1

2r2

∥∥ ρ(r1) < r2, ρ(r2) < 2`r2

]
P
[
ρ(r1) < r2, ρ(r2) < 2`r2

]
≤ E

[(
∂osc

2`r2
Z(A)

)2
12`−1r2≤ρ(r2)<2`r2

]
P
[

1
2r2 ≤ ρ(r1) < r2

]
P [ρ(r1) < r2, ρ(r2) < 2`r2]

≤ E
[(

∂osc
2`r2

Z(A)
)2
12`−1r2≤ρ(r2)<2`r2

] P
[

1
2r2 ≤ ρ(r1) < r2

]
1− P [ρ(r1) ≥ r2]− P [ρ(r2) ≥ 2`r2]

.

With the choice (4.41) of R, for r2 ≥ 2r1 ≥ 2R and ` ≥ 1, this turns into

E
[(

∂osc
r2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r2

12`−1r2≤ρ(r2)<2`r2

]
≤ 2E

[(
∂osc

2`r2
Z(A)

)2
12`−1r2≤ρ(r2)<2`r2

]
P
[

1
2r2 ≤ ρ(r1) < r2

]
.

Combining this with (4.43) and (4.44), the conclusion (4.42) follows.

Step 2. Proof of (4.40).
Conditioning the left-hand side of (4.40) with respect to the value of the action radius ρ(0), we

obtain

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂osc
R Z(A)

)2
]

+

∞∑
`=1

E
[(

∂osc
2`R Z(A)

)2
12`−1R≤ρ(0)<2`R

]
.

We now iteratively apply (4.42) to estimate the last right-hand side terms: with the short-hand
notation π(`2; `1) := P

[
1
2`2 ≤ ρ(`1) < `2

]
, we obtain for all n ≥ 1,

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂osc
R Z(A)

)2
]

+ 2
∞∑
`1=1

π(2`1R; 0)E
[(

∂osc
2`1+1R

Z(A)
)2
]

+ 22
∞∑
`1=1

π(2`1R; 0)
∞∑

`2=`1+2

π(2`2R; 2`1R)E
[(

∂osc
2`2+1R

Z(A)
)2
]

+ . . .

+ 2n
∞∑
`1=1

π(2`1R; 0)
∞∑

`2=`1+2

π(2`2R; 2`1R) . . .
∞∑

`n=`n−1+2

π(2`nR; 2`n−1R)E
[(

∂osc
2`n+1R Z(A)

)2
]

+ 2n
∞∑
`1=1

π(2`1R; 0)
∞∑

`2=`1+2

π(2`2R; 2`1R) . . .
∞∑

`n=`n−1+2

π(2`nR; 2`n−1R)

×
∞∑

`n+1=`n+2

E
[(

∂osc
2`n+1R

Z(A)
)2
12`n+1−1R≤ρ(2`nR)<2`n+1R

]
.

With the choice (4.41) of R in the form

sup
`0≥0

∞∑
`=`0+2

π(2`R; 2`0R) = sup
`0≥0

P
[
ρ(2`0R) ≥ 2`0+1R

]
≤ 1

4
,
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the definition π̃(`) := sup`0:0≤`0≤`/4 π(`; `0) of the weight, and recalling that the random variable
Z(A) is bounded, we deduce

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂osc
R Z(A)

)2
]

+ 2

( n−1∑
m=0

2−m
) ∞∑
`=1

π̃(2`R)E
[(

∂osc
2`+1R Z(A)

)2
]

+ 2−n−2‖Z‖L∞ .

Letting n ↑ ∞, we thus obtain

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂osc
R Z(A)

)2
]

+ 4

∞∑
`=1

π̃(2`R)E
[(

∂osc
2`+1R Z(A)

)2
]
.

Comparing sums to integrals and using the definition of π, the conclusion (4.40) follows.

4.4.3 Local operations

In this subsection, we describe two typical operations on random fields that do preserve functional
inequalities: local transformations and gluing of independent random fields with respect to an inde-
pendent pattern. These operations allow one to generate many variations around the examples of
Section 4.5 below.

Local transformations

Given a random field A0 on Rd, we say that a random field A on Rd is a R-local transformation of
A0 (as in Proposition 4.1.2) if A|S is σ(A|S+BR)-measurable for all Borel subsets S ⊂ Rd. Important
particular cases are local smoothing (e.g. by convolution with a smooth kernel with bounded support)
and truncation (e.g. by applying a Lipschitz function).

Lemma 4.4.6. If A0, A are two random fields on Rd, and if A is a R-local transformation of A0,
then we have for all Borel subsets S ⊂ Rd and all σ(A)-measurable random variables X(A),

∂osc
A0,S X(A(A0)) ≤ ∂osc

A,S+BR
X(A)

and
∂fct
A0,SX(A(A0)) ≤ Rd

∥∥∥∥ ∂A∂A0

∥∥∥∥
L∞

∂fct
A,S+BR

X(A),

so that functional inequalities for A0 with the oscillation or the functional derivative imply the cor-
responding functional inequalities for A with the oscillation or the functional derivative (provided
∂A/∂A0 is bounded if the functional derivative is used). ♦

Proof. By assumption, A|Rd\(S+BR) is σ(A0|Rd\S)-measurable, so that the σ-algebra σ(A|Rd\(S+BR))
is contained in σ(A0|Rd\B), and the inequality follows.

Independent gluing

The following result shows how independent localized fields can be glued together. Since it is a
direct consequence of the standard tensorization arguments used e.g. in the proof of Proposition 4.1.2,
details are omitted.
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Lemma 4.4.7. Let A1, A2, and A3 be three independent random fields on Rd. Assume that |A1 −
A3| ≤ C a.s. for some deterministic constant C > 0, that A2 has values in [0, 1], and consider the
“glued” random field A := A2A1 + (1− A2)A3. If A1, A2, and A3 satisfy different forms of weighted
spectral gaps (resp. covariance inequality, resp. logarithmic Sobolev inequality), then the random field
A satisfies the worst of these spectral gaps (resp. covariance inequality, resp. logarithmic Sobolev
inequality), that is, with the right-hand side replaced by the sum of the corresponding right-hand
sides. ♦

4.5 Examples

In this section we consider four representative examples: Gaussian fields, tessellations associated
with a Poisson point process, random parking bounded inclusions, and Poisson or random parking
inclusions with unbounded radii. The main results are summarized in the table below.

Example of field Key property Functional inequalities

Gaussian
random field

covariance function C
supB(x) |C| ≤ c(|x|)

(∂fct-WSG), (∂fct-WLSI)
weight π(`) ' (−c′(`))+

Poisson tessellations
(Voronoi/Delaunay) σ(X )-measurable action radius

(∂osc-WSG), (∂osc-WLSI)
weight π(`) ' e−

1
C
`d

Random parking
bounded inclusions

σ(X )-measurable action radius
& exponential stabilization

(∂osc-WSG), (∂osc-WLSI)
weight π(`) ' e−

1
C
`

Poisson
random inclusions
with random radii

radius law V
γ(`) := P [`− 4 ≤ V < `+ 2]

(∂osc-WSG)
weight π(`) ' (`+ 1)dγ(`)

(and (∂osc-LSI) if V bounded)

4.5.1 Gaussian random fields

Gaussian random fields are the main examples of deterministically localized fields as introduced
in Section 4.4.2. The following criterion is established in Appendix 4.B as a direct application of our
general results on deterministically localized fields. Note that in items (ii)–(iii), the weights obtained
for (∂fct-WSG) and (∂fct-WCI) typically have the same scaling. As shown in Proposition 4.2.1, this
result is sharp: each sufficient condition is (essentially) necessary.

Corollary 4.5.1. Let A be a jointly measurable stationary Gaussian random field on Rd with covari-
ance function C(x) := Cov [A(x);A(0)].
(i) If x 7→ supB(x) |C| is integrable, then A satisfies (∂fct-SG) and (∂fct-LSI) with any radius R > 0.

(ii) If supB(x) |C| ≤ c(|x|) holds for some Lipschitz function c : R+ → R+, then A satisfies (∂fct-
WSG) and (∂fct-WLSI) with weight π(`) ' (−c′(`))+.

(iii) If FC ∈ L1(Rd) and if supB(x) |F−1(
√
FC)| ≤ r(|x|) holds for some non-increasing Lipschitz

function r : R+ → R+, then A satisfies (∂fct-WCI) with weight π(`) ' (`+ 1)d r(`)(−r′(`)). ♦

4.5.2 Poisson random tessellations

In this section, we consider random fields that take i.i.d. values on the cells of a tessellation
associated with a stationary random point process P on Rd. Such random fields can be formalized
as projections of decorated random point processes. Given a point process P on Rd and given a
random element G with values in some measurable space X, we call decorated random point process
associated with P and G a point process P̂ on Rd × X defined as follows: choose a measurable
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enumeration P = {Xj}j , pick independently a sequence (Gj)j of i.i.d. copies of the random element
G, and set P̂ := {Xj , Gj}j (that is, in measure notation, P̂ :=

∑
j δ(Xj ,Gj)). Note that by definition

P̂ is completely independent whenever P is completely independent.
We focus here on the case when the underlying point process P is some Poisson point process

P = P0 on Rd with intensity µ = 1. Choose a measurable random field V on Rd, corresponding to
the values on the cells. We study both Voronoi and Delaunay tessellations.
(1) Voronoi tessellation: Let P̂1 := {Xj , Vj}j denote a decorated point process associated with the

random point process P0 := {Xj}j and the random element V (hence (Vj)j is a sequence of i.i.d.
copies of the random field V ). We define a σ(P̂1)-measurable random field A1 as follows,

A1(x) =
∑
j

Vj(x)1Cj (x),

where {Cj}j denotes the partition of Rd into the Voronoi cells associated with the Poisson points
{Xj}j , that is,

Cj := {x ∈ Rd : |x−Xj | < |x−Xk|, ∀k 6= j}.

(2) Delaunay tessellation: Let Ṽ := (Ṽζ)ζ denote a family of i.i.d. copies of the random element V ,
indexed by sets ζ of d+ 1 distinct integers. We define a random field A2 as follows,

A2(x) =
∑
j

Ṽζ(Dj)(x)1Dj (x),

where {Dj}j denotes the partition of Rd into the Delaunay d-simplices associated with the Poisson
points {Xj}j (the Delaunay triangulation is indeed almost surely uniquely defined), and where
ζ(Dj) denotes the set of the d+ 1 indices i1, . . . , id+1 of the vertices Xi1 , . . . , Xid+1

of Dj .
Since large holes in the Poisson process have exponentially small probability, large cells in the cor-
responding Voronoi or Delaunay tessellations also have exponentially small probability. This allows
one to prove the following weighted functional inequalities with stretched exponential weights.

Proposition 4.5.2. For s = 1, 2, the above-defined random field As satisfies (∂osc-WSG), (∂osc-
WLSI), and (∂osc-WCI) with weight π(`) = e−

1
C
`d for some constant C > 0. Moreover for all

σ(As)-measurable random variables Z(As) and all λ ∈ (0, 1) we have

Var [Z(As)] ≤ C
∑
x∈Zd

∞∑
`=1

e−
λ
C
`d E

[(
∂dis
`,xZ(As)

) 2
1−λ
]1−λ

,

with the notation ∂dis
`,xZ(As) defined in (4.7) (with l = 0). ♦

Proof. We focus on the case of the Voronoi tessellation (the argument for the Delaunay tessellation is
similar). We shall appeal to Theorem 4.4.5, and need to construct and control action radii, which we
do in two separate steps. (The weighted spectral gap with loss and discrete derivative follows from
Theorem 4.4.3(i).)

Step 1. Definition and properties of the action radius.
Let x ∈ Rd, ` ∈ N be fixed. Changing the point configuration of P̂1 = {Xj , Vj}j inside Q2`+1(x)×

RRd only modifies the Voronoi tessellation (hence the field A1) inside the set

VP0,`(x) :=
{
y ∈ Rd : ∃z ∈ Q2`+1(x) such that |y − z| ≤ |y −X| for all X ∈ P0 \Q2`+1(x)

}
.

An action radius for A1 with respect to P̂1 on Q2`+1(x)× RRd is thus given by

ρ`x := 2 diamVP0,`(x) + 1− `,
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and property (a) of Theorem 4.4.5 is proved. The stationarity property (b) follows by construction,
and it remains to prove the measurability property (c). In particular, we need to prove that ρ`x is
σ(P0|Q

2(`+ρ`x)+1
(x)\Q2`+1(x))-measurable. Since ρ`x is σ(P0|Rd\Q2`+1(x))-measurable by construction, it

remains to prove it is σ(P0|Q
2(`+ρ`x)+1

(x))-measurable. To this aim, let P̃ be an arbitrary locally finite

point set and consider the compound point set P̃0,`(x) = P0|Q
2(`+ρ`x)+1

(x) ∪ P̃|Rd\Q
2(`+ρ`x)+1

(x). The
claimed measurability then follows from the identity VP̃0,`(x),`(x) = VP0,`(x). We start with the proof

that VP0,`(x) ⊂ VP̃0,`(x),`(x). Let y ∈ VP0,`(x). Then for all X ∈ P̃0,`(x)|Rd\Q
2(`+ρ`x)+1

(x) we have by
the triangle inequality

|X − y| ≥ |X − x| − |x− y| ≥ `+ ρ`x − diamVP0,`(x) = diamVP0,`(x) + 1 ≥ |x− y|,

so that y ∈ VP̃0,`(x),`(x). Let us turn to the converse inclusion. By definition, VP0,`(x) and VP̃0,`(x),`(x)

are convex, and thus simply connected. Set η = 1
2 and consider y ∈ (Bη + VP0,`(x)) \ VP0,`(x) (the

η-fattened boundary of VP0,`(x)). By definition we have y /∈ VP0,`(x), so that for all z ∈ Q2`+1(x)
there exists X ∈ P0 \ Q2`+1(x) such that |y − z| > |y − X|. Let us argue that X ∈ Q2(`+ρ`x)+1(x).
Indeed, by the triangle inequality,

|X − x| ≤ |X − y|+ |y − x| < |y − z|+ |y − x| ≤ diamVP0,`(x) + η + diamVP0,`(x) + η = ρ`x + `.

Hence, we deduce X ∈ P̃0,`(x), which in turn implies y /∈ VP̃0,`(x),`(x). This proves the inclusion
VP̃0,`(x),`(x) ⊂ VP0,`(x) ∪ (Rd \ (Bη + VP0,`(x))). Combined with the inclusion VP0,`(x) ⊂ VP̃0,`(x),`(x)

and the fact that both sets are simply connected, this yields the desired identity VP0,`(x) = VP̃0,`(x),`(x)

and therefore proves the claimed measurability property (c). We then appeal to Theorem 4.4.5, and
it remains to estimate the weights.

Step 2. Control of the weight.
By scaling and change of intensity, it is enough to consider ` = 0 (we omit the sub- and su-

perscripts ` in the notation) and a Poisson point process P0 of general intensity µ > 0. Denote by
Ci = {x ∈ Rd : xi ≥ 5

6 |x|} the d cones in the canonical directions ei of Rd, and consider the 2d cones
C±i := ±(2ei + Ci). By an elementary geometric argument, for some constant C ' 1 the following
implication holds: for all L > C,

]
(
P0 ∩ C±i ∩ {x : C ≤ |xi| ≤ L}

)
> 0 for all i and ± =⇒ diamVP0(0) ≤ CL.

A union bound then yields for all L > C,

P [diamVP0(0) ≥ L] ≤ P
[
∃1 ≤ i ≤ d,∃± : ]

(
P0 ∩ C±i ∩ {x : |xi| ≤

1

C
L}
)

= 0

]
≤ 2d e−

µ
C
Ld .

Combined with the definition of the action radius in Step 1, this implies the desired estimate.

4.5.3 Random parking process

In this section we let P be the random parking point process on Rd with given radius R > 0.
As shown by Penrose [357] (see also [213, Section 2.1]), the random parking point process P can
be constructed as a transformation P = Φ(P0) of a Poisson point process P0 on Rd × R+ with
intensity 1. Let us recall the graphical construction of this transformation Φ. We first construct an
oriented graph on the points of P0 in Rd × R+, by putting an oriented edge from (x, t) to (x′, t′)
whenever B(x,R) ∩ B(x′, R) 6= ∅ and t < t′ (or t = t′ and x precedes x′ in the lexicographic order,
say). We say that (x′, t′) is an offspring (resp. a descendant) of (x, t), if (x, t) is a direct ancestor
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(resp. an ancestor) of (x′, t′), that is, if there is an edge (resp. a directed path) from (x, t) to (x′, t′).
The set P := Φ(P0) is then constructed as follows. Let F1 be the set of all roots in the oriented graph
(that is, the points of P0 without ancestor), let G1 be the set of points of P0 that are offsprings of
points of F1, and let H1 := F1 ∪G1. Now consider the oriented graph induced on P0 \H1, and define
F2, G2, H2 in the same way, and so on. By construction, the sets (Fj)j and (Gj)j are all disjoint and
constitute a partition of P0. We finally define P := Φ(P0) :=

⋃∞
j=1 Fj .

In this setting we show that there exists an action radius with exponential moments for P with
respect to P0. The proof follows from the exponential stabilization results of [391].

Proposition 4.5.3. For all x ∈ Zd and ` ≥ 0, the random parking point process P with radius R > 0
as constructed above admits an action radius ρ`x with respect to P0 on Q2`+1(x)×R+, which satisfies
for all L ≥ 0,

P[ρ`x ≥ L] ≤ CR(`+ 1)de−L/CR ,

and which is σ
(
P0|((Q

2(`+ρ`x)+1
(x)\Q2`+1(x))×R+

)
-measurable. In particular, the point process P satisfies

(∂osc-WSG), (∂osc-WLSI), and (∂osc-WCI) with weight π(`) =: e−`/CR . ♦

Proof. The proof relies on the notion of causal chains defined in the proof of [391, Lemma 3.5] to which
we refer the reader. Note that for all consecutive points (x, t) and (y, s) in a causal chain we necessarily
have |x − y| < 2R. By definition, it follows that an action radius for P given P0 on Q2`+1(x) × R+

can be defined by the maximum of the distances 2R+ d(y,Q2`+1(x)) on the set of points (y, s) ∈ P0

such that there exists a causal chain between a point of P0 in ((Q2`+1(x) + B2R) \ Q2`+1(x)) × R+

and (y, s). We denote by ρ`x this maximum. By construction, we note that this random variable ρ`x
is σ

(
P0|((Q2`+1(x)+B

ρ`x
)\Q2`+1(x))×R+

)
-measurable.

It remains to estimate the decay of its probability law. First, note that by definition the event
ρ`x > L entails the existence of some (y, s) ∈ P0 with y ∈ (Q2`+1(x)+BL+2R)\(Q2`+1(x)+BL) and of a
causal chain between a point of ((Q2`+1(x)+B2R)\Q2`+1(x))×R+ and (y, s). Second, the exponential
stabilization result of [391, Lemma 3.5] states that for all z ∈ Rd and all L > 0 the probability that
there exists (y, s) ∈ Q(z) × R+ and a causal chain from a point outside (Q(z) + BL) × R+ towards
(y, s) is bounded by CRe−L/CR . For L ≥ R, covering (Q2`+1(x) + BL+2R) \ (Q2`+1(x) + BL) with
C(L + `)d−1R unit cubes and covering Q2`+1(x) + B2R with C(R + `)d unit cubes, a union bound
then yields

P
[
ρ`x > L

]
≤ CR

(
Ld−1 + `d

)
e−L/CR ≤ CR(`+ 1)de−L/CR .

All the assumptions of Theorem 4.4.5 are then satisfied with π(`) = CRe
−`/CR , and the conclusion

follows.

4.5.4 Random inclusions with random radii

We consider typical examples of random fields on Rd taking random values on random inclusions
centered at the points of some random point process P. The inclusions are allowed to have i.i.d.
random shapes (hence in particular i.i.d. random radii). For the random point process P, we consider
projections Φ(P0) of some Poisson point process P0 on Rd×Rl with intensity µ > 0, and shall assume
that for all x ∈ Zd the process P admits an action radius ρx with respect to P0 on Q(x)× Rl.

We turn to the construction of the random inclusions. Let V be a nonnegative random variable
(corresponding to the random radius of the inclusions). In order to define the random shapes, we
consider the set Y of all nonempty Borel subsets E ⊂ Rd with supx∈E |x| = 1, and endow it with the
σ-algebra Y generated by all subsets of the form {E ∈ Y : x0 ∈ E} with x0 ∈ Rd. Let S be a random
nonempty Borel subset of Rd with supx∈S |x| = 1 a.s., that is, a random element in the measurable
space Y . (Note that V and S need not be independent.) Let P̂0 := {Xj , Vj , Sj}j be a decorated point
process associated with the random point process P0 = {Xj}j and the random element (V, S). The
collection of random inclusions is then given by {Ij}j with Ij := Xj + VjSj .
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It remains to associate random values to the random inclusions. Since inclusions may intersect
each other, several constructions can be considered; we focus on the following three typical choices.

(1) Given α, β ∈ R, we set P̂1 := P̂0, and we consider the σ(P̂1)-measurable random field A1 that is
equal to α inside the inclusions, and to β outside. More precisely,

A1 := β + (α− β)1⋃
j Ij
.

The simplest example is the random field A1 obtained for P a Poisson point process on Rd with
intensity µ = 1, and for S the unit ball centered at the origin in Rd; this is referred to as the
Poisson unbounded spherical inclusion model.

(2) Let β ∈ R, let f : R → R be a Borel function, and let W be a measurable random field on Rd.
Let P̂2 := {Xj , Vj , Sj ,Wj} be a decorated point process associated with P̂0 and W . We then
consider the σ(P̂2)-measurable random field A2 that is equal to f(

∑
j:x∈Ij Wj) at any point x of

the inclusions, and to β outside. More precisely,

A2(x) := β +

(
f
(∑

j

Wj(x)1Ij (x)
)
− β

)
1⋃

j Ij
(x).

(Of course, this example can be generalized by considering more general functions than simple
sums of the values Wj ; the corresponding concentration properties will then remain the same.)

(3) Let β ∈ R, let W be a measurable random field on Rd, and let U denote a uniform random
variable on [0, 1]. Let P̂3 := {Xj , Vj , Sj ,Wj , Uj} be a decorated point process associated with P̂0

and (W,U). Given a σ(V S,W )-measurable random variable P (V S,W ), we say that inclusion Ij
has the priority on inclusion Ii if P (VjSj ,Wj) < P (ViSi,Wi) or if P (VjSj ,Wj) = P (ViSi,Wi)
and Uj < Ui. Since the random variables {Uj}j are a.s. all distinct, this defines a priority order
on the inclusions on a set of maximal probability. Let us then relabel the inclusions and values
{(Ij , Vj)}j into a sequence (I ′j , V

′
j )j in such a way that for all j the inclusion I ′j has the j-th

highest priority. We then consider the σ(P̂3)-measurable random field A3 defined as follows,

A3 := β +
∑
j

(W ′j − β)1I′j\
⋃
i:i<j I

′
i
.

(Note that this example includes in particular the case when the priority order is purely random
(choosing P ≡ 0), as well as the case when the priority is given to inclusions with e.g. larger or
smaller radius (choosing P (V S,W ) = V or −V , respectively).)

In each of these three examples, s = 1, 2, 3, the random field As is σ(P̂s)-measurable, for some
completely independent random point process P̂s on Rd × Rl × R+ × Ys and some measurable space
Ys (the set Rd×Rl stands for the domain of the point process P0 = {Xj}j , and the set R+ stands for
the domain of the radius variables {Vj}j). In order to recast this into the framework of Section 4.4.1,
we may define Xs(x, t, v) := Ps|Q(x)×Q(t)×Q(v)×Ys , so that Xs is a completely independent measurable
random field on the space X = Zd × Zl × Z with values in the space of (locally finite) measures on
Qd ×Ql ×Q1 × Ys.

Rather than stating a general result, we focus on the representative examples of the Poisson and
of the random parking point processes. For the latter, a refined analysis is needed to avoid a loss
of integrability. Note that the proof below yields slightly more general results than contained in the
statement (and can easily be adapted to various other situations).
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Proposition 4.5.4. Set γ(v) := P[v − 1/2 ≤ V < v + 1/2].

(i) Assume that P = P0 is a Poisson point process on Rd with constant intensity µ (hence l = 0).
Then, for each s = 1, 2, 3, the above-defined random field As satisfies (∂osc-WSG) and (∂osc-
WCI) with weight ` 7→ µ (`+ 1)d sup0≤u≤2 γ( 1√

d
`− u). In addition, for all λ ∈ (0, 1),

Cov [Y (As);Z(As)] ≤
(2µ)λ

2

∑
x∈Zd

∞∑
v=0

γ(v)λE
[(
∂dis
v+1,x,vY

) 2
1−λ
] 1−λ

2

E
[(
∂dis
v+1,x,vZ

) 2
1−λ
] 1−λ

2

,

(4.45)

where ∂dis
v+1,x,vZ is the notation defined in (4.7), that is,

∂dis
v+1,x,vZ := Z(As)− Z(As(X x,v)) =

(
Z(As)− Z(As(X x,v)

)
1As|Rd\Q2v+3(x)

=As(Xx,v)|Rd\Q2v+3(x)
.

In the case when the radius law V is almost surely bounded by a deterministic constant, the
standard logarithmic Sobolev inequality (∂osc-LSI) holds.

(ii) Assume that P is a random parking point process on Rd with radius R > 0 as constructed
in Section 4.5.3. Then, for each s = 1, 2, 3, the above-defined random field As satisfies (∂osc-
WSG) with weight πR(`) := CR

(
e−`/CR + (`+ 1)d γ(`)

)
. More generally it satisfies the following

covariance inequality: for all σ(As)-measurable random variables Y (As), Z(As) we have

Cov [Y (As);Z(As)] ≤
ˆ
Rd

(ˆ ∞
0

E
[(

∂osc
As,B2`+1(x) Y (As)

)2
]

(`+ 1)−dπR(`)d`

) 1
2

×
(ˆ ∞

0
E
[(

∂osc
As,B2`+1(x) Z(As)

)2
]

(`+ 1)−dπR(`)d`

) 1
2

dx. (4.46)

In addition, for all λ ∈ (0, 1),

Cov [Y (As);Z(As)] ≤
∑
x∈Zd

∞∑
v=0

( ∞∑
`=1

πR(v, `)λ E
[(
∂dis
`,x,vY

) 2
1−λ
]1−λ) 1

2

×
( ∞∑
`′=1

πR(v, `′)λ E
[(
∂dis
`′,x,vZ

) 2
1−λ
]1−λ) 1

2

, (4.47)

where we have set

πR(v, `) := CR

(
γ(v)1`−1≤v<` + γ(v) ∧

(
e−`/CR + sup

r≥`/2
γ(r)

))
,

and where ∂dis
`,x,vZ is the notation defined in (4.7), that is,

∂dis
`,x,vZ :=

(
Z(As)− Z(As(X x,v)

)
1As|Rd\Q2`+1(x)

=As(Xx,v)|Rd\Q2`+1(x)
.

In the case when the radius law V is almost surely bounded by a deterministic constant, the
logarithmic Sobolev inequality (∂osc-WLSI) holds with weight ` 7→ CRe

−`/CR . ♦

Proof. We split the proof into three steps. We first apply the general results of Theorem 4.4.3, and
then treat more carefully the case of the random parking point process in order to avoid the loss of
integrability.
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Step 1. Proof of the covariance estimates with loss.
Assume for simplicity that the transformation Φ of P0 into P = Φ(P0) does not add points and

does not move points in the direction of Rd: more precisely, this means that for any locally finite
sequence (xj)j ⊂ Rd × Rl we have Φ((xj)j) = (p(xj))j∈I for some subset I of indices (depending on
(xj)j), where p : Rd × Rl → Rd denotes the projection onto the first factor. Further assume that for
all locally finite (xj)j ⊂ Rd × Rl, denoting Φ((xj)j) = (p(xj))j∈I , we have Φ((xj)j∈J) = (p(xj))j∈I
for all subset J ⊃ I. In this step, we show that, for each s = 1, 2, 3, the random field As satisfies for
all σ(As)-measurable random variables Y (As), Z(As) and all λ ∈ (0, 1),

Cov [Y (As);Z(As)] ≤
1

2

∑
x∈Zd

∞∑
v=0

( ∞∑
`=1

π(v, `)λ E
[(
∂dis
`,x,vY

) 2
1−λ
]1−λ) 1

2

×
( ∞∑
`′=1

π(v, `′)λ E
[(
∂dis
`′,x,vZ

) 2
1−λ
]1−λ) 1

2

, (4.48)

where we have set

π(v, `) := 2
(
E [](P ∩Q)] + 1

)
×
(
γ(v)1`−1≤v<` + γ(v) ∧ E [](P ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]]

)
,

and where ∂dis
`,x,vZ is the notation defined in (4.7). Applying this in the case of the random parking

process together with Proposition 4.5.3, the weight becomes

π(v, `) ≤ CR
(
γ(v)1`−1≤v<` + γ(v) ∧

ˆ `

0
γ(`− r) e−r/CR dr

)
,

and estimating the last integral leads to the desired result (4.47).
Let X ′s denote an i.i.d. copy of the field Xs, and let P̂ ′s := {X ′j , V ′j , Y ′j,s}j denote the corresponding

i.i.d. copy of P̂s := {Xj , Vj , Yj,s}j . For all x, v, let the perturbations X x,vs and P̂x,vs be then defined as
usual, and let Px,v0 be the corresponding projected point process on Rd×Rl. Let us consider Jv(x, r)
the set of all indices j such that the projection p(Xj) belongs to (Φ(P0)∪Φ(Px,v0 ))∩(Q(x)+Br)\Q(x).
Given the assumptions on the transformation Φ, an action radius for As with respect to Xs on {x}×{v}
(or equivalently, with respect to P̂s on Q(x)×Q(v)× Ys) is then given by

ρsx,v :=
(
v ∨ (ρx + max{Vj : j ∈ Jv(x, ρx)})

)
1Xs 6=Xx,vs

.

In order to prove (4.48), by Theorem 4.4.3(i), it remains to estimate the corresponding weights. First,
for all ` ≥ 0, a union bound yields

P [`− 1 ≤ ρx + max{Vj : j ∈ Jv(x, ρx)} < `]

≤ E []Jv(x, ρx)P [`− 1 ≤ ρx + V < ` ‖ ρx]]

≤ E []((Φ(P0) ∪ Φ(Px,v0 )) ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]]

≤ 2E [](P ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]] .

Let us now define Iv(x) as the set of all indices j such that either p(Xj) or p(X ′j) belongs to (Φ(P0)∪
Φ(Px,v0 ))∩Q(x). Given the assumptions on the transformation Φ, we may then compute, in terms of
the probability law γ(v) = P [V ∈ Q(v)],

P [As(X x,vs ) 6= As(X )] ≤ P [∃j ∈ Iv(x) : Vj ∈ Q(v)] ≤ γ(v)E []Iv(x)] ≤ 2γ(v)E [](P ∩Q)] .
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Combining the above estimates, we conclude

P
[
`− 1 ≤ ρsx,v < `, A(X x,vs ) 6= A(Xs)

]
≤

(
2γ(v)E [](P ∩Q)]

)
∧
(
1`−1≤v<` + P [`− 1 ≤ ρx + max{Vj : j ∈ Jv(x, ρx)} < `]

)
≤ 2

(
E [](P ∩Q)] + 1

)(
γ(v)1`−1≤v<` + γ(v) ∧ E [](P ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]]

)
.

The result (4.48) then follows from Theorem 4.4.3(i).

Step 2. Proof of (i).
We repeat the analysis of Step 1 in the particular case of a Poisson point process P = P0 on Rd

with constant intensity µ > 0. In this case, we have ρx = 0, hence Jv(x, r) = ∅, so that the action
radius ρsx,v takes the simpler form

ρsx,v = v 1Xs 6=Xx,vs
.

Estimating

P
[
`− 1 ≤ ρsx,v < `, As(X x,vs ) 6= As(Xs)

]
≤ P

[
`− 1 ≤ ρsx,v < `, X x,vs 6= Xs

]
≤ P [X x,vs 6= Xs]1`−1≤v<` ≤ 2µγ(v)1`−1≤v<`,

the conclusion (4.45) follows from Theorem 4.4.3(i). It remains to prove (∂osc-WCI). Since we obvi-
ously have P

[
ρsx,v < `

]
= 1 if v < `, we compute for all x ∈ Zd, v ≥ 0, ` ≥ 1,

P
[
`− 1 ≤ ρsx,v < `, X x,vs 6= X

]
P
[
ρsx,v < `

] ≤ 2µγ(v)1`−1≤v<`

P
[
ρsx,v < `

] = 2µγ(v)1`−1≤v<`,

and Theorem 4.4.3(ii) with influence function f(u) = u then yields

Cov [Y (As);Z(As)] ≤ µ
∑
x∈Zd

∞∑
v=0

γ(v)E
[(

∂osc
As,Q2v+3(x) Y (As)

)2
] 1

2

E
[(

∂osc
As,Q2v+3(x) Z(As)

)2
] 1

2

.

The desired covariance estimate (∂osc-WCI) follows by taking local averages.

Step 3. Proof of (ii).
In this step, we consider the case when the stationary point process P satisfies a hard-core con-

dition ](P ∩ Q) ≤ C a.s. for some deterministic constant C > 0, and also satisfies the following
covariance inequality (resp. the corresponding (∂osc-WSG)) with some integrable weight π0: for all
σ(P)-measurable random variables Y (P), Z(P),

Cov [Y (P);Z(P)] ≤
ˆ
Rd

( ˆ ∞
0

E
[(

∂osc
P,B`+1(x) Y (P)

)2
]

(`+ 1)−dπ0(`)d`

) 1
2

×
( ˆ ∞

0
E
[(

∂osc
P,B`+1(x) Z(P)

)2
]

(`+ 1)−dπ0(`)d`

) 1
2

dx.

We then show that, for each s = 1, 2, 3, the random field As satisfies the following covariance inequality
(resp. the corresponding (∂osc-WSG)): for all σ(As)-measurable random variables Y (As), Z(As) we
have

Cov [Y (As);Z(As)] ≤ C
ˆ
Rd

(ˆ ∞
0

E
[(

∂osc
As,B2`+1(x) Y (As)

)2
]

(`+ 1)−dπ(`)d`

) 1
2

×
(ˆ ∞

0
E
[(

∂osc
As,B2`+1(x) Z(As)

)2
]

(`+ 1)−dπ(`)d`

) 1
2

dx, (4.49)
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where we have set π(`) := π0(`) + (` + 1)d P [`− 1 ≤ V < `]. In particular, combined with Propo-
sition 4.5.3, this implies the covariance inequality (4.46) in the case of the random parking point
process.

To simplify notation, we only treat the case of the spectral gap inequality. Consider a measurable
enumeration of the point process P = {Zj}j , let {Zj , Vj , Ys,j} be a decorated point process associated
with P and the decoration law (V, Ys), and let D := {Vj , Ys,j}j denote the decoration sequence. Since
P and D are independent, the expectation E splits into E = EPED, where EP [·] = E[·‖D] denotes
the expectation with respect to P, and where ED[·] = E[·‖P] denotes the expectation with respect to
D. By tensorization of the variance as in (4.56), the spectral gap assumption for P and the standard
spectral gap (4.24) for the i.i.d. sequence D then yields for all random variables Z = Z(As),

Var [Z(As)] = EP
[

VarD[Z(As)]
]

+ VarP
[
ED[Z(As)]

]
≤ 1

2

∑
k

E
[(
Z(As)− Z(Aks)

)2]
+

ˆ ∞
0

ˆ
Rd

E
[(

∂osc
P,B`+1(x) ED[Z(As)]

)2
]
dx (`+ 1)−dπ0(`)d`, (4.50)

where Aks corresponds to the field As with the decoration (Vk, Ys,k) replaced by an i.i.d. copy (V ′k, Y
′
s,k).

We separately estimate the two right-hand side terms in (4.50), and we begin with the first. For all
x ∈ Rd, we define the following two random variables,

N(x) := ](P ∩B(x)), R(x) := max{Vj : Zj ∈ B(x)}.

Let R0 ≥ 1 denote the smallest value such that P [V < R0] ≥ 1
2 , which implies in particular by a

union bound and by the hard-core assumption

P [R(x) < R0] = E
[
P [V < R0]N(x) ] ≥ E

[
2−N(x)

]
≥ 2−C . (4.51)

Conditioning with respect to the value of R(x), we obtain∑
k

E
[(
Z(As)− Z(Aks)

)2]
.

ˆ ∞
R0

ˆ
Rd

∑
k

E
[(
Z(As)− Z(Aks)

)2
1Zk∈B(x)1`−1≤R(x)<`

]
dx d`

+

ˆ
Rd

∑
k

E
[(
Z(As)− Z(Aks)

)2
1Zk∈B(x)1R(x)<R0

]
dx

≤
ˆ ∞
R0

ˆ
Rd

E
[(

∂osc
As,B`+1(x) Z(As)

)2
N(x)1`−1≤R(x)<`

]
dx d`

+

ˆ
Rd

E
[(

∂osc
As,BR0+1(x) Z(As)

)2
N(x)

]
dx

=

ˆ ∞
R0

ˆ
Rd

E
[(

∂osc
As,B`+1(x) Z(As)

)2
N(x)1R(x)≥`−1

∥∥∥∥ R(x) < `

]
P [R(x) < `] dx d`

+

ˆ
Rd

E
[(

∂osc
As,BR0+1(x) Z(As)

)2
N(x)

]
dx.

Using the hard-core assumption in the form N(x) ≤ C a.s., and noting that given R(x) < ` the
random variable R(x) is independent of As|Rd\B`+1(x), we deduce

∑
k

E
[(
Z(As)− Z(Aks)

)2]
.
ˆ ∞
R0

ˆ
Rd

E
[(

∂osc
As,B`+1(x) Z(As)

)2
]
P [`− 1 ≤ R(x) < `]

P [R(x) < `]
dx d`

+

ˆ
Rd

E
[(

∂osc
As,BR0+1(x) Z(As)

)2
]
dx.
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Estimating by a union bound P [`− 1 ≤ R(x) < `] ≤ C P [`− 1 ≤ V < `], and making use of the
property (4.51) of the choice of R0 ≥ 1, we conclude

∑
k

E
[(
Z(As)− Z(Aks)

)2]
.
ˆ ∞
R0

ˆ
Rd

E
[(

∂osc
As,B`+1(x) Z(As)

)2
]
P [`− 1 ≤ V < `] dx d`

+

ˆ
Rd

E
[(

∂osc
As,BR0+1(x) Z(As)

)2
]
dx. (4.52)

It remains to estimate the second right-hand side term in (4.50). The hard-core assumption for P
yields by stationarity ](P ∩B`(x)) ≤ C`d a.s. Further noting that a union bound gives

P
[
r − 1 ≤ max

1≤j≤C`d
Vj < r

]
≤

C`d∑
j=1

P
[
Vj ≥ r − 1, and Vk < r ∀1 ≤ k ≤ C`d

]
= C`d P [V < r]C`

d−1 P [r − 1 ≤ V < r] ,

and hence for all r ≥ R0,

P
[
r − 1 ≤ max1≤j≤C`d Vj < r

]
P
[
max1≤j≤C`d Vj < r

] ≤ C`dP [r − 1 ≤ V < r]

P [V < r]
≤ 2C`dP [r − 1 ≤ V < r] ,

we find, arguing similarly as above,

ˆ ∞
0

ˆ
Rd

E
[(

∂osc
P,B`(x) ED[Z(As)]

)2
]
dx (`+ 1)−dπ0(`)d`

.
ˆ ∞

0

ˆ ∞
R0

ˆ
Rd

E
[(

∂osc
As,B`+r(x) Z(As)

)2
]
dxP [r − 1 ≤ V < r] dr π0(`)d`

+

ˆ ∞
0

ˆ
Rd

E
[(

∂osc
As,B`+R0

(x) Z(As)
)2
]
dxπ0(`)d`. (4.53)

Combining this with (4.50) and (4.52), the conclusion (4.49) follows in variance form.

4.5.5 Dependent coloring of random geometric patterns

Up to here, besides Gaussian random fields, all examples of random fields that we have been con-
sidering correspond to random geometric patterns (various random point processes constructed from
a higher-dimensional Poisson process or random tessellations) endowed with an independent coloring
determining e.g. the size and shape of the cells and the value of the field in the cells. In the present
subsection, we turn to the examples of type (III) mentioned in the introduction in Section 4.1.1, and
consider dependent colorings of the random geometric patterns. The random field A is now a function
of both a product structure (typically some decorated Poisson point process P̂), and of a random
field G (e.g. a Gaussian random field) which typically has long-range correlations but is assumed
to satisfy some weighted functional inequality. In other words, this amounts to mixing up all the
previous examples. Rather than stating general results in this direction, we only treat a number of
typical concrete examples in order to illustrate the robustness of the approach.

(1) The first example A1 is a random field on Rd corresponding to random spherical inclusions
centered at the points of a Poisson point process P of intensity µ = 1, with i.i.d. random radii of
law V , but such that the values on the inclusions are determined by some random field G1 with
long-range correlations.
More precisely, we let P̂1 := {X̃j , Ṽj , Ũj}j denote a decorated point process associated with P and
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(V,U), where U denotes an independent uniform random variable on [0, 1]. Independently of P̂1

we choose a jointly measurable stationary bounded random field G1 on Rd, with typically long-
range correlations. The collection of random inclusions is given by {Ĩj1}j with Ĩ

j
1 := X̃j+ ṼjB. As

in the third example of Section 4.5.4, we choose a σ(V,U)-measurable random variable P (V,U),
and we say that the inclusion Ĩj1 has the priority on inclusion Ĩi1 if P (Ṽj , Ũj) < P (Ṽi, Ũi) or if
P (Ṽj , Ũj) = P (Ṽi, Ũi) and Ũj < Ũi. This defines a priority order on the inclusions on a set of
maximal probability, and we then relabel the inclusions and the points of P̂1 into a sequence
(Ij1 , Xj , Vj , Uj)j such that for all j the inclusion Ij1 has the j-th highest priority. Given β ∈ R, we
then consider the σ(P̂1, G1)-measurable random field A1 defined as follows,

A1 := β +
∑
j

(
G1(Xj)− β

)
1
Ij1\

⋃
i:i<j I

i
1
.

(2) The second example A2 is a random field on Rd corresponding to random inclusions centered at
the points of a Poisson point process P of intensity µ = 1, with i.i.d. random radii of law V , but
with orientations determined by some random field G2 with long-range correlations.
More precisely, we let P̂2 := {Xj , Vj}j denote a decorated point process associated with P and V ,
we choose a reference shape S ∈ B(Rd) with 0 ∈ S, and independently of P̂2 we choose a jointly
measurable stationary bounded random field G2 on Rd with values in the orthogonal group O(d)
in dimension d, and with typically long-range correlations. The collection of random inclusions is
then given by {Ij2}j with I

j
2 := Xj +G2(Xj)S. Given α, β ∈ R, and given a function φ : R→ R

with φ(t) = 1 for t ≤ 1 and φ(t) = 0 for t ≥ 2, and with ‖φ′‖L∞ . 1, we then consider the
σ(P̂2, G2)-measurable random field A2 defined as follows,

A2(x) := β + (α− β)φ
(
d
(
x , ∪jIj2

))
.

(Note that the smoothness of this interpolation φ between the values α and β is crucial for the
arguments below.)

(3) The third example A3 is a random field on Rd corresponding to the Voronoi tessellation associated
with the points of a Poisson point process P of unit intensity, such that the values on the cells
are determined by some random field G3 with long-range correlations.
More precisely, we let P̂3 := P = {Xj}j , and we let {Cj}j denote the partition of Rd into
the Voronoi cells associated with the Poisson points {Xj}j . Independently of P̂3 we choose a
jointly measurable stationary bounded random field G3 on Rd. We then consider the σ(P̂3, G3)-
measurable random field A3 defined as follows,

A3(x) :=
∑
j

G3(Xj)1Cj .

For each of these examples, we show functional inequalities with as derivative the supremum of
the functional derivative ∂fct, which we define by

∂sup
A,SX(A) := sup ess

A,S

ˆ
S

∣∣∣∂X̃(A)

∂A

∣∣∣.
Note that provided A is bounded we have ∂osc, ∂fct . ∂sup. From the proofs in Sections 4.2 and 4.3,
it is clear that weighted functional inequalities with ∂sup imply the same concentration properties
as the corresponding functional inequalities with ∂osc. Note that the proof of the following result is
quite robust and many variants could be considered.

Proposition 4.5.5. For s = 1, 2, 3, assume that the random field Gs satisfies (∂fct-WSG) for some
integrable weight πs. For s = 1, 2, set γ(v) := P [v − 4 ≤ V < v + 4]. Then the following holds.
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(i) For s = 1, 2, the above-defined random field As satisfies the following weighted spectral gap: for
all σ(As)-measurable random variable Z(As) we have

Var [Z(As)] .
ˆ ∞

0

ˆ ∞
0

ˆ
Rd

E
[(
∂sup
A,B`+C(v+1)(x)Z(As)

)2
]
dx
(
(`+ 1)−d ∧ γ(v)

)
πs(`)dvd`.

(4.54)

In the case when the random variable V is almost surely bounded by a deterministic constant,
we rather obtain

Var [Z(As)] .
ˆ
Rd

E
[(

∂osc
As,BC(x) Z(As)

)2
]
dx

+

ˆ ∞
0

ˆ
Rd

E
[(
∂fct
As,B`+C(x)Z(As)

)2
]
dx (`+ 1)−dπs(`)d`, (4.55)

and if the random field Gs further satisfies (∂fct-WLSI) with weight πs, then the corresponding
logarithmic Sobolev inequality also holds, that is,

Ent[Z(As)] .
ˆ
Rd

E
[(

∂osc
As,BC(x) Z(As)

)2
]
dx

+

ˆ ∞
0

ˆ
Rd

E
[(
∂fct
As,B`+C(x)Z(As)

)2
]
dx (`+ 1)−dπs(`)d`.

(ii) The above-defined random field A3 satisfies (∂sup-WSG) with weight π(`) := C(π3(`) + e−
1
C
`d).

If the random field G3 further satisfies (∂fct-WLSI) with weight π3, then A3 also satisfies (∂sup-
WLSI) with weight π. ♦

Proof. For s = 1, 2, 3, since P̂s and Gs are independent, the expectation E splits into E = EP̂sEGs ,
where EP̂s [·] = E[·‖Gs] denotes the expectation with respect to P̂s, and where EGs [·] = E[·‖P̂s]
denotes the expectation with respect to Gs. The variance and the entropy also tensorize: for all
σ(As)-measurable random variables Z(As),

Var [Z(As)] = VarGs [EP̂s [Z(As)]] + EGs [VarP̂s [Z(As)]], (4.56)

Ent[Z(As)] = EntGs [EP̂s [Z(As)]] + EGs [EntP̂s [Z(As)]].

In each of the examples under consideration, the estimate on the terms VarP̂s [Z(As)] and EntP̂s [Z(As)]
(with Gs “frozen”) follows from the same arguments as in the proof of Propositions 4.5.2 and 4.5.4(i).
We therefore focus on the estimates of VarGs [EP̂s [Z(As)]] and EntGs [EP̂s [Z(As)]], and only treat the
case of the variance. We split the proof into three steps.

Step 1. Cases s = 1, 2 with bounded radius law.
Since the random field Gs is assumed to satisfy (∂fct-WSG) with weight πs, we obtain

VarGs [EP̂s [Z(As)]] ≤ EP̂s [VarGs [Z(As)]]

≤ E
[ˆ ∞

0

ˆ
Rd

(
∂fct
Gs,B`+1(x)Z(As)

)2
dx (`+ 1)−dπs(`)d`

]
. (4.57)

The chain rule yields

∂fct
Gs,B`+1(x)Z(As) =

ˆ
B`+1(x)

∣∣∣∂Z(As(P̂s, Gs))
∂Gs

(y)
∣∣∣dy

≤
ˆ
B`+1(x)

ˆ
Rd

∣∣∣∂Z(As)

∂As
(z)
∣∣∣∣∣∣∂As(P̂s, Gs)(z)

∂Gs
(y)
∣∣∣dzdy.
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Since As is σ(P̂s, {Gs(Xj)}j)-measurable, we obtain

∂fct
Gs,B`+1(x)Z(As) ≤

∑
j

1Xj∈B`+1(x)

ˆ
Rd

∣∣∣∂Z(As)

∂As
(z)
∣∣∣∣∣∣∂As(P̂s, Gs)(z)

∂Gs(Xj)

∣∣∣dz (4.58)

in terms of the usual partial derivative of As(P̂s, Gs)(z) with respect to Gs(Xj). We now need to
compute this derivative in each of the considered examples. We claim that∣∣∣∂As(P̂s, Gs)(z)

∂Gs(Xj)

∣∣∣ ≤ C1Rjs(z), (4.59)

where

Rjs :=


Ij1 \

⋃
i:i<j I

i
1, if s = 1;{

x : 0 < d(x, Ij2) < 2 ∧ d(x, Ik2 ), ∀k 6= j
}
, if s = 2;

Cj , if s = 3.

This claim (4.59) is obvious for s = 1 and s = 3. For s = 2, the properties of φ and the definition of
Rj2 yield ∣∣∣∂A2(P̂2, G2)(z)

∂G2(Xj)

∣∣∣ ≤ |α− β|∣∣∣φ′(d(z , ∪kIk2 ))∣∣∣1Rj2(z) = |α− β|
∣∣φ′(d(z, Ij2)

)∣∣1
Rj2

(z),

which indeed implies (4.59). Now injecting (4.59) into (4.58), and noting that in each case the sets
{Rjs}j are disjoint, we obtain

∂fct
Gs,B`+1(x)Z(As) ≤ C

∑
j

1Xj∈B`+1(x)

ˆ
Rjs

∣∣∣∂Z(As)

∂As

∣∣∣ = C

ˆ
⋃
j:Xj∈B`+1(x)R

j
s

∣∣∣∂Z(As)

∂As

∣∣∣
≤ C

ˆ
BDs(`,x)(x)

∣∣∣∂Z(As)

∂As

∣∣∣, (4.60)

with
Ds(`, x) := sup

{
d(y, x) : y ∈

⋃
j:Xj∈B`+1(x)

Rjs

}
.

For s = 1, 2 with radius law V almost surely bounded by a deterministic constant R > 0, we obtain
D1(`, x) ≤ ` + R + 1 and D2(`, x) ≤ ` + R + 3, and injecting (4.60) into (4.57) directly yields the
result (4.55).

Step 2. Cases s = 1, 2 with unbounded radius law.
We now consider the cases s = 1, 2 with general unbounded radii. Without loss of generality we

only treat s = 1, in which case

D1(`, x) ≤ `+ 1 + D̄1(`, x), D̄1(`, x) := max
{
Vj : Xj ∈ B`+1(x)

}
.

Noting that the restriction A1|Rd\B`+1+D̄1(`,x)(x) is by construction independent of D̄1(`, x), we obtain,
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conditioning on the values of D̄1(`, x) and arguing as in Step 2 of the proof of Theorem 4.4.3,

E

[(ˆ
B`+1+D̄1(`,x)(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
]

≤
∞∑
i=1

P
[
i− 1 ≤ D̄1(`, x) < i

]
E

[(ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
∥∥∥∥∥ i− 1 ≤ D̄1(`, x) < i

]

≤
∞∑
i=1

P
[
i− 1 ≤ D̄1(`, x) < i

]
E

[
sup ess

A1,B`+i+1(x)

( ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
∥∥∥∥∥ D̄1(`, x) < i

]

≤
∞∑
i=1

P
[
i− 1 ≤ D̄1(`, x) < i

]
P
[
D̄1(`, x) < i

] E

[
sup ess

A1,B`+i+1(x)

(ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
]
. (4.61)

Now by definition of the decorated Poisson point process P̂1, we may compute for all i ≥ 1,

P
[
D̄1(`, x) ≥ i− 1

]
= P

[
∃j : Vj ≥ i− 1 and Xj ∈ B`+1(x)

]
= e−|B`+1|

∞∑
n=0

|B`+1|n

n!

(
1− (1− P [V ≥ i− 1])n

)
= 1− e−|B`+1|P[V≥i−1],

and hence

P
[
i− 1 ≤ D̄1(`, x) < i

]
P
[
D̄1(`, x) < i

] = 1− e−|B`+1|P[i−1≤V <i] ≤ 1 ∧
(
C(`+ 1)d P [i− 1 ≤ V < i]

)
.

Combining this computation with (4.57), (4.60) and (4.61), and setting γ(v) := P [v − 2 ≤ V < v + 1],
we obtain

VarG1 [EP̂1
[Z(A1)]]

. E

[ ˆ ∞
0

∞∑
i=1

ˆ
Rd

sup ess
A1,B`+i+1(x)

(ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2

dx
(
(`+ 1)−d ∧ P [i− 1 ≤ V < i]

)
πs(`)d`

]

≤ E

[ˆ ∞
0

ˆ ∞
0

ˆ
Rd

sup ess
A1,B`+v+2(x)

( ˆ
B`+v+2(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2

dx
(
(`+ 1)−d ∧ γ(v)

)
πs(`)dvd`

]
,

and the conclusion (4.54) follows.

Step 3. Case s = 3.
We now turn to the case s = 3, for which

D3(`, x) ≤ `+ 1 + D̄3(`, x), D̄3(`, x) := max
{

diam(Cj) : Xj ∈ B`+1(x)
}
.

Noting that the restriction A3|Rd\B`+1+2D̄3(`,x)(x) is by construction independent of D̄3(`, x) we obtain,
after conditioning on the values of D̄3(`, x) and arguing as in (4.61),

E

[(ˆ
B`+1+D̄3(`,x)(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2
]
≤ E

[
sup ess

A3,B3`+1(x)

( ˆ
B3`+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2
]

+

∞∑
i=2`

P
[
i− 1 ≤ D̄3(`, x) < i

]
P
[
D̄3(`, x) < i

] E

[
sup ess

A3,B`+i+1(x)

( ˆ
B`+i+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2
]
. (4.62)
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Similar computations as in Step 2 of the proof of Proposition 4.5.2 yield

P
[
D̄3(`, x) ≥ i

]
≤ Ce−

1
C

(i−`)d+ .

Combining this with (4.57), (4.60) and (4.62), we obtain

VarG3 [EP̂3
[Z(A3)]]

. E

[ˆ ∞
0

ˆ
Rd

sup ess
A3,B3`+1(x)

(ˆ
B3`+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2

dx (`+ 1)−dπ3(`)d`

]

+E

[ˆ ∞
0

∞∑
i=2`

e−
1
C
id
ˆ
Rd

sup ess
A3,B2i+1(x)

(ˆ
B2i+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2

dx (`+ 1)−dπ3(`)d`

]

. E

[ˆ ∞
0

ˆ
Rd

sup ess
A3,B3`+1(x)

( ˆ
B3`+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2

dx
(
(`+ 1)−dπ3(`) + e−

1
C
`d
)
d`

]
,

and the result follows.

4.6 Weighted second-order Poincaré inequalities

Chatterjee’s second-order Poincaré inequalities are known to hold in total variation distance for
Gaussian fields with integrable covariance function [113, 349], as well as in Wasserstein and Kol-
mogorov distance for general discrete product structures [112, 282]. Based on these results, similarly
as for first-order functional inequalities in Sections 4.4 and 4.5, we prove the validity of weighted
second-order Poincaré inequalities for correlated random fields that display a hidden product struc-
ture. Again, we distinguish between two prototypical classes of examples (cf. Section 4.4.2): deter-
ministically localized fields (which essentially concern Gaussian fields), and randomly localized fields
(in which case localization is quantified in terms of the action radius). These two situations are
separately addressed in Sections 4.6.1 and 4.6.2 below.

Before we state the main results, let us comment on the existing literature. On the one hand, for
Gaussian random fields, our results can be compared with [349, Theorem 1.1] (see also [348]), which
establishes a similar (infinite-dimensional) second-order Poincaré inequality in terms of Malliavin
calculus in abstract Wiener space (where the covariance structure is encoded in some Hilbert norm).
The interest of our formulation is the explicit structure of the right-hand side in the form of a weighted
inequality, in line with our approach to generalized first order functional inequalities.

On the other hand, for randomly localized fields, our approach to control distance to normality
can be compared to [286], which develops a general strategy to prove approximate normality results
for functionals of Poisson processes based on stabilization properties. In particular, this approach
requires stabilization properties to be checked explicitly each time a normal approximation result is
to be proved. In contrast, given a random field A which is a transformation of a Poisson process, our
approach consists in exploiting stabilization properties of the transformation (in the form of a control
on the action radius) to derive a “generalized” second-order functional inequality. This weighted
second-order Poincaré inequality has the advantage to be intrinsic for the field A, and as such it can
be subsequently applied to any random variable X(A) without having to make further use of the
stabilization properties of the transformation.

4.6.1 Deterministically localized fields

In this subsection we treat the main example of deterministically localized fields, that is, correlated
Gaussian random fields. The main result of this section is a continuum version with nontrivial
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covariance structure of the second-order Poincaré inequality for i.i.d. Gaussian random variables due
to Chatterjee [113], and based on Stein’s method. As already discussed, this is to be compared
with [349].

Theorem 4.6.1. Let G be a jointly measurable stationary Gaussian random field on Rd, characterized
by its covariance C(x) := Cov [G(x);G(0)], and assume that |C(x)| ≤ c(|x|) for some Lipschitz non-
increasing map c : R+ → R+. Let h ∈ C2(R) with h′, h′′ ∈ L∞(R), and let A be the random field on
Rd defined by A(x) := h(G(x)) for all x. Then for all σ(A)-measurable random variable X(A) and
all R > 0 we have

dTV

(
X(A)− E [X(A)]√

Var [X(A)]
, N

)2

(4.63)

.
‖h′‖6L∞

(Var [X(A)])2
E

[(ˆ ∞
0

ˆ
Rd

(ˆ
B2(`+1)(x)

∣∣∣∂X(A)

∂A

∣∣∣)2
dx (`+ 1)−d(−c′(`))d`

)2
] 1

2

× E

[( ˆ ∞
0

ˆ ∞
0

¨
Rd×Rd

(¨
B2(`1+1)(x1)×B2(`2+1)(x2)

∣∣∣∂2X(A)

∂A2

∣∣∣)2
dx1dx2

×(`2 + 1)−d(−c′(`2))d`2 (`1 + 1)−d(−c′(`1))d`1

)2
] 1

2

+
‖h′‖2L∞‖h′′‖2L∞
(Var [X(A)])2

ˆ
Rd
. . .

ˆ
Rd
c(|x1 − x2| −R) c(|x2 − x3| −R) c(|x3 − x4| −R)

×
4∏
i=1

E

[( 
BR(xi)

∣∣∣∂X(A)

∂A

∣∣∣)4
] 1

4

dx1 . . . dx4.

If the covariance is integrable in the sense of ‖C̄‖L1 :=
´

(supB(x) |C|)dx <∞, then the above reduces
to

dTV

(
X(A)− E [X(A)]√

Var [X(A)]
, N

)2

(4.64)

.
‖h′‖6L∞

(Var [X(A)])2
‖C̄‖3

L1 E

[(ˆ
Rd

(ˆ
B(x)

∣∣∣∂X(A)

∂A

∣∣∣)2
dx

)2
] 1

2

× E

[(¨
Rd×Rd

(¨
B(x)×B(y)

∣∣∣∂2X(A)

∂A2

∣∣∣)2
dxdy

)2
] 1

2

+
‖h′‖2L∞‖h′′‖2L∞
(Var [X(A)])2

‖C̄‖3
L1 E

[ˆ
Rd

(ˆ
B(x)

∣∣∣∂X(A)

∂A

∣∣∣)4
dx

]
. ♦

Proof. By scaling it does not restrict generality to assume E [X(A)] = 0 and Var [X(A)] = 1. We
split the proof into three steps.

Step 1. Discrete setting.
In this step, we establish the discrete counterpart of the desired result, that is, a second-order

Poincaré inequality à la Chatterjee for correlated Gaussian vectors. Let V = (V1, . . . , VN ) denote
a Gaussian random vector with covariance Σ := Var [V ] ∈ RN×N . Let h ∈ C2(R), and for all i
let Wi := h(Vi). Given a smooth transformation g : RN → R, we consider the random variable
Z := g(W ), which can also be represented as Z := f(V ) for some map f : RN → R. Assume
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that E [Z] = 0 and Var [Z] = 1. Let V ′ denote an i.i.d. copy of V , and for all t ∈ [0, 1] define
Ut :=

√
tV +

√
1− tV ′ and (Yt)i := h((Ut)i). In this step, we establish the following variant of [113,

Theorem 2.2],

1

2
dTV (Z,N )2 ≤ 2‖h′‖6L∞

ˆ 1

0

(
1 +

2√
t

) ∑
i,j,k,l,m,n

|Σij ||Σkl||Σmn|

× E
[
|∇ig(Yt)||∇2

jkg(W )||∇2
lmg(W )||∇ng(Yt)|

]
dt

+ 2‖h′‖2L∞‖h′′‖2L∞
ˆ 1

0

(
1 +

2√
t

) ∑
i,j,k,l

|Σij ||Σjk||Σkl|

× E [|∇ig(Yt)||∇jg(W )||∇kg(W )||∇lg(Yt)|] dt. (4.65)

For that purpose, we simply adapt the strategy of [113] to the case with a nontrivial covariance. Using
the i.i.d. copy V ′ of V , we may decompose, for any smooth ψ : R→ R,

E [Zψ(Z)] = E
[
f(V )ψ(f(V ))− f(V ′)ψ(f(V ))

]
= E

[
ψ(f(V ))

ˆ 1

0

d

dt

(
f(
√
tV +

√
1− tV ′)

)
dt

]
=

1

2
E
[
ψ(f(V ))

ˆ 1

0

( V√
t
− V ′√

1− t

)
· ∇f(

√
tV +

√
1− tV ′)dt

]
,

or alternatively, in terms of Ut :=
√
tV +

√
1− tV ′ and Vt :=

√
1− tV −

√
tV ′,

E [Zψ(Z)] =
1

2

ˆ 1

0

1√
t
√

1− t
E
[
ψ(f(

√
tUt +

√
1− tVt))Vt · ∇f(Ut)

]
dt.

Noting that the Gaussian vectors Ut and Vt are independent of each other and have the same law as
V , and that Gaussian integration by parts takes the form

E [V ζ(V )] = ΣE [∇ζ(V )] , ζ ∈ C1
b (RN ),

we deduce from the above,

E [Zψ(Z)] =

ˆ 1

0

1

2
√
t
E
[
ψ′(f(

√
tUt +

√
1− tVt))∇f(

√
tUt +

√
1− tVt) · Σ∇f(Ut)

]
dt.

Defining

T (V, V ′) :=

ˆ 1

0

1

2
√
t
∇f(V ) · Σ∇f(Ut)dt, (4.66)

we have thus proven the identity

E [Zψ(Z)] = E
[
ψ′(Z)T (V, V ′)

]
= E

[
ψ′(Z)E

[
T (V, V ′)

∥∥ Z]] .
In other words, we have constructed the so-called Stein factor E [T (V, V ′) ‖ Z] for Z. A standard use
of Stein’s method (see e.g. [113, Lemma 5.1]) then yields

dTV (Z,N ) ≤ 2E
[∣∣E [T (V, V ′)

∥∥ Z]− 1
∣∣] ≤ 2Var

[
E
[
T (V, V ′)

∥∥ V ]] 1
2 .

In order to estimate this last variance, we use the Gaussian Brascamp-Lieb inequality (see e.g. Propo-
sition 4.B.1),

1

2
dTV (Z,N )2 ≤ 2E

[
∇V E

[
T (V, V ′)

∥∥ V ] · Σ∇V E [T (V, V ′)
∥∥ V ]]

= 2E
[∣∣Σ1/2E

[
∇V T (V, V ′)

∥∥ V ] ∣∣2] ≤ 2E
[∣∣Σ1/2∇V T (V, V ′)

∣∣2] .
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An explicit computation of the gradient ∇V T (V, V ′) based on definition (4.66) yields

∇V T (V, V ′) =

ˆ 1

0

1

2
√
t
∇2f(V ) · Σ∇f(Ut)dt+

1

2

ˆ 1

0
∇f(V ) · Σ∇2f(Ut)dt.

Combined with the inequality (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R, we obtain

1

2
dTV (Z,N )2 ≤

ˆ 1

0

1√
t

ˆ 1

0

1√
s
E
[
∇f(Ut) · Σ∇2f(V )Σ∇2f(V )Σ∇f(Us)

]
dsdt

+

ˆ 1

0

ˆ 1

0
E
[
∇f(V ) · Σ∇2f(Ut)Σ∇2f(Us)Σ∇f(V )

]
dsdt.

Using successively the inequality x · Σy ≤ 1
2(x · Σx+ y · Σy), the identity

´ 1
0 t
−1/2dt = 2, and noting

that (V,Ut) has the same distribution as (Ut, V ), we are left with

1

2
dTV (Z,N )2 ≤

ˆ 1

0

(
1 +

2√
t

)
E
[
∇f(Ut) · Σ∇2f(V )Σ∇2f(V )Σ∇f(Ut)

]
dt.

By definition Z = f(V ) = g(W ) with Wi = h(Vi), so that

∇if(V ) = h′(Vi)∇ig(W ), and ∇2
ijf(V ) = h′(Vi)h

′(Vj)∇2
ijg(W ) + δijh

′′(Vi)∇ig(W ),

and the result (4.65) follows.

Step 2. Continuum counterparts.
By an approximation argument, the result (4.65) of Step 1 yields for all σ(A)-measurable random

variables X(A) with E [X(A)] = 0 and Var [X(A)] = 1,

1

2
dTV (X(A),N )2 ≤ 2‖h′‖6L∞

ˆ 1

0

(
1 +

2√
t

)ˆ
. . .

ˆ
|C(x1 − x2)||C(x3 − x4)||C(x5 − x6)|

× E
[∣∣∣∂X(At)

∂At
(x1)

∣∣∣∣∣∣∂2X(A)

∂A2
(x2, x3)

∣∣∣∣∣∣∂2X(A)

∂A2
(x4, x5)

∣∣∣∣∣∣∂X(At)

∂At
(x6)

∣∣∣] dx1 . . . dx6dt

+ 2‖h′‖2L∞‖h′′‖2L∞
ˆ 1

0

(
1 +

2√
t

)ˆ
. . .

ˆ
|C(x1 − x2)||C(x2 − x3)||C(x3 − x4)|

× E
[∣∣∣∂X(At)

∂At
(x1)

∣∣∣∣∣∣∂X(A)

∂A
(x2)

∣∣∣∣∣∣∂X(A)

∂A
(x3)

∣∣∣∣∣∣∂X(At)

∂At
(x4)

∣∣∣] dx1 . . . dx4dt, (4.67)

where we have set At(x) := h(
√
tG(x) +

√
1− tG′(x)) for an i.i.d. copy G′ of the Gaussian random

field G (in particular note that A and At have the same law). This result is to be compared with [349].

Step 3. Conclusion.
In this step, we argue that (4.67) yields the desired second-order weighted Poincaré inequality.

For all smooth ζ : Rd → R and ξ : Rd × Rd → R, we claim that the following estimate holds,

T :=

ˆ
. . .

ˆ
|ζ(x1)||ξ(x2, x3)||ξ(x4, x5)||ζ(x6)||C(x1 − x2)||C(x3 − x4)||C(x5 − x6)|dx1 . . . dx6

≤
(ˆ ∞

0
d`1(`1+1)−d(−c′(`1))

ˆ ∞
0

d`2(`2+1)−d(−c′(`2))

¨
dx1dx2

(¨
B2(`1+1)(x1)×B2(`2+1)(x2)

|ξ|
)2
)

×
(ˆ ∞

0
d`(`+ 1)−d(−c′(`))

ˆ
dx
(ˆ

B2(`+1)(x)
|ζ|
)2
)
. (4.68)
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We postpone the proof of this estimate to the end of this step, and first show how it implies the
desired result. We denote the two right-hand side terms of (4.67) by S1 and S2, respectively, and
we start with the estimation of S1. We apply inequality (4.68) to ζ(x) := (∂X(At)/∂At)(x) and
ξ(x, y) := (∂2X(A)/∂A2)(x, y), use Cauchy-Schwarz’ inequality in probability, and note that At has
the same law as A for all t, so that

S1 ≤ 2‖h′‖6L∞
ˆ 1

0

(
1 +

2√
t

)
E

[( ˆ ∞
0

d`(`+ 1)−d(−c′(`))
ˆ
dx
(ˆ

B2(`+1)(x)

∣∣∣∂X(At)

∂At

∣∣∣)2
)

×
(ˆ ∞

0
d`1(`1 + 1)−d(−c′(`1))

ˆ ∞
0

d`2(`2 + 1)−d(−c′(`2))

×
¨

dxdy
(¨

B2(`1+1)(x)×B2(`2+1)(y)

∣∣∣∂2X(A)

∂A2

∣∣∣)2
)]

dt

≤ 10‖h′‖6L∞E

[(ˆ ∞
0

d`(`+ 1)−d(−c′(`))
ˆ
dx
(ˆ

B2(`+1)(x)

∣∣∣∂X(A)

∂A

∣∣∣)2
)2
] 1

2

× E

[(ˆ ∞
0

d`1(`1 + 1)−d(−c′(`1))

ˆ ∞
0

d`2(`2 + 1)−d(−c′(`2))

×
¨

dxdy
(¨

B2(`1+1)(x)×B2(`2+1)(y)

∣∣∣∂2X(A)

∂A2

∣∣∣)2
)2
] 1

2

.

We now turn to the second term S2. Taking local spatial averages, using Hölder’s inequality in
probability, and recalling that At has the same law as A for all t, we obtain

S2 ≤ 10‖h′‖2L∞‖h′′‖2L∞
ˆ
. . .

ˆ
c̄R(|x1 − x2|)c̄R(|x2 − x3|)c̄R(|x3 − x4|)

×
4∏
i=1

E

[( 
BR/2(xi)

∣∣∣∂X(A)

∂A

∣∣∣)4
] 1

4

dx1 . . . dx4,

where we have set c̄R(t) := sup|u|≤R c(t+ u). Hence, since c is non-increasing,

S2 ≤ 24d10‖h′‖2L∞‖h′′‖2L∞
ˆ
. . .

ˆ
c(|x1 − x2| −R) c(|x2 − x3| −R) c(|x3 − x4| −R)

×
4∏
i=1

E

[( 
BR(xi)

∣∣∣∂X(A)

∂A

∣∣∣)4
] 1

4

dx1 . . . dx4.

The result (4.63) follows by inserting the above estimates for S1 and S2 into (4.67).
We now prove the result (4.64) in the case when

´
C̄ <∞, where we have set C̄(x) := supB2(x) |C|.

Using the inequality 2ab ≤ a2 + b2 for all a, b ∈ R, we obtain

S1 . ‖h′‖6L∞
ˆ 1

0

(
1 +

2√
t

)ˆ
. . .

ˆ
E

[(ˆ
B(x1)

∣∣∣∂X(At)

∂At

∣∣∣)2(¨
B(x4)×B(x5)

∣∣∣∂2X(A)

∂A2

∣∣∣)2
]

× C̄(x1 − x2)C̄(x3 − x4)C̄(x5 − x6)dx1 . . . dx6dt

≤ ‖h′‖6L∞‖C̄‖3L1

ˆ 1

0

(
1 +

2√
t

)
×
˚

E

[( ˆ
B(x1)

∣∣∣∂X(At)

∂At

∣∣∣)2(¨
B(x2)×B(x3)

∣∣∣∂2X(A)

∂A2

∣∣∣)2
]
dx1dx2dx3dt
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. ‖h′‖6L∞‖C̄‖3L1 E

[( ˆ ( ˆ
B(x)

∣∣∣∂X(A)

∂A

∣∣∣)2
dx

)2
] 1

2

E

[(¨ (¨
B(x)×B(y)

∣∣∣∂2X(A)

∂A2

∣∣∣)2
dxdy

)2
] 1

2

.

Likewise, using the inequality a1a2a3a4 ≤ 1
4

∑4
i=1 a

4
i , we obtain

S2 . ‖h′‖2L∞‖h′′‖2L∞‖C̄‖3L1E

[ˆ ( ˆ
B(x)

∣∣∣∂X(A)

∂A

∣∣∣)4
dx

]
.

Combined with (4.67), these estimates yield the desired result (4.64).
It remains to prove the general estimate (4.68). Using radial coordinates, the left-hand side T

takes the form

T ≤
˚

dx1dx2dx3

ˆ ∞
0

d`1c(`1)

ˆ
∂B`1

dσ(u1) . . .

ˆ ∞
0

d`3c(`3)

ˆ
∂B`3

dσ(u3)

× |ζ(x1)||ξ(x1 + u1, x2)||ξ(x2 + u2, x3 + u3)||ζ(x3)|,

which, by integration by parts, turns into

T ≤
˚

dx1dx2dx3

ˆ ∞
0

d`1(−c′(`1))

ˆ ∞
0

d`2(−c′(`2))

ˆ ∞
0

d`3(−c′(`3))

× |ζ(x1)||ζ(x3)|
(ˆ

B`1 (x1)
|ξ(·, x2)|

)(ˆ
B`2 (x2)×B`3 (x3)

|ξ|
)
.

Taking local averages, and bounding
´
B`1 (y1) by

´
B2(`1+1)(x1) for all y1 ∈ B`1+1(x1), we directly deduce

T ≤
˚

dx1dx2dx3

ˆ ∞
0

d`1(`1 + 1)−d(−c′(`1)) . . .

ˆ ∞
0

d`3(`3 + 1)−d(−c′(`3))

×
(ˆ

B2(`1+1)(x1)×B2(`2+1)(x2)
|ξ|
)( ˆ

B2(`2+1)(x2)×B2(`3+1)(x3)
|ξ|
)( ˆ

B2(`1+1)(x1)
|ζ|
)( ˆ

B2(`3+1)(x3)
|ζ|
)
,

which, by the inequality ab ≤ 1
2(a2 + b2) for all a, b ∈ R, yields

T ≤
˚

dx1dx2dx3

ˆ ∞
0

d`1(`1 + 1)−d(−c′(`1)) . . .

ˆ ∞
0

d`3(`3 + 1)−d(−c′(`3))

×
(ˆ

B2(`1+1)(x1)
|ζ|
)2( ˆ

B2(`2+1)(x2)×B2(`3+1)(x3)
|ξ|
)2
,

that is, (4.68).

4.6.2 Randomly localized fields

We use the same notation as in Section 4.4.1: A is a σ(X )-measurable random field on Rd, where
X is a completely independent random field on some measure space X =

⊎
x∈Zd,t∈Zl Xx,t with values

in some measurable space M . In this subsection, we address the situation when the dependence
pattern of A with respect to X is random in the sense that it is determined by the underlying product
structure X itself. The following theorem establishes weighted second-order Poincaré inequalities
for A, based on assumptions on the action radius (actually in a slightly stronger version than that
introduced in Section 4.4.2, cf. assumption (a) below). The strategy consists in applying Chatterjee’s
second-order Poincaré inequality for X (cf. [112]), and then exploiting the localization properties of
the action radius to devise an approximate chain rule and deduce a functional inequality for A = A(X )
itself. As already discussed, this is to be compared with [286].
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Theorem 4.6.2. Let A be a σ(X )-measurable random field on Rd, where X is a completely indepen-
dent random field on some measure space X =

⊎
x∈Zd,t∈Zl Xx,t with values in some measurable space

M . Let X ′ be an i.i.d. copy of X . For all B ⊂ Zd × Zl, let the perturbed random field XB be defined
by

XB|∪(x,t)∈BXx,t = X ′|∪(x,t)∈BXx,t , XB|∪(x,t)/∈BXx,t = X|∪(x,t)/∈BXx,t ,

and for all x, x′ ∈ Zd and t, t′ ∈ Zl we set for simplicity X x,t := X {(x,t)} and X x,t;x′,t′ := X {(x,t),(x′,t′)}.
Assume that

(a) For all x, t and all B ⊂ Zd × Zl, there exists an action radius ρx,t(XB) for A(XB) with respect
to XB in Xx,t with reference perturbation X ′ (in the sense of Definition 4.4.2), and set

ρ̃x,t := sup
{
ρx,t(XB) : B ⊂ Zd × Zl

}
.

(b) The transformation A of X is stationary, that is, the random fields A(X (·+z, ·)) and A(X )(·+z)
have the same law for all z ∈ Zd. Moreover, for all t, B, the law of the action radius ρx,t(XB) is
independent of x. In particular, for all t, the law of ρ̃x,t is independent of x.

For all t ∈ Zl and ` ≥ 1, define the weight

π(t, `) := P
[
`− 1 ≤ ρ̃0,t < ` , X 6= X 0,t

]
.

Then the following results hold.

(i) For all σ(A)-measurable random variables X = X(A), we have

dW

(
X − E [X]√

Var [X]
,N

)

.
1

Var [X]
inf

0<λ<1

( ∑
x,x′,x′′

∑
t,t′,t′′

∞∑
`,`′,`′′=1

(
π(t, `)

1
3π(t′, `′)

1
3π(t′′, `′′)

1
3
)λ E [(∂dis

`,x,t∂
dis
`′,x′,t′X

) 4
1−λ
] 1−λ

4

× E
[(
∂dis
`,x,t∂

dis
`′′,x′′,t′′X

) 4
1−λ
] 1−λ

4

E
[(
∂dis
`′,x′,t′X

) 4
1−λ
] 1−λ

4

E
[(
∂dis
`′′,x′′,t′′X

) 4
1−λ
] 1−λ

4

) 1
2

+
1

Var [X]
inf

0<λ<1

(∑
x,x′

∑
t,t′

∞∑
`,`′=1

(
π(t, `)

1
2π(t′, `′)

1
2
)λ

× E
[(
∂dis
`,x,t∂

dis
`′,x′,t′X

) 4
1−λ
] 1−λ

2

E
[(
∂dis
`′,x′,t′X

) 4
1−λ
] 1−λ

2

) 1
2

+
1

Var [X]
inf

0<λ<1

(∑
x

∑
t

∞∑
`=1

π(t, `)λE
[
(∂dis
`,x,tX)

4
1−λ
]1−λ

) 1
2

+
1

Var [X]3/2
inf

0<λ<1

∑
x

∑
t

∞∑
`=1

π(t, `)λE
[(
∂dis
`,x,tX

) 3
1−λ
]1−λ

, (4.69)

where the sums in x, x′, x′′ (resp. in t, t′, t′′) implicitly run over Zd (resp. over Zl), and where
for all x ∈ Zd and t ∈ Zl we have defined the discrete derivative

∂dis
`,x,tX :=

(
X(A)−X(A(X x,t))

)
1A(Xx,t)|Rd\Q2`+1(x)

=A|Rd\Q2`+1(x)
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and the discrete second derivative

∂dis
`,x,t∂

dis
`′,x′,t′X :=

(
X(A)−X(A(X x,t))−X(A(X x′,t′)) +X(A(X x,t;x′,t′))

)
× 1A(Xx,t)|Rd\Q2`+1(x)

=A|Rd\Q2`+1(x)
1A(Xx,t;x′,t′ )|Rd\Q2`+1(x)

=A(Xx′,t′ )|Rd\Q2`+1(x)

× 1A(Xx′,t′ )|Rd\Q2`′+1(x′)=A|Rd\Q2`′+1(x′)
1A(Xx,t;x′,t′ )|Rd\Q2`′+1(x′)=A(Xx,t)|Rd\Q2`′+1(x′)

.

(ii) For all σ(A)-measurable random variables X = X(A), we have

dK

(
X − E [X]√

Var [X]
,N

)
. RHS(4.69)(X) +G1(X), (4.70)

where RHS(4.69)(X) denote the right-hand side of (4.69), and where we have set

G1(X) :=
1

Var [X]3/2
inf

0<λ<1

∑
x

∑
t

( ∞∑
`=1

π(t, `)λ E
[(
∂dis
`,x,tX

) 6
1−λ
]1−λ) 1

2

.

If in addition for all x, t there exists a σ(X|Xx,t ,X ′|Xx,t)-measurable action radius ρx,t for A(X ) with
respect to X on Xx,t, then we simply have ρ̃x,t = ρx,t for all x, t, the weights π

1
3 and π

1
2 can both

be replaced by π in the first two right-hand side terms of (4.69) and in the corresponding terms in
RHS(4.69)(X) in (4.70), and the term G1(X) in (4.70) can be replaced by

G2(X) :=
1

Var [X]3/2
inf

0<λ<1

∑
x

∑
t

∞∑
`=1

π(t, `)λ E
[(
∂dis
`,x,tX

) 6
1−λ
] 1−λ

2

. ♦

Remark 4.6.3. The additional term G1(X) in (4.70) typically dominates the right-hand side terms
of (4.69). However they become of the same order if the weight π is super-algebraically decaying, or if
the improved form of the above result holds (that is, with G1(x) replaced by G2(X)). In each of the
examples below, we are in one of these two situations, hence the above bounds on the Kolmogorov
and on the Wasserstein distances essentially coincide. Otherwise, it might be advantageous to rather
bound the Kolmogorov distance by the square-root of the Wasserstein distance and then use the above
estimate for the latter. ♦

Before we turn to the proof of Theorem 4.6.2, we recall representative examples analyzed in [163,
Section 3], and to which it applies. In each case, we quickly discuss the existence and properties
of the action radius ρ̃ (which is a slightly stronger notion of action radius than the one ρ given in
Definition 4.4.2 and needed for first-order weighted functional inequalities). For technical details we
refer to Section 4.5, where the action radii ρ are constructed.
(A) Poisson unbounded spherical inclusion model. Consider a Poisson point process P of unit intensity

on Rd. For each Poisson point x ∈ P consider a random radius r(x) (independent of the radii
of other points and identically distributed according to some given law ν on R+), and define
the inclusion Cx := Br(x)(x). Consider the inclusion set I := ∪x∈PCx, let A0, A1 ∈ R be given
values, and define a random field A on Rd by

A(x) := A01x/∈I +A11x∈I ,

that is, A takes value A1 in the inclusions and A0 outside. As argued in Section 4.5.4, A
can be reformulated in the form addressed in Theorem 4.6.2 above with l = 1, and for all
x, t there exists a σ(X|Xx,t ,X ′|Xx,t)-measurable action radius ρx,t := t1X 6=Xx,t (cf. the proof of
Proposition 4.5.4(i)). The improved form of the above result therefore holds with

π(t, `) := 1`−1≤t<` P
[
X 6= X 0,t

]
≤ 2 ν([t− 1

2 , t+ 1
2))1`−1≤t<`.

191



(B) Random parking process. Consider the random parking point process R with unit radius on Rd
(cf. Section 4.5.3 for a precise construction based on an underlying Poisson point process P0 of
unit intensity on Rd ×R+). As above, for all x ∈ R we denote by Cx := B(x) the unit spherical
inclusion centered at x (so that by definition of R all the inclusions are disjoint), we consider
the inclusion set I := ∪x∈RCx, and we define a random field A on Rd by

A(x) := A01x/∈I +A11x∈I .

In the proof of Proposition 4.5.3 we have constructed for all x an action radius ρx with respect to
the underlying Poisson point process P0 on Q(x)×R+. By definition, this action radius satisfies
ρx(PB0 ) ≤ ρx(P0 ∪ P ′0) for all B ⊂ Zd: indeed, adding points in the Poisson point process P0

adds possible causal chains, hence increases the defined action radius. Therefore, we deduce
ρ̃x ≤ ρx(P0∪P ′0). As P0∪P ′0 is itself a Poisson point process on Rd×R+ with doubled intensity,
we conclude P [ρ̃x ≥ `] ≤ C exp(− 1

C `) as in Proposition 4.5.3, and we may apply Theorem 4.6.2
with l = 0 and exponential weight π(`) ≤ C exp(− 1

C `).
(C) Poisson random tessellations. Consider a Poisson point process P on Rd, and let V denote the

associated Voronoi tessellation of Rd, that is, a partition of Rd into convex polyhedra Vx ∈ V
centered at the Poisson points x ∈ P. For each point x ∈ P consider a random value α(x)
(independent of the values at other points and identically distributed), and we define a random
field A on Rd by

A(x) :=
∑
y∈P

α(y)1x∈Vy .

As argued in the proof of Proposition 4.5.2, A can be reformulated in the form addressed in
Theorem 4.6.2 above with l = 0 and with weight

π(`) ≤ P [ρ̃x ≥ `− 1] ≤ C exp
(
− 1

C
`d
)
. (4.71)

(More precisely, we argue as follows: Denote by Ci := {x ∈ Rd : xi ≥ 5
6 |x|}, 1 ≤ i ≤ d, the d

cones in the canonical directions ei of Rd, and consider the 2d cones C±i := ±(2ei + Ci). For
all x, let ρx := ρ0

x denote the action radius for A defined in the proof of Proposition 4.5.2, and
let ρ̃x be defined as in the statement of Theorem 4.6.2 above. By construction, the inequality
ρ̃x ≤ CL holds if for each cone C±i there exists a cube Q ⊂ C±i ∩ {x : |xi| ≤ L} such that
P0 ∩Q 6= ∅ 6= P ′0 ∩Q. By independence of P0 and P ′0, and by a union bound, the claim (4.71)
follows.)

Proof of Theorem 4.6.2. We split the proof into two steps. First note that by approximation it is
enough to prove the result for σ(X|∪(x,t)∈E(Q(x)×Q(t)))-measurable random variables X = X(X ) for a
finite set E ⊂ Zd × Zl. Let such a finite set E and such a random variable X be fixed.

Step 1. Application of a result by Chatterjee.
By [112, Theorem 2.2] (together with the standard spectral gap (4.4.1)), we have

dW

(
X − E [X]√

Var [X]
,N

)
.

1

Var [X]3/2

∑
x,t

E
[
|∆x,tX|3

]
+

1

Var [X]

(∑
x,t

E
[∣∣∣∑

x′,t′

(∆x,t∆x′,t′X)∆x′,t′X
∣∣∣2]) 1

2

+
1

Var [X]

(∑
x,t

E
[∣∣∣∑

x′,t′

(∆x,t∆x′,t′X)∆x′,t′X
∣∣∣2]) 1

2

, (4.72)
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where the sums in (x, t) and (x′, t′) implicitly run over E, and where we have set

∆x,tX(XB) := X(XB)−X(XB∪{(x,t)}),

∆x,tX :=
∑
B⊂E

(x,t)/∈B

KB∆x,tX(XB), KB :=
|B|!(|E| − |B| − 1)!

|E|!
.

Note that by definition
∑

B⊂E:(x,t)/∈BKB = 1. By [282, Theorem 4.2] (together with the standard
spectral gap (4.4.1)), the following estimate on the Kolmogorov distance also holds

dK

(
X − E [X]√

Var [X]
,N

)
. RHS(X) +

1

Var [X]3/2
E
[(∑

x,t

|∆x,tX|2 ∆x,tX
)2
] 1

2

+
1

Var [X]

(∑
x,t

E
[∣∣∣∑

x′,t′

(∆x,t∆x′,t′X)∆x′,t′X
∣∣∣2]) 1

2

+
1

Var [X]

(∑
x,t

E
[∣∣∣∑

x′,t′

(∆x,t∆x′,t′X)∆x′,t′X
∣∣∣2]) 1

2

, (4.73)

where RHS(X) stands for the right-hand side of (4.72) above, and

∆x,tX :=
∑
B⊂E

(x,t)/∈B

KB|∆x,tX(XB)|.

Only the first right-hand side term of (4.73) (after RHS(X)) will lead the correction G1(X) in (4.70)
with respect to (4.69).

Step 2. Conditioning with respect to the action radius.
In this step we reformulate the right-hand sides of (4.72) and (4.73) by introducing the action

radius ρx,t for A with respect to X . We only address the second right-hand side term in (4.72)
since all the other terms can be treated similarly. To simplify notation, we write z := (x, t) and
Q(z) := Q(x) × Q(t). We start by expanding the square and by distinguishing cases when the
differences ∆z are taken at the same points,

∑
z

E

[∣∣∣∣∑
z′

(∆z∆z′X)∆z′X

∣∣∣∣2
]
≤
∑
z,z′,z′′

E
[
|∆z∆z′X||∆z∆z′′X||∆z′X||∆z′′X|

]
=
∑
z

E
[
|∆zX|2|∆zX|2

]
+ 2

∑
z 6=z′

E
[
|∆z∆z′X||∆zX||∆zX||∆z′X|

]
+
∑
z 6=z′

E
[
|∆z∆z′X|2|∆z′X|2

]
+
∑
z,z′,z′′
distinct

E
[
|∆z∆z′X||∆z∆z′′X||∆z′X||∆z′′X|

]
, (4.74)

where we used the fact that ∆z∆zX = ∆zX. We then reformulate the four right-hand side terms
by introducing the action radius. We only treat the last term in detail (the other terms are similar).
Since the product |∆z∆z′X||∆z∆z′′X||∆z′X||∆z′′X| vanishes whenever X|Q(z) = X ′|Q(z) or X|Q(z′) =
X ′|Q(z′) or X|Q(z′′) = X ′|Q(z′′), we obtain after conditioning with respect to the values of ρ̃z, ρ̃z′ and
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ρ̃z′′ (that is, the stronger notion of action radii defined in the statement),∑
z,z′,z′′
distinct

E
[
|∆z∆z′X||∆z∆z′′X||∆z′X||∆z′′X|

]

≤
∞∑

`,`′,`′′=1

∑
z,z′,z′′
distinct

E
[
|∆z∆z′X||∆z∆z′′X||∆z′X||∆z′′X|

× 1`−1≤ρ̃z<` 1X|Q(z) 6=X ′|Q(z)
1`′−1≤ρ̃z′<`′ 1X|Q(z′) 6=X ′|Q(z′)

1`′′−1≤ρ̃z′′<`′′ 1X|Q(z′′) 6=X ′|Q(z′′)

]
.

Note that the event ρ̃z < ` entails by definition A(XB)|Rd\Q2`+1(x) = A(XB∪{z})|Rd\Q2`+1(x) for all
B ⊂ E. By Hölder’s inequality and by definition of ∂dis and ∂dis∂dis, we then obtain for all 0 < λ < 1,

∑
z,z′,z′′
distinct

E
[
|∆z∆z′X||∆z∆z′′X||∆z′X||∆z′′X|

]
≤

∞∑
`,`′,`′′=1

∑
z,z′,z′′
distinct

∑
B′⊂E
z′ /∈B′

KB′
∑
B′′⊂E
z′′ /∈B′′

KB′′

× E
[
1`−1≤ρ̃z<` 1X|Q(z) 6=X ′|Q(z)

1`′−1≤ρ̃z′<`′ 1X|Q(z′) 6=X ′|Q(z′)
1`′′−1≤ρ̃z′′<`′′ 1X|Q(z′′) 6=X ′|Q(z′′)

]λ
× E

[(∣∣∂dis
`,z ∂

dis
`′,z′X(X )

∣∣∣∣∂dis
`,z ∂

dis
`′′,z′′X(X )

∣∣∣∣∂dis
`′,z′X(XB′)

∣∣∣∣∂dis
`′′,z′′X(XB′′)

∣∣) 1
1−λ
]1−λ

.

Again applying Hölder’s inequality, noting that
∑

B⊂E:z /∈BKB = 1, and recalling that X and XB
have the same law for all B ⊂ E, we conclude∑

z,z′,z′′
distinct

E
[
|∆z∆z′X||∆z∆z′′X||∆z′X||∆z′′X|

]

≤
∞∑

`,`′,`′′=1

∑
z,z′,z′′

(
π(t, `)π(t′, `′)π(t′′, `′′)

)λ
3 E
[∣∣∂dis

`,z ∂
dis
`′,z′X

∣∣ 4
1−λ
] 1−λ

4 E
[∣∣∂dis

`,z ∂
dis
`′′,z′′X

∣∣ 4
1−λ
] 1−λ

4

× E
[∣∣∂dis

`′,z′X
∣∣ 4

1−λ
] 1−λ

4 E
[∣∣∂dis

`′′,z′′X
∣∣ 4

1−λ
] 1−λ

4
. (4.75)

The other terms in (4.74) can be treated similarly, and the results (i)–(ii) follow. Finally note that
if for all z there is an action radius ρz for A with respect to X on Q(z) which is σ(X|Q(z),X ′|Q(z))-
measurable, then the complete independence of X ensures that ρ̃z, ρ̃z′ and ρ̃z′′ are independent for
z, z′, z′′ distinct, so that we simply obtain

E
[
1`−1≤ρ̃z<` 1X|Q(z) 6=X ′|Q(z)

1`′−1≤ρ̃z′<`′ 1X|Q(z′) 6=X ′|Q(z′)
1`′′−1≤ρ̃z′′<`′′ 1X|Q(z′′) 6=X ′|Q(z′′)

]
= π(t, `)π(t′, `′)π(t′′, `′′).

The exponent 1
3 can then be removed from the weights in (4.75), and the corresponding improved

result follows.

4.7 Application to spatial averages of the random field

Although the primary aim of this chapter is to address concentration and approximate normality
properties for general nonlinear functions of correlated random fields, we illustrate the use of weighted
functional inequalities on the simplest functions possible, that is, (linear) spatial averages of (a possibly
nonlinear yet approximately local transformation of) the random field itself.
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Given a jointly measurable stationary random field A, we typically consider a σ(A)-measurable
random variable f(A) that is approximately 1-local with respect to the field A, in the following sense:
for all r > 0 we assume

sup ess
A

∣∣f(A)− E [f(A) ‖ A|Br ]
∣∣ ≤ Ce− r

C . (4.76)

More precisely, given ∂̃ = ∂G, ∂fct, or ∂osc, we will use the following finer notion of approximate
1-locality: for all x ∈ Rd and ` ≥ 0,

sup ess
A

∂̃A,B`+1(x)f(A) ≤ Ce−
1
C

(|x|−`)+ . (4.77)

(An important particular case is when the random variable f(A) is exactly 1-local, that is, when f(A)
is exactly σ(A|B1)-measurable.) We then set F (x) := f(A(·+ x)) for all x ∈ Rd, and for all L ≥ 0 we
consider the random variable

XL := XL(A) :=

 
QL

(F − E [F ]),

that is, the spatial average of (the nonlinear approximately local transformation F of) the random
field A on the cube of side-length L. Note that the results below hold in the same form if the random
variable XL is replaced by L−d

´
QL

e−
1
L
|y|(F (y)− E [F ])dy.

4.7.1 Scaling of spatial averages

We start with the scaling of the variance of the spatial average XL. Note that a similar result
holds in stochastic homogenization, where XL is replaced by the spatial average of the square of the
gradient of the extended corrector (cf. [203]).

Proposition 4.7.1. If A satisfies (∂̃-WSG) with integrable weight π and derivative ∂̃ = ∂G, ∂fct, or
∂osc, and if the random variable f(A) satisfies (4.77), then we have for all L > 0,

Var [XL] . π∗(L)−1,

where we define

π∗(`) :=
(  

B`

ˆ ∞
|x|

π(s)dsdx
)−1

. ♦

Remark 4.7.2. If π(`) ' (`+ 1)−1−β for some β > 0, then we compute

π∗(`) '

{
(`+ 1)d log−1(2 + `), if β = d;

(`+ 1)d, it β > d.

In particular if correlations are integrable (corresponding to the case β > d), we recover the CLT
scaling: Var [XL] . π∗(L)−1 ' L−d for all L ≥ 1. ♦

Proof of Proposition 4.7.1. Let L > 0. Given ∂̃ = ∂G, ∂fct, and ∂osc, assumption (4.77) yields

|∂̃A,B`+1(x)XL| .
 
QL

e−
1
C

(|x−y|−`)+dy . L−d(L ∧ (`+ 1))de−
1
C

(|x|−L−`)+ ,

so that the weighted spectral gap yields

Var [XL] .
ˆ ∞

0

ˆ
Rd
L−2d(L ∧ (`+ 1))2de−

1
C

(|x|−L−`)+dx (`+ 1)−dπ(`)d`

.
ˆ ∞

0
L−2d(L ∧ (`+ 1))2d(L+ `)d(`+ 1)−dπ(`)d` . L−d

ˆ L

0
(`+ 1)dπ(`)d`+

ˆ ∞
L

π(`)d`.

An integration by parts yields π∗(L)−1 ' L−d
´ L

0 π(`)`dd`+
´∞
L π(`)d`, and the conclusion follows.
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4.7.2 Concentration properties of spatial averages

We turn to the concentration properties of the spatial average XL. The following result shows
that the scaling crucially depends on three properties: the type of weighted functional inequality,
the type of derivative, and the decay of the weight. More importantly, we show that concentration
properties implied by weighted functional inequalities are in general stronger than those implied by
the corresponding α-mixing.

As emphasized in the introduction in Section 4.1.1, establishing such concentration properties
turns out to be particularly relevant for quantitative stochastic homogenization, and more precisely
to obtain sharp integrability estimates on the validity of the quenched large-scale regularity theory
for random elliptic systems in divergence form (that is, operators of the form −∇ · A∇ with A a
matrix-valued random coefficient field as considered throughout this chapter). More precisely, Gloria,
Neukamm, and Otto [204] reduce the validity of this large-scale regularity to concentration properties
of spatial averages XL of the square of an approximately local version of the extended corrector
(cf. [204, Proposition 3]), and then make direct use of weighted functional inequalities in the form
of the concentration results below: large-scale regularity is indeed characterized in [204] by the so-
called minimal radius r∗, an almost surely finite stationary random field whose stochastic integrability
essentially coincides with the scaling in L of the probability P [XL ≥ δ] for some fixed (small) δ > 0,
in the sense that a property of the form P [XL ≥ δ] ≤ gδ(L)−1 for all L ≥ 1 essentially implies
E
[
gδ(

1
Cδ
r∗)
]
<∞. We believe that these concentration results can also be used within the approach

to large-scale regularity by Armstrong and Smart [36] and Armstrong and Mourrat [34] (which is
rather formulated in terms of α-mixing assumptions).

Proposition 4.7.3. Assume that the random variable f(A) satisfies (4.77).
(i) Let A satisfy (∂̃-WSG) with integrable weight π and derivative ∂̃ = ∂G or ∂fct, and let π∗ be

defined as in Proposition 4.7.1. Then for all δ, L > 0 we have

P [XL ≥ δ] ≤ exp
(
− δ

C
π∗(L)

1
2

)
. (4.78)

If in addition A satisfies (∂̃-WLSI) with weight π, then for all δ, L > 0 we have

P [XL ≥ δ] ≤ exp
(
− δ2

C
π∗(L)

)
. (4.79)

(ii) Let A satisfy (∂osc-WSG) with weight π(`) . (`+ 1)−β−1 for some β > 0. Then for all δ, L > 0
we have

P [XL ≥ δ] ≤ Ce−
1
C
δ
(
1 + δ−

2β
d | log δ|

)
L−β. (4.80)

(iii) Let A satisfy (∂osc-WSG) with weight π(`) . exp(− 1
C `

β) for some β > 0. Then for all δ > 0
and all L ≥ 1 we have

P [XL ≥ δ] ≤ exp
(
− δ ∧ δ2

C
Lβ∧

d
2

)
. (4.81)

If in addition A satisfies (∂osc-WLSI) with weight π(`) . exp(− 1
C `

β) for some β > 0, then for
all δ > 0 and all L ≥ 1 we have

P [XL ≥ δ] ≤ exp
(
− δ ∧ δ2

C
Lβ∧d

)
. (4.82)

♦

Remark 4.7.4. If we further assume that the random variable f(A) is a.s. bounded by a deterministic
constant C0 ≥ 1, then there holds P [|XL| > C0] = 0, and hence in (4.81) and (4.82) we may replace
δ ∧ δ2 by 1

C0
δ2. ♦
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In the case of a super-algebraic weight, it is instructive to compare these (nonlinear) concentration
results to the corresponding (linear) concentration result implied by the α-mixing properties of the
field A (see also [34, Appendix A]). Note that the same result holds under the corresponding weighted
covariance inequality (which is natural in view of Proposition 4.2.3(iii)). (As we are basically interested
in the scaling in L, we do not try to optimize the | log δ|-dependence below.)

Proposition 4.7.5. Given β > 0, assume that the random field A either is α-mixing with

α̃(`,D;A) . (1 +D)C exp
(
− 1

C
`β
)
, for all D, ` ≥ 0,

or satisfies (∂̃-WCI) with weight π(`) . exp(− 1
C `

β) and derivative ∂̃ = ∂G or ∂osc. Further assume
that the random variable f(A) is a.s. bounded by a deterministic constant, that is, sup essA |f(A)| . 1,
and that it satisfies (4.76). Then for all δ > 0 and all L ≥ 1 we have

P [XL > δ] ≤ C exp

(
− δ2(| log δ|+ 1)

− dβ
d+β

C
L

dβ
d+β

)
. ♦

Remark 4.7.6. Let us briefly compare the concentration results of Propositions 4.7.3(iii) and 4.7.5.
Assume that the random field A satisfies a weighted functional inequality with super-algebraic weight
π(`) . exp(− 1

C `
β) and derivative ∂osc, and that A is α-mixing with α̃(`,D;A) . (1+D)d exp(− 1

C `
β)

(these assumptions are indeed compatible in view of Proposition 4.2.3(iii)). Then the decay in L of the
probability P [XL ≥ δ] obtained from the α-mixing is better than the one obtained from (∂osc-WSG)
only for β > d, and is always worse than the one obtained from (∂osc-WLSI). Similarly, in the case
of an algebraic weight π(`) . (` + 1)−β−1, the functional inequality (∂osc-WSG) yields the optimal
decay L−β (cf. Proposition 4.7.3(ii)), while one can check that the corresponding α-mixing only leads
to this decay up to a small (sub-algebraic) loss. ♦

We start with the proof of Proposition 4.7.3.

Proof of Proposition 4.7.3. We split the proof into three steps. We start with the proofs of (4.78), (4.79),
and (4.80), which directly follow from Propositions 4.3.2 and 4.3.3(ii). The proof of estimates (4.81)
and (4.82) is more subtle and is based on a fine tuning of Herbst’s argument using specific features
of the random variable ZL.

Step 1. Proof of (4.78), (4.79), and (4.80).
For ∂̃ = ∂G or ∂fct, let the Lipschitz norm ||| · |||∂̃,π be defined as in the statement of Propo-

sition 4.3.2. The same computation as in the proof of Proposition 4.7.1 ensures that the random
variable ZL := π∗(L)1/2XL = π∗(L)1/2

ffl
QL

(F − E [F ]) satisfies

|||ZL |||∂̃,π . 1.

Hence, estimates (4.78) and (4.79) follow from Proposition 4.3.2. We now turn to the proof of (4.80).
If A satisfies (∂osc-WSG) with weight π(`) . (` + 1)−β−1, β > 0, we compute for all p ≥ p0 >

β
d ,

using assumption (4.77),

E
[ˆ ∞

0

(ˆ
Rd

(
∂osc
A,B`(x) XL

)2
dx

)p
(`+ 1)−dp−β−1d`

]
. L−2dp

ˆ ∞
1

(L+ `)dp(L ∧ `)2dp`−dp−β−1d` .
(
1 + (dp0 − β)−1

)
L−β.

Then applying Proposition 4.3.3(ii) and optimizing the choice of p0 >
β
d , the result (4.80) follows.
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Step 2. Proof of (4.81).
Let L ≥ 1, and define ZL := Ld/2XL. As in the proof of Proposition 4.7.1, assumption (4.77)

yields
∂osc
A,B`(x)ZL . L−

d
2 (L ∧ (`+ 1))de−

1
C

(|x|−L−`)+ . (4.83)

We make use of a variant of Herbst’s argument as in [66, Section 4] (see also [292, Section 2.5]). For
all t ≥ 0 we apply (∂osc-WSG) to the random variable exp(1

2 tZL): using the inequality |ea − eb| ≤
(ea + eb)|a− b| for all a, b ∈ R, we obtain

Var
[
e

1
2
tZL
]
≤

ˆ ∞
0

ˆ
Rd

E
[(

∂osc
A,B`(x) e

1
2
tZL
)2
]
dx (`+ 1)−dπ(`)d`

. t2 E
[
etZL

]
sup ess

A

ˆ ∞
0

ˆ
Rd
e
t∂osc
A,B`(x)

ZL
(
∂osc
A,B`(x) ZL

)2
dx e−

1
C
`βd`,

and hence, in terms of the Laplace transform HL(t) := E
[
etZL

]
,

HL(t)−HL(t/2)2 ≤ t2HL(t) sup ess
A

ˆ ∞
0

ˆ
Rd
e
t∂osc
A,B`(x)

ZL
(
∂osc
A,B`(x)ZL

)2
dx e−

1
C
`βd`.

Using the property (4.83) of the random variable ZL, we find

HL(t)−HL(t/2)2

. t2HL(t)

ˆ ∞
1

(L ∧ `√
L

)2d
exp

(
Ct
(L ∧ `√

L

)d
− `β

C

)ˆ
Rd
e−

1
C

(|x|−L−`)+dx d`

. t2HL(t)

ˆ ∞
1

(L+ `)d
(L ∧ `√

L

)2d
exp

(
Ct
(L ∧ `√

L

)d
− `β

C

)
d`

. t2HL(t)

( ˆ L

0
exp

(
Ct
( `√

L

)d
− `β

C

)
d`+ LdeCtL

d
2

ˆ ∞
L

e−
1
C
`βd`

)
. (4.84)

Without loss of generality we may assume that β ≤ d
2 (the statement (4.81) is indeed not improved

for β > d
2). We then restrict to

0 ≤ t ≤ T :=
1

K
Lβ−

d
2 , (4.85)

for some K � 1 to be chosen later (with in particular K ≥ 2C2). As a consequence of β ≤ d
2 , this

choice yields T ≤ K−1. On the one hand, for all 0 ≤ ` ≤ L and all 0 ≤ t ≤ T , the choice of T with
K ≥ 2C2 yields

Ct
( `√

L

)d
− `β

C
= −L

β

C

(( `
L

)β
− C2t

Lβ−
d
2

( `
L

)d)
≤ −L

β

C

(( `
L

)β
− 1

2

( `
L

)d)
≤ − `

β

2C
,

and hence ˆ L

0
exp

(
Ct
( `√

L

)d
− `β

C

)
d` .

ˆ ∞
0

e−
`β

2C d` . 1.

On the other hand, for all 0 ≤ t ≤ T , the choice of T with K ≥ 2C2 yields

LdeCtL
d
2

ˆ ∞
L

e−
1
C
`βd` . exp

(
CtL

d
2 − Lβ

2C

)
≤ exp

(CLβ
K
− Lβ

2C

)
≤ 1.

Injecting these estimates into (4.84), we obtain for all 0 ≤ t ≤ T ,

HL(t)−HL(t/2)2 ≤ Ct2HL(t),
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and hence

HL(t) ≤ HL(t/2)2

1− Ct2
.

Applying the same inequality for t/2, iterating, and noting that HL(2−nt)2n → etE[ZL] = 1 as n ↑ ∞,
we obtain for all 0 ≤ t ≤ T ,

HL(t) ≤
∞∏
n=0

(
1− C(2−nt)2

)−2n
.

For K large enough such that CT 2 ≤ CK−2 ≤ 1
2 , the inequality log(1− x) ≥ −2x for all 0 ≤ x ≤ 1

2
then yields for all 0 ≤ t ≤ T ,

logHL(t) ≤ −
∞∑
n=0

2n log
(
1− C(2−nt)2

)
≤ 2Ct2

∞∑
n=0

2−n . t2,

and thus HL(T ) ≤ eCT
2 . Using Markov’s inequality and the choice (4.85) of T , we deduce for all

r ≥ 0,

P [ZL > r] ≤ e−Tr+CT 2
= exp

(
− Lβ−

d
2 r

K
+

C

K2
L2β−d

)
.

With the choice r = δL
d
2 for δ > 0, this turns into

P [XL > δ] ≤ exp
(
− δ

K
Lβ +

C

K2
L2β−d

)
≤ exp

(
− 1

K

(
δ − C

K

)
Lβ
)
.

Choosing K ' 1 ∨ δ−1 large enough, the desired estimate (4.81) follows.

Step 2. Proof of (4.82).
Let L ≥ 1, and define ZL := Ld/2XL. We make use of Herbst’s classical argument as presented

e.g. in [293, Section 5.1]. For all t ≥ 0 we apply (∂osc-WLSI) to the random variable exp(1
2 tZL),

Ent
[
etZL

]
≤

ˆ ∞
0

ˆ
E
[(
∂osc
A,B`(x)e

1
2
tZL
)2
]
dx (`+ 1)−dπ(`)d`.

Estimating the right-hand side as in (4.84), we obtain in terms of HL(t) := E
[
etZL

]
,

d

dt

(1

t
logHL(t)

)
.

ˆ L

0
exp

(
Ct
( `√

L

)d
− `β

C

)
d`+ LdeCtL

d
2

ˆ ∞
L

e−
1
C
`βd`.

Without loss of generality we may assume that β ≤ d (the statement (4.82) is indeed not improved
for β > d). We then restrict to

0 ≤ t ≤ T :=
1

K
Lβ−

d
2 , (4.86)

for some K � 1 to be chosen later (with in particular K ≥ 2C). Arguing as in Step 1, we obtain for
all 0 ≤ t ≤ T ,

d

dt

(1

t
logHL(t)

)
. 1,

which yields by integration with respect to t on [0, T ],

1

T
logHL(T ) =

1

T
logHL(T )− E [ZL] . T,

that is, HL(T ) ≤ eCT
2 . The desired estimate (4.82) then follows as in Step 1, using Markov’s

inequality and choosing K large enough.
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We now turn to the proof of Proposition 4.7.5.

Proof of Proposition 4.7.5. Without loss of generality we may assume that sup essA |f(A)| ≤ 1, which
implies P [|XL| > 1] = 0. It is then sufficient to establish the result for 0 < δ ≤ 1. We split the proof
into two steps. In the first step we prove the result in the case when the random variable f(A) is
exactly 1-local. We then extend the result in Step 2 when f(A) is only approximately local in the
sense (4.76). Since (WCI) implies α-mixing by Proposition 4.2.3(iii), it is enough to prove the result
under the sole assumption of α-mixing.

Step 1. Exactly 1-local random variable f(A).
In this step we assume in addition that f(A) is σ(A|B1)-measurable, and we prove that for all

δ, L > 0,

P [XL > δ] ≤ C exp
(
− δ2

C
L

dβ
d+β

)
. (4.87)

Let p ≥ 1 be an integer and let R > 0. Setting

ER,p := {(x1, . . . , x2p) ∈ (QL)2p : |x1 − xj | > R, ∀j 6= 1},

and noting that for all x the random variable F (x) is σ(A|B(x))-measurable, α-mixing leads to∣∣∣∣ ˆ . . .ˆ
ER,p

E [(F (x1)− E [F ]) . . . (F (x2p)− E [F ])] dx1 . . . dx2p

∣∣∣∣
≤ CpL2dpα̃(R− 2,

√
dL+ 2;A) . CpL2dp+Ce−

1
C
Rβ . (4.88)

Using this estimate, we compute

E
[
X2p
L

]
=

 
QL

. . .

 
QL

E [(F (x1)− E [F ]) . . . (F (x2p)− E [F ])] dx1 . . . dx2p

≤ CpLCe−
1
C
Rβ + CpL−2dp

ˆ
QL

. . .

ˆ
QL

1∀i, ∃j 6=i: |xi−xj |≤R dx1 . . . dx2p. (4.89)

We consider the partitions P := {P1, . . . , PNP } of the index set [2p] := {1, . . . , 2p} into nonempty
subsets of cardinality ≥ 2 (that is, ∪jPj = [2p], ]Pj ≥ 2 for all j, and Pj ∩ Pl = ∅ for all j 6= l), and
we use the notation P `2 [2p] for such partitions. The above then takes the form

E
[
X2p
L

]
≤ CpLCe−

1
C
Rβ + CpL−2dp

∑
P`2[2p]

LdNPRd(2p−NP ).

Since for all 1 ≤ k ≤ p the number of partitions P `2 [2p] with NP = k is bounded by the Stirling
number of the second kind {2p

k } ≤
1
2

(
2p
k

)
k2p−k ≤ Cpp2pk2(p−k)(2p− k)−(2p−k), we deduce

E
[
X2p
L

]
≤ CpLCe−

1
C
Rβ + Cp

(R
L

)dp p∑
k=1

p2pk2(p−k)

(2p− k)2p−k

(R
L

)d(p−k)
,

and hence by Markov’s inequality, for all δ > 0,

P [XL > δ] ≤ δ−2pCpLCe−
1
C
Rβ + δ−2pCp

(R
L

)dp p∑
k=1

p2pk2(p−k)

(2p− k)2p−k

(R
L

)d(p−k)
. (4.90)

Recall that we may restrict to 0 < δ ≤ 1. Choosing R = Lα, p = δ2C−1
0 Lαβ , and α = d

d+β , for some
C0 ' 1 large enough, the estimate (4.90) above leads to

P [XL > δ] ≤ Ce−
1
C
Lαβ + δ−2pCpL−αβp

p∑
k=1

pp+kk2(p−k)

(2p− k)2p−k .
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Noting that the summand is increasing in k, and using the choice of p with C0 large enough, we
deduce

P [XL > δ] ≤ Ce−
1
C
Lαβ + δ−2pCpL−αβppp ≤ Ce−

1
C
δ2Lαβ , (4.91)

from which the desired result (4.87) follows.

Step 2. Approximately 1-local random variable f(A).
For all r > 1, we define the (r-local) random variable fr(A) := E [f(A) ‖ A|Br ], and we set

Fr(x) := fr(A(· + x)) and Xr,L :=
ffl
QL

(Fr − E [Fr]). The approximate locality assumption (4.76)
implies a.s. for all r, L > 0,

|Xr,L −XL| ≤ Ce−
r
C . (4.92)

Setting F̃r(x) := F (rx) and Ar(x) := A(rx), we note that for all x ∈ Rd the random variable F̃r(x)
is σ(A|Br(rx))-measurable, that is, σ(Ar|B(x))-measurable. For all r ≥ 1, the α-mixing assumption on
A implies that the contracted random field Ar satisfies α-mixing with coefficient

α̃r(`,D;Ar) :=
(

(1 + rD)C exp(− 1

C
(r`)β)

)
∧ 1 ≤ C(1 + rD)C exp(− 1

C
(r`)β),

so that the α-mixing coefficient is basically unchanged for r ≥ 1. We may therefore apply Step 1 in
the following form for all δ, L > 0 and all r ≥ 1,

P [Xr,L > δ] = P

[ 
QL/r

(F̃r − E
[
F̃r
]
) > δ

]
≤ C exp

(
− δ2

C

(L
r

) dβ
d+β

)
,

where the constant C ≥ 1 is independent of r. Combining this with (4.92) and choosing r :=
C| log( δ

eC )| ≥ 1, we obtain for all 0 < δ ≤ 1 and L > 0,

P [XL > δ] ≤ P
[
Xr,L > δ − Ce−

r
C

]
≤ P

[
Xr,L >

δ
2

]
≤ C exp

(
− δ2

C

( L

| log( δ
eC )|

) dβ
d+β

)
,

and the conclusion follows.

4.7.3 Approximate normality of spatial averages

We now turn to the approximate normality of the spatial average XL. We focus for simplicity
on the case f(A) = A(0), so that XL =

ffl
QL

(A − E [A]) is the spatial average of the random field
itself (more general cases can be considered as well, at the price of further assumptions on second
vertical derivatives of f). We study two prototypical examples: Gaussian random fields, and Poisson
random inclusions with (unbounded) random radii. A similar result is expected to hold in stochastic
homogenization, where ZL is replaced by the spatial average of the homogenization commutator (cf.
Chapter 3).

Proposition 4.7.7. Let XL :=
ffl
QL

(A− E [A]), and consider the two examples separately.

(i) Let G be a jointly measurable stationary Gaussian random field on Rd, characterized by its
covariance C(x) := Cov [G(x);G(0)], and assume that supB(x) |C| ≤ c(|x|) for some Lipschitz
non-increasing map c : R+ → R+. Let h ∈ C2(R) with h′, h′′ ∈ L∞(R), and let A be the random
field on Rd defined by A(x) := h(G(x)) for all x. Set π(`) = −c′(`), and define

π∗(`) :=
(  

B`

ˆ ∞
|x|

π(s)dsdx
)−1

.
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Then Proposition 4.7.1 ensures that the rescaled random variable ZL := π∗(L)1/2XL satisfies
σ2
L := Var [ZL] . 1. Moreover we have for all L ≥ 1,

dTV

(
ZL
σL

,N
)
. σ−2

L π∗(L)−
1
2 . (4.93)

(ii) Let the random field A be given by the Poisson unbounded spherical inclusion model with radius
law ν (cf. example (A) in Section 4.6.2), and assume that the law ν satisfies for some β > 0,

γ(`) := ν([`, `+ 1)) . `−3d−β−1.

Then Proposition 4.7.1 holds with weight π(`) = (`+1)−2d−β−1 and π∗(L) = Ld, and the rescaled
random variable ZL := Ld/2XL satisfies σ2

L := Var [ZL] . 1. Moreover we have for all L ≥ 1,

dW

(
ZL
σL

,N
)

+ dK

(
ZL
σL

,N
)
.
(
1 + σ−3

L

)
L−

d
2
(
1 + Ld−β

) 1
2 . ♦

Remarks 4.7.8. Comments are in order.
— As e.g. in [112], we consider that estimating σL . 1 from below is a separate issue. In the

Gaussian case with integrable covariance function, we do not believe this is essential: in that
case, if h is for instance an increasing function, then one can indeed prove σL & 1 (see e.g.
[207] for a similar argument in stochastic homogenization, starting from a lower bound for
variances proved in [422]). In the Gaussian case with non-integrable covariance, the question
of bounding σL from below is more subtle. It is typically related to the Hermite rank of the
function h and may lead to different scalings than π∗, in which case approximate normality
may fail. We refer the reader to the recent works [224, 291] in the context of 1D stochastic
homogenization, and more generally to [408].

— Before we turn to the proof of the above result, let us discuss its optimality. We believe that
for Gaussian random fields item (i) is generically optimal, but optimality is much less clear
for item (ii) as the comparison to results based on α-mixing suggests. For this discussion,
we restrict to the more documented case of dimension d = 1. Two results are available on
approximate normality for spatial averages of α-mixing random fields. The first result is
classical and due to Ibragimov (see e.g. [75]): it ensures that a qualitative CLT holds for
ZL := L1/2XL whenever for some κ > 1 the field A satisfies α̃(R,∞;A) . R−κ for all R ≥ 1.
The second result is due to Pène [356, Theorem 1.1] and essentially shows that ZL satisfies a
quantitative CLT in 1-Wasserstein distance with optimal rate L−1/2 whenever for some κ > 2
there holds α̃(R,∞;A) . R−κ for all R ≥ 1. Let us compare these results with the statement
of item (ii) above. For the Poisson unbounded spherical inclusion model with radius law ν (cf.
example (A) in Subsection 4.6.2), assuming that γ(`) := ν([`, ` + 1)) ' (` + 1)−κ−d−1 with
κ > 0, we proved in Propositions 4.2.3(iii) and 4.5.4(i) that for any fixed diameter D > 0
the α-mixing coefficient satisfies α̃(R,D;A) .D R−κ for all R ≥ 1, while item (ii) above for
d = 1 yields a qualitative CLT whenever κ > 2, and a CLT in 1-Wasserstein distance with
optimal rate L−1/2 whenever κ > 3. Comparing this with the results by Ibragimov and by
Pène, there is thus a discrepancy in the critical values of κ, suggesting that item (ii) might
not be optimal. Nevertheless, in the Poisson unbounded spherical model under consideration
one can prove that infR≥1 α̃(R,∞;A) > 0, so that strictly speaking the results by Ibragimov
and Pène do not apply — no general CLT result seems to be known based on the decay of
α-mixing coefficients on bounded sets only. ♦

Proof of Proposition 4.7.7. We split the proof into two steps.

Step 1. Proof of item (i).
By [163, Corollary 3.1], we may apply [162, Proposition 4.1] with the weight π(`) = −c′(`), which

then yields σL . 1. We now apply Theorem 4.6.1 to ZL, which greatly simplifies in this precise linear
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situation since second derivatives of ZL with respect to A vanish identically. More precisely, for all
L ≥ 1 with the choice R := 1, it leads to

dTV

(
ZL
σL

,N
)2

.
1

σ4
L

ˆ
Rd
. . .

ˆ
Rd
c(|x1 − x2| − 1) c(|x2 − x3| − 1) c(|x3 − x4| − 1)

×
4∏
i=1

E

[( ˆ
B(xi)

∣∣∣∂ZL
∂A

∣∣∣)4
] 1

4

dx1 . . . dx4.

For all x ∈ Rd a direct calculation yields
ˆ
B(x)

∣∣∣∂ZL
∂A

∣∣∣ . π∗(L)
1
2L−d1|x|.L,

so that the above turns into

dTV

(
ZL
σL

,N
)2

.
1

σ4
L

L−4d π∗(L)2

ˆ
BCL

. . .

ˆ
BCL

c(|x1 − x2|)c(|x2 − x3|)c(|x3 − x4|)dx1 . . . dx4

.
1

σ4
L

π∗(L)2
(
L−d

ˆ
BCL

c(|x|)dx
)3
.

Recalling that c is non-increasing and that π(`) = −c′(`), we compute

L−d
ˆ
BCL

c(|x|)dx ' L−d
ˆ
BL

c(|x|)dx '
 
BL

ˆ ∞
|x|

π(s)dsdx = π∗(L)−1.

The claim (4.93) then follows from the combination of these last two estimates.

Step 2. Proof of item (ii).
By [163, Proposition 3.4], we may apply [162, Proposition 4.1] with the weight

π(`) ' (`+ 1)d sup
|u|≤2

γ(`+ u− 1) . `−2d−β−1,

which implies π∗(L) ' Ld and hence σL . 1. We then apply Theorem 4.6.2 to ZL. For all x, x′ ∈ Zd
and `, `′ ∈ N, we have

|∂dis
`,xZL| . L−

d
2 |B`+1(x) ∩QL| . L−

d
2
(
L ∧ (`+ 1)

)d
1|x|.L+`,

and also

|∂dis
`,x∂

dis
`′,x′ZL| . L−

d
2 |B`′+1(x′) ∩B`+1(x) ∩QL|

. L−
d
2
(
L ∧ (`+ 1) ∧ (`′ + 1)

)d
1|x′|.L+`′1|x|.L+`1|x−x′|.`+`′ .

As these right-hand sides are deterministic, we may actually apply Theorem 4.6.2 with the borderline
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exponent λ = 1, which yields

dW

(
ZL
σL

,N
)

+ dK

(
ZL
σL

,N
)

.µ
1

σ2
L

( ∑
x,x′,x′′

∞∑
`,`′,`′′=0

γ(`)γ(`′)γ(`′′) sup ess
A

|∂dis
`,x∂

dis
`′,x′ZL|

× sup ess
A

|∂dis
`,x∂

dis
`′′,x′′ZL| sup ess

A
|∂dis
`′,x′ZL| sup ess

A
|∂dis
`′′,x′′ZL|

) 1
2

+
1

σ2
L

(∑
x,x′

∞∑
`,`′=0

γ(`)γ(`′) sup ess
A

|∂dis
`,x∂

dis
`′,x′ZL|2 sup ess

A
|∂dis
`′,x′ZL|2

) 1
2

+
1

σ2
L

(∑
x

∞∑
`=0

γ(`) sup ess
A

|∂dis
`,xZL|4

) 1
2

+
1

σ3
L

∑
x

∞∑
`=0

γ(`) sup ess
A

|∂dis
`,xZL|3.

We denote by I1, . . . , I4 the four right-hand side terms. Given the bound γ(`) . `−β
′−1 for some

β′ > 0, straightforward calculations left to the reader yield for all L ≥ 1,

I1 .
1

σ2
L

L−
d
2 (1 ∨ L2d−β′)

3
2 , I2 .

1

σ2
L

L−
d
2 (1 ∨ L3d−β′)

1
2 (1 ∨ L2d−β′)

1
2 ,

I3 .
1

σ2
L

L−
d
2 (1 ∨ L4d−β′)

1
2 , I4 .

1

σ3
L

L−
d
2 (1 ∨ L3d−β′).

The dominating term with respect to scaling in L is the third one I3, and the claim then follows by
taking β′ := 3d+ β for β > 0.

4.7.4 Random sequential adsorption and the jamming limit

We consider the problem of sequential packing at saturation, following the presentation in [391].
Let R > 0, and let (Ui,R)i≥1 be a sequence of i.i.d. random points uniformly distributed on the
cube QR. Let S be a fixed bounded closed convex set in Rd with non-empty interior and centered
at the origin 0 of Rd (that is, a reference “solid”), and for i ≥ 1 let Si,R be the translate of S with
center at Ui,R. Then SR := (Si,R)i≥1 is an infinite sequence of solids centered at uniform random
positions in QR (the centers lie in QR but the solids themselves need not lie wholly inside QR). Let
the first solid S1,R be packed, and recursively for i ≥ 2 let the i-th solid Si,R be packed if it does not
overlap any solid in {S1,R, . . . ,Si−1,R} which has already been packed. If not packed, the i-th solid
is discarded. This process, known as random sequential adsorption (RSA) with infinite input on the
domain QR, is irreversible and terminates when it is not possible to accept additional solids. The
jamming number NR := NR(SR) denotes the number of solids packed in QR at termination. We are
then interested in the asymptotic behavior of R−dNR in the infinite volume regime R ↑ ∞, the limit
of which (if it exists) is called the jamming limit.

In any dimension d ≥ 1 and for any choice of the reference solid S, Penrose [357] established the
existence of the jamming limit, as well as the existence of the infinite volume limit for the distribution
of the centers of packed solids, which defines a point process ξ on the whole of Rd. (In the model
case S := B1, this locally finite random measure ξ is referred to as the random parking point process
with unit radius.) As already recalled in Section 4.5.3 (with unit balls replaced by translates of S),
the key argument in [357] relies on a graphical construction for ξ as a transformation ξ = Φ(P0) of a
unit intensity Poisson point process P0 on the extended space Rd × R+.

In [391], Schreiber, Penrose, and Yukich further showed in any dimension d ≥ 1 that the rescaled
variance R−dVar [NR] converges to a positive limit (without rate) and that NR satisfies a CLT, that
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is, the fluctuations of the random variable NR are asymptotically normal. They also quantified the
rate of convergence to the normal, as well as the rate of convergence of R−dE

[
NR
]
to the jamming

limit. The numerical approximation of the value of the jamming limit has been the object of several
works, including [413, Chapter 11.4] and [415]. As is clear from the analysis, the speed of convergence
of R−dE

[
NR
]
towards its limit is dominated by a boundary effect (the error scales like R−1).

In order to avoid this boundary effect and to obtain better rates of convergence, we may replace
NR by the number ÑR of packed solids with periodic boundary conditions on QR: we say that the
i-th solid Si,R is packed with periodic boundary conditions if its periodic extension Si,R + RZd does
not overlap with any solid in {S1,R, . . . ,Si−1,R} which has already been packed. The following shows
that this allows one to get rid of the boundary effect, yields optimal estimates, and therefore suggests
a more efficient way to approximate the jamming limit numerically.

Theorem 4.7.9. For all R ≥ 0, let ÑR := ÑR(SR) be the number of packed solids of SR with periodic
boundary conditions as defined above. There are constants µ := µ(S, d) ∈ (0,∞) (the jamming limit)
and σ2 := σ2(S, d) ∈ (0,∞) such that as R ↑ ∞ we have

|R−dE
[
ÑR
]
− µ| . e−

1
C
R, (4.94)

|R−dVar
[
ÑR
]
− σ2| . e−

1
C
R, (4.95)

and
dW

(
R
d
2 (R−dÑR − µ),N (σ2)

)
+ dK

(
R
d
2 (R−dÑR − µ),N (σ2)

)
. R−

d
2 , (4.96)

where N (σ2) denotes a centered normal random variable with variance σ2. ♦

Estimates (4.94) and (4.95) are a consequence of the stabilization properties established in [391].
Note that (4.96) is the best one can hope for: If we considered a Poisson point process instead of the
random parking process, then ÑR would be the number of Poisson points in QR, the constant µ would
be the intensity of the process, we would have σ2 = µ, and (4.96) would be sharp. The proof of (4.96)
combines (4.94) and (4.95) to a normal approximation result, which is itself a slight improvement
of [391, Theorem 1.1] in the sense that it avoids the spurious logarithmic correction log3d(R). This
improvement is a direct consequence of Theorem 4.6.2 (it also follows from [286, Theorem 6.1], but
the proof we display here is more direct).

Proof of Theorem 4.7.9. Denote by ξR the (R-periodic extension of the) random parking measure on
QR with periodic boundary conditions (that is, the measure obtained as the sum of Dirac masses
at the centers of the periodically packed solids in QR). Also denote by ξ = ξ∞ the corresponding
random parking measure on the whole space Rd. Note that by definition both measures ξR and ξ are
stationary, and we have ξR(QR) = ÑR.

Let us first introduce a natural pairing between ξR and ξ based on the graphical construction
recalled above. Replacing the original Poisson point process P0 by P0 ∩ (QR × R+) + RZd (that
is, the R-periodization of the restriction of P0 to QR × R+), and then running the same graphical
construction as above, we obtain a version of the R-periodic random parking measure ξR. Using
this version, we view both ξR and ξ as σ(P0)-measurable random measures for the same underlying
Poisson point process P0. Note however that with this coupling the pair (ξR, ξ) is no longer stationary.

We split the proof into three steps. In the first step we recall the construction of action radii for
ξR and ξ. We then prove (4.94) and (4.95) using the exponentially decaying tail of the constructed
action radii (or alternatively, the weighted covariance inequality of Proposition 4.5.3, and finally we
prove (4.96) by appealing to Theorem 4.6.2.

Step 1. Construction and properties of action radii.
In this step we claim for all y that ξ admits an action radius ρy with respect to P0 on Q(y)×R+,

that the restriction ξR|QR admits an action radius ρR,y with respect to P0 on Q(y) × R+, and that
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we have
P [ρy > `] + P [ρR,y > `] . e−

1
C
`.

In particular, we show that this implies

sup
y∈QR/2

P [ξ(Q(y)) 6= ξR(Q(y))] . e−
1
C
R. (4.97)

The construction and tail behavior of the action radius ρy follows from Proposition 4.5.3 (with ` = 0).
Let the action radius ρR,y be constructed similarly (simply replacing P0 by the point set P0 ∩ (QR ×
R+) +RZd). A careful inspection of the proof of [391, Lemma 3.5] reveals that the same exponential
tail behavior holds for ρR,y uniformly in R > 0. It remains to argue in favor of (4.97), which simply
follows from the exponential tail behavior of the action radii in the form

sup
y∈QR/2

P [ξ(Q(y)) 6= ξR(Q(y))] ≤ sup
y∈QR/2

P
[
Q(y) +Bρy 6⊂ QR

]
. e−

1
C
R.

Step 2. Proof of (4.94) and (4.95).
By stationarity of ξR and ξ we find E [ξR(QR)] = RdE [ξR(Q)] and E [ξ(QR)] = µRd with µ :=

E [ξ(Q)]. We define

σ2 :=

ˆ
Rd

Cov [ξ(Q(x)); ξ(Q)] dx (4.98)

and shall prove (4.94) and (4.95) in the form

|R−dE
[
ÑR
]
− µ| . e−

1
C
R and |R−dVar

[
ÑR
]
− σ2| . e−

1
C
R. (4.99)

The estimate for the convergence of the mean follows from (4.97) in the form

|R−dE
[
ÑR
]
− µ| = |E

[
ξR(Q)− ξ(Q)

]
| ≤ sup ess

(
ξR(Q) + ξ(Q)

)
P [ξR(Q) 6= ξ(Q)] . e−

1
C
R.

We now appeal to the covariance inequality of [163, Proposition 3.3] to prove both the existence of σ2

(by showing that the integral (4.98) is absolutely convergent) and the estimate for the convergence of
the variance in (4.99). Rather than using the complete covariance inequality, it is actually sufficient
here to make direct use of the constructed action radii ρ0 and ρR,0 of Step 1. For |y| ≥

√
d + 1,

noting that given ρ0 ∨ ρy ≤ 1
2(|y| −

√
d) the random variables ξ(Q(y)) and ξ(Q) are by definition

independent, we obtain

Cov [ξ(Q(y)); ξ(Q)]

= E
[
(ξ(Q(y))− µ)(ξ(Q)− µ)1ρ0∨ρy> 1

2
(|y|−

√
d)

]
+E
[
(ξ(Q(y))− µ)(ξ(Q)− µ)

∥∥ ρ0 ∨ ρy ≤ 1
2(|y| −

√
d)
]
P
[
ρ0 ∨ ρy ≤ 1

2(|y| −
√
d)
]

= E
[
(ξ(Q(y))− µ)(ξ(Q)− µ)1ρ0∨ρy> 1

2
(|y|−

√
d)

]
+P
[
ρ0 ∨ ρy ≤ 1

2(|y| −
√
d)
]−1E

[
(ξ(Q(y))− µ)1ρ0∨ρy≤ 1

2
(|y|−

√
d)

]
E
[
(ξ(Q)− µ)1ρ0∨ρy≤ 1

2
(|y|−

√
d)

]
= E

[
(ξ(Q(y))− µ)(ξ(Q)− µ)1ρ0∨ρy> 1

2
(|y|−

√
d)

]
+
(
1− P

[
ρ0 ∨ ρy > 1

2(|y| −
√
d)
])−1

×E
[
(ξ(Q(y))− µ)1ρ0∨ρy> 1

2
(|y|−

√
d)

]
E
[
(ξ(Q)− µ)1ρ0∨ρy> 1

2
(|y|−

√
d)

]
,

and hence, for all |y| ≥ C with C ' 1 large enough such that

P
[
ρ0 ∨ ρy > 1

2(|y| −
√
d)
]
≤ 2P

[
ρ0 >

1
2(|y| −

√
d)
]
≤ 1

2
,
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we conclude

|Cov [ξ(Q(y)); ξ(Q)] | . sup ess
(
ξ(Q)2

)
P
[
ρ0 >

1
2(|y| −

√
d)
]
. e−

1
C
|y|. (4.100)

Arguing similarly for ξR with ρ0 replaced by ρR,0, we deduce for all y ∈ QR,

|Cov [ξR(Q(y)); ξR(Q)] | . e−
1
C
|y|. (4.101)

The estimate (4.100) implies in particular that the integral for σ2 in (4.98) is well-defined. It remains
to prove the estimate for the convergence of the variance in (4.99). By R-periodicity and stationarity
of ξR, we find

R−dVar
[
ÑR
]

= R−dVar

[ˆ
QR

ξR(Q(y))dy

]
=

 
QR

ˆ
QR

Cov [ξR(Q(x− y)); ξR(Q)] dxdy

=

ˆ
QR

Cov [ξR(Q(y)); ξR(Q)] dy,

so that we may decompose

σ2 −R−dVar
[
ÑR
]

=

ˆ
Rd\QR/2

Cov [ξ(Q(y)); ξ(Q)] dy −
ˆ
QR\QR/2

Cov [ξR(Q(y)); ξR(Q)] dy

+

ˆ
QR/2

(
Cov [ξ(Q(y)); ξ(Q)]− Cov [ξR(Q(y)); ξR(Q)]

)
dy. (4.102)

We estimate each of the three right-hand side terms separately. On the one hand, the estimates (4.100)
and (4.101) yield ∣∣∣ˆ

Rd\QR/2
Cov [ξ(Q(y)); ξ(Q)] dy

∣∣∣ . ˆ
Rd\QR/2

e−
1
C
|y|dy . e−

1
C
R.

and ∣∣∣ˆ
QR\QR/2

Cov [ξR(Q(y)); ξR(Q)] dy
∣∣∣ . ˆ

QR\QR/2
e−

1
C
|y|dy . e−

1
C
R.

On the other hand, using (4.97), we obtain∣∣∣ˆ
QR/2

(
Cov [ξ(Q(y)); ξ(Q)]− Cov [ξR(Q(y)); ξR(Q)]

)
dy
∣∣∣

≤
ˆ
QR/2

E
[ ∣∣ξ(Q)− E [ξ(Q)]

∣∣ ∣∣ξ(Q(y))− ξR(Q(y))
∣∣ ]

+

ˆ
QR/2

E
[ ∣∣ξR(Q(y))− E [ξR(Q(y))]

∣∣ ∣∣ξ(Q)− ξR(Q)
∣∣ ] dy

. Rd sup ess
(
ξ(Q) + ξR(Q)

)
sup

y∈QR/2
P [ξ(Q(y)) 6= ξR(Q(y))] . e−

1
C
R.

Injecting these estimates into (4.102), the conclusion (4.99) for the convergence of the variance follows.

Step 3. Proof of (4.96).
We claim that it is enough to prove the normal approximation estimate

dW

(
NR − E [NR]√

Var [NR]
,N

)
+ dK

(
NR − E [NR]√

Var [NR]
,N

)
. R−

d
2 . (4.103)

Indeed, the result (4.96) then follows from (4.103), (4.94), and (4.95) by the triangle inequality. We
omit the proof of (4.103), which is identical to the proof of Proposition 4.7.7(ii) (the correction Ld−β

disappears here since the weight is exponential).
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4.A Appendix: Criterion for standard functional inequalities

In this appendix, we give a proof of Proposition 4.1.2.

Proof of Proposition 4.1.2. Let ε > 0 be fixed, and consider the partition (Qz)z∈Zd of Rd defined by
Qz = εz + εQ. Choose an i.i.d. copy A′0 of the field A0, and for all z define the random field Az0 by
Az0|Rd\Qz := A0|Rd\Qz and Az0|Qz := A′0|Qz . We split the proof into three steps.

Step 1. Tensorization argument.
Choose an enumeration (zn)n of Zd, and for all n let Πn and En denote the linear maps on L2(Ω)

defined by
Πn[X] := E

[
X
∥∥A0|⋃n

k=1 Qzk

]
, En[X] := E

[
X
∥∥A0|Rd\Qzn

]
.

Also define

Covn[X;Y ] := En[XY ]− En[X]En[Y ], Varn[X] := Covn[X;X],

Entn[X2] := En
[
X2 log(X2/En[X2])

]
.

In this step, we make use of a martingale argument à la Lu-Yau [310] to show the following tensoriza-
tion identities for the covariance and for the entropy: for all σ(A0)-measurable random variables
X(A0) and Y (A0), we have

|Cov [X(A0);Y (A0)] | ≤
∞∑
k=1

E
[ ∣∣Covk

[
Πk[X(A0)]; Πk[Y (A0)]

]∣∣ ] , (4.104)

Ent
[
X(A0)2

]
≤

∞∑
k=1

E
[
Entk

[
Πk[X(A0)2]

]]
. (4.105)

First note that for all σ(A0)-measurable random variables X(A0) ∈ L2(Ω), the properties of condi-
tional expectations ensure that Πn[X(A0)] → X(A0) in L2(Ω) as n ↑ ∞. We then decompose the
covariance into the following telescopic sum

Cov [Πn[X(A0)]; Πn[Y (A0)]] =

n∑
k=1

(
E [Πk[X(A0)]Πk[Y (A0)]]− E [Πk−1[X(A0)]Πk−1[Y (A0)]]

)
=

n∑
k=1

E
[
Covk

[
Πk[X(A0)]; Πk[Y (A0)]

]]
,

so that the result (4.104) follows by taking the limit n ↑ ∞. Likewise, we decompose the entropy into
the following telescopic sum

Ent
[
Πn[X(A0)2]

]
=

n∑
k=1

(
E
[
Πk[X(A0)2] log(Πk[X(A0)2])

]
−E

[
Πk−1[X(A0)2] log(Πk−1[X(A0)2])

] )
=

n∑
k=1

E
[
Entk

[
Πk[X(A0)2]

]]
,

and the result (4.105) follows in the limit n ↑ ∞.
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Step 2. Preliminary versions of (CI) and (LSI).
In this step, we prove that for all σ(A0)-measurable random variables X(A0) and Y (A0) we have

|Cov [X(A0);Y (A0)] | ≤ 1

2

∞∑
k=1

E
[∣∣Πk

[
X(A0)−X(Azk0 )

]∣∣ ∣∣Πk

[
Y (A0)− Y (Azk0 )

]∣∣]
≤ 1

2

∑
z∈Zd

E
[(
X(A0)−X(Az0)

)2] 1
2 E
[(
Y (A0)− Y (Az0)

)2] 1
2
, (4.106)

and

Ent[X(A0)] ≤ 2
∑
z∈Zd

E

[
sup ess
A′0

(
X(A0)−X(Az0)

)2]
. (4.107)

We first prove (4.106): we appeal to (4.104) in the form

|Cov [X(A0);Y (A0)] | ≤ 1

2

∞∑
k=1

E
[∣∣Ek[Πk[X(A0)−X(Azk0 )] Πk[Y (A0)− Y (Azk0 )]

]∣∣]
≤ 1

2

∞∑
k=1

E
[∣∣Πk[X(A0)−X(Azk0 )]

∣∣ ∣∣Πk[Y (A0)− Y (Azk0 )]
∣∣] ,

which directly yields (4.106) by Cauchy-Schwarz’ inequality. Likewise, we argue that (4.107) follows
from (4.105). To this aim, we have to reformulate the right-hand side of (4.105): using the inequality
a log a− a+ 1 ≤ (a− 1)2 for all a ≥ 0, we obtain for all k ≥ 0,

Entk
[
Πk[X(A0)2]

]
≤ Ek[Πk[X(A0)2]]Ek

[( Πk[X(A0)2]

Ek[Πk[X(A0)2]]
− 1
)2
]

=
Vark

[
Πk[X(A0)2]

]
Ek[Πk[X(A0)2]]

=
Ek
[
(Πk[X(A0)2]−Πk[X(Azk0 )2])2

]
2Ek[Πk[X(A0)2]]

=
Ek
[
(Πk[(X(A0)−X(Azk0 ))(X(A0) +X(Azk0 ))])2

]
2Ek[Πk[X(A0)2]]

≤
Ek
[
Πk[(X(A0)−X(Azk0 ))2] Πk[(X(A0) +X(Azk0 ))2]

]
2Ek[Πk[X(A0)2]]

.

Since (A0, A
zk
0 ) and (Azk0 , A0) have the same law by complete independence, the above implies, using

the inequality (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R,

Entk
[
Πk[X(A0)2]

]
≤

2Ek
[
Πk[(X(A0)−X(Azk0 ))2] Πk[X(Azk0 )2]

]
Ek[Πk[X(Azk0 )2]]

≤ 2 sup ess
A′0|Qzk

Πk[(X(A0)−X(Azk0 ))2] ≤ 2 Πk

[
sup ess
A′0|Qzk

(X(A0)−X(Azk0 ))2
]
.

Estimate (4.107) now follows from (4.105).

Step 3. Proof of (CI) and (LSI).
We start with the proof of (CI). Since A = A(A0) is σ(A0)-measurable, (4.106) yields for all

σ(A)-measurable random variables X(A) and Y (A),∣∣Cov [X(A);Y (A)]
∣∣ ≤ 1

2

∑
z∈Zd

E
[(
X(A)−X(A(Az0))

)2] 1
2 E
[(
Y (A)− Y (A(Az0))

)2] 1
2
.
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Using that E
[
X(A)

∥∥A0|Rd\Qz
]

= E
[
X(A(Az0))

∥∥A0|Rd\Qz
]
by complete independence of the field A0,

E
[(
X(A)−X(A(Az0))

)2]
= E

[(
∂G
A0,QzX(A(A0))

)2
]
.

Since the conditional expectation E
[
·
∥∥A0|Rd\Qz

]
coincides with the L2-projection onto the σ(A0|Rd\Qz)-

measurable functions, and since E
[
X(A)

∥∥A|Rd\(Qz+BR)

]
is σ(A|Rd\(Qz+BR))-measurable and therefore

σ(A0|Rd\Qz)-measurable by assumption, we have

E
[(
∂G
A0,QzX(A(A0))

)2
]
≤ E

[(
∂G
A,Qz+BR

X(A)
)2
]
.

Combining these two observations, we deduce that for all σ(A)-measurable random variables X(A)
and Y (A),

∣∣Cov [X(A);Y (A)]
∣∣ ≤ 1

2

∑
z∈Zd

E
[(
∂G
A,Qz+BR

X(A)
)2
] 1

2

E
[(
∂G
A,Qz+BR

Y (A)
)2
] 1

2

.

By taking local averages, this turns into

∣∣Cov [X(A);Y (A)]
∣∣ ≤ ε−d

2

∑
z∈Zd

ˆ
εQ

E
[(
∂G
A,y+εz+εQ+BR

X(A)
)2
] 1

2

E
[(
∂G
A,y+εz+εQ+BR

Y (A)
)2
] 1

2

dy

=
ε−d

2

ˆ
Rd

E
[(
∂G
A,y+εQ+BR

X(A)
)2
] 1

2

E
[(
∂G
A,y+εz+εQ+BR

Y (A)
)2
] 1

2

dy

≤ ε−d

2

ˆ
Rd

E
[(
∂G
A,BR+ε

√
d/2(y)X(A)

)2
] 1

2

E
[(
∂G
A,BR+ε

√
d/2(y)Y (A)

)2
] 1

2

dy,

that is, (CI) for any radius larger than R.
We then turn to the proof of (LSI). For all σ(A)-measurable random variables X(A), the esti-

mate (4.107) yields

Ent[X(A)] ≤ 2
∑
z∈Zd

E

[
sup ess
A′0

(
X(A(A0))−X(A(Az0))

)2] ≤ 2
∑
z∈Zd

E
[(

∂osc
A,Qz+BR

X(A)
)2
]
.

The desired result (LSI) then follows from taking local averages.

4.B Appendix: Abstract criteria for deterministically localized fields

In this appendix, we discuss general criteria for weighted functional inequalities in the case when
the random field A is deterministically localized in the sense of Section 4.4.2. To be precise we focus
on the typical example of a convolution of a random noise. In this case we prove the validity of a
Brascamp-Lieb inequality from which the desired weighted functional inequalities follow. Although
Gaussian random fields are the most prominent examples of this framework, we develop the general
argument in a slightly more abstract setting. (Note that we choose to argue by approximation and
reduce to discrete fields, rather than appeal to Malliavin calculus and associated functional analysis.)

Let W be a random noise on Rd, that is, a mean-zero stationary completely independent second-
order random Borel measure on Rd (see e.g. [367, Section 2]). More precisely, W associates a random
variable W (E) to any bounded Borel subset E ⊂ Rd, in such a way that
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(i) E [W (E)] = 0 and E
[
|W (E)|2

]
<∞ for all bounded Borel subset E ⊂ Rd;

(ii) if (En)n is a family of disjoint Borel subsets of Rd, then W (
⋃∞
n=1En) =

∑∞
n=1W (En) in the

L2-sense;
(iii) (W (x+E),W (x+E′)) has the same law as (W (E),W (E′)) for any two bounded Borel subsets

E,E′ ⊂ Rd and any x ∈ Rd;
(iv) W (E1), . . . ,W (En) are independent for any disjoint Borel sets E1, . . . , En ⊂ Rd and any n ∈ N.
Stationarity implies in particular that the Borel measure E

[
|dW |2

]
is proportional to the Lebesgue

measure: E
[
|dW |2

]
= λdx, for some constant λ ≥ 0 that is called the intensity of the random noiseW .

Given a (deterministic) nonnegative Borel function F ∈ L2(Rd) and a constant m ∈ Rd, we now
define a measurable random field A on Rd by the following convolution,

A(y) = m+

ˆ
Rd
F (y − z)dW (z), (4.108)

the covariance function of which is then given by

C(x) := Cov [A(x);A(0)] = λ

ˆ
Rd
F (x− z)F (z)dz. (4.109)

The following result (which is rather standard) shows that a Brascamp-Lieb inequality holds for such
random fields whenever the random noise W satisfies a standard spectral gap, thus mimicking the
well-known situation of Gaussian fields. (For Gaussian fields, a discrete version of the Brascamp-Lieb
inequality (4.111) below was first due to [81], while a discrete version of the inequality in covariance
form (4.112) and in entropy form (4.115) is due to [320] and to [67, Proposition 3.4], respectively.)

Proposition 4.B.1 (Brascamp-Lieb type inequalities). LetW be a random noise on Rd with intensity
λ, let the stationary random field A on Rd be given by (4.108), and let C denote its covariance function.
(i) Assume that for all η > 0 the random variable W (ηQ) satisfies the following spectral gap: for

any smooth function φ,

Var [φ(W (ηQ))] ≤ CληdE
[
φ′(W (ηQ))2

]
. (4.110)

Then the random field A satisfies the following Brascamp-Lieb inequality: for all σ(A)-measurable
random variables X(A),

Var [X(A)] ≤ CE
[ˆ

Rd

ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣∣∣∣∂X(A)

∂A
(z′)
∣∣∣|C(z − z′)|dzdz′] . (4.111)

Moreover, the following Brascamp-Lieb inequality in covariance form holds: for all σ(A)-measurable
random variables X(A), Y (A) we have

Cov [X(A);Y (A)] ≤ C
ˆ
Rd

E

[(ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣ |F−1(

√
FC)(x− z)| dz

)2
] 1

2

× E

[(ˆ
Rd

∣∣∣∂Y (A)

∂A
(z′)
∣∣∣ |F−1(

√
FC)(x− z′)| dz′

)2
] 1

2

dx, (4.112)

and in particular

Cov [X(A);Y (A)] ≤ C
ˆ
Rd

ˆ
Rd

E
[∣∣∣∂X(A)

∂A
(z)
∣∣∣2] 1

2

E
[∣∣∣∂Y (A)

∂A
(z′)
∣∣∣2] 1

2

C̃(z − z′)dzdz′, (4.113)

in terms of

C̃(x) :=

ˆ
|F−1(

√
FC)(x− y)||F−1(

√
FC)(y)|dy.
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(ii) Assume that for all η > 0 the random variable W (ηQ) satisfies the corresponding logarithmic
Sobolev inequality: for any smooth function φ,

Ent
[
φ(W (ηQ))2

]
≤ CληdE

[
φ′(W (ηQ))2

]
. (4.114)

Then the random field A satisfies the corresponding Brascamp-Lieb inequality in logarithmic
Sobolev form: for all σ(A)-measurable random variables X(A),

Ent[X(A)] ≤ CE
[ˆ

Rd

ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣∣∣∣∂X(A)

∂A
(z′)
∣∣∣|C(z − z′)|dzdz′] . (4.115)

♦

In the following theorem, we show that Brascamp-Lieb inequalities imply weighted functional
inequalities, using a suitable radial change of variables.

Theorem 4.B.2. Let A be a jointly measurable stationary random field on Rd, let C denote its co-
variance function. Assume that A satisfies the Brascamp-Lieb inequality (4.111) (resp. in logarithmic
Sobolev form (4.115)).
(i) If the map x 7→ supB(x) |C| is integrable, then the field A satisfies (∂fct-SG) (resp. (∂fct-LSI)) for

any radius R > 0.
(ii) If supB(x) |C| ≤ c(|x|) holds for some Lipschitz function c : R+ → R+, then the field A satisfies

(∂fct-WSG) (resp. (∂fct-WLSI)) with weight π(`) ' (−c′(`))+.
(iii) If A further satisfies the Brascamp-Lieb inequality in covariance form (4.112), and if there holds

supB(x) |F−1(
√
FC)| ≤ r(|x|) for some non-increasing Lipschitz function r : R+ → R+, then A

satisfies (∂fct-WCI) with weight π(`) ' (`+ 1)d r(`)(−r′(`)). ♦

Note that in items (ii)–(iii), the weights obtained for (∂fct-WSG) and (∂fct-WCI) typically have
the same scaling. We start with the proof of Proposition 4.B.1, and then turn to the proof of Theo-
rem 4.B.2. Finally, we focus on the example of Gaussian random fields and deduce Corollary 4.5.1.

Proof of Proposition 4.B.1. For all ε > 0, consider the following approximations of the random field
A,

Aε(x) :=
∑

y,z∈εZd
1Qε(z)(x)W (Qε(y))

 
Qε(z)

 
Qε(y)

F (z′ − y′)dz′dy′.

By an approximation argument, we may reduce the proof of the proposition to the proof of the
following discrete counterpart: given a random vector W := (W1, . . . ,WN ) with N independent
components, and given a linear transformation F ∈ RN×N , the transformed random vector A :=
(A1, . . . , AN ) := FW satisfies:
(i’) If for all 1 ≤ j ≤ N the random variable Wj satisfies the standard spectral gap

Var [φ(Wj)] ≤ CE
[
φ′(Wj)

2
]

for all smooth functions φ : R→ R, then the random vector A satisfies for all smooth functions
X,Y : RN → R

Var [X(A)] ≤ C
N∑

i,j=1

|(FF t)ij | E
[∣∣∣∂X(A)

∂Ai

∣∣∣∣∣∣∂X(A)

∂Aj

∣∣∣] , (4.116)

and also

Cov [X(A);Y (A)] ≤
N∑
i=1

E

( N∑
j=1

∂X(A)

∂Aj
Fji

)2

 1
2

E

[( N∑
k=1

∂Y (A)

∂Ak
Fki

)2
] 1

2

. (4.117)
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(ii’) If for all 1 ≤ j ≤ N the random variableWj satisfies the standard logarithmic Sobolev inequality

Ent
[
φ(Wj)

2
]
≤ CE

[
φ′(Wj)

2
]

for all smooth functions φ : R→ R, then the random vector A satisfies for all smooth functions
X : RN → R,

Ent
[
X(A)2

]
≤ C

N∑
i,j=1

|(FF t)ij | E
[∣∣∣∂X(A)

∂Ai

∣∣∣∣∣∣∂X(A)

∂Aj

∣∣∣] . (4.118)

We start with the proof of item (i’). Using the tensorization identity (4.104), the spectral gap
assumption yields

Var [X(A)] ≤
N∑
i=1

E [Var [X(A) ‖ (Wj)j:j 6=i]] ≤
N∑
i=1

E
[(∂X(A)

∂Wi

)2
]
,

and hence, by the chain rule,

Var [X(A)] ≤
N∑
i=1

E

( N∑
j=1

∂X(A)

∂Aj
Fji

)2

 = E
[
∇X(A) · (FF t)∇X(A)

]
≤

N∑
i,j=1

|(FF t)ij | E
[∣∣∣∂X(A)

∂Ai

∣∣∣∣∣∣∂X(A)

∂Aj

∣∣∣] . (4.119)

In covariance form, using again the tensorization identity (4.104), the spectral gap assumption yields

Cov [X(A);Y (A)] ≤
N∑
i=1

E [Var [X(A) ‖ (Wj)j:j 6=i]]
1
2 E [Var [Y (A) ‖ (Wj)j:j 6=i]]

1
2

≤
N∑
i=1

E
[(∂X(A)

∂Wi

)2
] 1

2

E
[(∂Y (A)

∂Wi

)2
] 1

2

,

and the result (4.117) follows from the chain rule. We now turn to the proof of item (ii’). Using the
tensorization identity (4.105), the logarithmic Sobolev inequality assumption yields

Ent
[
X(A)2

]
≤

N∑
i=1

E
[
Ent

[
E
[
X(A)2

∥∥ (Wj)j:j≤i
] ∥∥ (Wj)j:j 6=i

]]
≤ C

N∑
i=1

E
[∣∣∣ ∂

∂Wi
E
[
X(A)2

∥∥ (Wj)j:j≤i
] 1

2

∣∣∣2]

= C

N∑
i=1

E
[
E
[
X(A)2

∥∥ (Wj)j:j≤i
]−1

∣∣∣E [X(A)
∂X(A)

∂Wi

∥∥∥∥ (Wj)j:j≤i

] ∣∣∣2]

≤ C
N∑
i=1

E
[∣∣∣∂X(A)

∂Wi

∣∣∣2] .
Now arguing as in (4.119), the result of item (ii’) follows.

We turn to Theorem 4.B.2.
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Proof of Theorem 4.B.2. We focus on items (i) and (ii) for the variance and the covariance (the
arguments for the entropy are similar). Assume that A satisfies the Brascamp-Lieb inequality (4.111).
If x 7→ supB(x) |C| is integrable, the inequality |ab| ≤ (a2 + b2)/2 for a, b ∈ R directly yields for all
σ(A)-measurable random variables X(A) and all R > 0 (after taking local averages),

Var [X(A)] ≤ C E
[ˆ

Rd

ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣∣∣∣∂X(A)

∂A
(z′)
∣∣∣|C(z − z′)|dzdz′]

≤ 2C
∥∥∥ sup
B2R(·)

|C|
∥∥∥

L1
E

[ˆ
Rd

( 
BR(z)

∣∣∣∂X(A)

∂A

∣∣∣)2

dz

]
.

Now assume that the covariance function C is not integrable, and that supB(x) |C| ≤ c(|x|) for some
Lipschitz function c : R+ → R+. Given a σ(A)-measurable random variable X(A), we consider the
projection XR(A) := E[X(A)‖A|BR ], for R > 0. Taking local averages, using polar coordinates, and
integrating by parts (note that there is no boundary term since the Fréchet derivative ∂XR(A)/∂A
is compactly supported in BR), the Brascamp-Lieb inequality (4.111) yields

Var [XR(A)]

≤ CE

[ˆ
Rd

ˆ
Sd−1

ˆ ∞
0

∣∣∣∂XR(A)

∂A
(z)
∣∣∣ 

B(z+`u)

∣∣∣∂XR(A)

∂A
(u′)

∣∣∣du′`d−1c(`)d`dσ(u)dz

]

= CE

[ˆ
Rd

∣∣∣∂XR(A)

∂A
(z)
∣∣∣ ˆ

Sd−1

ˆ ∞
0

ˆ `

0

 
B(z+su)

∣∣∣∂XR(A)

∂A
(u′)

∣∣∣du′sd−1ds(−c′(`))d`dσ(u)dz

]

≤ CE

[ˆ
Rd

∣∣∣∂XR(A)

∂A
(z)
∣∣∣ ˆ ∞

0

(ˆ
B`+1(z)

∣∣∣∂XR(A)

∂A

∣∣∣)(−c′(`))d`dz

]
.

Reorganizing the integrals, and taking local spatial averages, we conclude

Var [XR(A)] . E
[ˆ ∞

0

ˆ
Rd

∣∣∣∂XR(A)

∂A
(z)
∣∣∣(∂fct

A,B`+1(z)XR(A)
)
dz(−c′(`))+d`

]
. E

[ˆ ∞
0

ˆ
Rd

ˆ
B`+1

∣∣∣∂XR

∂A
(z + y)

∣∣∣(∂fct
A,B`+1(z+y)XR(A)

)
dydz (`+ 1)−d(−c′(`))+d`

]

. E
[ˆ ∞

0

ˆ
Rd

(
∂fct
A,B2(`+1)(z)

XR(A)
)2
dz (`+ 1)−d(−c′(`))+d`

]
. E

[ˆ ∞
0

ˆ
Rd

(
∂fct
A,B`+1(z)XR(A)

)2
dz (`+ 1)−d(−c′(`))+d`

]
,

where in the last line we used the (sub)additivity of S 7→ ∂fct
A,S . By Jensen’s inequality in the form

E
[(
∂fct
A,SXR(A)

)2
]
≤ E

[(
E
[
∂fct
A,SX(A)

∥∥∥ A|BR] )2
]
≤ E

[(
∂fct
A,SX(A)

)2
]
,

and passing to the limit R ↑ ∞, the conclusion (∂fct-WSG) follows. Let us now turn to the case
when the field A satisfies the Brascamp-Lieb inequality in covariance form (4.112). Assuming that
supB(x) |F−1(

√
FC)| ≤ r(|x|) for some Lipschitz function r : R+ → R+, a radial integration by parts

similar as above yields

Cov [XR(A);YR(A)] .
ˆ
Rd

E

[( ˆ ∞
0

(
∂fct
A,B`+1(x)XR(A)

)
(−r′(`))+ d`

)2
] 1

2

× E

[( ˆ ∞
0

(
∂fct
A,B`′+1(x)YR(A)

)
(−r′(`′))+ d`

′
)2
] 1

2

dx.
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By the triangle inequality, this turns into

Cov [XR(A);YR(A)]

.
ˆ ∞

0

ˆ ∞
0

ˆ
Rd

E
[(
∂fct
A,B`+1(x)XR(A)

)2
] 1

2

E
[(
∂fct
A,B`′+1(x)YR(A)

)2
] 1

2

dx(−r′(`))+ d`(−r′(`′))+ d`
′

≤ 2

ˆ ∞
0

ˆ
Rd

E
[(
∂fct
A,B`+1(x)XR(A)

)2
] 1

2

E
[(
∂fct
A,B`+1(x)YR(A)

)2
] 1

2

dx
(ˆ `

0
(−r′(`′))+ d`

′
)

(−r′(`))+ d`,

and the conclusion (∂fct-WCI) follows after passing to the limit R ↑ ∞.

We may finally turn to the proof of Corollary 4.5.1.

Proof of Corollary 4.5.1. Let W denote a Gaussian white noise with intensity 1, that is, a random
noise W on Rd such that for all bounded Borel subsets E ⊂ Rd the random variable W (E) has a
centered Gaussian law with variance E

[
W (E)2

]
= |E|. As shown in [152, Section XI.8], a stationary

Gaussian random field A on Rd can be rewritten as a convolution (4.108) with a Gaussian white
noise whenever the field A has an absolutely continuous spectral measure, or equivalently, whenever
the Fourier transform FC of the covariance function is in L1(Rd). Under such a restriction on C,
since Gaussian random variables satisfy the standard spectral gap (4.110) and logarithmic Sobolev
inequality (4.114) (cf. [221]), we can directly apply Proposition 4.B.1 and Theorem 4.B.2 to establish
the validity of weighted spectral gaps, covariance, and logarithmic Sobolev inequalities.

It remains to show that this regularity restriction on C can be relaxed in the case of spectral
gaps and logarithmic Sobolev inequalities. To this end, it suffices to prove that the conclusion of
Proposition 4.B.1 (that is, the validity of Brascamp-Lieb type inequalities) always holds for any jointly
measurable Gaussian stationary random field A. This is achieved by an approximation argument.
We focus on the Brascamp-Lieb inequality (4.111), while the argument is analogous for (4.115). As
an approximation argument shows, it is enough to establish (4.111) for those random variables X(A)
that depend on A only via their spatial averages on the partition {Qε(z)}z∈BR∩εZd with ε,R > 0. Let
us introduce the following notation for these averages,

Aε(z) :=

 
Qε(z)

A, for z ∈ εZd. (4.120)

In this case, the Fréchet derivative {∂X∂A (x)}x∈Rd and the partial derivatives { ∂X
∂Aε(z)

}z∈εZd of X(A)
are related via

εd
∂X

∂A
(x) =

∂X

∂Aε(z)
, for x ∈ Qε(z), z ∈ εZd. (4.121)

We infer from (4.120) that {Aε(z)}z∈εZd is a discrete centered Gaussian random field (which is now
stationary with respect to the action of εZd), characterized by its covariance

Cε(z − z′) :=

 
Qε(z)

 
Qε(z′)

C(x− x′)dx′dx. (4.122)

By the discrete result (4.116) obtained in the proof of Proposition 4.B.1 (based on the standard
spectral gap for Gaussian random variables [221]), we deduce for all ε,R > 0 and all random variables
X(A) that depend on A only via its spatial averages on the partition {Qε(z)}z∈BR∩εZd ,

Var [X] ≤ C
∑

z∈BR∩εZd

∑
z′∈BR∩εZd

|Cε(z − z′)|E
[∣∣∣ ∂X

∂Aε(z)

∣∣∣∣∣∣ ∂X

∂Aε(z′)

∣∣∣] .
Injecting (4.121) and (4.122), the conclusion (4.111) follows.
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4.C Appendix: Functional inequalities for Poisson point process

For the Poisson point process, we have established the standard functional inequalities (∂G-SG)
and (∂osc-LSI) (cf. Proposition 4.1.2). In this appendix we shortly comment on another possible
natural form of a standard functional inequality for a point process P on Rd, rather using the usual
partial derivatives with respect to the point locations. More precisely, we say that the point process
P = {xk}k satisfies the spectral gap (∂◦-SG) if for all σ(P)-measurable random variable X = X(P)
we have

Var [X] ≤ CE
[
‖∂◦X‖2

]
:= CE

[∑
k

|∇xkF |
2

]
,

and that it satisfies the logarithmic Sobolev inequality (∂◦-LSI) if for all σ(P)-measurable random
variable X = X(P) we have

Ent
[
X2
]
≤ CE

[
‖∂◦X‖2

]
:= CE

[∑
k

|∇xkX|
2

]
.

For the very same reason why the Poisson distribution on N does not satisfy a logarithmic Sobolev
inequality (cf. e.g. [292, p.65]), we easily deduce the following negative result for the Poisson point
process.

Lemma 4.C.1. A Poisson point process P on Rd does not satisfy (∂◦-LSI). ♦

Proof. Let χ be a smooth cut-off function equal to 1 on the unit cube Q, and to 0 outside 2Q. For all
n ≥ 1, define a random variable Xn := Xn(P) as follows: denoting by yn ∈ P the n-th closest point
to 0 (more precisely, the point x ∈ P such that the maximum max1≤i≤d |(x)i| is the n-th smallest,
which is a.s. well defined), we set

Xn(P) := 1|P∩Q|≥n + χ(yn)1|P∩Q|=n−1.

We then find
P [|P ∩Q| ≥ n] ≤ E

[
X2
n

]
≤ P [|P ∩ 2Q| ≥ n] ,

and also

E
[
X2
n logX2

n

]
= E

[
1|P∩Q|=n−1χ(yn)2 logχ(yn)2

]
≥ −e−1P [|P ∩Q| = n− 1] ,

which yields, for all n large enough,

Ent
[
X2
n

]
≥ −e−1P [|P ∩Q| = n− 1]− P [|P ∩Q| ≥ n] logP [|P ∩Q| ≥ n] .

On the other hand, we compute the carré-du-champ

E

[∑
k

|∇xkXn|2
]
≤ E

[
1|P∩Q|=n−1|∇χ(yn)|2

]
≤ CP [|P ∩Q| = n− 1] .

The inequality (∂◦-LSI) applied to Xn would then imply for all n large enough,

−P [|P ∩Q| ≥ n] logP [|P ∩Q| ≥ n] ≤ CP [|P ∩Q| = n− 1] ,

hence
n log n ' − logP [|P ∩Q| ≥ n] ≤ CP [|P ∩Q| = n− 1]

P [|P ∩Q| ≥ n]
' n,

a contradiction.
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Nevertheless, as first mentioned to us by Felix Otto, the corresponding spectral gap (∂◦-SG) does
hold for the Poisson point process.

Proposition 4.C.2. Any Poisson point process P on Rd satisfies (∂◦-SG) (with constant C = 5
4 ,

independent of the intensity of the process). ♦

Proof. As P is completely independent, it suffices to prove the result for the restriction of P = {xk}k∈N
on the unit cube Q. Denote N := |P ∩Q|, let X := X(P|Q) be a σ(P|Q)-measurable random variable,
and assume that X is of class C1(QN). By tensorization of the variance we may decompose

Var [X] = E [Var [X ‖ N ]] + Var [E [X ‖ N ]] =
∞∑
n=0

Var [X ‖ N = n]P [N = n] + Var [E [X ‖ N ]] ,

thus distinguishing between the variability of X for a fixed number of points, and the variability due
to changes in the number of points. We begin with the first contribution. As [P|N = n] is distributed
as the tensor product of n independent uniform distributions on Q, we directly find

Var [X ‖ N = n] ≤ E

[∑
k

|∇xkX|
2

∥∥∥∥∥ N = n

]
,

and hence

Var [X] ≤ E

[∑
k

|∇xkX|
2

]
+ Var [E [X ‖ N ]] ,

so that it remains to consider the last contribution. By definition, N is distributed according to a
Poisson law on N. By the spectral gap satisfied by the Poisson law (cf. e.g. [292, (5.13)]), we have

Var [E [X ‖ N ]] ≤ E [N ]
∞∑
n=0

(E [X ‖ N = n+ 1]− E [X ‖ N = n])2 P [N = n] , (4.123)

and we are thus reduced to understanding the variations of E [X ‖ N ] as the value of N varies. As
X only depends on the coordinates inside Q, we may write, with obvious notation,

E [X ‖ N = n+ 1]− E [X ‖ N = n]

=

ˆ
Q
. . .

ˆ
Q
dx1 . . . dxn

ˆ
Q
dxn+1

(
X(x1, . . . , xn+1)−X(x1, . . . , xn, p(xn+1))

)
,

where p(xn+1) denotes the projection of xn+1 on ∂Q. We may then estimate

|E [X ‖ N = n+ 1]− E [X ‖ N = n] |

≤
ˆ
Q
. . .

ˆ
Q
dx1 . . . dxn

ˆ
Q
dxn+1

ˆ 1

0
dt |∇n+1X(x1, . . . , xn, txn+1 + (1− t)p(xn+1))|

×|xn+1 − p(xn+1)|

≤ 1

2

ˆ
Q
. . .

ˆ
Q
|∇n+1X(x1, . . . , xn+1)| dx1 . . . dxn+1

≤ 1

2

( ˆ
Q
. . .

ˆ
Q
|∇n+1X(x1, . . . , xn+1)|2dx1 . . . dxn+1

) 1
2

=
1

2

( 1

n+ 1

n+1∑
k=1

ˆ
Q
. . .

ˆ
Q
|∇kX(x1, . . . , xn+1)|2dx1 . . . dxn+1

) 1
2
,
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and hence,

|E [X ‖ N = n+ 1]− E [X ‖ N = n] | ≤ 1

2(n+ 1)
1
2

E

[∑
k

|∇xkX|
2

∥∥∥∥∥ N = n+ 1

] 1
2

. (4.124)

Injecting this into (4.123), and noting that the Poisson law satisfies

E [N ]P [N = n] = (n+ 1)P [N = n+ 1] ,

we deduce

Var [E [X ‖ N ]] ≤ E [N ]

4

∞∑
n=0

E

[∑
k

|∇xkX|
2

∥∥∥∥∥ N = n+ 1

]
P [N = n]

n+ 1

=
1

4

∞∑
n=0

E

[∑
k

|∇xkX|
2

∥∥∥∥∥ N = n+ 1

]
P [N = n+ 1] ≤ 1

4
E

[∑
k

|∇xkX|
2

]
,

and the result follows.
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Chapter 5

Clausius-Mossotti formulas and beyond

This chapter is concerned with the behavior of the homogenized coefficients associated with some
random stationary ergodic medium under a Bernoulli perturbation. Introducing a new family of en-
ergy estimates that combine probability and physical spaces, we prove the analyticity of the perturbed
homogenized coefficients with respect to the Bernoulli parameter. Our approach holds under the
minimal assumptions of stationarity and ergodicity (together with a crucial assumption of bounded
penetrability of the random inclusions), both in the scalar and vector cases, and it leads to semi-
explicit formulas for each derivative that essentially coincide with the so-called cluster expansions
used by physicists. In particular, the first term in this expansion yields the celebrated (electric and
elastic) Clausius-Mossotti formulas for isotropic spherical random inclusions in an isotropic reference
medium. This work constitutes the first general proof of these formulas in the case of random inclu-
sions and solves a 150-year-old problem. Under suitable strong quantitative ergodicity assumptions,
similar expansions are further obtained for the perturbed effective fluctuation tensor of Chapter 3.

This chapter corresponds to the article [165] jointly written with Antoine Gloria, to the exception
of the additional results of Appendix 5.A concerning the case with unbounded penetrability of the
random inclusions, and of the results of Section 5.1.3 and Appendix 5.B on the effective fluctuation
tensor.
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5.1 Introduction

5.1.1 General overview

Let ρ = (qn)n be a stationary and ergodic random point process in Rd of unit intensity. To each
point qn we associate a family of independent Bernoulli variables [0, 1] 3 p 7→ b

(p)
n that take value 1

with probability p and value 0 with probability 1− p. Given α, β > 0, we define a family of random
matrix fields A(p) on Rd as follows,

A(p)(x) := α Id +

∞∑
n=1

b(p)n (β − α) Id1B(qn)(x),

where B(qn) denotes the unit ball centered at qn (above we have assumed that the balls B(qn) are
disjoint for simplicity of the discussion). The random matrix fields A(p) are stationary and ergodic, so
that the standard stochastic homogenization theory [354] yields the existence of associated homoge-
nized matrices A(p)

hom. For p small, we expect A(p)
hom to be a perturbation of order p of the unperturbed

medium α Id. Indeed, in the second half of the 19th century, Mossotti [324], Maxwell [317], Clau-
sius [119], Lorentz [308], and Lorenz [309] proposed the following expansion in the scalar case,

A
(p)
hom = α Id +vp

αd(β − α)

β + α(d− 1)
Id +o(p), (5.1)

where at first order the correction is proportional to the volume fraction vp ' p of chosen inclusions
(cf. (5.27) below). This formula is called the Clausius-Mossotti relation in the dielectric context,
Maxwell’s formula in the conductivity context, and the Lorentz-Lorenz equation in the refractivity
context in optics (see e.g. [283, 315] for a detailed historical notice); we choose to adopt in the sequel
the naming Clausius-Mossotti. The counterpart of this formula for linear elasticity (see Corollary 5.1.5
below) is attributed to Bruggeman [89], Skorohod [400], Hill [241], and Budniansky [90].

The rigorous proof of these electric and elastic Clausius-Mossotti formulas has remained a challenge
since then. The first justification of the electric version is due to Almog in dimension d > 2, whose
results in [14, 15, 13], combined with elementary homogenization theory, precisely yield (5.1) (the
convergence rate obtained in [15, Theorem 1] is lost when combined with homogenization). The
proof is based on (scalar) potential theory and crucially relies on the facts that d > 2, that A(p) is
everywhere a multiple of the identity, and that the inclusions are disjoint, but it requires particularly
weak assumptions on the random structure. Another contribution is due to Mourrat [327], who
considered a discrete scalar elliptic equation instead of a continuum elliptic equation for all d ≥ 2. In
the case treated in [327], A(p) is a discrete set of i.i.d. conductivities β and α with probabilities p and
1 − p. The extension of Mourrat’s results to the present continuum setting (which is made possible
by the more recent contributions [201, 212]) would yield the improvement of (5.1) to

A
(p)
hom = α Id +vp

αd(β − α)

β + α(d− 1)
Id +Oγ(p2−γ), (5.2)

for any γ > 0. The assumptions of [327] are however very stringent, as the proof crucially relies
on estimates from the quantitative theory of stochastic homogenization, which typically hold under
quantitative ergodicity assumptions such as spectral gap (see also Chapter 4) or strong mixing as-
sumptions, whence the corresponding restriction on the random point set ρ. There is a small gap in
the proof of (the discrete counterpart of) (5.2) (a quantitative estimate of |a◦1(µ) − a◦1(0)|, see [327,
(8.2)], is missing to complete the proof of [327, Theorem 11.3]), which can however be fixed using
the quantitative results of [209, 210, 313] (cf. proof of Theorem 5.A.1 in Appendix 5.A). Mourrat
also made the nice observation that the reference medium needs not be the unperturbed background
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medium (of conductivity α), and essentially proved that p 7→ A
(p)
hom is C1,1−γ on the whole interval

[0, 1] for all γ > 0 in the discrete setting.
The idea of perturbing a non-uniform reference medium first appeared in the work [20] by Anan-

tharaman and Le Bris, who considered the perturbation of a periodic array of inclusions by i.i.d.
Bernoulli variables (the inclusions are independently deleted with probability p). The corresponding
matrix field A(p) is then a random ergodic field with discrete stationarity. As above, for p small, one
expects A(p)

hom to be a perturbation of A(0)
hom (the homogenized coefficients of the unperturbed periodic

medium) of order p. Anantharaman and Le Bris considered the approximation A(p)
L of A(p)

hom obtained
by periodizing the random medium A(p) on a cube of size L. The qualitative homogenization theory
ensures that almost surely the random approximation A(p)

L of A(p)
hom converges to A(p)

hom (note that A(0)
L

is deterministic and coincides with A(0)
hom for all integer L). Although not formulated in this way, they

essentially proved that the approximation p 7→ E[A
(p)
L ] is C2 at p = 0, and obtained bounds on the

first two derivatives ∂pE[A
(p)
L ]|p=0 and ∂2

pE[A
(p)
L ]|p=0 that are uniform in L. This is however not quite

enough to prove that p 7→ A
(p)
hom is itself C2 (or C1) at zero.

In the present contribution we shall prove in a very general setting (which includes both the
examples studied by Mourrat and by Anantharaman and Le Bris) that the map p 7→ A

(p)
hom is analytic

on [0, 1] (see Theorem 5.1.1 below). Our result holds under the mildest statistical assumptions on the
reference medium x 7→ A(0)(x) and on the point process, that is, (discrete or continuum) stationarity
and ergodicity. We also make the crucial assumption that the number of intersections between the
inclusions at every point is uniformly bounded (see however the discussion in Section 5.1.5 and the
weaker results of Appendix 5.A). We believe that a suitable adaptation of our arguments may allow to
treat the case when the Bernoulli law is replaced by more general laws as considered in [21, Section 3].
Although our results are much stronger than those of Mourrat [327], our proof was mainly inspired
by the ingenious computations of Anantharaman and Le Bris (see in particular [19, Proposition 3.4]),
and only relies on soft arguments. In particular the crucial ingredient of our proof is a new family
of energy estimates that combine both physical and probability spaces (see Proposition 5.2.6 below).
Since the proof only uses ingredients that are available for systems, our results hold not only for scalar
equations, but also for uniformly elliptic systems and for linear elasticity. In the case of an isotropic
constant background medium perturbed by randomly distributed isotropic spherical inclusions, this
proves the celebrated (electric) Clausius-Mossotti formula (5.1) with an optimal error estimate (see
Corollary 5.1.4),

A
(p)
hom = α Id +vp

αd(β − α)

β + α(d− 1)
Id +O(p2), (5.3)

as well as its elastic counterpart (see Corollary 5.1.5), under the weakest statistical assumptions
possible.

Our proof makes use of the standard modification of the corrector equation by a massive term of
magnitude T−1, and the derivatives of A(p)

hom with respect to p are given by the limits as T ↑ ∞ of
the derivatives of a deterministic approximation A(p)

T of A(p)
hom (

√
T plays a similar role as the period

L in [20]). Interestingly, in the case when the inclusions are disjoint, the fact that p 7→ A
(p)
hom is

C1,1 on [0, 1] can be obtained as a corollary of the (classical) energy estimates of [20, 19] (applied to
A

(p)
T instead of A(p)

L ), further using that they hold for any p ∈ [0, 1] by Mourrat’s observation (see
Section 5.1.4). The proof that p 7→ A

(p)
hom is analytic is however more subtle and is based on the new

family of energy estimates.
There are two motivations to go beyond the C1,1 result. First, this gives a definite answer to the

maximal regularity of the map p 7→ A
(p)
hom. Analyticity was indeed conjectured in applied mechanics

and applied physics (see for instance [413, Chapters 18 and 19]). This analyticity result contrasts
very much with the corresponding regularity of a similar periodic model originally studied by Maxwell
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[317] and Rayleigh [368] (see also [265, Section 1.7] and [51]). The latter consists of a homogeneous
medium periodically perturbed by inclusions of volume p located at integer points of Rd (note that
the perturbed medium is still Zd-periodic), in which case the associated map p 7→ A

(p)
hom is C3+ 4

d in
dimension d, but not more. The second motivation stems from numerical analysis. Indeed the main
motivation for [20, 21] is to exploit the perturbative character of A(p)

hom for p small (seen as a model for
defects) and use the first two terms of a Taylor-expansion at zero as a good approximation for A(p)

hom,
the accuracy of which can be optimally quantified by Theorem 5.1.1 below. Note that Legoll and
Minvielle [296] also made an original use of this approximation of A(p)

hom in a control variate method
to reduce the variance for the approximation of homogenized coefficients.

As emphasized in [20], a second natural question is to quantify the convergence speed of com-
putable massive approximations of the derivatives of A(p)

hom. As opposed to Theorem 5.1.1, which is a
qualitative result, establishing such a convergence speed requires to quantify the speed of convergence
in the ergodic theorem for stochastic homogenization, which is a quantitative result. We give such
a result under the assumption that the speed of convergence of AT to Ahom can be quantified (see
Corollary 5.1.6), which is indeed known to hold under suitable strong quantitative mixing assumptions
(as assumed by Mourrat [327]) using e.g. the results of [210, 212, 203].

Our approach to prove Theorem 5.1.1 is constructive and explicit bounds are obtained on the
derivatives. We do not know whether there is an abstract alternative to establish analyticity. In [120],
Cohen, Devore and Schwab obtained a result of the same flavor using a complexification method:
they proved the analyticity of the solution of linear elliptic PDEs with respect to parameters in the
coefficients in the framework of a chaos expansion. Their setting is however very much different from
the setting of Theorem 5.1.1. Indeed, as emphasized in Remark 5.1.7 below, the solution of interest
here (the corrector) is in general not even differentiable with respect to the Bernoulli parameter (the
homogenized coefficients are analytic because of subtle cancellations).

For the clarity of the exposition, although our proof of Theorem 5.1.1 holds in the case of uniformly
elliptic systems and of linear elasticity (provided the elasticity tensor is uniformly very strongly elliptic,
as standard in homogenization), for non-symmetric coefficients, and for discrete elliptic equations, we
use continuum scalar notation and assume that the coefficients are symmetric. For non-symmetric
coefficients, it is indeed enough to consider, in addition to the primal corrector equation, the dual
corrector equation (associated with the pointwise transpose coefficients), which would only make
notation heavier. In addition we assume that the coefficients enjoy continuum stationarity (in the
case of Zd-stationarity, the expectation would simply be replaced everywhere by the expectation of the
integral over the unit cube). Note that our result also covers the case of laminates, or more generally
the case when the heterogeneous coefficients are random in some direction(s) and invariant along the
other(s) (cf. the example of cylindrical fibers considered in [20] and encountered in practice).

The rest of the chapter is organized as follows. In Section 5.1.2 we introduce the main notation and
state the main results of the chapter: the analyticity of the homogenized coefficients with respect to
the Bernoulli parameter and the validity of the Clausius-Mossotti formulas. In Section 5.1.3, we state
our parallel partial expansion results for the effective fluctuation tensor. In Section 5.1.4, we present
the general strategy of the proof of the main results under the additional simplifying assumption
that the inclusions are disjoint. Section 5.2 is dedicated to the introduction and proof of auxiliary
results, and in particular of the improved energy estimates. The main results are then proved in
Section 5.3. In Appendix 5.A, we relax the boundedness assumption on the degree of intersections
between the random inclusions (cf. (5.4) below), and we establish weaker regularity results based
on the quantitative theory of stochastic homogenization. The proof of our results on the effective
fluctuation tensor is of a similar spirit and is postponed to Appendix 5.B.
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5.1.2 Main results

Assumptions

Let A be a random field. We choose a point process ρ = (qn)n, and random bounded inclusions
(Jn)n centered at the points qn. To the inclusions (Jn)n we attach i.i.d. Bernoulli variables (b

(p)
n )n

with parameter p ∈ [0, 1], and we perturb A on Jn if b(p)n = 1. The only assumptions we need here
are stationarity and ergodicity, as well as some deterministic bound on the degree of intersections
between the inclusions. More precise definitions are given below.

Point process. Let ρ be a (locally finite) ergodic stationary point process on Rd, and choose
for convenience a measurable enumeration ρ = (qn)∞n=1. For any open set D of Rd, we denote by
ρ(D) := #{qn ∈ D,n ∈ N} the number of points of ρ in D.

Inclusions centered at the point process. Let R > 0 be fixed. For all n, let J◦n be random Borel
subsets J◦n ⊂ BR(⊂ Rd) (maybe depending on ρ = (qn)n). This defines random bounded Borel
inclusions Jn := qn + J◦n. We assume that this inclusion process is stationary, in the sense that the
random set

⋃
n Jn is stationary. Moreover, we further assume that the intersections between the

inclusions Jn’s are of degree bounded by some deterministic constant Γ ∈ N; by stationarity, this just
means

#{n ∈ N : 0 ∈ Jn} ≤ Γ, almost surely. (5.4)

In physics (see e.g. [413, Section 3.1]), the constant Γ in (5.4) is called the impenetrability parameter:
different inclusions may penetrate each other but only with the fixed finite maximum degree Γ. As
explained in Section 5.1.5, we believe that this assumption is actually necessary for our analyticity
result.

As Jn ⊂ BR(qn), assumption (5.4) is trivially satisfied if we assume ρ(Q) ≤ θ0 a.s. (thus forbidding
arbitrary large clusters in the point process), but it is important to note that the only problem is
the possibility of intersections of arbitrary large degree, which has a priori nothing to do with the
point process ρ itself. In the case of inclusions with inner radius bounded from below, however,
assumption (5.4) is equivalent to an assumption on ρ of the form ρ(Q) ≤ θ0 almost surely.

Reference random fields. Given 0 < λ ≤ 1, denote byMλ the space of uniformly elliptic symmetric
d× d-matrices M satisfying λ|ξ|2 ≤ ξ ·Mξ ≤ |ξ|2 for all ξ ∈ Rd. Let A,A′ be twoMλ-valued ergodic
stationary random fields on Rd. Note that A and A′ do not need to be independent of the point
process ρ, and we simply assume that this dependence is local, in the sense that A(0) and A′(0) only
depend on ρ via the restriction ρ|Br for some given deterministic r > 0.

Bernoulli perturbation of A. For any fixed p ∈ [0, 1], we choose a sequence (b
(p)
n )n of i.i.d. Bernoulli

random variables with P[b
(p)
n = 1] = p, independent of all previous random elements. We can now

consider the following p-perturbed random field, which is a perturbation of the random field A on the
inclusions for which b(p)n = 1:

A(p) = A1Rd\
⋃
n∈E(p) Jn

+A′1⋃
n∈E(p) Jn ,

where we have set E(p) := {n ∈ N : b
(p)
n = 1}.

In the case when the inclusions are disjoint, the p-perturbed random field A(p) can be rewritten
as follows:

A(p) =
∑
n

(
b(p)n A′ + (1− b(p)n )A

)
1Jn +A1Rd\

⋃
n Jn

.

Moreover, in that case, as A′ is allowed to depend (locally) on the inclusion process, the following
interesting particular example can be considered: choose a sequence (A′n)n of i.i.d.Mλ-valued random
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fields, and define

A′ := Id1Rd\
⋃
n Jn

+
∑
n

A′n1Jn , (5.5)

so that A(p) takes the form

A(p) =
∑
n

(
b(p)n A′n + (1− b(p)n )A

)
1Jn +A1Rd\

⋃
n Jn

.

Probability space and product structure. Let us now briefly comment on the underlying probability
space. Let (Ω1,F1,P1) be a probability space on which the (stationary) random elements ρ, (Jn)n,
A, and A′ are defined. For all p ∈ [0, 1] and n ∈ N, let Ω

(p)
2,n := {b(p)n ∈ {0, 1}}, endowed with the

trivial σ-algebra F (p)
2,n, and let P(p)

2,n be the Bernoulli measure of parameter p on Ω
(p)
2,n. The probability

space we consider in this chapter is the product space (Ω,F ,P) of (Ω1,F1,P1) and (Ω
(p)
2,n,F

(p)
2,n,P

(p)
2,n)

for all p ∈ [0, 1] and n ∈ N (with the cylindrical σ-algebra). With E, E1, E
(p)
2,n the expectations with

respect to the measures P, P1, P
(p)
2,n, respectively, we have by definition

E = E1

∏
p∈[0,1]

∏
n∈N

E(p)
2,n.

The independence of the Bernoulli variables, at the origin of this product structure, then takes
the form: for any integrable random variables χ(p)

n and η(p)
n defined on Ω1 ×

∏
m,m 6=n Ω

(p)
2,m and Ω

(p)
2,n,

respectively,

E[χ(p)
n η(p)

n ] = E[χ(p)
n ]E[η(p)

n ]. (5.6)

Note that for all p ∈ [0, 1] the random field A(p) is defined on Ω1 ×
∏
n∈N Ω

(p)
2,n and is stationary

and ergodic for the measure
P1 ⊗

⊗
n∈N

P(p)
2,n.

As such, it can be viewed as a stationary and ergodic random field on (Ω,F ,P).

Typical examples. One typical example is that of spherical inclusions Jn = BR(qn) centered at the
points of any ergodic stationary random point process ρ with minimal distance bounded away from 0.
In that case, ρ can be chosen as the hardcore Poisson point process (that is, a modified Poisson process
for which points that are at a distance less than 2R0 are deleted; see also the hardcore construction in
Step 1 of the proof of Theorem 5.1.1 in Section 5.3.2) or the random parking measure (see [357, 213]).
Instead of spherical inclusions, we can consider more general (and random) shapes Jn = qn + J◦n,
where the J◦n’s are i.i.d. copies of some random Borel set, with J◦n ⊂ BR a.s.

Another interesting example is when ρ is a Poisson process (or any other ergodic stationary point
process) and when Jn is the Voronoi cell at qn, intersected with the ball at qn of radius R, say. We
could alternatively choose for Jn the largest ball of radius less than R centered at qn and completely
included in the Voronoi cell at qn. In this case, the number of inclusions per unit volume is not
necessarily uniformly bounded.

Notation

We start with the definition of homogenized coefficients, correctors, and approximate correctors.
We then introduce the crucial notion of difference operators, and conclude with the introduction of a
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notational system for perturbed coefficients which will turn out to be very convenient when it comes
to the (numerous) combinatorial arguments involved in the proofs.

Correctors, approximate correctors, and homogenized coefficients. For any (possibly infinite) sub-
set E ⊂ N, we define AE := A+CE , where CE := (A′ −A)1JE and JE :=

⋃
n∈E Jn. In these terms,

with E(p) := {n ∈ N : b
(p)
n = 1}, we have AE(p)

= A + CE
(p) , and we use the short-hand notation

C(p) := CE
(p) and A(p) := AE

(p) .
For all T > 0, we define the approximate correctors φT,ξ and φET,ξ in direction ξ, |ξ| = 1, associated

with any field A and any AE , respectively, as the unique solutions in the space {v ∈ H1
loc(Rd) :

supz
´
B(z)(|v|

2 + |∇v|2) <∞} of the equations

1

T
φT,ξ −∇ ·A(∇φT,ξ + ξ) = 0, and

1

T
φET,ξ −∇ ·AE(∇φET,ξ + ξ) = 0. (5.7)

These solutions satisfy the following energy estimates (see [212, Lemma 2.7]):

sup
z

 
B√T (z)

(T−1|φT,ξ|2 + |∇φT,ξ|2) . 1, sup
z

 
B√T (z)

(T−1|φET,ξ|2 + |∇φET,ξ|2) . 1. (5.8)

To shorten notation, we write φ(p)
T,ξ for φ

E(p)

T,ξ . For all p ∈ [0, 1], as the random field A(p) is ergodic and
stationary, we have (combine for instance the ergodic theorem with [354] in the symmetric case, and
with [199, Theorem 1] in the non-symmetric case)

lim
T↑∞

E[|∇φ(p)
T,ξ −∇φ

(p)
ξ |

2] = 0, (5.9)

where ∇φ(p)
ξ is the gradient of the corrector, i.e. the gradient of the unique measurable random map

φ
(p)
ξ ∈ L2

loc(Rd) solution of the equation

−∇ ·A(p)(∇φ(p)
ξ + ξ) = 0

on Rd that satisfies φ(p)
ξ (0) = 0 almost surely and such that ∇φ(p)

ξ is stationary and has bounded
second moment. (Note that φT,ξ exists for any matrix field A if T > 0, whereas φξ only exists almost
surely for a stationary random field A.) As usual, the homogenized coefficients are then given by

ξ ·A(p)
homξ = E

[
(∇φ(p)

ξ + ξ) ·A(∇φ(p)
ξ + ξ)

]
= E

[
ξ ·A(p)(∇φ(p)

ξ + ξ)
]
.

They can be approximated by symmetric or non-symmetric approximate homogenized coefficients:

ξ ·A(p)
homξ = lim

T↑∞
E
[
(∇φ(p)

T,ξ + ξ) ·A(p)(∇φ(p)
T,ξ + ξ)

]
= lim

T↑∞
E
[
ξ ·A(p)(∇φ(p)

T,ξ + ξ)
]
. (5.10)

We denote by ξ ·A(p)
T ξ := E

[
ξ ·A(p)(∇φ(p)

T,ξ + ξ)
]
the non-symmetric approximate homogenized coeffi-

cients. When ξ is fixed, we simply write φT for φT,ξ, φ for φξ, etc.

Difference operators. The aim of this chapter is to understand how A
(p)
hom depends on p for p close

to 0. We shall first study the easier map p 7→ A
(p)
T , seen as a function of the approximate corrector

φ
(p)
T . Following physicists we introduce for all n ∈ N a difference operator δ{n} acting generically on

measurable functions of (Ω,F), and in particular on approximate correctors as follows: for all H ⊂ N,

δ{n}φHT := φ
H∪{n}
T − φHT .
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This operator yields a natural measure of the sensitivity of the corrector φHT with respect to the
perturbation of the medium at inclusion Jn. This is to be compared to the vertical derivative first used
in [209] in the context of quantitative stochastic homogenization and to the randomized derivatives
introduced by Chatterjee [112] in the context of Stein’s method (see also the Hoeffding decompositions
in [282], where these randomized derivatives are used up to any order). For all finite F ⊂ N, we
further introduce the higher-order difference operator δF =

∏
n∈F δ

{n}; more explicitly, this difference
operator δF acting on approximate correctors φHT (for any H ⊂ N) is defined as follows:

δFφHT :=

|F |∑
l=0

(−1)|F |−l
∑
G⊂F
|G|=l

φG∪HT =
∑
G⊂F

(−1)|F\G|φG∪HT , (5.11)

with the convention δ∅φHT = (φHT )∅ := φHT . Physicists have introduced such operators to derive
cluster expansions (see [413]), which are used as formal proxies for Taylor expansions with respect to
the Bernoulli perturbation: up to order k in the parameter p, the cluster expansion for the perturbed
corrector reads, for small p ≥ 0,

φ
(p)
T  φT +

∑
n∈E(p)

δ{n}φT +
1

2!

∑
n1,n2∈E(p)

distinct

δ{n1,n2}φT + . . .+
1

k!

∑
n1,...,nk∈E

(p)

distinct

δ{n1,...,nk}φT ,

which we rewrite in the more compact form

φ
(p)
T  

k∑
j=0

∑
F⊂E(p)

|F |=j

δFφT =

k∑
j=0

∑
F⊂E(p)

|F |=j

∑
G⊂F

(−1)|F\G|φGT , (5.12)

where
∑
|G|=j denotes the sum over j-uplets of integers (when j = 0, this sum reduces to the single

term G = ∅). Intuitively, φ(p)
T is expected to be close to a series where terms of order j involve a

correction due to the interaction of j inclusions (and therefore derivatives of order j). Whereas the
cluster formula for A(p)

hom in Corollary 5.1.2 below holds under the mildest statistical assumptions on
the coefficients, the validity of the expansion (5.12) is expected to require strong mixing assumptions
(see [327] for the first order). This illustrates again the fact that averaged quantities (e.g. homogenized
coefficients) are better behaved than pointwise quantities (e.g. correctors).

For convenience, we also set
δFξ φ

H
T := δF (φHT + ξ · x), (5.13)

that is, in terms of gradients,

∇δFξ φHT =

|F |∑
l=0

(−1)|F |−l
∑
G⊂F
|G|=l

(∇φG∪HT + ξ) =
∑
G⊂F

(−1)|F\G|(∇φG∪HT + ξ). (5.14)

By the binomial formula
∑|F |

l=0

(|F |
l

)
(−1)|F |−l = 0, we have ∇δFξ φHT = ∇δFφHT for all F 6= ∅ and

H ⊂ N, ∇δ∅ξ φ
H
T = ∇φHT + ξ for all H ⊂ N, and, for all finite sets F,G,H ⊂ N,

∇δGξ φF∪HT =
∑
S⊂F
∇δS∪Gξ φHT . (5.15)

Inclusion-exclusion formula. When the inclusions are disjoint, we have

C(p) =
∑

n∈E(p)

C{n}. (5.16)
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However, when inclusions may overlap, this formula no longer holds since intersections may be ac-
counted for several times. In the rest of this paragraph we define a suitable system of notation to
deal with these intersections.

For any (possibly infinite) subset E ⊂ N, we set AE := A + CE , where CE := (A′ − A)1JE
and JE :=

⋂
n∈E Jn. Note that J{n} = J{n} = Jn, and C{n} = C{n}. For non-necessarily disjoint

inclusions, C(p) is then given by the following general inclusion-exclusion formula,

C(p) =
∑

n∈E(p)

C{n} −
∑

n1<n2∈E(p)

C{n1,n2} +
∑

n1<n2<n3∈E(p)

C{n1,n2,n3} − . . .

=

∞∑
k=1

(−1)k+1
∑

F⊂E(p)

|F |=k

CF . (5.17)

Since the inclusions Jn’s have a diameter bounded by 2R and ρ(B2R) is almost surely finite, the
sum (5.17) is locally finite almost surely. Recalling that by assumption (5.4) the degree of the
intersections of the inclusions is bounded by Γ, we deduce that we must have CF ≡ 0 for all |F | > Γ.
Therefore, the inclusion-exclusion formula (5.17) actually reads

C(p) =

Γ∑
k=1

(−1)k+1
∑

F⊂E(p)

|F |=k

CF . (5.18)

We shall need further notation in the proofs. For all E,F ⊂ N, E 6= ∅, we set JE‖F := (
⋂
n∈E Jn)\

(
⋃
n∈F Jn) and JE‖F := (

⋃
n∈E Jn) \ (

⋃
n∈F Jn), and then

CE‖F := (A′ −A)1JE‖F , and CE‖F := (A′ −A)1JE‖F
.

In particular, we have CE‖∅ = CE , CE‖∅ = CE , and C∅
‖F = 0. For simplicity of notation (except in

the proof of Lemma 5.2.1), we also set C∅‖F = 0 = C∅. The inclusion-exclusion formula then yields
for all G,H ⊂ N, G 6= ∅,

CH =
∑
S⊂H

(−1)|S|+1CS , (5.19)

CH‖G =
∑
S⊂H

(−1)|S|+1CS‖G, (5.20)

CG‖H =
∑
S⊂H

(−1)|S|CS∪G. (5.21)

We shall also use the symbols ', & and . for =, ≥, ≤ up to constants that only depend on R,
Γ, d, and λ. Subscripts are used to indicate additional dependence of the constants, e. g. .η means
that the multiplicative constant depends on η, next to R, Γ, d, and λ. Throughout, we will denote
by C any positive constant with C ' 1, whose value may vary from line to line.
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Statement of main results

Our main result asserts the analyticity of the map p 7→ A
(p)
hom corresponding to the perturbed

coefficients.

Theorem 5.1.1 (Analyticity of the homogenized coefficients). Under the above assumptions, the map
p 7→ A

(p)
hom is analytic on [0, 1] and there exists a constant 0 < c ≤ 1 such that, for all p0 ∈ [0, 1] and

all −p0 ∧ c ≤ p ≤ (1− p0) ∧ c,

A
(p0+p)
hom = A

(p0)
hom +

∞∑
j=1

pj

j!
A

(p0),j
hom , (5.22)

where the series converges, and where, for all j ≥ 1, A(p0),j
hom denotes the (well-defined) j-th derivative

of the map p 7→ A
(p)
homat p0. ♦

Since our proof is constructive, we obtain formulas for the derivatives. These formulas involve
two approximation arguments: the addition of a massive term T−1 in the corrector equation to deal
with integrability issues at large distances, and a hardcore approximation of the point process to deal
with integrability issues at short distances.

Corollary 5.1.2 (Formulas for derivatives). Let the above assumptions prevail. We can construct
a sequence (ρθ)θ of hardcore approximations of the stationary point process ρ in the following sense:
for any θ > 0, ρθ is an ergodic stationary point process on Rd such that ρθ ⊂ ρ, ρθ(Q) ≤ θ a.s., and
ρθ ↑ ρ locally almost surely as θ ↑ ∞. For any F,G ⊂ N, denote by AFθ , (Cθ)F‖G, (Cθ)F the coefficients
AF , CF‖G, CF corresponding to ρθ in place of ρ, and further denote by φFT,θ,ξ the approximate corrector
φFT,ξ associated with the coefficients corresponding to ρθ in place of ρ.

Then, for all k ≥ 1 and all p0 ∈ [0, 1], the k-th derivative A(p0),k
hom at p0 satisfies the following three

equivalent formulas, for all ξ,

ξ ·A(p0),k
hom ξ = k! lim

T↑∞
lim
θ↑∞

∑
|F |=k

∑
G(F

(−1)|F\G|+1E
[
∇δGξ φ

E(p0)\F
T,θ,ξ · (Cθ)F\G‖G(∇φE(p0)∪F

T,θ,ξ + ξ)
]

(5.23)

= k! lim
T↑∞

lim
θ↑∞

∑
|F |=k

∑
G⊂F
G6=∅

(−1)|G|+1E
[
(∇φE

(p0)\F
T,θ,ξ + ξ) · (Cθ)G∇δ

F\G
ξ φ

G∪(E(p0)\F )
T,θ,ξ

]
(5.24)

= k! lim
T↑∞

lim
θ↑∞

∑
|F |=k

E
[ ∑
G⊂F

(−1)|F\G|ξ ·AG∪(E(p0)\F )
θ (∇φG∪(E(p0)\F )

T,θ,ξ + ξ)

]
, (5.25)

where the limits exist and where the sums are absolutely convergent for any fixed T, θ <∞ (recall that∑
|F |=k stands for the sum running over all the k-uplets of distinct positive integers).
Moreover, in the case when the point process ρ satisfies E[ρ(Q)s] < ∞ for all s ≥ 1, then the

limits in θ as well as all subscripts θ can be omitted in the above formulas (5.23)–(5.25). Finally, in
the case k = 1, and under the additional assumption that ρ(Q) ≤ θ0 a.s. for some fixed θ0 > 0, we
can pass to the limit in T inside the sum in (5.24): for all p0 ∈ [0, 1],

ξ ·A(p0),1
hom ξ =

∑
n

E
[
(∇φE

(p0)\{n}
ξ + ξ) · C{n}(∇φE

(p0)∪{n}
ξ + ξ)

]
, (5.26)

where the sum is still absolutely convergent. ♦

Formula (5.25) is the rigorous version of the so-called cluster expansion formula formally used by
physicists (see [413]) as well as in [20]: it compares the homogenized coefficients corresponding to the
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coefficients obtained with a finite number of perturbed inclusions. In particular, the k-th derivative
of A(p)

hom with respect to p is obtained by considering k perturbed inclusions. Note that these cluster
expansion formulas can be rewritten as in (5.12) using the difference operators defined in (5.11): for
all k ≥ 1,

ξ ·A(p0),k
hom ξ = k! lim

T↑∞
lim
θ↑∞

∑
|F |=k

E
[
δF
(
ξ ·AE

(p0)\F
θ (∇φE

(p0)\F
T,θ,ξ + ξ)

)]
,

where δF now acts on the random variable ξ ·AE
(p0)\F

θ (0)(∇φE
(p0)\F

T,θ,ξ (0) + ξ). For k = 1, it essentially
coincides with the formula obtained by Mourrat in [327],

ξ ·A(p0),1
hom ξ = lim

T↑∞
lim
θ↑∞

∑
n

E
[
ξ ·AE

(p0)∪{n}
θ (∇φE

(p0)∪{n}
T,θ,ξ + ξ)− ξ ·AE

(p0)\{n}
θ (∇φE

(p0)\{n}
T,θ,ξ + ξ)

]
.

Also note that, in the particular case when the inclusions Jn’s are disjoint, formula (5.24) takes
the following simpler form: for all p0 ∈ [0, 1] and k ≥ 1,

ξ ·A(p0),k
hom ξ = k! lim

T↑∞
lim
θ↑∞

∑
|F |=k

∑
n∈F

E
[
(∇φE

(p0)\F
T,θ,ξ + ξ) · (Cθ){n}∇δ

F\{n}
ξ φ

{n}∪(E(p0)\F )
T,θ,ξ

]
,

which further reduces, under the additional assumption that E[ρ(Q)s] <∞ for all s ≥ 1, to

ξ ·A(p0),k
hom ξ = k! lim

T↑∞

∑
|F |=k

∑
n∈F

E
[
(∇φE

(p0)\F
T,ξ + ξ) · C{n}∇δF\{n}ξ φ

{n}∪(E(p0)\F )
T,ξ

]
.

As a direct consequence of Theorem 5.1.1 we obtain the following universality principle, well-known
by physicists: at first order in the volume fraction of the perturbation, the perturbed homogenized
coefficient does not depend on the underlying point process ρ. More precisely,

Corollary 5.1.3 (First-order universality principle). On top of the above assumptions, assume that
E[ρ(Q)2] <∞. Then, we may define the volume fraction of the perturbation by the limit

vp := lim
L↑∞

E
[
|LQ ∩

⋃
n∈E(p) Jn|

]
Ld

, (5.27)

and there exists some matrix K such that for all p ≥ 0,

A
(p)
hom = A

(0)
hom +Kvp +O(v2

p).

If the point process ρ is independent of A, of A′ (or else of (A′n)n in the particular example (5.5)) and
of the random volumes |J◦n|’s, then the constant K does not depend on the choice of the underlying
point process ρ. ♦

Since the formulas given by Corollary 5.1.2 for the k-th derivative A(0),k
hom of A(p)

hom at 0 involve terms
of the form E[

∑
n1,...,nk

f(qn1 , . . . , qnk)], they depend on moments of ρ up to order k, so that stronger
dependence on the point process ρ is expected for higher-order terms (see indeed [413, p. 493–494]).

Formula (5.26) for the first derivative has the advantage of being exact (there is no limit left wrt
T ), and, at p0 = 0, it is given by the solution of the corrector equation corresponding to a single
inclusion. In particular, this makes explicit calculations possible for spherical inclusions, and allows
us to prove the celebrated Clausius-Mossotti formula in a very general context.
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Corollary 5.1.4 (Electric Clausius-Mossotti formula). On top of the above assumptions, assume that
the inclusions are spherical, i.e. Jn = BR(qn), and that both the unperturbed and perturbed coefficients
are constant and isotropic: A = α Id and A′ = β Id. Denoting by vp the volume fraction (5.27) of the
perturbation, we then have, for all p ≥ 0,

A
(p)
hom = α Id + vp

αd(β − α)

β + α(d− 1)
Id +O(v2

p). ♦

As pointed out in Section 5.1.1, all our results also hold for linear elasticity. This allows us to give
the first rigorous proof of the elastic Clausius-Mossotti formula for random inclusions. Recall that an
isotropic stiffness tensor A has the form 1

2ξ : A : ξ = G|ξ|2 + λ
2 (Tr ξ)2, where G and λ are the Lamé

coefficients, to which we associate the bulk modulus K = λ+ 2G/d and shear modulus G.

Corollary 5.1.5 (Elastic Clausius-Mossotti formula). On top of the above assumptions, assume
that the inclusions are spherical, i.e. Jn = BR(qn), and that both the unperturbed and perturbed
stiffness tensors A and A′ are constant and isotropic, and denote by K,G > 0 and K ′, G′ > 0 their
respective bulk and shear moduli. Let A1 be the stiffness matrix of an isotropic medium of bulk modulus
K1 = K + (K ′ −K) K+β

K′+β and shear modulus G1 = G+ (G′ −G) G+α
G′+α , where we have set

α = G
d2K + 2(d+ 1)(d− 2)G

2d(K + 2G)
, β = 2G

d− 1

d
. (5.28)

Denoting by vp the volume fraction (5.27) of the perturbation, we then have, for all p ≥ 0,

A
(p)
hom = A+ vpA

1 +O(v2
p). ♦

Corollaries 5.1.4 and 5.1.5 treat spherical inclusions, in which case the solution of the corrector
equation with a single inclusion can be calculated explicitly, so that (5.26) can be turned into an
explicit formula. In the case of ellipsoidal inclusions, explicit calculations can also be made in terms
of the so-called depolarization coefficients in the electric case (see [402]), or in terms of the Eshelby
tensor in the elastic case (see [178], and also [332] for more precise analytic computations), so that an
explicit formula for the first derivative A(0),1

hom can also be derived. The comparison of these results for
spherical and ellipsoidal inclusions illustrates the fact that the first derivative already heavily depends
on the geometry of the microstructure (see e.g. [413, Section 19.1.2]).

An explicit formula could in principle also be obtained for the second derivative at p0 = 0 for
spherical inclusions, since the corrector equation for two disjoint spheres can be solved analytically
as well (see [374] and [259, Section 5]).

Formulas (5.23), (5.24) and (5.25) for the derivatives as given by Theorem 5.1.1 are expressed as
limits in terms of the approximate corrector gradient. For practical purposes, it may be important to
prove rates of convergence for these limits. This is a quantitative ergodic result and therefore requires
quantitative ergodic assumptions. In what follows we assume that a quantitative convergence result
is available for the convergence of A(p)

T := E[ξ ·A(p)(∇φ(p)
T + ξ)] to A(p)

hom (through the convergence of
∇φ(p)

T to ∇φ(p)) and show how this rate is inherited by their derivatives with respect to p.

Corollary 5.1.6. On top of the above assumptions, assume that E[ρ(Q)s] < ∞ for all s ≥ 1, and
further assume that there exists a function γ such that, for all T > 0 and p ∈ [0, 1],

E[|∇(φ
(p)
T − φ

(p)
2T )|2] . γ(T )2. (5.29)

Let p ∈ [0, 1] be fixed. Recall the formulas for the approximate derivatives of A(p)
hom: for all k ≥ 0,

ξ ·A(p),k
T ξ := k!

∑
|F |=k

∑
G⊂F

(−1)|F\G|E
[
ξ ·AG∪E(p0)\F (∇φG∪E

(p0)\F
T,ξ + ξ)

]
. (5.30)
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Then, there is a constant C ' 1 such that, for all k ≥ 0, we have∣∣∣A(p),k
T −A(p),k

2T

∣∣∣ ≤ k!Ckγ(T )2−k .

In particular, if γ(T ) . T−α for some α > 0, this yields for some constant C 'α 1,∣∣∣A(p),k
T −A(p),k

hom

∣∣∣ ≤ k!CkT−2−kα. ♦

It is not clear to us whether Corollary 5.1.6 is optimal, and symmetric approximations could yield
better rates. Such improvements, which would require nontrivial arguments based on the quantitative
theory of stochastic homogenization, are not the goal of this chapter. Note that in the case of fast
decaying correlations the optimal expected rate γ(T ) for the approximate corrector gradient in (5.29)
is as follows [210, 212, 203],

γ(T )2 =


T−1, if d = 2;
T−3/2, if d = 3;
T−2 log T , if d = 4;
T−2, if d > 4.

(5.31)

Note that in higher dimensions these convergence rates are improved when using suitable extrapolation
techniques (cf. [202, 199, 206, 203]).

Let us emphasize an observation by Anantharaman and Le Bris in [20] on the regularity of the
corrector with respect to p in the case of disjoint inclusions — which dramatically contrasts with the
analyticity of the perturbed homogenized coefficients.

Remark 5.1.7. By testing the equation −∇ ·A(p)∇(φ(p) − φ) = ∇ ·C(p)(∇φ+ ξ) in probability, we
have

E[|∇(φ(p) − φ)|2] . E[|C(p)|2(1 + |∇φ|2)] ' p.

We believe that this scaling is in general optimal, so that the map [0, 1] → L2(Ω) : p 7→ ∇φ(p)(0) is
expected to be in general nowhere differentiable. Since we prove that the homogenized coefficients
are analytic, this illustrates that averaged quantities behave much better than pointwise quantities
(like the corrector gradient). ♦

5.1.3 Corresponding results on the effective fluctuation tensor

As established in Chapter 3, under strong quantitative ergodicity assumptions, the random fluc-
tuations of the solution u

(p)
ε of −∇ · A(p)( ·ε)∇u

(p)
ε = f , those of the corrector ∇φ(p), and those of

the flux of the corrector A(p)(∇φ(p) + Id) are driven by the random fluctuations of the corresponding
homogenization commutator, which are asymptotically Gaussian with limiting variance given by the
effective fluctuation tensor Q(p). As shown in Appendix 3.A, this symmetric fourth-order tensor can
be computed e.g. via massive approximations, which we take as a definition here,

Q(p) := lim
T↑∞
Q(p)
T , (ξ1 ⊗ ξ2) : Q(p)

T (ξ1 ⊗ ξ2) :=

ˆ
Rd

E
[(
ξ1 ⊗ ξ2 : Ξ

(p)
T (x)

) (
ξ1 ⊗ ξ2 : Ξ

(p)
T (0)

)]
dx,

(5.32)

where the limit exists and the integral is absolutely convergent, and where we have set

ξ1 ⊗ ξ2 : Ξ
(p)
T := ξ2 · (A(p) −A(p)

hom)(∇φ(p)
T,ξ1

+ ξ1).

We may then prove the following, which parallels the expansion result for the homogenized coefficients.
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Theorem 5.1.8. Under the above assumptions together with suitable strong quantitative ergodicity
hypotheses (see Appendix 5.B), the map p 7→ Q(p) is of class C1,1−γ for all γ > 0, and it satisfies for
all p0 ∈ [0, 1] and all −p0 ≤ p ≤ 1− p0,∣∣Q(p0+p) −Q(p0) − pQ(p0),1

∣∣ . p2|log p|, (5.33)

where the first derivative Q(0),1 at p0 = 0 is given by

ξ1 ⊗ ξ2 : Q(0),1 : ξ1 ⊗ ξ2

= lim
T↑∞

(ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) ·

∑
n

Cn(∇φ{n}T,ξ1
+ ξ1)(x) ; ξ2 ·A(∇φT,ξ1 + ξ1)(0)

]
dx

+

ˆ
Rd

Cov
[
ξ2 ·A(∇φT,ξ1 + ξ1)(x) ; (∇φT,ξ2 + ξ2) ·

∑
n

Cn(∇φ{n}T,ξ1
+ ξ1)(0)

]
dx

+
∑
n

ˆ
Rd

E
[
(∇φT,ξ2 + ξ2) · Cn(∇φ{n}T,ξ1

+ ξ1)(x) (∇φT,ξ2 + ξ2) · Cn(∇φ{n}T,ξ1
+ ξ1)(0)

]
dx

)
, (5.34)

where the limit exists and where the sums are absolutely convergent for any fixed T < ∞. If in
addition the inclusions are spherical (i.e. Jn = BR(qn)) and if both reference coefficients are constant
and isotropic (i.e. A = α Id and A′ = β Id), then in terms of the volume fraction (5.27) of the
perturbation we have for small p ≥ 0,

Q(p) = vp|BR|
(

1

vp

(
A

(p)
hom −A

(0)
hom

))⊗2

+ O(p2|log p|), (5.35)

and the corresponding result holds in the case of linear elasticity. ♦

We believe that this result can be straightforwardly extended into a C∞ regularity result for
the map p 7→ Q(p) (up to combinatorial technicalities in the proof), so that in particular the errors
in (5.33) and (5.35) could be replaced by O(p2). Note that the exact link (5.35) between the effective
fluctuation tensor and the homogenized coefficients at first order is only expected to hold in the case
of spherical inclusions.

5.1.4 Strategy of the proof

In this section we present the strategy of the proof of Theorem 5.1.1. The key ingredient is a
new family of energy estimates, the proof of which essentially combines combinatorial and induction
arguments. When inclusions are disjoint, the combinatorics is significantly less involved than in the
general case. In order to focus only on the core of the proof of Theorem 5.1.1 and to avoid additional
combinatorial technicalities in this presentation, we shall momentarily assume that the inclusions are
disjoint.

Fix some direction ξ ∈ Rd, |ξ| = 1. The aim of the present chapter is to investigate the difference

∆(p) := ξ · (A(p)
hom −Ahom)ξ,

and express it as a convergent power series in the variable p around 0. Since the approximate correctors
behave much better than the correctors themselves, we start with the analysis of the approximate
difference

∆
(p)
T := ξ · (A(p)

T −AT )ξ,

for fixed T > 0. Indeed, the approximate difference is a good proxy for the difference since limT ∆
(p)
T =

∆(p) by (5.10). Next we rewrite the approximate difference in a form which is more suitable for the
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analysis. By definition,

∆
(p)
T = E[ξ ·A(p)(∇φ(p)

T + ξ)]− E[ξ ·A(∇φT + ξ)]

= E[ξ · C(p)(∇φ(p)
T + ξ)] + E[ξ ·A∇(φ

(p)
T − φT )]. (5.36)

The first term is already in a nice form (since it is of order p), while the second term is not (recall
Remark 5.1.7: an energy estimate would only imply that it is of order √p). In the following lemma,
we make use of the corrector equation to unravel some cancellations.

Lemma 5.1.9. The approximate difference ∆
(p)
T satisfies

∆
(p)
T = E[(∇φT + ξ) · C(p)(∇φ(p)

T + ξ)]. ♦

Proof. Using that A(p) = A+ C(p), the second term of (5.36) turns into

E[ξ ·A∇(φ
(p)
T − φT )]

= E[(∇φ(p)
T + ξ) ·A∇(φ

(p)
T − φT )]− E[∇φ(p)

T ·A∇(φ
(p)
T − φT )]

= E[(∇φ(p)
T + ξ) ·A(p)∇(φ

(p)
T − φT )]− E[(∇φ(p)

T + ξ) · C(p)∇(φ
(p)
T − φT )]

−E[∇φ(p)
T ·A

(p)(∇φ(p)
T + ξ)] + E[∇φ(p)

T ·A(∇φT + ξ)] + E[∇φ(p)
T · C

(p)(∇φ(p)
T + ξ)].

By symmetry of the coefficients A and C(p), reorganizing the terms yields

E
[
ξ ·A∇(φ

(p)
T − φT )

]
= −E

[
∇φT ·A(p)(∇φ(p)

T + ξ)
]

+ E
[
∇φ(p)

T ·A(∇φT + ξ)
]

+ E
[
∇φT · C(p)(∇φ(p)

T + ξ)
]
. (5.37)

The sum of the first two terms of the right-hand side of (5.37) coincides with the sum of the weak
formulations in probability of the equations

1

T
φ

(p)
T −∇ ·A

(p)(∇φ(p)
T + ξ) = 0 and

1

T
φT −∇ ·A(∇φT + ξ) = 0,

tested with φT and φ(p)
T respectively, so that (5.37) reduces to

E[ξ ·A∇(φ
(p)
T − φT )] = E[∇φT · C(p)(∇φ(p)

T + ξ)],

and the result then follows from (5.36).

Assuming that the inclusions are disjoint, we may use the inclusion-exclusion formula (5.18) in
the elementary form of (5.16), so that the result of Lemma 5.1.9 above turns into

∆
(p)
T =

∑
n

E
[
(∇φT + ξ) · C{n}(∇φ(p)

T + ξ)1n∈E(p)

]
,

or alternatively, using the constraint n ∈ E(p) to replace φ(p)
T by φE

(p)∪{n}
T ,

∆
(p)
T =

∑
n

E
[
(∇φT + ξ) · C{n}(∇φE

(p)∪{n}
T + ξ)1n∈E(p)

]
.
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Note that this sum is absolutely convergent since the C{n}’s are assumed to have disjoint supports.
As 1n∈E(p) only depends on b(p)n and as (∇φT + ξ) ·C{n}(∇φE

(p)∪{n}
T + ξ) does not depend on b(p)n , we

have by independence (5.6), using that b(p)n is a Bernoulli random variable of parameter p,

∆
(p)
T = p

∑
n

E
[
(∇φT + ξ) · C{n}(∇φE

(p)∪{n}
T + ξ)

]
.

We further decompose the right-hand side

∆
(p)
T = p

∑
n

E
[
(∇φT + ξ) · C{n}(∇φ{n}T + ξ)

]
+ p

∑
n

E
[
(∇φT + ξ) · C{n}∇(φ

E(p)∪{n}
T − φ{n}T )

]
,

and observe that the second sum is a difference of the same nature as ∆
(p)
T , which begs for an induction

argument, and the following lemma is indeed proved by induction (see Lemma 5.3.1 for a more general
statement).

Lemma 5.1.10. Assume that the inclusions Jn’s are disjoint and that E[ρ(Q)s] < ∞ for all s ≥ 1.
For all k ≥ 0, all T > 0, and all p ∈ [0, 1], we have

∆
(p)
T =

k∑
j=1

pj∆j
T + pk+1E

(p),k+1
T (5.38)

where, for all 0 ≤ j ≤ k, the approximate derivatives ∆j
T and the error E(p),k+1

T are given by

∆j
T :=

∑
|F |=j

∑
n∈F

E
[
∇δF\{n}ξ φT · C{n}(∇φFT + ξ)

]
, (5.39)

E
(p),k+1
T :=

∑
|F |=k+1

∑
n∈F

E
[
∇δF\{n}ξ φT · C{n}(∇φE

(p)∪F
T + ξ)

]
, (5.40)

and the sums in (5.39) and (5.40) are absolutely convergent. ♦

Since the combinatorics in the proof of Lemma 5.3.1 is not more involved than for the proof of
Lemma 5.1.10, we refer the reader to the proof of the former.

If we can prove that |E(p),k
T | ≤ Ck for all k ≥ 1 and for some constant C ' 1 (independent of

T > 0 and of p ∈ [0, 1]), then we can easily pass to the limit T ↑ ∞ in the expansion (5.38) and
obtain a convergent power-series expansion for the exact difference ∆(p) itself around p = 0.

The following lemma shows that a new family of energy estimates is needed to control the error
terms. We display the proof of this lemma, which is significantly simpler than the corresponding
proof in the general case of non-necessarily disjoint inclusions (see Proposition 5.3.2).

Lemma 5.1.11. Assume that the inclusions Jn’s are disjoint and that E[ρ(Q)s] < ∞ for all s ≥ 1.
Then, there is a constant C ' 1 (independent of T , of p, and of the moments of ρ) such that, for all
k ≥ 0, T > 0, and p ∈ [0, 1], the error E(p),k+1

T defined in Lemma 5.3.1 satisfies

|E(p),k+1
T | .

k∑
j=0

E
[ ∑
|G|=j

∣∣∣ ∑
|F |=k−j
F∩G=∅

∇δF∪Gξ φT

∣∣∣2]+

k+1∑
j=0

E
[ ∑
|G|=j

|∇δGξ φ
(p)
T |

2
]
. (5.41)

♦
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Proof. Let k ≥ 0. First rewrite the error as follows,

E
(p),k+1
T =

∑
|F |=k

∑
n/∈F

E
[
∇δFξ φT · C{n}(∇φ

E(p)∪F∪{n}
T + ξ)

]
. (5.42)

Recalling identity
∑

G⊂H ∇δGξ φT = ∇φHT + ξ for all H ⊂ N, we deduce

∇φE
(p)∪F∪{n}

T + ξ =
∑
G⊂F
∇δGξ φ

(p)
T +

∑
G⊂F
∇δG∪{n}ξ φ

(p)
T ,

so that (5.42) turns into

E
(p),k+1
T =

∑
|F |=k

∑
G⊂F

∑
n/∈F

E
[
∇δFξ φT · C{n}(∇δGξ φ

(p)
T +∇δG∪{n}ξ φ

(p)
T )
]
,

or equivalently

E
(p),k+1
T =

k∑
j=0

∑
|G|=j

∑
n/∈G

∑
|F |=k−j

F∩(G∪{n})=∅

E
[
∇δF∪Gξ φT · C{n}(∇δGξ φ

(p)
T +∇δG∪{n}ξ φ

(p)
T )
]
. (5.43)

For all n /∈ G and all maps f , we obviously have (compare with the more general statement (5.80))∑
|F |=k−j

F∩(G∪{n})=∅

f(F,G, n) =
∑
|F |=k−j
F∩G=∅

f(F,G, n)−
∑

|F |=k−j−1
F∩(G∪{n})=∅

f(F ∪ {n}, G, n),

so that we may rearrange the terms in (5.43) as follows,

|E(p),k+1
T | .

k∑
j=0

∑
|G|=j

∑
n/∈G

E
[
1Jn

∣∣∣ ∑
|F |=k−j
F∩G=∅

∇δF∪Gξ φT

∣∣∣(|∇δGξ φ(p)
T |+ |∇δ

G∪{n}
ξ φ

(p)
T |
)]

+
k∑
j=0

∑
|G|=j

∑
n/∈G

E
[
1Jn

∣∣∣ ∑
|F |=k−j−1

F∩(G∪{n})=∅

∇δF∪G∪{n}ξ φT

∣∣∣(|∇δGξ φ(p)
T |+ |∇δ

G∪{n}
ξ φ

(p)
T |
)]
.

By Young’s inequality and the fact that the inclusions Jn’s are disjoint, this yields

|E(p),k+1
T | .

k∑
j=0

∑
|G|=j

(
E
[∣∣∣ ∑
|F |=k−j
F∩G=∅

∇δF∪Gξ φT

∣∣∣2]+ E[|∇δGξ φ
(p)
T |

2]

)

+
k∑
j=0

∑
|G|=j

∑
n/∈G

(
E
[
1Jn

∣∣∣ ∑
|F |=k−j−1

F∩(G∪{n})=∅

∇δF∪G∪{n}ξ φT

∣∣∣2]+ E[1Jn |∇δ
G∪{n}
ξ φ

(p)
T |

2]

)
,

and the announced result already follows.

In view of (5.41) it is enough to prove the following family of energy estimates: there exists C ' 1
such that for all k ≥ j ≥ 0 we have

E
[ ∑
|G|=j

∣∣∣ ∑
|F |=k−j
F∩G=∅

∇δF∪Gξ φ
(p)
T

∣∣∣2] ≤ Ck. (5.44)
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On the one hand, a straightforward energy estimate directly yields (cf. Lemma 5.2.5)

E
[∣∣∣∑

n

∇δ{n}ξ φ
(p)
T

∣∣∣2] . 1. (5.45)

On the other hand, a simple induction argument yields for some C ' 1 and all j ≥ 0 (cf. Lemma 5.2.4),

E
[ ∑
|F |=j

|∇δFξ φ
(p)
T |

2

]
≤ Cj . (5.46)

For j ≤ 2, this estimate already appears in [20] (with however the massive term approximation
replaced by the approximation by periodization). As mentioned in Section 5.1.1, in view of Lem-
mas 5.1.10 and 5.1.11, these uniform bounds (combined with the fact that the estimates are inde-
pendent of p and combined with some invariance argument due to the structure of Bernoulli random
variables, see Step 3 of the proof of Theorem 5.1.1 in Section 5.3.2) imply that p 7→ A

(p)
hom is C1,1

on [0, 1].
Before we describe the complete induction strategy used in Section 5.2.3 to prove (5.44), let us

start by showing it in action, proving the result for k = 2 based on the corresponding result for k = 1
(that is, (5.45) and (5.46) for j = 1). This proof is instructive in three respects: it implements the
general induction strategy in the first nontrivial step, it shows that we need to use several forms of
the equation satisfied by δ{n,m}φT , and it suggests that the proof of these equivalent forms relies on
combinatorial arguments.

Lemma 5.1.12. Assume that the inclusions Jn’s are disjoint and that E[ρ(Q)s] < ∞ for all s ≥ 1.
Then, for all T > 0 and p ∈ [0, 1],

E
[ ∑
m 6=n
|∇δ{n,m}φ(p)

T |
2

]
. 1, (5.47)

E
[∑

n

∣∣∣ ∑
m,m 6=n

∇δ{n,m}φ(p)
T

∣∣∣2] . 1, (5.48)

E
[∣∣∣ ∑

m6=n
∇δ{n,m}φ(p)

T

∣∣∣2] . 1. (5.49)

♦

Proof. For notational convenience, we consider p = 0 only. In what follows we take for granted
that the series we consider are all absolutely converging, which is indeed ensured for fixed T by the
(suboptimal) estimates of Lemma 5.2.2. We split the proof into four steps. In the first step we give
three forms of the equation satisfied by δ{n,m}φT . In the second step we prove (5.47) based on one
equation and (5.45). In the third step we prove (5.48) based on another equation, (5.45), (5.46) for
j = 1, and (5.47). In the last step we prove (5.49) based on a third form of the equation, (5.45),
(5.46) for j = 1, (5.47), and (5.48).

Step 1. Equations satisfied by δ{n,m}φT .
Let m 6= n. The equation satisfied by the difference δ{n,m}φT can be written in several forms,

with perturbed or unperturbed operators. With the unperturbed operator, we have

1

T
δ{n,m}φT −∇ ·A∇δ{n,m}φT

= ∇ · C{n,m}(∇φ{n,m}T + ξ)−∇ · C{n}(∇φ{n}T + ξ)−∇ · C{m}(∇φ{m}T + ξ).
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By the inclusion-exclusion formula in the simple form C{n,m} = C{n} + C{m} (due to disjointness of
the inclusions), the equation takes the form

1

T
δ{n,m}φT −∇ ·A∇δ{n,m}φT = ∇ · C{n}∇δ{m}φ{n}T +∇ · C{m}∇δ{n}φ{m}T . (5.50)

This equation will be used to prove (5.49). A combinatorial argument (which is elementary here
because the difference operators are of order 2 only and the inclusions are disjoint) allows one to turn
the equation satisfied by δ{n,m}φT into

1

T
δ{n,m}φT −∇ ·A{n}∇δ{n,m}φT = ∇ · C{m}∇δ{n}φ{m}T +∇ · C{n}∇δ{m}φT , (5.51)

which involves a perturbed operator (with the partially perturbed coefficients A{n}), and will be used
to prove (5.48). The third and last version of the equation takes the form

1

T
δ{n,m}φT −∇ ·A{n,m}∇δ{n,m}φT = ∇ · C{m}∇δ{n}φT +∇ · C{n}∇δ{m}φT , (5.52)

which involves the completely perturbed operator, and will be used to prove (5.47).

Step 2. Proof of (5.47).
The starting point is (5.52), the right-hand side of which only involves first-order differences of

the unperturbed corrector φT . Although the argument of the expectation in the left-hand side of
(5.47) is stationary, the equation (5.52) is not stationary. We shall first obtain energy estimates
associated with (5.52) which are localized in space. It is only after summing these estimates over n
and m, taking the expectation, and passing to the limit in the localization parameter that the desired
estimate (5.47) in expectation will come out in the form

E
[ ∑
n 6=m
|∇δ{n,m}φT |2

]
≤ C E

[∑
n

|∇δ{n}φT |2
]
, (5.53)

to be combined with (5.46) for j = 1.
For all N ≥ 0, we then introduce a cut-off function χN for BN in B2N such that |∇χN | . 1/N ,

and test equation (5.52) with test function χNδ{n,m}φT ∈ H1(Rd). This yields for all n 6= m after
integration by parts, using the properties of χN , and rearranging the terms,
ˆ
BN

|∇δ{n,m}φT |2 ≤ C

ˆ
B2N

(1Jn |∇δ{m}φT |+ 1Jm |∇δ{n}φT |)|∇δ{n,m}φT |

+
C

N

ˆ
B2N

|∇δ{n,m}φT ||δ{n,m}φT |+
C

N

ˆ
B2N

(1Jn |∇δ{m}φT |+ 1Jm |∇δ{n}φT |)|δ{n,m}φT |.

We use Young’s inequality on each term (to ultimately absorb part of the right-hand side into the
left-hand side), sum this inequality over n,m ∈ N with n 6= m, and take the expectation to obtain
ˆ
BN

E
[ ∑
n6=m
|∇δ{n,m}φT |2

]
≤ C

ˆ
B2N

E
[ ∑
n6=m

(1Jn |∇δ{m}φT |2 + 1Jm |∇δ{n}φT |2)

]

+
1

C

ˆ
B2N

E
[ ∑
n6=m
|∇δ{n,m}φT |2

]
+
C

N

ˆ
B2N

E
[ ∑
n6=m
|δ{n,m}φT |2

]
,

where all the terms make sense and are finite by Lemma 5.2.2. Since all the arguments of the
expectations are now stationary, one may get rid of the integrals, which allows one to absorb the
second right-hand side term into the left-hand side (choosing C > 0 big enough) and obtain

E
[ ∑
n6=m
|∇δ{n,m}φT |2

]
≤ C E

[ ∑
n6=m

1Jn |∇δ{m}φT |2
]

+
C

N
E
[ ∑
n 6=m
|δ{n,m}φT |2

]
.
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We are now in position to conclude: by taking N ↑ ∞ we get rid of the second term of the right-hand
side, so that (5.53) follows.

Step 3. Proof of (5.48).
The desired estimate is a consequence of (5.45), of (5.46) for j = 1, of (5.47), and of

E
[∑

n

∣∣∣ ∑
m,m 6=n

∇δ{n,m}φT
∣∣∣2] . E

[ ∑
n6=m
|∇δ{n,m}φT |2

]
+ E

[∣∣∣∑
n

∇δ{n}φT
∣∣∣2]+ E

[∑
n

|∇δ{n}φT |2
]
.

(5.54)

The starting point is equation (5.52) that we first sum over m for m 6= n,

1

T

∑
m,m 6=n

δ{n,m}φT −∇ ·A{n}∇
∑

m,m 6=n
δ{n,m}φT

= ∇ ·
∑

m,m 6=n
C{m}∇δ{n}φ{m}T +∇ · C{n}∇

∑
m,m 6=n

δ{m}φT .

Following the approach of Step 2, we test this equation in space with χN
∑

m,m 6=n δ
{n,m}φT and the

same cut-off χN . We obtain after summing the estimate over n, taking the expectation, and passing
to the limit N ↑ ∞,

E
[∑

n

∣∣∣∇ ∑
m,m 6=n

δ{n,m}φT

∣∣∣2] . E
[∑

n

∣∣∣ ∑
m,m 6=n

C{m}∇δ{n}φ{m}T

∣∣∣2]+E
[∑

n

∣∣∣C{n} ∑
m,m 6=n

∇δ{m}φT
∣∣∣2],

and hence, using that 1Jn1Jm = 0 for n 6= m by the disjointness of the inclusions,

E
[∑

n

∣∣∣∇ ∑
m,m 6=n

δ{n,m}φT

∣∣∣2] . E
[∑

n

∑
m,m 6=n

1Jm |∇δ{n}φ
{m}
T |2

]
+ E

[∑
n

1Jn

∣∣∣∇ ∑
m,m 6=n

δ{m}φT

∣∣∣2].
By the decomposition δ{n}φ

{m}
T = δ{n}φT + δ{n,m}φT and the inequality

∑
m 1Jm ≤ 1, the first

right-hand side term turns into

E
[∑

n

∑
m,m 6=n

1Jm |∇δ{n}φ
{m}
T |2

]
. E

[∑
n

|∇δ{n}φT |2
]

+ E
[ ∑
m 6=n
|∇δ{n,m}φT |2

]
.

The desired inequality (5.54) is then obtained by transforming the second right-hand side term as
follows: we complete the sum over m, use the triangle inequality and the inequality

∑
n 1Jn ≤ 1, so

that
E
[∑

n

1Jn

∣∣∣∇ ∑
m,m 6=n

δ{m}φT

∣∣∣2] . E
[∣∣∣∑

m

∇δ{m}φT
∣∣∣2]+ E

[∑
n

|∇δ{n}φT |2
]
. (5.55)

Step 4. Proof of (5.49).
The desired estimate is a consequence of (5.45), of (5.46) for j = 1, of (5.48), and of

E
[∣∣∣ ∑

n 6=m
∇δ{n,m}φT

∣∣∣2] . E
[∑

n

∣∣∣ ∑
m,m 6=n

∇δ{n,m}φT
∣∣∣2]+ E

[∣∣∣∑
n

∇δ{n}φT
∣∣∣2]+ E

[∑
n

|∇δ{n}φT |2
]
.

(5.56)

The starting point is equation (5.50), that we sum over n 6= m:

1

T

∑
n6=m

δ{n,m}φT −∇ ·A∇
∑
n6=m

δ{n,m}φT = 2∇ ·
∑
n6=m

C{n}∇δ{m}φ{n}T .
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Proceeding again as in Step 2, this yields

E
[∣∣∣ ∑

n6=m
∇δ{n,m}φT

∣∣∣2] . E
[∣∣∣ ∑

n 6=m
C{n}∇δ{m}φ{n}T

∣∣∣2].
(Note that since each term of the equation is stationary after summation over n and m, this coincides
with the energy estimate in probability.) Since the inclusions are disjoint, we are left with

E
[∣∣∣ ∑

n6=m
∇δ{n,m}φT

∣∣∣2] . E
[∑

n

1Jn

∣∣∣ ∑
m,m 6=n

∇δ{m}φ{n}T

∣∣∣2]. (5.57)

By the decomposition δ{m}φ{n}T = δ{m}φT + δ{n,m}φT , this turns into

E
[∣∣∣ ∑

n6=m
∇δ{n,m}φT

∣∣∣2] . E
[∑

n

1Jn

∣∣∣ ∑
m,m 6=n

∇δ{m}φT
∣∣∣2]+ E

[∑
n

∣∣∣ ∑
m,m 6=n

∇δ{n,m}φT
∣∣∣2],

and the desired inequality (5.56) follows from (5.55).

This lemma easily implies that the map p 7→ A
(p)
hom is C1,1 on [0, 1]. As already mentioned, the

above proof illustrates the induction argument that we shall use in the proofs of Lemma 5.2.4 and of
Proposition 5.2.6 below.

In the proof of Lemma 5.2.4, we shall always consider the equation for δFφT with coefficients
AF , so that the right-hand side will only involve unperturbed correctors, and then sum over F the
resulting energy estimate (first localized in space).

The proof of Proposition 5.2.6 is more involved. Call P (j, k) the property (5.44). We make a first
induction on k and then on j. Note that at step k there are k different forms of the equation satisfied
by δFφT (for |F | = k). By Lemma 5.2.4, P (k, k) holds for all k ∈ N. Then, given P (k+ 1, k+ 1) and
P (i, l) for all i ≤ l ≤ k, we shall prove P (k + 1 − j, k + 1) iteratively starting with j = 1. Indeed,
P (k+ 1− j, k+ 1) will follow from P (k+ 1− j′, k+ 1) for j′ < j and P (j′, l) for all j′ ≤ l ≤ k, using
the form of the equation where the coefficients are k+1−j times perturbed. The last step P (0, k+1)
is similar to Step 4 in the proof above and relies on the equation with the unperturbed operator.

To be more precise, in the case of disjoint inclusions, the family of equations is as follows (see
Lemma 5.2.1 for the general case): for all disjoint subsets F,G,H ⊂ N, with F,G finite, F ∪G 6= ∅,

1

T
δF∪Gξ φHT −∇ ·AF∪H∇δF∪Gξ φHT =

∑
n∈F
∇ · C{n}∇δ(F\{n})∪G

ξ φHT +
∑
n∈G
∇ · C{n}∇δF∪(G\{n})

ξ φ
H∪{n}
T .

5.1.5 Perspectives

A particularly interesting open question concerns the understanding of the maximal regularity
of the perturbed homogenized coefficient p 7→ A

(p)
hom in the case when the inclusions are allowed to

intersect unboundedly. Assuming that the random variable Γ := #{n ∈ N : 0 ∈ Jn} only satisfies a
superalgebraic moment bound E

[
Γk
]
≤ L(k) <∞ for all k ≥ 1, the k-th derivative of the perturbed

homogenized coefficient is expected to be bounded by L(2
εk)εk!Ckε for any ε > 0 small enough.

In particular this suggests a loss of analyticity whenever the inclusions intersect unboundedly. More
generally, if for some α ≥ 0 there holds L(k) ≤ (Ckα)k for all k ≥ 1 (the case of bounded penetrability
corresponds to α = 0, and the example of Poisson unit inclusions corresponds to α = 1), then the
perturbed homogenized coefficient should be of Gevrey class with index 1 + 2α.

As is clear from an inspection of the proof of Theorem 5.A.1 (cf. (5.131)), the missing ingredient
is an improvement of integrability for the a priori estimates (5.44): we would need to show for some
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ε > 0 that there holds for all k ≥ j ≥ 0,

E
[( ∑
|G|=j

∣∣∣ ∑
|F |=k−j
F∩G=∅

∇δF∪Gξ φ
(p)
T

∣∣∣2)1+ε]
≤ Ckε . (5.58)

This does however not seem to follow from soft Meyers-type arguments. In Appendix 5.A, we show
that quantitative stochastic homogenization methods easily lead to bounds on the left-hand side
of (5.58) with suboptimal k-dependence, and we establish in this way a C∞ regularity result (cf. The-
orem 5.A.1). We believe that suitable refinements (replacing the brutal estimate of Lemma 5.A.4
by the finer inductive argument of the proof of Proposition 5.2.6) should also lead to the optimal
expected Gevrey regularity, but we have not pursued in that direction as we do not expect quanti-
tative stochastic homogenization methods to be necessary here. The general expected Gevrey result
without additional mixing assumptions is thus left as an open problem.

It is also not clear how much the Bernoulli law can be relaxed to allow for correlations. In
particular it would be interesting to determine how the regularity of the homogenized coefficients
depends on the decay of correlations of the generalization of the Bernoulli law.

As already mentioned, the convergence rates in Corollary 5.1.6 could be substantially improved
using symmetric approximations and extrapolation methods [202, 199], which would be a useful result
for numerical purposes.

Also, we believe that the C1,1− regularity of the perturbed effective fluctuation tensor obtained
in Theorem 5.1.8 could easily be extended to a C∞ regularity result, up to minor technicalities. In
contrast, the question of analyticity is left as a completely open question even in the case of disjoint
inclusions.

5.2 Auxiliary results and improved energy estimates

5.2.1 Perturbed corrector equations

We start by making precise the equations satisfied by the map δFξ φ
G
T for disjoint subsets F,G ⊂ N,

which will be used abundantly in the sequel of this chapter. The proof of this lemma (like many other
auxiliary results of this chapter) is purely combinatorial.

Lemma 5.2.1. For all disjoint subsets F,H ⊂ N, with F finite, F 6= ∅, and for all T > 0, the map
δFξ φ

H
T defined in (5.11) satisfies the following two equations (weakly) in Rd,

1

T
δFξ φ

H
T −∇ ·AF∪H∇δFξ φHT =

∑
S⊂F

(−1)|S|+1∇ · CS‖H∪F\S∇δ
F\S
ξ φHT , (5.59)

and
1

T
δFξ φ

H
T −∇ ·AH∇δFξ φHT =

∑
S⊂F

(−1)|S|+1∇ · CS‖H∇δ
F\S
ξ φS∪HT . (5.60)

More generally, for all disjoint subsets F,G,H ⊂ N, with F,G finite, F ∪G 6= ∅, and for all T > 0,
the map δF∪Gξ φHT defined in (5.11) satisfies the following equation (weakly) in Rd,

1

T
δF∪Gξ φHT −∇ ·AF∪H∇δF∪Gξ φHT =

∑
S⊂F

∑
U⊂G

(−1)|S|+|U |+1∇ · CS∪U‖H∪(F\S)∇δ
(F\S)∪(G\U)
ξ φU∪HT .

(5.61)

♦
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Proof. Let T > 0 be fixed. Without loss of generality we may assume that H = ∅. We first
prove (5.60), from which we shall then deduce (5.61). Equation (5.59) is a particular case of (5.61)
with G = ∅.

Step 1. Proof of (5.60).
Let F ⊂ N be a finite nonempty subset. By definition (5.14) of δFξ φT and the inclusion-exclusion

identity (5.19), we have

1

T
δFξ φT −∇ ·A∇δFξ φT =

∑
H⊂F

(−1)|F\H|∇ · CH(∇φHT + ξ)

=
∑
H⊂F

∑
S⊂H

(−1)|F\H|(−1)|S|+1∇ · CS(∇φHT + ξ)

=
∑
S⊂F

(−1)|S|+1∇ · CS
∑

H⊂F\S

(−1)|(F\S)\H|(∇φH∪ST + ξ).

Recognizing the definition of δF\Sξ φST , this yields

1

T
δFξ φT −∇ ·A∇δFξ φT =

∑
S⊂F

(−1)|S|+1∇ · CS∇δF\Sξ φST ,

and proves the validity of equation (5.60).

Step 2. A combinatorial identity.
For any finite subsets K,L,M ⊂ N (with K and L non-empty), we use the following notation:

CKL‖M := (A′ −A)1JK
L‖M

, JKL‖M =

( ⋃
n∈K

Jn

)
∩
( ⋂
n∈L

Jn

)
\
( ⋃
n∈M

Jn

)
.

In this proof, and in this proof only, when K or L is empty, we further set JK∅‖M = JK‖M and
J∅
L‖M = 0. We now check the following general, purely combinatorial identity: for any finite disjoint

subsets U,F ⊂ N and for any S ( F ,

(−1)|F\S|C(F\S)∪U‖S =
∑

H(F\S

(−1)|F\(H∪S)|C
F\(H∪S)
U‖H∪S . (5.62)

It is obviously enough to prove this identity for U = S = ∅. Setting G := F \ S, we need to prove
that, for any finite subset G ⊂ N,

(−1)|G|CG =
∑
H⊂G

(−1)|G\H|C
G\H
‖H . (5.63)

Using the inclusion-exclusion identity (5.20) in form of CG\H‖H =
∑

S⊂G\H(−1)|S|+1CS‖H , we have∑
H⊂G

(−1)|G\H|C
G\H
‖H =

∑
H⊂G

(−1)|G\H|
∑

S⊂G\H

(−1)|S|+1CS‖H =
∑
S⊂G

(−1)|S|+1
∑

H⊂G\S

(−1)|G\H|CS‖H .

Using then (5.21) in form of CS‖H = 1S 6=∅
∑

U⊂H(−1)|U |CS∪U , this turns into∑
H⊂G

(−1)|G\H|C
G\H
‖H =

∑
S⊂G
S 6=∅

(−1)|S|+1
∑

H⊂G\S

(−1)|G\H|
∑
U⊂H

(−1)|U |CS∪U

=
∑
S⊂G
S 6=∅

(−1)|S|+1
∑

U⊂G\S

(−1)|U |CS∪U
∑

H⊂G\(S∪U)

(−1)|G\(H∪U)|.
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Using twice the binomial identity in the form
∑

J⊂K(−1)|K\J | = 1K=∅, this reduces to∑
H⊂G

(−1)|G\H|C
G\H
‖H =

∑
S⊂G
S 6=∅

(−1)|S|+1
∑

U⊂G\S

(−1)|U |+|S|CS∪U1U=G\S

= (−1)|G|CG
∑
S⊂G
S 6=∅

(−1)|S|+1 = (−1)|G|CG,

and identity (5.63) is proven.

Step 3. Proof of (5.61).
Let F,G ⊂ N be two fixed disjoint finite subsets, with F ∪G 6= ∅. Equation (5.61) (with H = ∅)

is obviously a direct corollary of (5.60) (with F replaced by F ∪ G and with H = ∅) provided we
prove the identity

−CF∇δF∪Gξ φT +AF,G = BF,G, (5.64)

where we have defined

AF,G :=
∑

S⊂F∪G
(−1)|S|+1CS∇δ(F∪G)\S

ξ φST

=
∑
S⊂F

∑
U⊂G

(−1)|S|+|U |+1CS∪U∇δ(F\S)∪(G\U)
ξ φS∪UT ,

BF,G :=
∑
S⊂F

∑
U⊂G

(−1)|S|+|U |+1CS∪U‖F\S∇δ
(F\S)∪(G\U)
ξ φUT .

Let us first rewriteAF,G in a more suitable way. We appeal to the definition (5.14) of∇δ(F\S)∪(G\U)
ξ φS∪UT ,

then make the change of variables H ∪ S  H and U ∪W  W , and conclude by using (5.19),

AF,G =
∑
S⊂F

∑
U⊂G

(−1)|S|+|U |+1CS∪U
∑

H⊂F\S

∑
W⊂G\U

(−1)|G\(U∪W )|(−1)|F\(H∪S)|(∇φS∪U∪H∪WT + ξ)

=
∑
H⊂F

∑
W⊂G

(−1)|G\W |(−1)|F\H|
∑
S⊂H

∑
U⊂W

(−1)|S|+|U |+1CS∪U (∇φH∪WT + ξ)

(5.19)
=

∑
H⊂F

∑
W⊂G

(−1)|G\W |+|F\H|CH∪W (∇φH∪WT + ξ). (5.65)

We now treat BF,G. The change of variables F \ S  S yields

BF,G =
∑
U⊂G

(−1)|U |+1
∑
S⊂F

(−1)|F\S|C(F\S)∪U‖S∇δ
S∪(G\U)
ξ φUT (5.66)

=
∑
U⊂G

(−1)|U |+1
∑
S(F

(−1)|F\S|C(F\S)∪U‖S∇δ
S∪(G\U)
ξ φUT︸ ︷︷ ︸

=:B1
F,G

+
∑
U⊂G

(−1)|U |+1CU‖F∇δ
F∪(G\U)
ξ φUT︸ ︷︷ ︸

=:B2
F,G

.

We treat both terms B1
F,G and B2

F,G separately. The combinatorial identity (5.62) and the change of
variables H ∪ S  H yield

B1
F,G =

∑
U⊂G

(−1)|U |+1
∑
S(F

∑
H(F\S

(−1)|F\(H∪S)|C
F\(H∪S)
U‖H∪S ∇δ

S∪(G\U)
ξ φUT

=
∑
U⊂G

(−1)|U |+1
∑
H(F

(−1)|F\H|C
F\H
U‖H

∑
S⊂H
∇δS∪(G\U)

ξ φUT .
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By the identity (5.15) in the form
∑

S⊂H ∇δ
S∪(G\U)
ξ φUT = ∇δG\Uξ φH∪UT , this turns into

B1
F,G =

∑
U⊂G

(−1)|U |+1
∑
H(F

(−1)|F\H|C
F\H
U‖H∇δ

G\U
ξ φH∪UT ,

and thus, by definition (5.11)–(5.13) of δG\Uξ and the change of variables U ∪W  W ,

B1
F,G =

∑
U⊂G

(−1)|U |+1
∑
H(F

(−1)|F\H|
∑

W⊂G\U

(−1)|G\(U∪W )C
F\H
U‖H (∇φH∪U∪WT + ξ)

=
∑
H(F

(−1)|F\H|
∑
W⊂G

(−1)|G\W |
∑
U⊂W

(−1)|U |+1C
F\H
U‖H (∇φH∪WT + ξ).

Noting that, by the usual inclusion-exclusion formula,∑
U⊂W

(−1)|U |+1C
F\H
U‖H = −CF\H‖H + C

F\H
‖H

∑
U⊂W
U 6=∅

(−1)|U |+11JU = −CF\H‖H + C
F\H
‖H 1JW = −CF\H‖H∪W ,

we conclude that

B1
F,G = −

∑
H⊂F

(−1)|F\H|
∑
W⊂G

(−1)|G\W |C
F\H
‖H∪W (∇φH∪WT + ξ). (5.67)

For the second term B2
F,G in (5.66), we argue as in Step 1, and obtain

B2
F,G =

∑
H⊂F

(−1)|F\H|
∑
U⊂G
U 6=∅

(−1)|U |+1CU‖F
∑

W⊂G\U

(−1)|G\(U∪W )|(∇φU∪W∪HT + ξ)

=
∑
H⊂F

(−1)|F\H|
∑
W⊂G

(−1)|G\W |
∑
U⊂W
U 6=∅

(−1)|U |+1CU‖F (∇φW∪HT + ξ)

=
∑
H⊂F

∑
W⊂G

(−1)|F\H|+|G\W |CW‖F (∇φW∪HT + ξ). (5.68)

Combining (5.65), (5.66), (5.67) and (5.68) then yields

AF,G −BF,G =
∑
H⊂F

∑
W⊂G

(−1)|G\W |+|F\H|
(
CH∪W + C

F\H
‖H∪W − C

W
‖F

)
(∇φH∪WT + ξ),

which proves (5.64) by definition (5.11)–(5.13) of δF∪Gξ φT .

5.2.2 Basic energy estimates

The advantage of the massive term approximations φFT is to localize the dependence with respect
to the coefficients to a ball of radius

√
T (up to exponentially small corrections). While this regu-

larization in T allows us to get rid of convergence issues at infinity, convergence problems may also
occur at short distances because of high concentrations of the point process ρ. In order to avoid
such issues, we further assume that ρ has all its moments finite. The assumption T < ∞ and the
finite moments assumption are crucial to make rigorous all subsequent formal computations. Under
these assumptions we shall prove some basic energy estimates that are uniform with respect to the
regularization parameter T and to the moments bounds on ρ; these estimates will be substantially
improved in next section.
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Lemma 5.2.2. Assume that E[ρ(Q)s] <∞ for all s ≥ 1. Then, for all L ' 1, k ≥ 0, H ⊂ N, s ≥ 1,
and T > 0, the following estimate holds

E
[( ∑
|F |=k

T−
1
2 (δFξ φ

H
T )L(0) + (∇δFξ φHT )L(0)

)s]
≤ CskT E[ρ(BR)sk] <∞,

for some constant CT 'T 1, where δFξ φ
H
T is as in (5.13), and where we write (f)L(x) := (

ffl
BL(x) |f |

2)
1
2

for the local quadratic average of any map f . ♦

Proof. Since our argument is deterministic (we take the expectation only at the very end), we can
assume w.l.o.g. that H = ∅. By (5.59) in Lemma 5.2.1, δFξ φT satisfies

1

T
δFξ φT −∇ ·AF∇δFξ φT =

∑
S⊂F

(−1)|S|+1∇ · CS‖F\S∇δ
F\S
ξ φT .

Let z ∈ Rd and set ηzT (x) := e−c|x−z|/
√
T with c > 0 to be chosen later. Testing this equation with

ηzT δ
F
ξ φT in the whole space, and noting that |∇ηzT | = cηzT /

√
T , we obtain the starting point for

Caccioppoli’s inequality

1

T

ˆ
Rd
ηzT |δFξ φT |2 +

ˆ
Rd
ηzT |∇δFξ φT |2 .

∑
S⊂F

ˆ
JS‖F\S

ηzT |∇δFξ φT | |∇δ
F\S
ξ φT |

+
c√
T

∑
S⊂F

ˆ
JS‖F\S

ηzT |δFξ φT | |∇δ
F\S
ξ φT |+

c√
T

ˆ
Rd
ηzT |δFξ φT | |∇δFξ φT |.

It is crucial to note here that, for fixed F , the sets JS‖F\S , S ⊂ F , are all disjoint. By Young’s
inequality, and choosing c > 0 small enough so that one may absorb all the terms but two in the
left-hand side, this turns into

1

T

ˆ
Rd
ηzT |δFξ φT |2 +

ˆ
Rd
ηzT |∇δFξ φT |2 .

∑
S⊂F

ˆ
JS‖F\S

ηzT |∇δ
F\S
ξ φT |2.

For L ' 1, taking the square root of both sides yields

e−cL/
√
T
(
T−

1
2 (δFξ φT )L(z) + (∇δFξ φT )L(z)

)
.

(∑
S⊂F

ˆ
JS‖F\S

ηzT |∇δ
F\S
ξ φT |2

) 1
2

≤
∑
S⊂F

(ˆ
JS‖F\S

ηzT |∇δ
F\S
ξ φT |2

) 1
2

. (5.69)

Now note that, relabeling the sum in terms of F \ S, and using that JS‖F\S = ∅ whenever S = ∅,
we get

∑
|F |=k

∑
S⊂F

(ˆ
JS‖F\S

ηzT |∇δ
F\S
ξ φT |2

) 1
2

≤
∑

|F |≤k−1

∑
|S|≤k

(ˆ
JS‖F

ηzT |∇δFξ φT |2
) 1

2

,

and hence, as JS‖F ⊂ Jn ⊂ BR(qn) for any n ∈ S,

∑
|F |=k

∑
S⊂F

(ˆ
JS‖F\S

ηzT |∇δ
F\S
ξ φT |2

) 1
2

≤
∑

|F |≤k−1

∑
n

(ˆ
BR(qn)

ηzT |∇δFξ φT |2
) 1

2 ∑
|S|≤k
n∈S

1JS‖F 6=∅. (5.70)
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We bound the last sum as follows: for any fixed n, recalling that by assumption (5.4) the intersections
of the inclusions Jn’s are of degree at most Γ ' 1,

∑
|S|≤k
n∈S

1JS‖F 6=∅ ≤
∑
|S|≤k
n∈S

1JS 6=∅ ≤
k∑
j=1

(
Γ− 1

j − 1

)
≤ 2Γ−1 . 1. (5.71)

As we have ηzT (x) ≤ e−c|qn−z|/
√
T ecR/

√
T for all x ∈ BR(qn), we can then deduce from (5.70) and

(5.71),

∑
|F |=k

∑
S⊂F

(ˆ
JS‖F\S

ηzT |∇δ
F\S
ξ φT |2

) 1
2

. ecR/
√
T
∑

|F |≤k−1

∑
n

e−c|qn−z|/
√
T (∇δFξ φT )R(qn).

We then sum (5.69) over |F | = k, k ≥ 1, and use the above estimate to get for any z ∈ Rd,

SkT (z) := T−
1
2

∑
|F |=k

(δFξ φT )L(z) +
∑
|F |=k

(∇δFξ φT )L(z)

. ec(L+R)/
√
T
∑
n

e−c|qn−z|/
√
T
∑

|F |≤k−1

(∇δFξ φT )R(qn).

Combining this with (5.8), we conclude by induction that, for some (deterministic) constant CT 'T 1,

SkT (z) . CkT

k∑
j=1

∑
n1,...,nj

e−c|qn1−z|/
√
T

j∏
i=2

e−c|qni−1−qni |/
√
T

︸ ︷︷ ︸
=: IjT (z)

.

It only remains to compute the sum IjT (z). For that purpose, we compare sums to integrals

IjT (z) ≤ ecjR/
√
T
∑

n1,...,nj

ˆ
BR(qn1 )

. . .

ˆ
BR(qnj )

e−c|x1−z|/
√
T

j∏
i=2

e−c|xi−1−xi|/
√
Tdxj . . . dx1,

and hence,

IjT (z) ≤ ecjR/
√
T

ˆ
(Rd)j

e−c|x1−z|/
√
Tρ(BR(x1))

j∏
i=2

(
e−c|xi−1−xi|/

√
Tρ(BR(xi))

)
dx1 . . . dxj .

Taking expectation of IjT (z)s, for some s ≥ 1, and applying the triangle and the Hölder inequalities,
we obtain

E[IjT (z)s]1/s ≤ ecjR/
√
TE[ρ(BR)sj ]1/s

ˆ
(Rd)j

e−c|x1−z|/
√
T

j∏
i=2

e−c|xi−1−xi|/
√
Tdx1 . . . dxj ,

which finally gives, by an obvious change of variables,

E[IjT (z)s]
1
s ≤ ecjR/

√
TE[ρ(BR)sj ]

1
s

( ˆ
Rd
e−c|x|/

√
Tdx

)j
= CjT jd/2ecjR/

√
TE[ρ(BR)sj ]

1
s ,

and the announced result is then proved.
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Based on this deterministic estimate, we prove a lemma which will be crucial to give sense to
formal calculations, and implies the absolute convergence of all the series we will be considering for
fixed T , at least under the additional assumption that moments of ρ are finite. Note that the result
obviously also holds for ∇φFT replaced e.g. by ∇φE(p)∪F

T .

Lemma 5.2.3. Assume that E[ρ(Q)s] <∞ for all s ≥ 1. For all T > 0, and k ≥ 1, we have

SkT :=
∑
|F |=k

∑
G⊂F

E
[
|CF\G| |∇δGξ φT | (1 + |∇φFT |)

]
<∞, (5.72)

∑
|F |=k

∑
G⊂F

E
[
|CG| |∇δF\Gξ φGT | (1 + |∇φFT |)

]
<∞, (5.73)

∑
|F |=k

E
[
|CF | (1 + |∇φT |)(1 + |∇φFT |)

]
<∞. (5.74)

♦

Proof. We only prove (5.72); the proofs of the other statements are similar. Let k ≥ 0 be fixed. By
stationarity we add a local average over the ball BL, say, with L ' 1, we apply the Cauchy-Schwarz
inequality, and note that, for all x ∈ BL,

|CH(x)| . 1x∈Jn,∀n∈H ≤ 1x∈BR(qn),∀n∈H = 1qn∈BR(x),∀n∈H ≤ 1qn∈BR+L,∀n∈H =: χL(H),

so that we can write by the change of variables F  F ∪G,

SkT .
∑
|F |=k

∑
G⊂F

E
[
χL(F \G)(∇δGξ φT )L(1 + (∇φFT )L)

]

≤
∑
|F |≤k

∑
|G|≤k

E
[
χL(F )(∇δGξ φT )L(1 + (∇φF∪GT )L)

]
.

Using the deterministic estimate (5.8) in the form of (∇φF∪GT )L . T
d
2 , this yields

SkT . T
d
2E
[( ∑
|F |≤k

χL(F )

)( ∑
|G|≤k

(∇δGξ φT )L

)]
.

The first sum can be estimated as follows: since
(
n
i

)
≤ 1

i!n
i ≤ (en/i)i and

∑∞
i=1(e/i)i . 1,

∑
|F |≤k

χL(F ) =
∑
|F |≤k

1qn∈BR+L,∀n∈F ≤
k∑
i=0

(
ρ(BR+L)

i

)
. ρ(BR+L)k,

so that we conclude by Lemma 5.2.2 and the Cauchy-Schwarz inequality that

SkT . T
d/2E[ρ(BR+L)2k]1/2E

[( ∑
|G|≤k

(∇δGξ φT )L

)2]1/2

<∞.

We now turn to energy estimates that hold uniformly with respect to T and the moments bounds
on ρ. The following two estimates will be further improved in the next section.

Lemma 5.2.4. Assume that E[ρ(Q)s] < ∞ for all s ≥ 1. Then, there exists a constant C ' 1
(independent of T and of the moments of ρ) such that, for all k ≥ 0 and T > 0,

E
[ ∑
|F |=k

|∇δFξ φT |2
]
≤ Ck+1. ♦
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Proof. For k = 0, the result E[|∇φT + ξ|2] . 1 reduces to the basic energy estimate (5.8) on the
modified corrector. We now argue by induction. Assume that the result holds for some fixed k ≥ 0.
From (5.59) in Lemma 5.2.1, we learn that δFξ φT satisfies on Rd,

1

T
δFξ φT −∇ ·AF∇δFξ φT =

∑
S⊂F

(−1)|S|+1∇ · CS‖F\S∇δ
F\S
ξ φT .

We test this equation with χNδFξ φT , where χN is a cut-off function for BN in B2N such that |∇χN | .
1/N . This yields

ˆ
BN

|∇δFξ φT |2 .
∑
S⊂F

ˆ
B2N

1JS‖F\S |∇δ
F
ξ φT | |∇δ

F\S
ξ φT | (5.75)

+
1

N

ˆ
B2N

|δFξ φT | |∇δFξ φT |+
1

N

∑
S⊂F

ˆ
B2N

1JS‖F\S |δ
F
ξ φT | |∇δ

F\S
ξ φT |.

We then take the expectation, sum over |F | = k − 1 (all the sums are convergent by Lemmas 5.2.2
and 5.2.3), and divide by Nd:

E
[ 

BN

∑
|F |=k+1

|∇δFξ φT |2
]
. E

[ 
B2N

∑
|F |=k+1

∑
S⊂F

1JS‖F\S |∇δ
F
ξ φT | |∇δ

F\S
ξ φT |

]

+
1

N
E
[ 

B2N

∑
|F |=k+1

|δFξ φT | |∇δFξ φT |
]

+
1

N
E
[ 

B2N

∑
|F |=k+1

∑
S⊂F

1JS‖F\S |δ
F
ξ φT | |∇δ

F\S
ξ φT |

]
.

Since each sum above is absolutely convergent and defines an integrable stationary random field (the
expectation of which obviously does not depend on the point it is taken), this inequality also takes
the form

E
[ ∑
|F |=k+1

|∇δFξ φT |2
]
. E

[ ∑
|F |=k+1

∑
S⊂F

1JS‖F\S |∇δ
F
ξ φT | |∇δ

F\S
ξ φT |

]

+
1

N
E
[ ∑
|F |=k+1

|δFξ φT | |∇δFξ φT |
]

+
1

N
E
[ ∑
|F |=k+1

∑
S⊂F

1JS‖F\S |δ
F
ξ φT | |∇δ

F\S
ξ φT |

]
.

Taking the limit N ↑ ∞ then yields

E
[ ∑
|F |=k+1

|∇δFξ φT |2
]
. E

[ ∑
|F |=k+1

∑
S⊂F

1JS‖F\S |∇δ
F
ξ φT | |∇δ

F\S
ξ φT |

]
. (5.76)

By Young’s inequality and the disjointness of the sets JS‖F\S , S ⊂ F (for fixed F ), in the form of∑
S⊂F 1JS‖F\S ≤ 1, we may absorb part of the right-hand side into the left-hand side, and obtain

E
[ ∑
|F |=k+1

|∇δFξ φT |2
]
. E

[ ∑
|F |=k+1

∑
S⊂F

1JS‖F\S |∇δ
F\S
ξ φT |2

]
≤ E

[ ∑
|F |≤k

|∇δFξ φT |2
∑
|S|≤k+1

1JS‖F

]
,

(5.77)

where we used that J∅‖F = ∅. By assumption (5.4), proceeding as for (5.71), we have

∑
|S|≤k+1

1JS‖F (0) ≤
∑
|S|≤k+1

1JS (0) ≤
k+1∑
j=0

(
Γ

j

)
≤ 2Γ . 1, (5.78)

248



so that (5.77) finally turns into

E
[ ∑
|F |=k+1

|∇δFξ φT |2
]
. E

[ ∑
|F |≤k

|∇δFξ φT |2
]
,

from which the desired conclusion follows by the induction assumption.

For sums
∑
|F |=k of size k = 1, the following result is easily proven as an energy estimate in

the probability space; for general k it also holds but the proof relies on a subtle induction and
combinatorial argument, which is presented in the next section.

Lemma 5.2.5. Assume that E[ρ(Q)s] < ∞ for all s ≥ 1. Then, for all T > 0, we have (uniformly
in T and in the moments of ρ)

E
[∣∣∣∑

n

∇δ{n}ξ φT

∣∣∣2] . 1. ♦

Proof. By Lemma 5.2.2 for k = 1, the sum
∑

n δ
{n}
ξ φT is well-defined in H1

loc(Rd) and satisfies the
following equation on Rd,

1

T

∑
n

δ
{n}
ξ φT −∇ ·A∇

∑
n

δ
{n}
ξ φT = ∇ ·

∑
n

C{n}(∇φ{n}T + ξ).

We then test this equation with χN (
∑

n δ
{n}
ξ φT ) for some cut-off χN for BN in B2N such that |∇χN | .

1/N . Since
∑

n∇δ
{n}
ξ φT is stationary, we may proceed as for the proof of (5.76) in Lemma 5.2.4,

and obtain after taking the expectation and the limit N ↑ ∞ (or equivalently testing the equation in
probability),

E
[∣∣∣∑

n

∇δ{n}ξ φT

∣∣∣2] . E
[∣∣∣∑

n

C{n}(∇φ{n}T + ξ)
∣∣∣2] . E

[(∑
n

1Jn

)(∑
n

1Jn(1 + |∇φ{n}T |
2)

)]
.

By assumption (5.4), proceeding as for (5.71), we have
∑

n 1Jn(0) . 1, so that, using in addition the
decomposition 1 + |∇φ{n}T |2 . (1 + |∇φT |2) + |∇δ{n}ξ φT |2, we obtain

E
[∣∣∣∑

n

∇δ{n}ξ φT

∣∣∣2] . E[1 + |∇φT |2] + E
[∑

n

|∇δ{n}ξ φT |2
]
. 1,

where the last inequality follows from Lemma 5.2.4 with k = 1.

5.2.3 Improved energy estimates

In this section, we prove the following generalization of Lemma 5.2.5 to any order k in the following
form (choosing j = k in (5.79) below): there is a constant C ' 1 such that, for all k ≥ 1 and T > 0,

E
[∣∣∣ ∑
|F |=k

∇δFφT
∣∣∣2] ≤ Ck+1,

and we give an interpolation result between this inequality and the energy estimates of Lemma 5.2.4.

Proposition 5.2.6. Assume that E[ρ(Q)s] < ∞ for all s ≥ 1. Then, there exists a constant C ' 1
(independent of T and of the moments of ρ) such that, for all T > 0, k ≥ 0, and 0 ≤ j ≤ k,

Skj := E
[ ∑
|G|=k−j

∣∣∣ ∑
|F |=j
F∩G=∅

∇δF∪GφT
∣∣∣2] ≤ Ck+1. (5.79)

♦
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Proof. We proceed by induction and split the proof into two steps.

Step 1. Preliminary.
For k = j = 0, the estimate S0

0 = E[|∇φT + ξ|2] . 1 reduces to the energy estimate for the
modified corrector. (Note also that the estimate S1

1 . 1 already follows from Lemma 5.2.5 — but
this will not be used here.) We now argue by a double induction argument. Since the result is proven
for k = 0, we may indeed argue by induction on k: we assume that Sk′j ≤ Ck

′+1 for all 0 ≤ j ≤ k′

and for all 0 ≤ k′ ≤ k, and shall prove that Sk+1
j ≤ Ck+2 for all 0 ≤ j ≤ k + 1. Since Lemma 5.2.4

implies the desired result for j = 0, we may as well argue by induction on j: we further assume that
Sk+1
j′ ≤ Ck+2 for all 0 ≤ j′ ≤ j, for some 0 ≤ j < k + 1, and shall prove that Sk+1

j+1 ≤ Ck+2.
Before we turn to Step 2, we state another combinatorial inequality we shall need in the proof.

Let G,S ⊂ N be finite fixed disjoint subsets. We claim that∣∣∣∣ ∑
|F |=k

F∩(G∪S)=∅

∇δF∪Gξ φT

∣∣∣∣ ≤ |S|∑
l=0

∑
|L|=l
L⊂S

∣∣∣∣ ∑
|F |=k−l

F∩(G∪L)=∅

∇δF∪G∪Lξ φT

∣∣∣∣. (5.80)

We first rewrite

SkG,S :=
∑
|F |=k

F∩(G∪S)=∅

∇δF∪Gξ φT =
∑
|F |=k
F∩G=∅

1F∩S=∅∇δF∪Gξ φT ,

where we can decompose, by the usual inclusion-exclusion argument,

1F∩S=∅ = 1− 1F∩S 6=∅ = 1−
|S|∑
l=1

(−1)l+1
∑
|L|=l
L⊂S

1L⊂F =

|S|∑
l=0

(−1)l
∑
|L|=l
L⊂S

1L⊂F ,

so that SkG,S becomes, by a change of variables,

SkG,S =

|S|∑
l=0

(−1)l
∑
|L|=l
L⊂S

∑
|F |=k
F∩G=∅

1L⊂F∇δF∪Gξ φT =

|S|∑
l=0

(−1)l
∑
|L|=l
L⊂S

∑
|F |=k−l

F∩(G∪L)=∅

∇δF∪G∪Lξ φT ,

and the claim (5.80) then follows from the triangle inequality.

Step 2. Bound on Sk+1
j+1 .

Let G ⊂ N be a finite subset. By Lemma 5.2.2 we may sum equation (5.61) of Lemma 5.2.1 (with
H = ∅) for δF∪GφT over |F | = j + 1, F ∩ G = ∅, which yields the following equation for the sum∑
|F |=j+1
F∩G=∅

δF∪GφT on Rd:

1

T

∑
|F |=j+1
F∩G=∅

δF∪Gξ φT −∇ ·AG∇
∑
|F |=j+1
F∩G=∅

δF∪Gξ φT

= ∇ ·
∑
|F |=j+1
F∩G=∅

∑
S⊂F

∑
U⊂G

(−1)|S|+|U |+1CS∪U‖G\U∇δ
(F\S)∪(G\U)
ξ φST

= ∇ ·
∑
U⊂G

∑
|S|≤j+1
S∩G=∅

(−1)|S|+|U |+1CS∪U‖G\U
∑

|F |=j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U)
ξ φST .

We test this equation with χN
∑
|F |=j+1,F∩G=∅ δ

F∪G
ξ φT , where χN is a cut-off function for BN in

B2N such that |∇χN | . 1/N , we take the sum over |G| = (k + 1) − (j + 1) = k − j (which is again
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absolutely converging by Lemma 5.2.2), take the expectation, and then use stationarity to pass to
the limit N ↑ ∞, as in the proof of (5.76) in Lemma 5.2.4. This yields

Sk+1
j+1 . E

[ ∑
|G|=k−j

∣∣∣∣ ∑
U⊂G

∑
|S|≤(j+1)∧Γ

S∩G=∅,S∪U 6=∅

(−1)|S|+|U |+1CS∪U‖G\U
∑

|F |=j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U)
ξ φST

∣∣∣∣2],
where the additional restriction S ∪ U 6= ∅ follows from the fact that CS∪U‖G\U vanishes identically
otherwise and where we have further restricted to |S| ≤ Γ since by assumption (5.4) there is no
intersection of degree larger than Γ. Since we have |CS∪U‖G\U | . 1JS1JU‖G\U (using here notation
1J∅ = 1), and the JU‖G\U ’s are disjoint for U ⊂ G (for fixed G), we deduce

Sk+1
j+1 . E

[ ∑
|G|=k−j

∑
U⊂G

1JU‖G\U

( ∑
|S|≤(j+1)∧Γ

S∩G=∅,S∪U 6=∅

1JS

∣∣∣∣ ∑
|F |=j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U)
ξ φST

∣∣∣∣)2]
.

As for (5.78), we have
∑
|S|≤j+1 1JS (0) . 1, so that by the Cauchy-Schwarz inequality, this estimate

turns into

Sk+1
j+1 . E

[ ∑
|G|=k−j

∑
U⊂G

1JU

∑
|S|≤(j+1)∧Γ

S∩G=∅,S∪U 6=∅

1JS

∣∣∣∣ ∑
|F |=j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U)
ξ φST

∣∣∣∣2].
Now using the decomposition ∇δF∪(G\U)

ξ φST =
∑

R⊂S ∇δ
F∪R∪(G\U)
ξ φT (that is, (5.14) with H = ∅,

G F ∪ (G \ U) and F  S), together with the observation that

1JS

(∑
R⊂S

aR

)2

≤ 1JS

(∑
R⊂S

1JRaR

)2

. 1JS

∑
R⊂S

a2
R,

which follows again from combining the Cauchy-Schwarz inequality with inequality
∑
|R|≤j+1 1JR . 1,

we obtain

Sk+1
j+1 . E

[ ∑
|G|=k−j

∑
U⊂G

1JU

∑
|S|≤(j+1)∧Γ

S∩G=∅,S∪U 6=∅

1JS

∑
R⊂S

∣∣∣∣ ∑
|F |=j+1−|S|
F∩(G∪S)=∅

∇δF∪R∪(G\U)
ξ φT

∣∣∣∣2]

≤
(j+1)∧Γ∑
i=0

E
[ ∑
|U |≤k−j

1JU

∑
|G|≤k−j
G∩U=∅

δGijk
∑
|S|=i
S∩G=∅

1JS

∑
R⊂S

∣∣∣∣ ∑
|F |=j+1−i

F∩(G∪U∪S)=∅

∇δF∪R∪Gξ φT

∣∣∣∣2],
where we have set δGijk = 0 when simultaneously |G| = k − j and i = 0, and δGijk = 1 otherwise. By
(5.80) and the inequality

∑
|L|≤j+1 1JL . 1, for any R ⊂ S and any G ∩ U = ∅ = S ∩G, we have

1JS∩JU

∣∣∣∣ ∑
|F |=j+1−i

F∩(G∪U∪S)=∅

∇δF∪R∪Gξ φT

∣∣∣∣2 ≤ ( j+1−i∑
l=0

∑
|L|=l

L⊂U∪S\R

1JL

∣∣∣∣ ∑
|F |=j+1−i−l
F∩(L∪R∪G)=∅

∇δF∪L∪R∪Gξ φT

∣∣∣∣)2

.
j+1−i∑
l=0

∑
|L|=l

L⊂U∪S\R

1JL

∣∣∣∣ ∑
|F |=j+1−i−l
F∩(L∪R∪G)=∅

∇δF∪L∪R∪Gξ φT

∣∣∣∣2, (5.81)
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and hence we obtain, using
∑
|U |≤k 1JU . 1 again, and using U ∪ (S \R) ⊂ N \ (G ∪R),

Sk+1
j+1 .

(j+1)∧Γ∑
i=0

j+1−i∑
l=0

E
[ ∑
|U |≤k−j

1JU

∑
|G|≤k−j
G∩U=∅

δGijk

∑
|S|=i
S∩G=∅

1JS

∑
R⊂S

∑
|L|=l

L⊂U∪S\R

1JL

∣∣∣∣ ∑
|F |=j+1−i−l
F∩(L∪R∪G)=∅

∇δF∪L∪R∪Gξ φT

∣∣∣∣2]

.
(j+1)∧Γ∑
i=0

j+1−i∑
l=0

E
[ ∑
|G|≤k−j

δGijk
∑
|R|≤i
R∩G=∅

1JR

∑
|L|=l

L∩(G∪R)=∅

1JL

∣∣∣∣ ∑
|F |=j+1−i−l
F∩(L∪R∪G)=∅

∇δF∪L∪R∪Gξ φT

∣∣∣∣2].
Successively using Γ . 1 in the form of

∑(j+1)∧Γ
i=0

∑
|R|≤i .

∑(j+1)∧Γ
i=0

∑
|R|=i and

∑
L 1JL . 1, we

obtain by the change of variables L ∪R R,

Sk+1
j+1 .

(j+1)∧Γ∑
i=0

j+1−i∑
l=0

E
[ ∑
|R|=i

1JR

∑
|L|=l
L∩R=∅

1JL

∑
|G|≤k−j

G∩(L∪R)=∅

δGijk

∣∣∣∣ ∑
|F |=j+1−i−l
F∩(L∪R∪G)=∅

∇δF∪L∪R∪Gξ φT

∣∣∣∣2]

.
(j+1)∧Γ∑
i=0

k−j∑
l=0

E
[ ∑
|R|=i

1JR

∑
|G|=l
R∩G=∅

δGijk

∣∣∣∣ ∑
|F |=j+1−i
F∩(G∪R)=∅

∇δF∪R∪Gξ φT

∣∣∣∣2],
or equivalently, recalling the definition of the δGijk’s and of the Skj ’s,

Sk+1
j+1 .

k−j−1∑
l=0

Sl+j+1
j+1 +

j+1∑
i=1

k−j∑
l=0

E
[ ∑
|R|=i

1JR

∑
|G|=l
R∩G=∅

∣∣∣∣ ∑
|F |=j+1−i
F∩(G∪R)=∅

∇δF∪R∪Gξ φT

∣∣∣∣2]. (5.82)

Using again the fact that
∑
|R|=i 1JR . 1, we can bound

E
[ ∑
|R|=i

1JR

∑
|G|=l
R∩G=∅

∣∣∣∣ ∑
|F |=j+1−i
F∩(G∪R)=∅

∇δF∪R∪Gξ φT

∣∣∣∣2] = E
[ ∑
|G|=i+l

∑
R⊂G
|R|=i

1JR

∣∣∣∣ ∑
|F |=j+1−i
F∩G=∅

∇δF∪Gξ φT

∣∣∣∣2]

. E
[ ∑
|G|=i+l

∣∣∣∣ ∑
|F |=j+1−i
F∩G=∅

∇δF∪Gξ φT

∣∣∣∣2] = Sl+j+1
j+1−i,

so that (5.82) turns into

Sk+1
j+1 .

k−j−1∑
l=0

Sl+j+1
j+1 +

j+1∑
i=1

k−j∑
l=0

Sl+j+1
j+1−i =

k∑
l=0

Slj+1 +

j∑
i=0

k+1∑
l=j+1

Sli.

As the right-hand side only involves the Sk′j′ ’s with k′ ≤ k or with k′ = k + 1, j′ ≤ j, we conclude
that Sk+1

j+1 ≤ Ck+2 by the induction assumption.

5.3 Proofs of the main results

In this section, we prove the analyticity of the perturbed coefficients (Theorem 5.1.1) and the
analytical formulas for the derivatives (Corollary 5.1.2), from which we further deduce the Clausius-
Mossotti formulas (Corollaries 5.1.4 and 5.1.5).
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5.3.1 Approximate derivatives at p = 0

In this subsection we devise analytical formulas for the derivatives of the map p 7→ A
(p)
T at p = 0

under the assumptions that T > 0 and E[ρ(Q)s] <∞ for all s ≥ 1. We shall show in particular that
A

(p)
T is C∞ at p = 0. These results, which rely on the improved energy estimates of Proposition 5.3.2,

constitute the core of the proof of Theorem 5.1.1.
Fix some direction ξ ∈ Rd, |ξ| = 1. As in Section 5.1.4, we consider the exact and approximate

differences
∆(p) := ξ · (A(p)

hom −Ahom)ξ, ∆
(p)
T := ξ · (A(p)

T −AT )ξ,

and we recall that limT ∆
(p)
T = ∆(p) follows from (5.10). By Lemma 5.1.9 the approximate difference

satisfies

∆
(p)
T = E[(∇φT + ξ) · C(p)(∇φ(p)

T + ξ)]. (5.83)

By assumption (5.4), we may now appeal to the inclusion-exclusion formula in the form of (5.18),
so that (5.83) turns into

∆
(p)
T =

Γ∑
j=1

(−1)j+1
∑
|F |=j

E
[
(∇φT + ξ) · CF (∇φE(p)∪F

T + ξ)1F⊂E(p)

]
,

where the sum is absolutely convergent by (5.74) in Lemma 5.2.3. Using that the event [F ⊂ E(p)] is
by definition independent of the rest of the summand, and that we have i.i.d. Bernoulli variables of
parameter p, this identity takes the form

∆
(p)
T =

Γ∑
j=1

(−1)j+1pj E

∑
|F |=j

(∇φT + ξ) · CF (∇φE(p)∪F
T + ξ)

 , (5.84)

which can be further decomposed as

∆
(p)
T =

Γ∑
j=1

(−1)j+1pj E

∑
|F |=j

(∇φT + ξ) · CF (∇φFT + ξ)


+

Γ∑
j=1

(−1)j+1pj E

∑
|F |=j

(∇φT + ξ) · CF∇(φE
(p)∪F

T − φFT )

 ,
where the sums are still absolutely convergent by (5.74) in Lemma 5.2.3. The first term of the first
sum (i.e. corresponding to the choice j = 1) is of order p and coincides with the argument of the limit
in (5.23) for k = 1. The second sum can be rewritten as a sum of errors of order at least p2, which
can then be combined with the corresponding (higher-order) terms in the first sum, and an induction
argument finally allows us to prove the following decomposition.

Lemma 5.3.1. Assume that E[ρ(Q)s] <∞ for all s ≥ 1. For any k ≥ 0 and any p ∈ [0, 1], we have

∆
(p)
T =

k∑
j=1

pj∆j
T +

k+Γ∑
j=k+1

pjE
(p),j,k
T (5.85)

where, for all j > k ≥ 0, the approximate derivatives ∆j
T and the errors E(p),j,k

T are given by

∆j
T :=

∑
|F |=j

∑
G⊂F

(−1)|F\G|+1E
[
∇δGξ φT · CF\G‖G(∇φFT + ξ)

]
, (5.86)

E
(p),j,k
T :=

∑
|F |=j

∑
G⊂F
|G|≤k

(−1)|F\G|+1E
[
∇δGξ φT · CF\G‖G(∇φE(p)∪F

T + ξ)
]
, (5.87)
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and the sums
∑
|F |=j

∑
G⊂F in (5.86) and (5.87) are absolutely convergent for fixed T . ♦

Proof. We proceed by induction. For k = 0, (5.85) reduces to (5.84). Assume now that (5.85) holds
true for some k ≥ 0. First of all, we decompose E(p),k+1,k

T as follows:

E
(p),k+1,k
T = ∆k+1

T +G
(p),k
T , (5.88)

where the error reads

G
(p),k
T :=

∑
|F |=k+1

∑
G⊂F
|G|≤k

(−1)|F\G|+1E
[
∇δGξ φT · CF\G‖G∇(φE

(p)∪F
T − φFT )

]

=
∑

|F |=k+1

k+1∑
j=1

(−1)j+1
∑
G⊂F
|G|=j

E
[
∇δF\Gξ φT · CG‖F\G∇(φE

(p)∪F
T − φFT )

]
,

since the summand for G = F in (5.86) vanishes (cf. C∅‖F ≡ 0).
Given |F | = k + 1, recall that (5.59) in Lemma 5.2.1 (for H = ∅) asserts that δFξ φT solves

1

T
δFξ φT −∇ ·AF∇δFξ φT =

k+1∑
j=1

(−1)j+1
∑
G⊂F
|G|=j

∇ · CG‖F\G∇δ
F\G
ξ φT ,

and also recall that since AE(p)∪F = AF + C
(p)
‖F , φ

E(p)∪F
T − φFT solves

1

T
(φE

(p)∪F
T − φFT )−∇ ·AF∇(φE

(p)∪F
T − φFT ) = ∇ · C(p)

‖F (∇φE(p)∪F
T + ξ).

Successively testing these equations with φE(p)∪F
T −φFT and δFφT respectively (as for the proof of (5.76)

in Lemma 5.2.4, still noting that all the sums converge absolutely by Lemmas 5.2.2 and 5.2.3), we get

G
(p),k
T = − 1

T

∑
|F |=k+1

E
[
δFξ φT (φE

(p)∪F
T − φFT )

]
−

∑
|F |=k+1

E
[
∇δFξ φT ·AF∇(φE

(p)∪F
T − φFT )

]
=

∑
|F |=k+1

E
[
∇δFξ φT · C

(p)
‖F (∇φE(p)∪F

T + ξ)
]
.

Hence, using the inclusion-exclusion formula (5.18) as before (cf. (5.84)) and the independence, this
yields

G
(p),k
T =

Γ∑
j=1

(−1)j+1pj
∑
|G|=j

∑
|F |=k+1
G∩F=∅

E
[
∇δFξ φT · CG‖F (∇φE(p)∪F∪G

T + ξ)
]
,

and hence, relabeling the sums,

pk+1G
(p),k
T =

k+Γ+1∑
j=k+2

(−1)j−kpj
∑
|F |=j

∑
G⊂F
|G|=k+1

E
[
∇δGξ φT · CF\G‖G(∇φE(p)∪F

T + ξ)
]
. (5.89)

By the induction assumption (5.85) at order k and the decomposition (5.88), we thus have

∆
(p)
T =

k+1∑
j=1

pj∆j
T + pk+1G

(p),k
T +

k+Γ∑
j=k+2

pj
∑
|F |=j

∑
G⊂F
|G|≤k

(−1)|F\G|+1E
[
∇δGξ φT · CF\G‖G(∇φE(p)∪F

T + ξ)
]
.
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Combined with (5.89), this yields

∆
(p)
T =

k+1∑
j=1

pj∆j
T +

k+Γ+1∑
j=k+2

pj
∑
|F |=j

∑
G⊂F
|G|≤k+1

(−1)|G|+1E
[
∇δGξ φT · CF\G‖G(∇φE(p)∪F

T + ξ)
]
,

that is ∆
(p)
T =

∑k+1
j=1 p

j∆j
T +

∑k+Γ+1
j=k+2 p

jE
(p),j,k+1
T , and therefore (5.85) at step k + 1.

We now prove that the approximate derivatives are bounded uniformly in T and in the moments
of ρ, as a consequence of the improved energy estimates of Proposition 5.2.6.

Proposition 5.3.2. Assume that E[ρ(Q)s] < ∞ for all s ≥ 1. Then, there is a constant C ' 1
(independent of T and of the moments of ρ) such that, for any k ≥ 1, the approximate k-th derivative
∆k
T defined in (5.86) satisfies

|∆k
T | ≤ Ck.

Likewise, for any j > k ≥ 1 and any p ∈ [0, 1], the error E(p),j,k
T defined in (5.87) satisfies

|E(p),j,k
T | ≤ Cj . ♦

Proof. The estimates of the errors E(p),j,k
T ’s are obtained using the same arguments as for the estimates

of the approximate derivatives ∆j
T ’s, and we only display the proof of the latter. Since ∇φFT + ξ =∑

S⊂F ∇δSξ φT (cf. (5.15) with G = H = ∅) and CF\G‖G = CF\G +
∑

U⊂G,U 6=∅(−1)|U |CU∪(F\G) for
any G ( F (cf. (5.21)), and C∅‖G ≡ 0, we may rewrite formula (5.86) as follows:

∆k
T =

∑
|F |=k

∑
G(F

∑
S⊂F

(−1)|F\G|+1E[∇δGξ φT · CF\G∇δSξ φT ]

︸ ︷︷ ︸
=:∆k

T,1

+
∑
|F |=k

∑
G(F

∑
S⊂F

∑
U⊂G
U 6=∅

(−1)|F\G|+|U |+1E[∇δGξ φT · CU∪(F\G)∇δSξ φT ]

︸ ︷︷ ︸
=:∆k

T,2

.

We treat each term separately. By the change of variables G  G ∪ U , S  S ∪ U , and F  
F ∪G ∪ S ∪ U (with F,G, S, U disjoint), we rewrite ∆k

T,1 as

∆k
T,1 =

k−1∑
l=0

k−l∑
i=0

l∑
j=0

∑
|F |=k−l−i

∑
|G|=l−j
G∩F=∅

∑
|S|=i

S∩(F∪G)=∅

∑
|U|=j

U∩(F∪G∪S)=∅

(−1)|F |+|S|+1E[∇δG∪Uξ φT · CF∪S∇δS∪Uξ φT ],

so that, by the triangle inequality,

|∆k
T,1| .

k−1∑
l=0

k−l∑
i=0

l∑
j=0

∑
|F |=k−l−i

∑
|S|=i
S∩F=∅

∑
|U|=j

U∩(F∪S)=∅

E
[
1JF∪S |∇δ

S∪U
ξ φT |

∣∣∣∣ ∑
|G|=l−j

G∩(F∪S∪U)=∅

∇δG∪Uξ φT

∣∣∣∣].
Recall from (5.80) in the proof of Proposition 5.2.6 that∣∣∣∣ ∑

|G|=l−j
G∩(F∪S∪U)=∅

∇δG∪Uξ φT

∣∣∣∣ ≤ |F |∑
u=0

|S|∑
s=0

∑
|W |=u
W⊂F

∑
|H|=s
H⊂S

∣∣∣∣ ∑
|G|=l−j−u−s

G∩(W∪H∪U)=∅

∇δG∪W∪H∪Uξ φT

∣∣∣∣.
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Hence, by the change of variables F  F \W and S  S \ H, and the notation δF,S,U,W,H = 1 if
F, S, U,W,H are disjoint, and δF,S,U,W,H = 0 otherwise, this yields

|∆k
T,1| .

k−1∑
l=0

k−l∑
i=0

l∑
j=0

k−l−i∑
u=0

i∑
s=0

∑
|F |=k−l−i−u

∑
|S|=i−s

∑
|U |=j

∑
|W |=u

∑
|H|=s

δF,S,U,W,H

× E
[
1JF∪W∪S∪H |∇δ

S∪H∪U
ξ φT |

∣∣∣∣ ∑
|G|=l−j−u−s

G∩(W∪H∪U)=∅

∇δG∪W∪H∪Uξ φT

∣∣∣∣].
We rearrange the sums suitably, and use the notation 1J∅ = 1 (so that we have 1JL∪K = 1JL1JK ) to
obtain

|∆k
T,1| .

k−1∑
l=0

k−l∑
i=0

l∑
j=0

k−l−i∑
u=0

i∑
s=0

∑
|U |=j

∑
|H|=s
H∩U=∅

E
[
1JH

( ∑
|F |=k−l−i−u

1JF

)( ∑
|S|=i−s

S∩(H∪U)=∅

1JS |∇δ
S∪H∪U
ξ φT |

)

×
( ∑

|W |=u
W∩(H∪U)=∅

1JW

∣∣∣∣ ∑
|G|=l−j−u−s

G∩(W∪H∪U)=∅

∇δG∪W∪H∪Uξ φT

∣∣∣∣)].
Recalling that

∑
L⊂N 1JL(0) . 1 by (5.78) (as a consequence of assumption (5.4)), we deduce from a

multiple use of the Cauchy-Schwarz inequality

|∆k
T,1| .

k−1∑
l=0

k−l∑
i=0

l∑
j=0

k−l−i∑
u=0

i∑
s=0

∑
|U |=j

∑
|H|=s
H∩U=∅

E
[
1JH

( ∑
|S|=i−s

S∩(H∪U)=∅

1JS |∇δ
S∪H∪U
ξ φT |2

) 1
2

×
( ∑

|W |=u
W∩(H∪U)=∅

1JW

∣∣∣∣ ∑
|G|=l−j−u−s

G∩(W∪H∪U)=∅

∇δG∪W∪H∪Uξ φT

∣∣∣∣2) 1
2
]
,

and hence, by the Jensen inequality,

|∆k
T,1| .

k−1∑
l=0

k−l∑
i=0

l∑
j=0

k−l−i∑
u=0

i∑
s=0

E
[ ∑
|U |=j

∑
|H|=s
H∩U=∅

1JH

∑
|S|=i−s

S∩(H∪U)=∅

1JS |∇δ
S∪H∪U
ξ φT |2

]

+
k−1∑
l=0

k−l∑
i=0

l∑
j=0

k−l−i∑
u=0

i∑
s=0

E
[ ∑
|U |=j

∑
|H|=s
H∩U=∅

1JH

∑
|W |=u

W∩(H∪U)=∅

1JW

∣∣∣∣ ∑
|G|=l−j−u−s

G∩(W∪H∪U)=∅

∇δG∪W∪H∪Uξ φT

∣∣∣∣2].
By the changes of variables S ∪H ∪U  U in the first term and W ∪H ∪U  U in the second term,
and using that

∑
|H|≤k

∑
|W |≤k 1JH1JW . 1, this finally yields

|∆k
T,1| .

k∑
j=0

E
[ ∑
|U |=j

|∇δUξ φT |2
]

+
k−1∑
j=0

j∑
i=0

E
[ ∑
|U |=j−i

∣∣∣∣ ∑
|G|=i
G∩U=∅

∇δG∪Uξ φT

∣∣∣∣2]. (5.90)

The improved energy estimates of Proposition 5.2.6 then allow us to conclude that |∆k
T,1| . Ck for

some C ' 1. As we can easily argue in a similar way for ∆k
T,2, the conclusion follows.

The combination of Lemma 5.3.1 and Proposition 5.3.2 immediately yields the following result.
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Corollary 5.3.3. Assume that E[ρ(Q)s] < ∞ for all s ≥ 1. Then, there exists a constant C ' 1
(independent of T and of the moments of ρ) such that, for all k ≥ 0 and all p ∈ [0, 1], we have∣∣∣∣∆(p)

T −
k∑
j=1

pj∆j
T

∣∣∣∣ ≤ (Cp)k+1. ♦

The following lemma provides useful alternative formulas for the approximate derivatives ∆j
T ’s

(which coincide with the argument of the limit in (5.23) for p0 = 0), showing that they coincide with
the arguments of the limits in (5.24) and (5.25) for p0 = 0.

Lemma 5.3.4. Assume that E[ρ(Q)s] <∞ for all s ≥ 1. For all T > 0, the approximate derivatives
∆j
T ’s, j ≥ 1, given by (5.86), satisfy the following two equivalent formulas:

∆j
T =

∑
|F |=j

∑
G⊂F

(−1)|G|+1E
[
(∇φT + ξ) · CG∇δF\Gξ φGT

]
(5.91)

=
∑
|F |=j

∑
G⊂F

(−1)|F\G|E[ξ ·AF\G(∇φGT + ξ)], (5.92)

where both sums
∑
|F |=j are absolutely convergent. ♦

Before we turn to the proof of this lemma, let us comment on the equivalent formulas (5.86),
(5.91) and (5.92). Formula (5.86) is the natural formula that we obtain by expanding the difference
quotient (see proof of (5.84) and of Lemma 5.3.1), formula (5.91) is the easiest to use in practice
(see e.g. Corollaries 5.1.4 and 5.1.5), while formula (5.92) is the cluster-expansion formula used by
physicists.

Proof. We split the proof into two steps. We first prove (5.91), from which (5.92) is an easy conse-
quence.

Step 1. Proof of (5.91).
All absolute convergence issues that we need here (for fixed T ) simply follow as before from

Lemma 5.2.3 or similar statements (based on Lemma 5.2.2). For the clarity of the exposition, we
discard this issue in the proof. Let j ≥ 1 be fixed. Separating the cases G = ∅ and G 6= ∅, and
noting that CF\G‖G vanishes whenever G = F , the very definition (5.86) of ∆j

T reads

∆j
T =

∑
|F |=j

∑
G(F
G6=∅

(−1)|F\G|+1E
[
∇δGξ φT · CF\G‖G(∇φFT + ξ)

]
+ (−1)j+1

∑
|F |=j

E
[
(∇φT + ξ) · CF (∇φFT + ξ)

]
.

For any |F | = j, G ( F , G 6= ∅, by (5.60) in Lemma 5.2.1, δF\Gξ φGT satisfies

1

T
δ
F\G
ξ φGT −∇ ·AG∇δ

F\G
ξ φGT =

∑
S⊂F\G

(−1)|S|+1∇ · CS‖G∇δ
F\(G∪S)
ξ φG∪ST .
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Testing this equation with δGξ φT (as in the proof of (5.76) in Lemma 5.2.4) yields

∆j
T = − 1

T

∑
|F |=j

∑
G(F
G6=∅

E
[
δGξ φT δ

F\G
ξ φGT

]
−
∑
|F |=j

∑
G(F
G 6=∅

E
[
∇δGξ φT ·AG∇δ

F\G
ξ φGT

]
+
∑
|F |=j

∑
G(F
G6=∅

∑
S(F\G

(−1)|S|E
[
∇δGξ φT · CS‖G∇δ

F\(G∪S)
ξ φG∪ST

]
+ (−1)j+1

∑
|F |=j

E
[
(∇φT + ξ) · CF (∇φFT + ξ)

]
.

Now, for G 6= ∅, by (5.59) in Lemma 5.2.1 (with H = ∅), δGξ φT solves

1

T
δGξ φT −∇ ·AG∇δGξ φT =

∑
S⊂G

(−1)|S|+1∇ · CS‖G\S∇δ
G\S
ξ φT .

Testing this equation with δF\Gξ φGT yields

∆j
T = −

∑
|F |=j

∑
G(F
G6=∅

∑
S⊂G

(−1)|S|E
[
∇δG\Sξ φT · CS‖G\S∇δ

F\G
ξ φGT

]
+
∑
|F |=j

∑
G(F
G6=∅

∑
S(F\G

(−1)|S|E
[
∇δGξ φT · CS‖G∇δ

F\(G∪S)
ξ φG∪ST

]
+ (−1)j+1

∑
|F |=j

E
[
(∇φT + ξ) · CF (∇φFT + ξ)

]
,

and therefore

∆j
T = −

∑
|F |=j

∑
G(F

∑
S(G

(−1)|S|E
[
∇δG\Sξ φT · CS‖G\S∇δ

F\G
ξ φGT

]
+
∑
|F |=j

∑
G(F
G6=∅

∑
S(F\G

(−1)|S|E
[
∇δGξ φT · CS‖G∇δ

F\(G∪S)
ξ φG∪ST

]
+
∑
|F |=j

∑
G⊂F

(−1)|G|+1E
[
(∇φT + ξ) · CG∇δF\Gξ φGT

]
.

With the change of variables G  G \ S in the first term, we observe that the first two groups of
sums cancel, so that we are left with

∆j
T =

∑
|F |=j

∑
G⊂F

(−1)|G|+1E
[
(∇φT + ξ) · CG∇δF\Gξ φGT

]
,

that is, (5.91).

Step 2. Proof of (5.92).
Absolute convergence issues for this part of the proof (which do not straightforwardly follow from

Lemmas 5.2.3 and 5.2.2) will be addressed at the end of this step. Let j ≥ 1 be fixed. Formula (5.91)
gives

∆j
T =

∑
|F |=j

∑
G⊂F

(−1)|G|+1E
[
ξ · CG∇δF\Gξ φGT

]
︸ ︷︷ ︸

=:Sj,1T

+
∑
|F |=j

∑
G⊂F

(−1)|G|+1E
[
∇φT · CG∇δF\Gξ φGT

]
︸ ︷︷ ︸

=:Sj,2T

. (5.93)
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By (5.60) in Lemma 5.2.1 (with H = ∅), δFξ φT solves

1

T
δFξ φT −∇ ·A∇δFξ φT =

∑
G⊂F

(−1)|G|+1∇ · CG∇δF\Gξ φGT ,

whereas φT solves
1

T
φT −∇ ·A(∇φT + ξ) = 0.

On the one hand, testing these equations with φT and δFξ φT respectively (as in the proof of (5.76) in
Lemma 5.2.4), we obtain

Sj,2T = − 1

T

∑
|F |=j

E
[
φT δ

F
ξ φT

]
−
∑
|F |=j

E
[
∇φT ·A∇δFξ φT

]
=
∑
|F |=j

E
[
(∇φT + ξ) ·A∇δFξ φT

]
−
∑
|F |=j

E
[
∇φT ·A∇δFξ φT

]
=
∑
|F |=j

E
[
ξ ·A∇δFξ φT

]
, (5.94)

and therefore

Sj,2T =
∑
|F |=j

∑
G⊂F

(−1)|F\G|E
[
ξ ·A(∇φGT + ξ)

]
. (5.95)

On the other hand, Sj,1T can be rewritten as follows:

Sj,1T =
∑
|F |=j

∑
G⊂F

(−1)|G|+1
∑

S⊂F\G

(−1)F\(S∪G)E
[
ξ · CG(∇φS∪GT + ξ)

]
,

which yields by the change of variables S ∪G U

Sj,1T =
∑
|F |=j

∑
U⊂F

(−1)|F\U |E

[
ξ ·

(∑
G⊂U

(−1)|G|+1CG

)
(∇φUT + ξ)

]

=
∑
|F |=j

∑
U⊂F

(−1)|F\U |E
[
ξ · CU (∇φUT + ξ)

]
. (5.96)

The desired result follows from the combination of (5.93), (5.95), and (5.96). Note that the sum
defining Sj,1T in (5.93) is absolutely convergent by virtue of (5.73) in Lemma 5.2.3, and hence the sum∑
|F |=j in (5.96) is also absolutely convergent, since its terms have just been rewritten but are still

the same. Likewise, the sum in the right-hand side of (5.94) is absolutely convergent by Lemma 5.2.2
(thus justifying the testing argument), so that the sum in (5.95) must also converge absolutely. This
finally proves that the sum

∑
|F |=j in (5.92) is absolutely convergent too (which would not be clear

a priori without performing this decomposition).

5.3.2 Proof of Theorem 5.1.1 and Corollary 5.1.2: analyticity

Let ξ ∈ Rd, |ξ| = 1 be fixed. It suffices to prove Theorem 5.1.1 and Corollary 5.1.2 for that fixed
choice of ξ. What needs to be done is to pass to the limit T ↑ ∞ in Corollary 5.3.3, and get rid
of the additional assumption that E[ρ(Q)s] < ∞ for all s ≥ 1. For that second purpose, given a
point process ρ, we introduce approximations for which all moments exist: more precisely, we shall
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construct hardcore approximations ρθ of ρ, apply Corollary 5.3.3 for these approximations, and then
pass to the limit in both the parameters T and θ. We split the proof into five steps.

Step 1. Hardcore approximations of ρ.
Let θ > 0 be fixed. In this first step, we construct hardcore approximations ρθ of the stationary

point process ρ in the following sense: for any θ > 0, ρθ is an ergodic stationary point process on
Rd such that ρθ ⊂ ρ and ρθ(Q) ≤ θ a.s., and moreover ρθ ↑ ρ locally almost surely as θ ↑ ∞. For
any θ > 0, we choose a measurable enumeration ρθ = (qθn)n. We then define AFθ as the coefficients
obtained when replacing ρ by ρθ in AF . Similarly, we define φFT,θ the approximate corrector and A(p)

T,θ

the approximate homogenized coefficients associated with AFθ , A
(p)
θ instead of AF , A(p). We then also

prove the following convergence properties, which will be crucial in the next step: for fixed p ∈ [0, 1]
and T > 0, we have

E[|∇(φ
(p)
T,θ − φ

(p)
T )|2]

θ↑∞−−−→ 0, (5.97)

and therefore

|A(p)
T,θ −A

(p)
T |

θ↑∞−−−→ 0. (5.98)

We first give a possible construction of such an approximating sequence (ρθ)θ. Consider the
measurable enumeration ρ = (qn)n, choose independently a sequence (Un)n of i.i.d. random variables
that are uniformly distributed on (0, 1), and consider the decorated process (qn, Un)n. We then build
an oriented graph on the points (qn, Un)n in Rd × [0, 1] as follows: we put an oriented edge from
(q, u) to (q′, u′) whenever (q + 1

θQ) ∩ (q′ + 1
θQ) 6= ∅ and u < u′ (or u = u′ and q precedes q′ in the

lexicographic order, say). We say that (q′, u′) is an offspring (resp. a descendant) of (q, u) if (q, u) is
a direct ancestor (resp. an ancestor) of (q′, u′), i.e. if there is an edge (resp. a directed path) from
(q, u) to (q′, u′) in the oriented graph constructed above. We now construct ρθ as follows. Let F1 be
the set of all roots in the oriented graph (i.e. the points of P0 without ancestor), let G1 be the set
of points of P0 that are offsprings of points of F1, and let H1 = F1 ∪G1. Now consider the oriented
graph induced on (qn, Un)n \H1, and define F2, G2, H2 in the same way, and so on. By construction,
the sets Fi and Gi are all disjoint and constitute a partition of the collection (qn, Un)n. Finally define
ρθ := π1(

⋃
i Fi), where π1 is the projection on the first factor, π1(q, u) = q. We easily check that ρθ

defines a stationary point process on Rd and satisfies the required properties. Ergodicity of ρθ easily
follows from that of ρ exactly in the same way as for the random parking measure in [213, Step 4 of
the proof of Proposition 2.1].

It only remains to prove the convergence property (5.97). For that purpose, we write the equation
satisfied by the difference φ(p)

T,θ − φ
(p)
T ,

1

T
(φ

(p)
T,θ − φ

(p)
T )−∇ ·A(p)

θ ∇(φ
(p)
T,θ − φ

(p)
T ) = ∇ · (A(p)

θ −A
(p))(∇φ(p)

T + ξ).

Testing this equation in probability with φ(p)
T,θ − φ

(p)
T itself yields

E[|∇(φ
(p)
T,θ − φ

(p)
T )|2] . E[|A(p)

θ −A
(p)|2 (|∇φ(p)

T |
2 + 1)].

By assumption, A(0) and A′(0) only depend on ρ via the restriction ρ|Br for some given r > 0, so
that the same property holds by definition for A(p)(0). Hence for some L > 0,

E[|∇(φ
(p)
T,θ − φ

(p)
T )|2] . E[1ρθ|BL 6=ρ|BL

(|∇φ(p)
T |

2 + 1)].

Now the desired result simply follows from dominated convergence and the basic energy estimate
E[|∇φ(p)

T |2 + 1] . 1, recalling that by definition we have almost surely as θ ↑ ∞,

1ρθ|BL 6=ρ|BL
→ 0.

260



Step 2. Reduction by regularization.
In this step, we prove Theorem 5.1.1 and Corollary 5.1.2 provided we have that, for fixed T and

under the additional assumption E[ρ(Q)s] <∞ for all s ≥ 1, the map p 7→ ξ · A(p)
T ξ satisfies, for any

p0 ∈ [0, 1] and any k ≥ 1, for all −p0 ≤ p ≤ 1− p0, |p| ≤ 1/Cp0 ,∣∣∣∣ξ ·A(p0+p)
T ξ − ξ ·A(p0)

T ξ −
k∑
j=1

pj∆
(p0),j
T

∣∣∣∣ ≤ (pCp0)k+1, (5.99)

for some constant Cp0 'p0 1, where the ∆
(p0),j
T ’s are equivalently given by the arguments of any of the

limits (5.23), (5.24) and (5.25), and further satisfy the bounds |∆(p0),j
T | ≤ Cj for all j ≥ 1 (uniformly

in T, p0 and the moments of ρ).
Let p0 ∈ [0, 1] be fixed. Consider the approximations ρθ introduced in Step 1, and apply (5.99)

with ρ replaced by ρθ (where obviously all moments of ρθ are finite). For any k ≥ 1, it follows
from (5.99) that the map p 7→ ξ · A(p)

T,θξ is smooth (on the whole of [0, 1]), and a Taylor expansion of
the map around p0 up to order k gives, by Lagrange’s remainder theorem, for all −p0 ≤ p ≤ 1− p0,∣∣∣∣ξ ·A(p0+p)

T,θ ξ − ξ ·A(p0)
T,θ ξ −

k∑
j=1

pj∆
(p0),j
T,θ

∣∣∣∣ ≤ pk+1 sup
u∈[0,1]

|∆(p0+up),k+1
T,θ | ≤ (Cp)k+1. (5.100)

From (5.10) and (5.98), we learn that

lim
T↑∞

lim
θ↑∞

(ξ ·A(p0+p)
T,θ ξ − ξ ·A(p0)

T,θ ξ) = lim
T↑∞

(ξ ·A(p0+p)
T ξ − ξ ·A(p0)

T ξ) = ξ ·A(p0+p)
hom ξ − ξ ·A(p0)

homξ. (5.101)

Hence, in order to pass to the limit T, θ ↑ ∞ in (5.100), it is enough to prove that the limits

∆(p0),j := lim
T↑∞

lim
θ↑∞

∆
(p0),j
T,θ (5.102)

all exist in R, for all j ≥ 1. The combination of (5.101) and (5.102) indeed yields that for any k ≥ 1,
for all −p0 ≤ p ≤ 1− p0, we have∣∣∣∣ξ ·A(p0+p)

hom ξ − ξ ·A(p0)
homξ −

k∑
j=1

pj∆(p0),j

∣∣∣∣ ≤ (Cp)k+1,

which is equivalent to the analyticity statement of Theorem 5.1.1 (with convergence of the Taylor
series at p0 for all perturbations p of magnitude |p| < 1/C, −p0 ≤ p ≤ 1 − p0), and the derivatives
j!∆(p0),j ’s are then given by the desired well-defined limits stated in Corollary 5.1.2. In the particular
case when the process ρ has all its moments finite, the regularization in θ can be omitted (so that
only the limit in T remains). The proof of formula (5.26) in Corollary 5.1.2 is postponed to Step 5.

We prove (5.102) by induction. The proof of the statement for j = 1 is similar to the proof of
the induction step, and we only display the latter. Assume that the limits ∆(p0),j = limT limθ ∆

(p0),j
T,θ

exist in R for all 1 ≤ j ≤ k, for some k ≥ 1. We shall then prove that the limit ∆(p0),k+1 =

limT limθ ∆
(p0),k+1
T,θ also exists in R. As ∆

(p0),k+1
T,θ is bounded uniformly in T, θ, it converges to some

limit L(p0)
T ∈ R as θ ↑ ∞ up to extraction. Passing to the limit θ ↑ ∞ along a subsequence in

inequality (5.100) with k replaced by k + 1, and using the induction assumptions and (5.101), we
obtain for any −p0 ≤ p ≤ 1− p0,∣∣∣∣ξ ·A(p0+p)

T ξ − ξ ·A(p0)
T ξ −

k∑
j=1

pj lim
θ

∆
(p0),j
T,θ − pk+1L

(p0)
T

∣∣∣∣ ≤ (Cp)k+2.
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This proves that L(p0) satisfies

L
(p0)
T = lim

p→0
−p0≤p≤1−p0

(
p−k−1(ξ ·A(p0+p)

T ξ − ξ ·A(p0)
T ξ)−

k∑
j=1

pj−k−1 lim
θ

∆
(p0),j
T,θ

)
,

where in particular the limit must exist. Since the right-hand side does not depend on the extraction,
L

(p0)
T is uniquely defined, and L(p0)

T = limθ ∆(p),k+1 does exists in R. A similar argument for the limit
in T shows that limT limθ ∆

(p0),k+1
T,θ exists in R, so that (5.102) is proved.

Step 3. Reduction by restriction to p0 = 0.
Let T > 0 be fixed and assume that E[ρ(Q)s] < ∞ for all s ≥ 1. In the present step, we prove

that it suffices to check the result (5.99) at p0 = 0: more precisely, it suffices to show that the map
p 7→ ξ ·A(p)

T ξ satisfies, for all k ≥ 1 and p ∈ [0, 1],∣∣∣∣ξ ·A(p)
T ξ − ξ ·AT ξ −

k∑
j=1

pj∆j
T

∣∣∣∣ ≤ (Cp)k+1, (5.103)

for some constant C ' 1, where, for any j ≥ 1, ∆j
T is equivalently given by formulas (5.86), (5.91)

and (5.92), and satisfies the bound |∆j
T | ≤ Cj for all j ≥ 1, uniformly in T and the moments of ρ.

First consider p0 ∈ [0, 1) and positive perturbations p0 + p with p ≥ 0. For 0 ≤ p ≤ 1 − p0,
choose a sequence (d

(p0,p)
n )n of i.i.d. Bernoulli random variables (independent of all the others) with

parameter P[d
(p0,p)
n = 1] = p/(1− p0), and consider the twice perturbed coefficients

A(p0,p) = A(p0)1Rd\Jn +
∑
n

(
d(p0,p)
n A′ + (1− d(p0,p)

n )A(p0)
)
1Jn

= A1Rd\
⋃
n Jn

+
∑
n

(
(1− d(p0,p)

n )(1− b(p0)
n )A+ (d(p0,p)

n + b(p0)
n (1− d(p0,p)

n ))A′
)
1Jn .

The field A(p0,p) has by definition the same distribution as A(p0+p), and it is a perturbation of A(p0)

with perturbation parameter p/(1 − p0) (and with perturbed medium A′). Applying to A(p0,p) the
result (5.103) around 0 (which is assumed to hold), we deduce that the map p 7→ ξ · A(p0,p)

T ξ =

ξ ·A(p0+p)
T ξ satisfies for all k ≥ 1 and all 0 ≤ p ≤ 1− p0,∣∣∣∣ξ ·A(p0+p)

T ξ − ξ ·A(p0)
T ξ −

k∑
j=1

pj

(1− p0)j
∆̃

(p0),j
T

∣∣∣∣ ≤ ( Cp

1− p0

)k+1

, (5.104)

where, for any j ≥ 1, ∆̃
(p0),j
T is the j-th right-derivative at 0 of the map p 7→ ξ ·Ã(p)

T ξ, corresponding to
the “reference” coefficients Ã := A(p0) and the “perturbed” coefficients A′. The cluster formula (5.92)
reads in that case

∆̃
(p0),j
T :=

∑
|F |=j

E
[ ∑
G⊂F

(−1)|F\G|ξ ·AE(p0)∪G(∇φE(p0)∪G
T + ξ)

]
, (5.105)

where the sum is absolutely convergent. Now note that the argument of the expectation vanishes
whenever F ∩ E(p0) 6= ∅, while, otherwise, if F ∩ E(p0) = ∅, the argument of the expectation equals∑

G⊂F
(−1)|F\G|ξ ·AG∪(E(p0)\F )(∇φG∪(E(p0)\F )

T + ξ).
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As this expression is obviously independent of the event [F ∩ E(p0) = ∅], we can then rewrite

∆̃
(p0),j
T =

∑
|F |=j

E
[
1F∩E(p0)=∅

∑
G⊂F

(−1)|F\G|ξ ·AE(p0)∪G(∇φE(p0)∪G
T + ξ)

]

=
∑
|F |=j

P[F ∩ E(p0) = ∅]E
[ ∑
G⊂F

(−1)|F\G|ξ ·AE(p0)∪G(∇φE(p0)∪G
T + ξ)

]
= (1− p0)j∆

(p0),k
T , (5.106)

where ∆
(p0),j
T is defined as the argument of the limit (5.25). The expansion (5.104) then becomes, for

any k ≥ 1, for all 0 ≤ p ≤ 1− p0,∣∣∣∣ξ ·A(p0+p)
T ξ − ξ ·A(p0)

T ξ −
k∑
j=1

pj∆
(p0),j
T

∣∣∣∣ ≤ ( Cp

1− p0

)k+1

. (5.107)

Moreover, recalling the bound |∆j
T | ≤ Cj for the right-derivatives at 0, which is assumed to hold

for any choice of the coefficient (the constant C only depends on R,Γ, d, λ), we conclude, for all
p0 ∈ [0, 1),

|∆(p0),j
T | ≤ Cj(1− p0)−j . (5.108)

Note that this estimate for the derivatives deteriorates when p0 gets closer to 1. This difficulty is
overcome by considering negative perturbations, that is, looking at left-derivatives, as we do now.

Let us now consider p0 ∈ (0, 1] and negative perturbations at that point. For 0 ≤ p ≤ p0,
choose a sequence (d

(p0,−p)
n )n of i.i.d. Bernoulli random variables (independent of all the others) with

P[d
(p0,−p)
n = 1] = p/p0, and consider the twice perturbed coefficients

A(p0,−p) = A(p0)1Rd\Jn +
∑
n

(
d(p0,−p)
n A+ (1− d(p0,−p)

n )A(p0)
)
1Jn

= A1Rd\
⋃
n Jn

+
∑
n

(
(d(p0,−p)
n + (1− d(p0,−p)

n )(1− b(p0)
n ))A+ b(p0)

n (1− d(p0,−p)
n )A′

)
1Jn .

The field A(p0,p) has by definition the same distribution as A(p0−p), and it is a perturbation of A(p0)

with perturbation parameter p/p0 (and with “perturbed” medium A, instead of A′). Applying to
A(p0,p) the result (5.103) around 0 (which is assumed to hold), we deduce that the map p 7→ ξ ·
A

(p0,p)
T ξ = ξ ·A(p0−p)

T ξ satisfies, for any k ≥ 1, for all 0 ≤ p ≤ p0,∣∣∣∣ξ ·A(p0−p)
T ξ − ξ ·A(p0)

T ξ −
k∑
j=1

pj

pj0
∆̂

(p0),j
T

∣∣∣∣ ≤ (Cpp0

)k+1

, (5.109)

where, for any j ≥ 1, ∆̂
(p0),j
T is the j-th right-derivative of the map p 7→ Â

(p)
T , corresponding to the

“reference” coefficients Â := A(p0) and the “perturbed” coefficients A. The cluster formula (5.92) gives
in this case

∆̂
(p0),j
T :=

∑
|F |=j

E
[ ∑
G⊂F

(−1)|F\G|ξ ·AE(p0)\G(∇φE
(p0)\G

T + ξ)

]
,

where the sum is absolutely convergent. Arguing as above, the argument of the expectation vanishes
unless F ⊂ E(p0); hence, by the independence assumption, we obtain

∆̂
(p0),j
T = pj0

∑
|F |=j

E
[ ∑
G⊂F

(−1)|F\G|ξ ·A(E(p0)\F )∪(F\G)(∇φ(E(p0)\F )∪(F\G)
T + ξ)

]
,
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or equivalently, by the change of variables F \G H,

∆̂
(p0),j
T = (−1)jpj0

∑
|F |=j

E
[ ∑
H⊂F

(−1)|F\H|ξ ·AH∪(E(p0)\F )(∇φH∪(E(p0)\F )
T + ξ)

]
= (−1)jpj0∆

(p0),j
T ,

where, as before, ∆
(p0),k
T is defined as the argument of the same limit (5.25). The expansion (5.104)

then becomes, for any k ≥ 1, for all 0 ≤ p ≤ p0,∣∣∣∣ξ ·A(p0−p)
T ξ − ξ ·A(p0)

T ξ −
k∑
j=1

(−p)j∆(p0),j
T

∣∣∣∣ ≤ (Cpp0

)k+1

. (5.110)

By the bounds |∆j
T | ≤ Cj for the right-derivatives at 0, we conclude, for all p0 ∈ [0, 1),

|∆(p0),j
T | ≤ Cjp−j0 . (5.111)

Combining (5.107) and (5.110) then directly yields the desired result (5.99). Moreover, combin-
ing (5.108) and (5.111) gives, for any j ≥ 1, the uniform bound

|∆(p0),j
T | ≤ min{Cjp−j0 , Cj(1− p0)−j} ≤ (2C)j .

Finally, arguing as in Lemma 5.3.4 (where the argument is performed at p0 = 0 and proves the
equivalence between formulas (5.86), (5.91) and (5.92)), we see that, for fixed T, θ, the cluster formula
for ∆

(p0),j
T , that is the argument of the limit (5.25), is equivalent to the formulas given by the argument

of the limits (5.23) and (5.24).

Step 4. Conclusion.
Let T > 0 be fixed, and assume that E[ρ(Q)s] < ∞ for all s ≥ 1. For any k ≥ 1, Corollary 5.3.3

exactly asserts (5.103), Lemma 5.3.4 ensures that the ∆j
T ’s are equivalently given by formulas (5.86),

(5.91) and (5.92), and Proposition 5.3.2 gives the uniform bounds |∆j
T | ≤ Cj , for all j ≥ 1. By the

previous steps, this proves Theorem 5.1.1 and Corollary 5.1.2.

Step 5. Exact formula for the first derivative.
In this last step, we further assume that ρ(Q) ≤ θ0 a.s. (so that in particular all the moments

are bounded, and we can thus everywhere omit the regularization in θ), and we prove under that
assumption the validity of formula (5.26) in Corollary 5.1.2. More precisely, we need to prove that
we can pass to the limit in T inside the formula for the first approximate derivative

∆
(p0),1
T =

∑
n

E
[
(∇φE

(p0)\{n}
T + ξ) · C{n}(∇φ{n}∪E

(p0)

T + ξ)

]
,

i.e. we prove that the well-defined limit ∆(p0),1 = limT ∆
(p0),1
T is given by the following formula:

∆(p0),1 =
∑
n

E
[
(∇φE(p0)\{n} + ξ) · C{n}(∇φ{n}∪E(p0)

+ ξ)

]
, (5.112)

with an abolutely converging sum. As before, we can restrict to p0 = 0, and shall prove that the limit
∆1 := limT ∆1

T exists and is given by

∆1 =
∑
n

E
[
(∇φ+ ξ) · C{n}(∇φ{n} + ξ)

]
.
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We start by showing that the sum is absolutely convergent. Decomposing ∇φ{n} = ∇δ{n}φ+∇φ,
using assumption (5.4) in the form

∑
n 1Jn . 1 (see also (5.78)), and recalling the elementary energy

estimate E[1 + |∇φ|2] . 1 (see (5.8)), we have

|∆1| .
∑
n

E[1Jn(1 + |∇φ|2 + |∇φ{n}|2)] . 1 +
∑
n

E[|∇δ{n}φ|2],

where the last sum is finite by Lemma 5.2.4 (for k = 1) and the fact that ∇δ{n}φT −⇀ ∇δ{n}φ weakly
in L2

loc(Rd; L2(Ω)).
We now prove that limT ∆1

T = ∆1. Given L ' 1, the additional assumption ρ(Q) ≤ θ0 a.s. implies
by stationarity ρ(BR+L) ≤ Cθ0 =: Z, with C ' 1. Hence, we can choose the measurable enumeration
(qn)n of the point process ρ in such a way that BR+L ∩ (qn)n ⊂ (qn)Zn=1. Defining

anL := E
[ 

BL

(∇φ+ ξ) · C{n}(∇φ{n} + ξ)

]
, and anT,L := E

[ 
BL

(∇φT + ξ) · C{n}(∇φ{n}T + ξ)

]
,

we observe ∆1 =
∑Z

n=1 a
n
L and ∆1

T =
∑Z

n=1 a
n
T,L. Indeed, by stationarity (together with absolute

convergence), ∆1 =
∑∞

n=1 a
n
L, so that ∆1 =

∑Z
n=1 a

n
L by the choice of the measurable enumeration,

and likewise for ∆1
T . Therefore, it is enough to prove limT a

n
T,L = anL for any 1 ≤ n ≤ Γ. Since

∇φ{n}T −⇀ ∇φ{n} weakly and ∇φT → ∇φ strongly in L2
loc(Rd,L2(Ω)) (see [199, Theorem 1]), we

directly get anT,L → anL as T ↑ ∞, for any n, as desired.

5.3.3 Proof of Corollaries 5.1.3, 5.1.4 and 5.1.5: Clausius-Mossotti formulas

In this section we further assume that E[ρ(Q)2] <∞. (Note that, in the case of Corollaries 5.1.4
and 5.1.5, this directly follows from assumption (5.4) together with the fact that we are then dealing
with ball inclusions of fixed radius.)

First-order universality principle

Set J (p) :=
⋃
n∈E(p) Jn. The volume fraction vp of the perturbation is defined as follows:

vp := lim
L↑∞

E[|LQ ∩ J (p)|]
Ld

,

or equivalently, by stationarity of the inclusion process,

vp = lim
L↑∞

L−d
∑

z∈LQ∩Zd
E[|(z +Q) ∩ J (p)|] = E[|Q ∩ J (p)|].

An inclusion-exclusion argument gives∑
n

E[1n∈E(p) |Q ∩ Jn|]−
∑
n6=m

E[1n,m∈E(p) |Q ∩ Jn ∩ Jm|] ≤ vp ≤
∑
n

E[1n∈E(p) |Q ∩ Jn|].

By the independence between the Bernoulli process E(p) and all the other random variables, this
turns into

p
∑
n

E[|Q ∩ Jn|]− p2
∑
n6=m

E[|Q ∩ Jn ∩ Jm|] ≤ vp ≤ p
∑
n

E[|Q ∩ Jn|].

As Jn ⊂ BR(qn) for all n, we note that, by the assumption E[ρ(Q)2] <∞,∑
n6=m

E[|Q ∩ Jn ∩ Jm|] ≤ E
[ ∑
n6=m

1qn,qm∈Q+BR

]
= E[ρ(Q+BR)2] <∞,
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so that we have indeed proven

vp = p
∑
n

E[|Q ∩ Jn|] +O(p2) =: pγ +O(p2).

If γ = 0, then ∪nJn = ∅ so that A(p)
hom = Ahom and vp = 0, and the conclusion is trivial. If γ 6= 0,

since
γ ≤ E

[∑
n

1qn∈Q+BR

]
= E[ρ(Q+BR)] <∞,

we have vp 'γ p+O(p2). In particular, the expansion in p in Theorem 5.1.1 at first order can as well
be rewritten as an expansion in vp: at first order at p0 = 0, we have, for any p ≥ 0,

A
(p)
hom = Ahom +Kvp +O(v2

p),

where K is given by

ξ ·Kξ =
1

γ
ξ ·A(0),1

hom ξ =
1

γ
E

[∑
n

(∇φ+ ξ) · C{n}(∇φ{n} + ξ)

]
.

If in addition the random volumes |J◦n|’s are i.i.d. and independent of the point process ρ (and of
its enumeration), then γ can be computed more explicitly. By stationarity of the inclusion process,
for any L > 0,

γ = lim
L↑∞

L−dE
[∑

n

|LQ ∩ Jn|
]
,

where we can estimate

E
[∑

n

|LQ ∩ Jn|
]
≤
∑
n

E[1qn∈LQ|Jn|] = E[|J◦0 |]E[ρ(LQ)], (5.113)

and also

E
[∑

n

|LQ ∩ Jn|
]
≥
∑
n

E[1qn∈(L−R)Q|Jn|] = E[|J◦0 |]E[ρ((L−R)Q)]. (5.114)

Now, for all continuous and integrable functions f : Rd → R, we have E[
∑

n f(qn)] = E[
´
fdρ] =´

fdE[ρ]. Since ρ is stationary, the Borel measure E[ρ] is translation-invariant, and hence, since it is
locally finite by definition, it is a multiple of the Lebesgue measure: E[ρ] = σdx for some constant
σ ∈ R+, which is characterized e.g. by σ = E[ρ(Q)]. In these terms, (5.113) and (5.114) give

σE[|J◦0 |] = E[|J◦0 |] lim
L
L−dE[ρ((L−R)Q)] ≤ γ ≤ E[|J◦0 |] lim

L
L−dE[ρ(LQ)] = σE[|J◦0 |],

which means γ = σE[|J◦0 |], and thus

vp = pσE[|J◦0 |]. (5.115)

The matrix K then takes the form

ξ ·Kξ =
1

σE[|J◦0 |]
E
[∑

n

(∇φ+ ξ) · C{n}(∇φ{n} + ξ)

]
.

Further assuming that ρ is independent of A, of (A′n)n (as well as of the random volumes |J◦n|’s), we
note that the random variable E[(∇φ(0) + ξ) · C{n}(0)(∇φ{n}(0) + ξ)‖ρ] only depends on the point
process ρ through the point qn, so that it can be written as f(qn) for some measurable function f . In
these terms, we get

ξ ·Kξ =
1

σE[|J◦0 |]
E
[∑

n

f(qn)

]
=

1

E[J◦0 |]

ˆ
Rd
f(x)dx,

which does clearly no longer depend on the choice of the point process ρ. This proves Corollary 5.1.3.
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Electric Clausius-Mossotti formula

We consider the case when the inclusions are spherical Jn = BR(qn), and the unperturbed and
perturbed coefficients have the form A = α Id and A′ = β Id respectively. We shall compute explicitly
the first derivative ξ ·A(0),1

hom ξ of the perturbed homogenized coefficient at 0, as given by formula (5.26).
As inclusions are balls of fixed radius R, assumption (5.4) implies ρ(Q) ≤ θ0 a.s. for some constant
θ0 > 0, so that we can indeed apply formula (5.26).

Since A is constant, the unique gradient solution of −∇ ·A(∇φξ + ξ) = 0 is clearly ∇φξ = 0. Let
now n be fixed. The solution φ

{n}
ξ ∈ H1(Rd) of −∇ · A{n}(∇φ{n}ξ + ξ) = 0 is easily checked to be

unique if it exists, and its existence follows from a direct computation. Since A{n} is constant both
inside and outside BR(qn), the solution φ{n}ξ is radial and of the form

φ
{n}
ξ (x) = ψξ(x− qn) =

{
C(x− qn) · ξ, for |x− qn| < R;

C ′ (x−qn)·ξ
|x−qn|d , for |x− qn| > R;

so that its gradient satisfies

∇φ{n}ξ (x) = ∇ψξ(x− qn) =

{
Cξ, for |x− qn| < R;

C′

|x−qn|d

(
ξ − d (x−qn)·ξ

|x−qn|
x−qn
|x−qn|

)
, for |x− qn| > R.

(5.116)

Since φ{n}ξ is radial and in H1(Rd), it is continuous, which implies that C ′ = CRd. The normal

component of A{n}(∇φ{n}ξ + ξ) must also be continuous through the sphere, so that we conclude

C =
α− β

β + α(d− 1)
. (5.117)

This allows us to turn (5.26) into an explicit formula for the first derivative A(0),1
hom :

ξ ·A(0),1
hom ξ =

∑
n

E[(∇φ+ ξ) · C{n}(∇φ{n} + ξ)]

=
∑
n

E[ξ · (β − α)1BR(qn)(Cξ + ξ)] = (1 + C)(β − α)E
[∑

n

1qn∈BR

]
.

From the above paragraph, we learn that E[
∑

n f(qn)] = σ
´
f(x)dx for any continous and integrable

function f . Hence,

ξ ·A(0),1
hom ξ = (1 + C)(β − α)E

[∑
n

1BR(qn)

]
= σ|BR|(1 + C)(β − α),

so that expression (5.117) for C yields

ξ ·A(0),1
hom ξ = σ|BR|

αd(β − α)

β + α(d− 1)
.

In the present case, formula (5.115) holds true and gives vp = pσ|BR|. The conclusion of Corol-
lary 5.1.4 now follows from Theorem 5.1.1.
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Elastic Clausius-Mossotti formula

We consider the case of spherical inclusions Jn = BR(qn) and assume that both the unperturbed
stiffness tensor A and the perturbed stiffness tensor A′ are constant and isotropic — we denote by
K,G and K ′, G′ their respective bulk and shear moduli. We shall compute explicitly in that case
the first derivative ξ · A(0),1

hom ξ of the perturbed homogenized stiffness tensor A(p)
hom at 0, as given by

formula (5.26). Indeed, as inclusions are balls of fixed radius R, assumption (5.4) implies ρ(Q) ≤ θ0

a.s. for some constant θ0 > 0, so that we can apply formula (5.26).
Let ξ ∈ Rd×d be symmetric. Since A is constant, the unique gradient solution of −∇ · A :

(∇φξ + ξ) = 0 is clearly ∇φξ = 0. Let now n be fixed. As shown e.g. in Section 17.2.1 of [413],
equation −∇·A{n} : (∇φ{n}ξ +ξ) admits a (necessarily unique) solution inH1(Rd). Inside the inclusion
BR(qn), that is, for all |x− qn| < R (see [413, equation (17.84)]),

∇φ{n}ξ (x) + ξ = Id
Tr ξ

d

K + β

K ′ + β
+

(
ξ − Id

Tr ξ

d

)
G+ α

G′ + α
, (5.118)

where α, β are defined by (5.28). Recalling that ξ : A : χ = 2Gξ : χ + λTr ξTrχ for any symmetric
χ ∈ Rd×d, we can now explicitly compute formula (5.26) for the first derivative A(0),1

hom ,

1

2
ξ : A

(0),1
hom : ξ =

1

2

∑
n

E
[
1BR(qn)ξ : (A′ −A) : (∇φ{n}ξ + ξ)

]
=
∑
n

E
[
1BR(qn)

(
(G′ −G)ξ : (∇φ{n}ξ + ξ) +

1

2
(λ′ − λ) Tr ξTr(∇φ{n}ξ + ξ)

)]
,

and hence, using (5.118), and recalling that E[
∑

n 1BR(qn)] = σ|BR|,

1

2σ|BR|
ξ : A

(0),1
hom : ξ =

1

d
(Tr ξ)2 K + β

K ′ + β

(
(G′ −G) +

d

2
(λ′ − λ)

)
+
(
|ξ|2 − 1

d
(Tr ξ)2

)
(G′ −G)

G+ α

G′ + α
.

In terms of bulk moduli K = λ+ 2G/d and K ′ = λ′ + 2G′/d, this takes the form

1

2σ|BR|
ξ : A

(0),1
hom : ξ =

1

2
(Tr ξ)2(K ′ −K)

K + β

K ′ + β
+
(
|ξ|2 − 1

d
(Tr ξ)2

)
(G′ −G)

G+ α

G′ + α
. (5.119)

As formula (5.115) again holds true in the present case and gives vp = pσ|BR|, Corollary 5.1.5 now
follows by Theorem 5.1.1.

5.3.4 Proof of Corollary 5.1.6: convergence rates

Let p0 ∈ [0, 1] be fixed, and assume that E[ρ(Q)s] < ∞ for all s ≥ 1. Estimate (5.100) in the
proof of Theorem 5.1.1 (see Section 5.3.2) then yields, for all k ≥ 1,∣∣∣∣ k∑

j=1

pj(∆
(p0),j
T −∆

(p0),j
2T )

∣∣∣∣ ≤ (Cp)k+1 + |A(p0+p)
T −A(p0+p)

2T |+ |A(p0)
T −A(p0)

2T |

. (Cp)k+1 + E[|∇(φ
(p0+p)
T − φ(p0+p)

2T )|] + E[|∇(φ
(p0)
T − φ(p0)

2T )|],

and hence, combining this with assumption (5.29),∣∣∣∣ k∑
j=1

pj(∆
(p0),j
T −∆

(p0),j
2T )

∣∣∣∣ ≤ (Cp)k+1 + Cγ(T ). (5.120)
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By induction, we easily see that this implies, for all j ≥ 1,

|∆(p0),j
T −∆

(p0),j
2T | ≤ (2C)j+1γ(T )2−j . (5.121)

Estimate (5.120) with k = 1 gives |∆(p0),j
T −∆

(p0),j
2T | ≤ C2p + Cγ(T )/p, which turns into (5.121) for

j = 1 with the choice p = γ(T )
1
2 . Assume now that the result (5.121) is proven for all 0 ≤ j ≤ J .

Then, equation (5.120) for k = J + 1 gives

|∆(p0),J+1
T −∆

(p0),J+1
2T | ≤ CJ+2p+ Cp−J−1γ(T ) +

J∑
j=1

(2C)jpj−J−1γ(T )2−j .

With the choice p = γ(T )2−J−1 , and noting that (l + 1)2−l ≤ 1 for any l ∈ N, this turns into

|∆(p0),J+1
T −∆

(p0),J+1
2T | ≤ CJ+2γ(T )2−J−1

+ Cγ(T )1−(J+1)2−J−1

+
J∑
j=1

(2C)j+1γ(T )2−j(1−(J+1−j)2−(J+1−j))

≤ CJ+2γ(T )2−J−1
+ Cγ(T )2−1

+

J∑
j=1

(2C)j+1γ(T )2−j−1

≤ CJ+2γ(T )2−J−1
(

2 +
J∑
j=1

2j+1
)
≤ (2C)J+2γ(T )2−J−1

,

which proves (5.121) by induction, and concludes the proof of Corollary 5.1.6.
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5.A Appendix: Relaxing the finite penetrability assumption

As discussed in Section 5.1.5, the finite penetrability assumption (5.4) is crucially used in the
proof of the analyticity result, and it is unclear to us how it can be relaxed in general. In particular,
our approach cannot treat the natural example of Poisson spherical inclusions (that is, ρ = (qn)n
is a Poisson point process and we set Jn := B(qn) with e.g. constant reference coefficients A and
A′). In this specific example, the perturbed random fields A(p) all satisfy a standard spectral gap
in the probability space and the point process satisfies E [ρ(Q)s] < ∞ for all s ≥ 1 (and even
E[ecρ(Q)] <∞ for all c > 0). In such a situation, the quantitative theory of stochastic homogenization
provides additional analytical tools (as used in the discrete setting in Mourrat’s contribution [327]),
which allow to prove that the map p 7→ A

(p)
hom is at least C∞ on [0, 1] with derivatives given by the

same explicit formulas as before, in particular justifying the Clausius-Mossotti formulas in the form
of Corollaries 5.1.4 and 5.1.5. More precisely, the strategy consists in establishing the version (5.58)
with improved integrability of the energy estimates of Theorem 5.2.6, based on Green’s representation
formulas and optimal annealed estimates on Green’s functions [313, 201]. Let us emphasize that this
approach requires quantitative ergodicity assumptions on the random fields themselves (and not only
on the point process), which contrasts dramatically with the other results in this chapter.

5.A.1 Main result

Assumptions and notation

Let the same assumptions and notation hold as in Section 5.1.2, except that the finite penetrability
assumption (5.4) is replaced by the following assumption on the point process ρ: for all s ≥ 1 we have

M s
s := E[ρ(Q)s] <∞. (5.122)

For all subset E ⊂ N and all T > 0, we let GET : Rd × Rd × Ω → R denote the Green’s function
associated with the (massive) random elliptic operator 1

T −∇ · A
E∇, which is defined for all y ∈ Rd

and all ω ∈ Ω as the unique distributional solution inW 1,1(Rd), continuous in Rd\{y}, of the equation
1

T
GET (x, y;ω)−∇x ·A(x, ω)∇xGET (x, y;ω) = δ(x− y).

We let ∇1∇2G
E
T denote the mixed gradient of this Green’s function, and we use the short-hand

notation GT := G∅
T and G

(p)
T := GE

(p)

T . Denoting as follows the local quadratic averages of maps
f : Rd → Rm and g : Rd × Rd → Rm,

(f)L(x) :=

( 
BL(x)

|f |2
)1/2

, (g)L1,L2(x, y) =

(  
BL(x)

 
BL(y)

|g(v, w)|2dwdv
)1/2

,

we assume that the following quantitative properties also hold for all p ∈ [0, 1] and all θ ∈ (0,∞]
(where we set ρ∞ := ρ and where the ρθ’s are the hardcore approximations of ρ as constructed in
Step 1 of Section 5.3.2),
(H1) Corrector gradient bounds: for all r ≥ 1 and L ' 1, we have (uniformly in θ > 0)

E
[
(∇φ(p)

T,θ)
2r
L

] 1
2r .r 1;

(H2) Optimal annealed bounds on the Green’s function: for all r ≥ 1, L1, L2 ' 1 and |y| ≥
L1 + L2 + 1, we have (uniformly in θ > 0)

E
[
(∇2G

(p)
T,θ)

r
L1,L2

(0, y)
] 1
r .r |y|1−de

− 1

C
√
T
|y|
,

E
[
(∇1∇2G

(p)
T,θ)

r
L1,L2

(0, y)
] 1
r .r |y|−de

− 1

C
√
T
|y|

=: γT (y);
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(H3) Convergence of correctors: there exists a function γ(T ) ≤ T−ε, ε > 0, such that

E
[
|∇(φ

(p)
T − φ

(p)
2T )|2

]
. γ(T )2,

which implies in particular
|A(p)

hom −A
(p)
T | . γ(T ).

Note that these assumptions are relevant to the quantitative theory of stochastic homogenization,
as they are known to hold under the assumption that the coefficients satisfy suitable functional
inequalities in the probability space [209, 210, 212, 313, 201, 203, 49]. In the case of fast decaying
correlations the optimal expected rate γ(T ) in (H3) is again given by (5.31). In particular, these
assumptions hold e.g. for the example of Poisson spherical inclusions with constant reference fields A
and A′.

Statement of main result

We establish the following C∞ regularity result for the perturbed homogenized coefficients with
respect to the Bernoulli parameter.

Theorem 5.A.1. Under the above assumptions, the map p 7→ A
(p)
hom is of class C∞ on [0, 1], and

the derivatives are equivalently given by each of the three formulas (5.23), (5.24), and (5.25) of
Corollary 5.1.2, where the limits exist and where the sums are absolutely convergent for any fixed
T, θ < ∞. Moreover, at p0 = 0, the θ-regularizations can be omitted in each of these formulas. In
particular, the first-order invariance principle of Corollary 5.1.3 is still valid, as well as the electric
and elastic Clausius-Mossotti formulas of Corollaries 5.1.4 and 5.1.5. ♦

Remark 5.A.2. With similar quantitative methods as those developed in this appendix, we may
actually prove the following cluster expansion formula for the approximate corrector φ(p)

T : for all
k ≥ 1, ε, p ∈ (0, 1), we have

E
[(
∇φ(p)

T −
k∑
j=0

∑
F⊂E(p)

|F |=j

∇δFφT
)1+ε

L

] 1
1+ε

.ε,k p
1−ε
1+ε

(k+1)(1 + log T )k+1.

In the spirit of Mourrat’s work [327], we could deduce Theorem 5.A.1 from such an expansion.
Nevertheless, we prefer to keep here the same proof strategy as in the rest of the chapter. ♦

5.A.2 Proof of Theorem 5.A.1

Green’s function estimates

We start with estimating perturbed Green’s functions in terms of unperturbed ones. Such es-
timates are crucial since only the Green’s functions GT and G

(p)
T are associated with stationary

coefficients and satisfy the optimal annealed estimates of assumption (H2).

Lemma 5.A.3. For all F ⊂ N and n ∈ F , for all L1, L2 ' 1 and all x, y with |x− y| ≥ L1 +L2 + 1,
we have

(∇1∇2G
F
T )L1,L2(x, y) . (∇1∇2G

F\{n}
T )L1,L2(x, y)

+
(

(∇1∇2G
F\{n}
T )R,L2(qn, y) ∧ (∇1∇2G

F\{n}
T )L1,R(x, qn)

)
.
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In particular, for all x0 ∈ Rd, L ' 1, and all distinct n1, . . . , nk ∈ N, we have

(∇1∇2G
{n1,...,nk}
T )L,R(x0, qn1) . Ck

k∑
j=1

(∇1∇2GT )L,R(x0, qnj ). ♦

Proof. We can assume smoothness of all considered coefficients, since the general result is then de-
duced by a standard approximation argument. The difference ∇y(GFT − G

F\{n}
T )(·, y) by definition

satisfies the following equation, for |qn − y| > R,

1

T
∇y(GFT −G

F\{n}
T )(x, y)−∇x ·AF (x)∇x∇y(GFT −G

F\{n}
T )(x, y)

= ∇x · C{n}‖F\{n}(x)∇x∇yGF\{n}T (x, y).

As a function of x, the right-hand side is the divergence of a bounded compactly supported function.
This implies that the solution ∇y(GFT −G

F\{n}
T )(·, y) belongs to H1(Rd). Testing the equation against

∇y(GFT −G
F\{n}
T )(·, y) then yields, for all |qn − y| > R,

ˆ
Rd
|∇x∇y(GFT −G

F\{n}
T )(x, y)|2dx .

ˆ
BR(qn)

|∇x∇yGF\{n}T (x, y)|2dx,

and hence

(∇1∇2G
F
T )L1,L2(x, y) . (∇1∇2G

F\{n}
T )L1,L2(x, y) + (∇1∇2G

F\{n}
T )R,L2(qn, y).

The statement follows by symmetry.

With this result at hand, we now establish the following useful deterministic refinement of the
a priori estimate of Lemma 5.2.2. Note that the prefactor obtained in the proof below is a priori
of order Ck2 , thus forbidding any hope of establishing analyticity nor any Gevrey regularity. (See
however the discussion in Section 5.1.5.)

Lemma 5.A.4. For all x ∈ Rd and all F,H ⊂ N with |F | = k ≥ 1, setting qn0 := x, we have∑
|F |=k

(∇δFφHT )R(x)

.k

k−1∑
j=0

∑
n1,...,nj+1

distinct

(∇φHT + ξ)R(qnj+1)

( j∏
l=0

j+1∑
i=l+1

1 ∧ (∇1∇2G
H
T )3R,3R(qnl , qni)

)( j+1∏
i=1

ρ(B2R(qni))
k

)
. ♦

Proof. As the estimate is deterministic, it is enough to consider the case H = ∅. Let |F | = k ≥ 1.
By Lemma 5.2.1, δFφT satisfies

1

T
δFφT −∇ ·AF∇δFφT =

∑
S⊂F

(−1)|S|+1∇ · CS‖F\S∇δ
F\S
ξ φT .

Let F1
⊎
F2 = {S : S ⊂ F} be a given partition of the set of all subsets of F . For all S ∈ F2, define

ψ1 and ψS2 as the (unique) solutions in H1(Rd) of equations

1

T
ψ1 −∇ ·AF∇ψ1 =

∑
S∈F1

(−1)|S|+1∇ · CS‖F\S∇δ
F\S
ξ φT ,

1

T
ψS2 −∇ ·AF∇ψS2 = (−1)|S|+1∇ · CS‖F\S∇δ

F\S
ξ φT . (5.123)
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By linearity, we have δFφT = ψ1 +
∑

S∈F2
ψS2 . On the one hand, assuming smoothness of the

coefficients, the Green’s formula yields

|∇ψ1(x)| .
∑
S∈F1

ˆ
JS‖F\S

|∇1∇2G
F
T (x, y)| |∇δF\Sξ φT (y)|dy,

and hence, taking local averages,

(∇ψ1)R(x) .
∑
S∈F1

(ˆ
JS‖F\S

(∇1∇2G
F
T (·, y))2

R(x)dy

)1/2( ˆ
JS‖F\S

|∇δF\Sξ φT |2
)1/2

.

On the other hand, for all S ∈ F2, an a priori estimate for equation (5.123) yields
ˆ
Rd
|∇ψS2 |2 .

ˆ
JS‖F\S

|∇δF\Sξ φT |2.

Combining these estimates with the decomposition δFφT = ψ1 +
∑

S∈F2
ψS2 , and suitably choosing

the partition F1
⊎
F2, we conclude

(∇δFφT )R(x) .
∑
S⊂F

(
1 ∧

ˆ
JS‖F\S

(∇1∇2G
F
T (·, y))2

R(x)dy

)1/2(ˆ
JS‖F\S

|∇δF\Sξ φT |2
)1/2

,

or equivalently, noting that for n ∈ S we have JS‖F\S ⊂ Jn ⊂ BR(qn),

(∇δFφT )R(x) .
∑
n∈F

(
1 ∧ (∇1∇2G

F
T )R,R(x, qn)

) ∑
S⊂F
n∈S

(∇δF\Sξ φT )R(qn)1JS 6=∅.

Setting
SFT (x) :=

∑
n∈F

1 ∧ (∇1∇2GT )R,R(x, qn),

and noting that for n ∈ F Lemma 5.A.3 gives 1 ∧ (∇1∇2G
F
T )R,R(x, qn) ≤ CkSFT (x), the above takes

the form
(∇δFφT )R(x) ≤ CkSFT (x)

∑
S⊂F

1JF\S 6=∅
∑

n∈F\S

(∇δSφT )R(qn).

By induction, a repeated use of this estimate leads to

(∇δFφT )R(x) .k S
F
T (x)

k−1∑
j=0

∑
S1⊂F

1JF\S1
6=∅

∑
n1∈F\S1

SS1
T (qn1)

∑
S2⊂S1

1JS1\S2
6=∅

∑
n2∈S1\S2

SS2
T (qn2) . . .

. . .
∑

Sj⊂Sj−1

1JSj−1\Sj 6=∅
∑

nj∈Sj−1\Sj

S
Sj
T (qnj )1JSj 6=∅

∑
m∈Sj

(∇φT + ξ)R(qm),

where we have set S−1 := F . Further setting qn0 := x, and disjointifying the subsets Sj ’s, this
becomes

(∇δFφT )R(x)

.k

k−1∑
j=0

∑
S1,...,Sj+1
F=

⊎
i Si

1JS1
,...,JSj+1

6=∅
∑
n1∈S1

. . .
∑

nj+1∈Sj+1

( j∏
l=0

S
⊎j+1
i=l+1 Si

T (qnl)

)
(∇φT + ξ)R(qnj+1). (5.124)
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Setting γT (x, y) := 1 ∧ (∇1∇2GT )R,R(x, y) and γ̃T (x, y) := 1 ∧ (∇1∇2GT )3R,3R(x, y), we find

S
⊎j+1
i=l+1 Si

T (qnl) =

j+1∑
i=l+1

∑
r∈Si

γT (qnl , qr),

and hence, given JS1 , . . . , JSj+1 6= ∅ and n1 ∈ S1, . . . , nj+1 ∈ Sj+1, we may estimate

S
⊎j+1
i=l+1 Si

T (qnl) .
j+1∑
i=l+1

|Si|γ̃T (qnl , qni) .k

j+1∑
i=l+1

γ̃T (qnl , qni).

Combining this estimate with (5.124), summing over all subsets F ⊂ N with |F | = k, and relabeling
the sums, we obtain

∑
|F |=k

(∇δFφT )R(x) .k

k−1∑
j=0

∑
n1,...,nj+1

distinct

( j∏
l=0

j+1∑
i=l+1

γ̃T (qnl , qni)

)
(∇φT + ξ)R(qnj+1)

×
∑

|F |=k−j

∑
S1,...,Sj+1
F=

⊎
i Si

1JS1
∩Jn1 ,...,JSj+1

∩Jnj+1 6=∅. (5.125)

The last sum is estimated as follows,

∑
|F |=k−j

∑
S1,...,Sj+1
F=

⊎
i Si

1JS1
∩Jn1 ,...,JSj+1

∩Jnj+1 6=∅ ≤
j+1∏
i=1

∑
|S|≤k

1JS∩Jni 6=∅ ≤
j+1∏
i=1

k∑
l=0

(
ρ(B2R(qni))

l

)
,

and hence, using that
(
n
k

)
≤ (en/k)k and

∑∞
l=0(e/l)l . 1,

∑
|F |=k−j

∑
S1,...,Sj+1
F=

⊎
i Si

1JS1
∩Jn1 ,...,JSj+1

∩Jnj+1 6=∅ .
j+1∏
i=1

ρ(B2R(qni))
k.

Injecting this into (5.125), the conclusion follows.

Random integration lemma

The following lemma makes precise how sums over the points of the point process ρ can be
estimated in expectation by spatial integrals.

Lemma 5.A.5. Let k ≥ 1 and L1, L2 ' 1 be fixed. Let gL1,L2 be a random function (Rd)k+1 → [0,∞]
(which may also depend on the point process ρ), such that there is a positive constant c ' 1 for which
we have almost surely for all (xi)

k
i=0, (yi)

k
i=0 ∈ Rk+1 with maxi |xi − yi| ≤ 1,

gL1,L2(y0, . . . , yk) . gL1+c,L2+c(x0, . . . , xk). (5.126)

Then for all s ≥ 1 and r > 1 we have

Is := E
[( ∑

n0,...,nk
distinct

gL1,L2(qn0 , . . . , qnk)
)s]1/s

.s,r

ˆ
(Rd)k+1

E [gL1+2c,L2+2c(x0, . . . , xk)
rs]

1
rs dx0 . . . dxk.

♦
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Proof. Let ε ∈ (0, 1) and s ≥ 1 be fixed. Let E‖ρ denote the conditional expectation given the
point process ρ. Using the triangle inequality and sampling the point process on discrete cells of size
γ := 2/

√
d, we find

Iρs := E‖ρ
[( ∑

n0,...,nk
distinct

gL1,L2(qn0 , . . . , qnk)
)s]1/s

≤
∑

n0,...,nk
distinct

E‖ρ[gL1,L2(qn0 , . . . , qnk)s]1/s

≤
∑

x0,...,xk∈γZd

∑
n0,...,nk
distinct

1qn0∈x0+γQ,...,qnk∈xk+γQ E‖ρ[gL1,L2(qn0 , . . . , qnk)s]1/s,

As qni ∈ xi + γQ implies |qni − xi| ≤ 1, assumption (5.126) then leads almost surely to

Iρs ≤
∑

x0,...,xk∈γZd
E‖ρ[gL1+c,L2+c(x0, . . . , xk)

s]1/s
∑

n0,...,nk
distinct

1qn0∈x0+γQ,...,qnk∈xk+γQ

≤
∑

x0,...,xk∈γZd
E‖ρ[gL1+c,L2+c(x0, . . . , xk)

s]1/s
k∏
j=0

ρ(xj + γQ).

Taking the expectation, using the triangle and the Hölder inequalities, and using the stationarity of
the point process ρ, we obtain for all r > 1,

Is = E[(Iρs )s]1/s ≤
∑

x0,...,xk∈γZd
E
[
E‖ρ[gL1+c,L2+c(x0, . . . , xk)

s]

k∏
j=0

ρ(xj + γQ)s
]1/s

≤
∑

x0,...,xk∈γZd
E
[
gL1+c,L2+c(x0, . . . , xk)

rs
] 1
rs E

[
ρ(γQ)sr

′(k+1)
] 1
r′s ,

and hence, by assumption (5.122),

Is .s,r,k
∑

x0,...,xk∈γZd
E[gL1+c,L2+c(x0, . . . , xk)

rs]
1
rs .

Taking local averages and using again assumption (5.126), the conclusion follows in the form

Is .s,r,k
∑

x0,...,xk∈γZd

 
(γQ)k+1

E [gL1+2c,L2+2c(x0 + y0, . . . , xk + yk)
rs]

1
rs dy0 . . . dyk

.
ˆ

(Rd)k+1

E[grsL1+2c,L2+2c(y0, . . . , yk)]
1
rsdy0 . . . dyk.

Improved energy estimates

Applying Lemma 5.A.4 together with the optimal Green’s function estimates of assumption (H2),
we deduce the following version of the improved energy estimates of Proposition 5.2.6 (in particular
refining the rough estimate of Lemma 5.2.2).

Proposition 5.A.6. For all k ≥ 1 and all s ≥ 1 we have (uniformly in T )

Sk,s := E
[( ∑
|F |=k

(∇δFφT )R

)2s
]
.k,s (1 + log T )2sk. ♦

275



Remark 5.A.7. The above result implies in particular, for all k ≥ 1, 0 ≤ j ≤ k, l ≥ 0,

Tj,k,l := E
[
ρ(BR)l

∑
|G|=k−j

∣∣∣ ∑
|F |=j
F∩G=∅

∇δF∪GφT
∣∣∣2] .k,l (1 + log T )2k. (5.127)

Indeed, using stationarity and the triangle inequality, we find

Tj,k,l ≤ E
[
ρ(B2R)l

 
BR

∑
|G|=k−j

∣∣∣ ∑
|F |=j
F∩G=∅

∇δF∪GφT
∣∣∣2] ≤ E

[
ρ(B2R)l

∑
|G|=k−j

( ∑
|F |=j
F∩G=∅

(∇δF∪GφT )R

)2
]
.

The discrete `1 − `2 inequality then yields

Tj,k,l .k E
[
ρ(B2R)l

( ∑
|F |=k

(∇δFφT )R

)2]
,

so that the result (5.127) follows from Proposition 5.A.6 together with assumption (5.122). ♦

Proof of Proposition 5.A.6. Applying Lemmas 5.A.4 and 5.A.5, and setting L := 3R + 1 ' 1 and
x0 := 0, we find for all r > 1,

(Sk,s)
1
2s .k,s,r

k−1∑
j=0

ˆ
(Rd)j+1

E
[
(∇φT + ξ)2sr

L (xj+1)

( j∏
l=0

j+1∑
i=l+1

1 ∧ (∇∇GT )2sr
L,L(xl, xi)

)

×
( j+1∏
i=1

ρ(BL(xi))
2srk

)] 1
2sr

dx1 . . . dxj+1.

Using assumptions (5.122) and (H1), the Hölder inequality then yields

(Sk,s)
1
2s .k,s,r

k−1∑
j=0

ˆ
(Rd)j+1

j∏
l=0

j+1∑
i=l+1

(
1 ∧ E

[
1 ∧ (∇∇GT )4jsr

L,L (xl, xi)
] 1

4jsr

)
dx1 . . . dxj+1,

and hence, by assumption (H2), recalling that x0 := 0,

(Sk,s)
1
2s .k,s,r

k−1∑
j=0

ˆ
(Rd)j+1

( j+1∑
i=1

γT (xi)

) j∏
l=1

( j+1∑
i=l+1

γT (xl − xi)
)
dx1 . . . dxj+1. (5.128)

It remains to estimate the rhs. More precisely, given a nonnegative measurable function f : R+ → R+,
we shall compute the following integral,

Ij :=

ˆ
(Rd)j+1

( j+1∑
i=1

f(|xi|)
) j∏
l=1

( j+1∑
i=l+1

f(|xl − xi|)
)
dx1 . . . dxj+1. (5.129)

For that purpose, we devise a tree argument. Let an increasing tree on {0, . . . , j + 1} be defined as a
collection of the form t = {(l, tl)}jl=0 where tl > l for all l, and let Tj denote the set of such increasing
trees. We can then rewrite

Ij =
∑
t∈Tj

ˆ
(Rd)j+1

f(|xt0 |)
j∏
l=1

f(|xl − xtl |) dx1 . . . dxj+1.
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Let t ∈ Tj be fixed. Viewing the pairs (l, tl) as the edges of a graph on the set {0, . . . , j + 1}, we
see that t defines a tree on this set. Let T 1

t denote the set of all leaves of t distinct from 0, and let
t1 denote the graph induced by t on the set {0, . . . , j + 1} \ T 1

t . Let then T 2
t be defined similarly

as T 1
t but with t replaced by t1, and so on, until 0 is the only vertex left. This leads to a partition

{1, . . . , j + 1} = T 1
t

⊎
. . .
⊎
T st , for some s ≥ 1. By construction, first integrating with respect to all

variables xi with i ∈ T 1
t , then with respect to all variables xi with i ∈ T 2

t , and so on, we obtain after
obvious changes of variables

ˆ
(Rd)j+1

f(|xt0 |)
j∏
l=1

f(|xl − xtl |) dx1 . . . dxj+1 =

(ˆ
Rd
f(|x|)dx

)j+1

.

As the cardinality of Tj is by definition (j + 1)!, it follows that the integral in (5.129) is equal to

Ij = (j + 1)!

(ˆ
Rd
f(|x|)dx

)j+1

.

Using this observation and recalling that for all α ∈ R,ˆ
Rd
γT (x)dx =

ˆ
Rd

(1 + |x|)−de−
1

C
√
T
|x|
dx . 1 + log T,

the desired result directly follows from (5.128).

Proof of Theorem 5.A.1

Consider the hardcore approximations ρθ of the point process ρ (see Step 1 of Section 5.3.2), and
recall that ρθ is also assumed to satisfy assumptions (H1)–(H3). The result of Theorem 5.1.1 applied
to ρθ then leads to the following: the map p 7→ ξ · A(p)

T,θξ is analytic and satisfies, for all p0 ∈ [0, 1],
k ≥ 1, −p0 ≤ p ≤ 1− p0, |p| < 1/Cp0,θ,∣∣∣∣ξ ·A(p0+p)

T,θ ξ − ξ ·A(p0)
T,θ ξ −

k∑
j=1

pj∆
(p0),j
T,θ

∣∣∣∣ ≤ (pCp0,θ)
k+1,

for some constant Cp0,θ 'p0,θ 1, where the derivatives ∆
(p0),j
T,θ are equivalently given by the argument

of the limits (5.23), (5.24), and (5.25). Now let us examine the uniform bounds of Proposition 5.3.2
for the derivatives ∆k

T,θ := ∆
(0),k
T,θ at p0 = 0. Decomposing ∆k

T,θ = ∆k
T,θ,1 + ∆k

T,θ,2 as in the proof of
Proposition 5.3.2, and noting that we have in the present general situation (instead of (5.78))

∑
|S|≤k

1JS (0) ≤
k∑
j=0

(
ρ(BR)

j

)
. ρ(BR)k, (5.130)

we easily deduce

|∆k
T,θ,1| . Ck

k∑
j=0

E
[
ρ(BR)2k

∑
|U |=j

|∇δUξ φT,θ|2
]

+ Ck
k∑
j=0

j∑
i=0

E
[
ρ(BR)2k

∑
|U |=j−i

∣∣∣∣ ∑
|G|=i
G∩U=∅

∇δG∪Uξ φT,θ

∣∣∣∣2].
(5.131)

Now applying (5.127) (which holds independently of θ), we deduce |∆k
T,θ,1| .k (1+log T )2k (uniformly

in θ). A similar argument holds for ∆k
T,θ,2, so that we may conclude (uniformly in θ)

|∆k
T,θ| .k (1 + log T )2k. (5.132)
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By the perturbation trick, arguing as in Step 3 of Section 5.3.2, this bound is upgraded as follows:
for all p0 ∈ [0, 1] we have (uniformly in p0, θ)

|∆(p0),k
T,θ | .k (1 + log T )2k.

As p 7→ ξ ·A(p)
T,θξ is analytic, a Taylor expansion around p0 up to order k ≥ 1 then gives by Lagrange’s

remainder theorem (uniformly in p0, θ)∣∣∣∣ξ ·A(p0+p)
T,θ ξ − ξ ·A(p0)

T,θ ξ −
k∑
j=1

pj∆
(p0),j
T,θ

∣∣∣∣ ≤ pk+1 sup
u∈[0,1]

|∆(p0+up),k+1
T,θ | .k pk+1(1 + log T )2(k+1).

Arguing as in Step 2 of Section 5.3.2, we deduce that the limits limθ ∆
(p0),j
T,θ all exist, and, passing to

the limit in the above estimate yields, for all k ≥ 1,∣∣∣∣ξ ·A(p0+p)
T ξ − ξ ·A(p0)

T ξ −
k∑
j=1

pj lim
θ

∆
(p0),j
T,θ

∣∣∣∣ .k pk+1(1 + log T )2(k+1). (5.133)

It remains to pass to the limit T ↑ ∞ in (5.133). This is made possible by assumption (H3), which
asserts that the approximate homogenized coefficients A(p0)

T converge with an algebraic rate γ(T ) ≤
T−ε. Indeed, combining this rate with (5.133) yields for all k ≥ 1,∣∣∣∣ k∑

j=1

pj(lim
θ

∆
(p0),j
T,θ − lim

θ
∆

(p0),j
2T,θ )

∣∣∣∣ .k γ(T ) + pk+1(1 + log T )2(k+1),

which implies by induction for all j ≥ 1 (arguing similarly as in (5.121)),∣∣ lim
θ

∆
(p0),j
2T,θ − lim

θ
∆

(p0),j
T,θ

∣∣ .j γ(T )2−j (1 + log T )2(j+1) ≤ T−ε2−j (1 + log T )2(j+1).

In particular, the limits ∆(p0),j := limT limθ ∆
(p0),j
T,θ all exist in R, and for all j ≥ 1 we have∣∣ lim

θ
∆

(p0),j
T,θ −∆(p0),j

∣∣ .j T−ε2−j (1 + log T )2(j+1).

Now combining this with (5.133) and applying property (H3) once again, we find for all k ≥ 1,∣∣∣∣ξ ·A(p0+p)ξ − ξ ·A(p0)ξ −
k∑
j=1

pj∆(p0),j

∣∣∣∣ .k pk+1(1 + log T )2(k+1) +
k∑
j=0

pjT−ε2
−j

(1 + log T )2(j+1).

Choosing T := p−
1
ε

2k , we conclude for all k ≥ 1,∣∣∣∣ξ ·A(p0+p)ξ − ξ ·A(p0)ξ −
k∑
j=1

pj∆(p0),j

∣∣∣∣ .k pk+1(1 + | log p|)2(k+1).

As this estimate holds for all k ≥ 1, the error can of course a posteriori be improved into O(pk+1).
This concludes the proof of the smoothness statement in Theorem 5.A.1.

We now show that at p0 = 0 we may omit the θ-regularizations in the formulas (5.23), (5.24),
and (5.25) for the derivatives. We focus on formula (5.23), although the argument is the same
for (5.24) and (5.25). Given k ≥ 1, formula (5.23) at p0 = 0 takes the form

ξ ·A(0),k
hom ξ = k! lim

T↑∞
lim
θ↑∞

∑
|F |=k

∑
G(F

(−1)|F\G|+1E
[
∇δGξ φT,θ,ξ · (Cθ)F\G‖G(∇φFT,θ,ξ + ξ)

]
,
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or equivalently, recalling that the inclusion ρθ ⊂ ρ holds by construction,

ξ ·A(0),k
hom ξ = k! lim

T↑∞
lim
θ↑∞

E
[ ∑
|F |=k

1qn∈ρθ,∀n∈F
∑
G(F

(−1)|F\G|+1∇δGξ φT,ξ · CF\G‖G(∇φFT,ξ + ξ)

]
.

Adapting the proof of Proposition 5.3.2 as for (5.132) above, but now with θ =∞, we find

E
[ ∑
|F |=k

∣∣∣ ∑
G(F

(−1)|F\G|+1∇δGξ φT,ξ · CF\G‖G(∇φFT,ξ + ξ)
∣∣∣] .k (1 + log T )2k <∞,

and we conclude by dominated convergence

ξ ·A(0),k
hom ξ = k! lim

T↑∞

∑
|F |=k

∑
G(F

(−1)|F\G|+1E
[
∇δGξ φT,ξ · CF\G‖G(∇φFT,ξ + ξ)

]
, (5.134)

as claimed.

It remains to check that the first-order invariance principle of Corollary 5.1.3 is still valid, as well as
the electric and elastic Clausius-Mossotti formulas of Corollaries 5.1.4 and 5.1.5. Unlike the situation
in Step 5 of Section 5.3.2, it is no longer clear here whether we may omit the T -regularization in
the formula for A(0),1

hom . Nevertheless, the proof of Corollary 5.1.3 in Section 5.3.3 remains unchanged
when using the formula with T -regularizations. We now turn to the validity of the electric Clausius-
Mossotti formula. Assume that the inclusions are balls Jn = BR(qn) of radius R > 0, and that
the reference coefficients are constant A = α Id and A′ = β Id. We shall compute explicitly the
first derivative ξ · A(0),1

hom ξ of the perturbed homogenized coefficient at 0, as given by formula (5.134).
On the one hand, since A is constant, the unique solution φT,ξ of 1

T φT,ξ − ∇ · A(∇φT,ξ + ξ) = 0

is clearly φT,ξ = 0. On the other hand, for all n, the unique solution φ
{n}
T,ξ ∈ H1

loc ∩ L∞(Rd) of
1
T φ
{n}
T,ξ − ∇ · A

{n}(∇φ{n}T,ξ + ξ) = 0 is of the form φ
{n}
T,ξ (x) = ψT,ξ(x − qn) for some function ψT,ξ

independent of n, and it satisfies ∇ψT,ξ −⇀ ∇ψξ in L2
loc(Rd). Formula (5.134) with n = 1 then yields

ξ ·A(0),1
hom ξ = lim

T↑∞

∑
n

E
[
(∇φT,ξ + ξ) · C{n}(∇φ{n}T,ξ + ξ)

]
= (β − α) lim

T↑∞

∑
n

E
[
1|qn|<R ξ · (∇ψT,ξ(−qn) + ξ)

]
.

As in the proof of Corollary 5.1.3 in Section 5.3.3, we have E [
∑

n f(qn)] = σ
´
f(x)dx for all continuous

integrable function f : Rd → R. Hence,

ξ ·A(0),1
hom ξ = σ(β − α) lim

T↑∞

ˆ
BR

ξ · (∇ψT,ξ(−x) + ξ) dx,

so that the weak convergence ∇ψT,ξ −⇀ ∇ψξ in L2
loc(Rd) implies

ξ ·A(0),1
hom ξ = σ(β − α)

ˆ
BR

ξ · (∇ψξ(−x) + ξ) dx.

Using the explicit formula (5.116)–(5.117) for ∇ψξ, we deduce

ξ ·A(0),1
hom ξ = σ|BR|(β − α)(1 + C) = σ|BR|

αd(β − α)

β + α(d− 1)
,

and the conclusion follows as in the proof of Corollary 5.1.4. The elastic counterpart is similarly easily
recovered in the present setting.
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5.B Appendix: Corresponding results on effective fluctuation tensor

This appendix is devoted to the proof of Theorem 5.1.8 concerning the first-order expansion of
the perturbed effective fluctuation tensor Q(p), based on the quantitative theory of stochastic homog-
enization. More precisely, let the same assumptions hold as in Section 5.1.2 (including for simplicity
the finite penetrability condition 5.4). Let in addition the assumptions (5.122) and (H1)–(H2) of Sec-
tion 5.A hold (without θ-regularization). Also assume that the convergence in the definition (5.32) of
the effective fluctuation tensor holds with an algebraic rate (cf. Proposition 3.A.1): there exists some
ε > 0 such that for all T > 0 and p ∈ [0, 1],

|Q(p)
T −Q

(p)| . T−ε. (5.135)

Further assume that the perturbed coefficients A(p) satisfy a standard covariance inequality (∂osc-CI)
uniformly in p ∈ [0, 1]. In this appendix, we establish Theorem 5.1.8 under these precise assumptions.

Note that the finite penetrability condition (5.4) is believed to be inessential here. Also, the proof
is immediately adapted to the case of a weighted covariance inequality with superalgebraic weight
(say), and also holds when the oscillation is replaced by the functional derivative.

Sketch of the proof of Theorem 5.1.8. Recall the notation of Section 5.1.3, Q(p) := limT↑∞Q
(p)
T with

ξ1 ⊗ ξ2 : Q(p)
T : ξ1 ⊗ ξ2 :=

ˆ
Rd

E
[(
ξ2 ⊗ ξ1 : Ξ

(p)
T (x)

) (
ξ2 ⊗ ξ1 : Ξ

(p)
T (0)

)]
dx,

ξ1 ⊗ ξ2 : Ξ
(p)
T := ξ2 · (A(p) −A(p)

hom)(∇φ(p)
T,ξ1

+ ξ1),

where the integral in the definition of Q(p)
T is absolutely convergent (as a consequence of the covariance

inequality (∂osc-CI), cf. e.g. the proof of Theorem 3.A.1(i) in Chapter 3). Given |ξ2| = |ξ1| = 1, we
set for simplicity

Q̃(p) := ξ1 ⊗ ξ2 : Q(p), Q̃(p)
T := ξ1 ⊗ ξ2 : Q(p)

T , Ξ̃
(p)
T := ξ1 ⊗ ξ2 : Ξ

(p)
T .

We split the proof into five steps.

Step 1. Alternative formula for Q(p)
T .

In this step, we prove that for all T > 0 and p ∈ [0, 1] the approximate effective fluctuation tensor
Q(p)
T is equivalently given by

Q̃(p)
T = O(T−

1
2 ) +

ˆ
Rd

Cov
[
(∇φ(p)

T,ξ2
+ ξ2) ·A(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ;

(∇φ(p)
T,ξ2

+ ξ2) ·A(p)(∇φ(p)
T,ξ1

+ ξ1)(0)
]
dx.

By definition of Q̃(p)
T , it suffices to check that

ˆ
Rd

E
[
ξ2 ·A(p)

hom∇φ
(p)
T,ξ1

(x) Ξ̃
(p)
T (0)

]
dx = 0, (5.136)

ˆ
Rd

Cov
[
∇φ(p)

T,ξ2
·A(p)(∇φ(p)

T,ξ1
+ ξ1)(x); Ξ̃

(p)
T (0)

]
dx = O(T−

1
2 log T ), (5.137)

ˆ
Rd

E
[
(∇φ(p)

T,ξ2
+ ξ2) ·A(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ξ2 ·A(p)

hom∇φ
(p)
T,ξ1

(0)
]
dx = 0,

ˆ
Rd

Cov
[
(∇φ(p)

T,ξ2
+ ξ2) ·A(p)(∇φ(p)

T,ξ1
+ ξ1)(x);∇φ(p)

T,ξ2
·A(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx = O(T−

1
2 log T ).
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We focus on (5.136) and (5.137), as the last two identities are obtained similarly. We start with (5.136).
Writing by stationarity

ˆ
Rd

E
[
ξ2 ·A(p)

hom∇φ
(p)
T,ξ1

(x) Ξ̃
(p)
T (0)

]
dx =

ˆ
Rd

E
[
ξ2 ·A(p)

hom∇φ
(p)
T,ξ1

(x)

ˆ
B

(Ξ̃
(p)
T − E

[
Ξ̃

(p)
T

]
)

]
dx,

and noting that the integrand is absolutely integrable (as a consequence of the covariance inequality
(∂osc-CI), cf. e.g. the proof of Proposition 3.A.1(i) in Chapter 3), we deduce by integration by parts
that (5.136) is a direct consequence of

lim
R↑∞

1

R

ˆ
BR

∣∣∣∣Cov

[
φ

(p)
T,ξ1

(x);

ˆ
B

Ξ̃
(p)
T

] ∣∣∣∣ dx = 0. (5.138)

The covariance inequality (∂osc-CI) yields∣∣∣∣Cov

[
φ

(p)
T,ξ2

(x);

ˆ
B

Ξ̃
(p)
T

] ∣∣∣∣ . ˆ
Rd

E
[(

∂osc
A(p),B(z)

φ
(p)
T,ξ2

(x)
)2
] 1

2

E
[(

∂osc
A(p),B(z)

ˆ
B

Ξ̃
(p)
T

)2
] 1

2

dz.

Arguing as e.g. in [212] to estimate the vertical derivatives, using the corrector estimates and the
optimal annealed estimates on the Green’s functions (cf. (H1)–(H2)), we may estimate

E
[(

∂osc
A(p),B(z)

φ
(p)
T,ξ2

(x)
)2
] 1

2

. (1 + |x− z|)1−de
− 1

C
√
T
|x−z|

,

E
[(

∂osc
A(p),B(z)

ˆ
B

Ξ̃
(p)
T

)2
] 1

2

. (1 + |z|)−de−
1

C
√
T
|z|
.

Injecting this into the above leads to∣∣∣∣Cov

[
φ

(p)
T,ξ2

(x);

ˆ
B

Ξ̃
(p)
T

] ∣∣∣∣ . ˆ
Rd

(1 + |x− z|)1−de
− 1

C
√
T
|x−z|

(1 + |z|)−de−
1

C
√
T
|z|
dz

. (1 + |x|)1−de
− 1

C
√
T
|x|
,

and hence

1

R

ˆ
BR

∣∣∣∣Cov

[
φ

(p)
T,ξ2

(x);

ˆ
B

Ξ̃
(p)
T

] ∣∣∣∣ dx . R ∧
√
T

R
,

which indeed goes to 0 as R ↑ ∞. We now turn to (5.137). Using the corrector equation for φ(p)
T,ξ1

, we
may decompose

∇φ(p)
T,ξ2
·A(p)(∇φ(p)

T,ξ1
+ ξ1) = ∇ ·

(
φ

(p)
T,ξ2

A(p)(∇φ(p)
T,ξ1

+ ξ1)
)
− 1

T
φ

(p)
T,ξ2

φ
(p)
T,ξ1

.

Arguing as above with the covariance inequality, we easily check that
ˆ
Rd

Cov
[
∇ ·
(
φ

(p)
T,ξ2

A(p)(∇φ(p)
T,ξ1

+ ξ1)
)
(x); Ξ̃

(p)
T (0)

]
dx = 0,

and also∣∣∣∣ ˆ
Rd

Cov

[
1

T
φ

(p)
T,ξ2

φ
(p)
T,ξ1

(x); Ξ̃
(p)
T (0)

]
dx

∣∣∣∣
.

1

T

ˆ
Rd

ˆ
Rd

(1 + |x− z|)1−de
− 1

C
√
T
|x−z|

(1 + |z|)−de−
1

C
√
T
|z|
dzdx . T−

1
2 log T,
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which implies (5.137).

Step 2. Suitable decomposition of Q̃(p)
T .

In this step, we prove the following decomposition of Q̃(p)
T ,

Q̃(p)
T − Q̃

(0)
T = p

3∑
j=1

M j
T +

7∑
j=1

E
(p),j
T +O(T−

1
2 ), (5.139)

where the three main terms are

M1
T :=

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) ·

∑
n

Cn(∇φ{n}T,ξ1
+ ξ1)(x) ; ξ2 ·A(∇φT,ξ1 + ξ1)(0)

]
dx,

M2
T :=

ˆ
Rd

Cov
[
ξ2 ·A(∇φT,ξ1 + ξ1)(x) ; (∇φT,ξ2 + ξ2) ·

∑
n

Cn(∇φ{n}T,ξ1
+ ξ1)(0)

]
dx,

M3
T :=

∑
n

ˆ
Rd

E
[
(∇φT,ξ2 + ξ2) · Cn(∇φ{n}T,ξ1

+ ξ1)(x) (∇φT,ξ2 + ξ2) · Cn(∇φ{n}T,ξ1
+ ξ1)(0)

]
dx,

while the seven error terms are given by

E
(p),1
T :=

Γ∑
k,l=1

(−1)k+l
∑
|F |=k

∑
|G|=l

p|F∪G| 1F∩G 6=∅1|F∪G|≥2

×
ˆ
Rd

E
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪G∪E(p)

T,ξ1 + ξ1)(x) (∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]
dx,

E
(p),2
T := −

Γ∑
k,l=1

(−1)k+lpk+l
∑
|F |=k

∑
|G|=l

1F∩G6=∅

×
ˆ
Rd

E
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪E(p)

T,ξ1 + ξ1)(x) (∇φT,ξ2 + ξ2) · CG(∇φG∪E(p)

T,ξ1 + ξ1)(0)
]
dx,

E
(p),3
T :=

Γ∑
k,l=1

(−1)k+lpk+l
∑
|F |=k

∑
|G|=l

1F∩G=∅

×
ˆ
Rd

(
E
[
(∇φT,ξ2 + ξ2) · CF∇(φF∪G∪E

(p)

T,ξ1 − φF∪E(p)

T,ξ1 )(x) (∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]

+ E
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪E(p)

T,ξ1 + ξ1)(x) (∇φT,ξ2 + ξ2) · CG∇(φF∪G∪E
(p)

T,ξ1 − φG∪E(p)

T,ξ1 )(0)
])

dx,

E
(p),4
T :=

Γ∑
k,l=1

(−1)k+lpk+l

ˆ
Rd

Cov

[
(∇φT,ξ2 + ξ2) ·

∑
|F |=k

CF (∇φF∪E(p)

T,ξ1 + ξ1) (x) ;

(∇φT,ξ2 + ξ2) ·
∑
|G|=l

CG(∇φG∪E(p)

T,ξ1 + ξ1) (0)

]
dx,

E
(p),5
T :=

Γ∑
k=2

(−1)k+1pk
ˆ
Rd

(
Cov

[
(∇φT,ξ2 + ξ2) ·

∑
|F |=k

CF (∇φF∪E(p)

T,ξ1 + ξ1)(x); ξ2 ·A(∇φT,ξ1 + ξ1)(0)

]

+ Cov

[
ξ2 ·A(∇φT,ξ1 + ξ1)(x); (∇φT,ξ2 + ξ2) ·

∑
|F |=k

CF (∇φF∪E(p)

T,ξ1 + ξ1)(0)

])
dx,
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E
(p),6
T := p

∑
n

ˆ
Rd

×
(
E
[
(∇φT,ξ2 + ξ2) · Cn∇(φ

{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)(x) (∇φT,ξ2 + ξ2) · Cn(∇φ{n}∪E
(p)

T,ξ1
+ ξ1)(0)

]
+ E

[
(∇φT,ξ2 + ξ2) · Cn(∇φ{n}T,ξ1

+ ξ1)(x) (∇φT,ξ2 + ξ2) · Cn∇(φ
{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)(0)
])

dx,

E
(p),7
T := p

ˆ
Rd

(
Cov

[
(∇φT,ξ2 + ξ2) ·

∑
n

Cn∇(φ
{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)(x); ξ2 ·A(∇φT,ξ1 + ξ1)(0)
]

+ Cov
[
ξ2 ·A(∇φT,ξ1 + ξ1)(x); (∇φT,ξ2 + ξ2) ·

∑
n

Cn∇(φ
{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)(0)
])
dx.

The formula of Step 1 first yields

Q̃(p)
T − Q̃

(0)
T = O(T−

1
2 ) (5.140)

+

ˆ
Rd

Cov
[
(∇φ(p)

T,ξ2
+ ξ2) ·A(p)(∇φ(p)

T,ξ1
+ ξ1)(x)− (∇φT,ξ2 + ξ2) ·A(∇φT,ξ1 + ξ1)(x) ;

(∇φ(p)
T,ξ2

+ ξ2) ·A(p)(∇φ(p)
T,ξ1

+ ξ1)(0)
]
dx

+

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) ·A(∇φT,ξ1 + ξ1)(x) ;

(∇φ(p)
T,ξ2

+ ξ2) ·A(p)(∇φ(p)
T,ξ1

+ ξ1)(0)− (∇φT,ξ2 + ξ2) ·A(∇φT,ξ1 + ξ1)(0)
]
dx.

Using the corrector equations for φ(p)
T and φT , we may decompose

(∇φ(p)
T,ξ2

+ ξ2) ·A(p)(∇φ(p)
T,ξ1

+ ξ1)− (∇φT,ξ2 + ξ2) ·A(∇φT,ξ1 + ξ1)

= ∇(φ
(p)
T,ξ2
− φT,ξ2) ·A(p)(∇φ(p)

T,ξ1
+ ξ1) + (∇φT,ξ2 + ξ2) ·A∇(φ

(p)
T,ξ1
− φT,ξ1)

+(∇φT,ξ2 + ξ2) · (A(p) −A)(∇φ(p)
T,ξ1

+ ξ1)

= ∇ ·
(
(φ

(p)
T,ξ2
− φT,ξ2)A(p)(∇φ(p)

T,ξ1
+ ξ1)

)
+∇ ·

(
(∇φT,ξ2 + ξ2) ·A(φ

(p)
T,ξ1
− φT,ξ1)

)
(5.141)

− 1

T
(φ

(p)
T,ξ2
− φT,ξ2)φ

(p)
T,ξ1
− 1

T
φ

(p)
T,ξ2

(φ
(p)
T,ξ1
− φT,ξ1) + (∇φT,ξ2 + ξ2) · (A(p) −A)(∇φ(p)

T,ξ1
+ ξ1).

Now arguing as in Step 1 with the covariance inequality we easily check that
ˆ
Rd

Cov
[
∇ ·
(
(φ

(p)
T,ξ2
− φT,ξ2)A(p)(∇φ(p)

T,ξ1
+ ξ1)

)
(x); (∇φ(p)

T,ξ2
+ ξ2) ·A(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx = 0,

ˆ
Rd

Cov

[
1

T
(φ

(p)
T,ξ2
− φT,ξ2)φ

(p)
T,ξ1

(x); (∇φ(p)
T,ξ2

+ ξ2) ·A(p)(∇φ(p)
T,ξ1

+ ξ1)(0)

]
dx = O(T−

1
2 log T ).

Using such estimates, and combining (5.140) with identity (5.141), we obtain

Q̃(p)
T − Q̃

(0)
T +O(T−

1
2 log T )

=

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ; (∇φ(p)

T,ξ2
+ ξ2) ·A(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx

+

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) ·A(∇φT,ξ1 + ξ1)(x) ; (∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx,
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and hence, further similarly decomposing the first right-hand side term,

Q̃(p)
T − Q̃

(0)
T +O(T−

1
2 log T )

=

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ; (∇φT,ξ2 + ξ2) ·A(∇φT,ξ1 + ξ1)(0)

]
dx

+

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) ·A(∇φT,ξ1 + ξ1)(x) ; (∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx

+

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ; (∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx.

Again using the corrector equation for φ(p)
T in the form

(∇φ(p)
T,ξ2

+ ξ2) ·A(p)(∇φ(p)
T,ξ1

+ ξ1)

= ξ2 ·A(p)(∇φ(p)
T,ξ1

+ ξ1) +∇ ·
(
φ

(p)
T,ξ2

A(p)(∇φ(p)
T,ξ1

+ ξ1)
)
− 1

T
φ

(p)
T,ξ2

φ
(p)
T,ξ1

,

and arguing as above, we are led to

Q̃(p)
T − Q̃

(0)
T +O(T−

1
2 log T )

=

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ; ξ2 ·A(∇φT,ξ1 + ξ1)(0)

]
dx

+

ˆ
Rd

Cov
[
ξ2 ·A(∇φT,ξ1 + ξ1)(x) ; (∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx

+

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ; (∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx. (5.142)

Appealing to the inclusion-exclusion formula (5.17) together with assumption (5.4) and with inde-
pendence (5.6), the first right-hand side term becomes

ˆ
Rd

Cov
[
(∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ; ξ2 ·A(∇φT,ξ1 + ξ1)(0)

]
dx

=

ˆ
Rd

Γ∑
k=1

(−1)k+1pk
∑
|F |=k

Cov
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪E(p)

T,ξ1 + ξ1)(x) ; ξ2 ·A(∇φT,ξ1 + ξ1)(0)
]
dx,

and the second right-hand side term in (5.142) is rewritten similarly, while the last right-hand side
term takes the formˆ

Rd
Cov

[
(∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(x) ; (∇φT,ξ2 + ξ2) · C(p)(∇φ(p)

T,ξ1
+ ξ1)(0)

]
dx

=

ˆ
Rd

Γ∑
k,l=1

(−1)k+l
∑
|F |=k

∑
|G|=l

×
(
p|F∪G| E

[
(∇φT,ξ2 + ξ2) · CF (∇φF∪G∪E(p)

T,ξ1 + ξ1)(x) (∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]

−p|F |+|G| E
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪E(p)

T,ξ1 + ξ1)
]
E
[
(∇φT,ξ2 + ξ2) · CG(∇φG∪E(p)

T,ξ1 + ξ1)
] ])

dx.

Injecting these identities into (5.142) and suitably reorganizing the terms, the conclusion (5.139)
follows.
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Step 3. Estimation of the main terms (M j
T )3
j=1 and of the error terms (E

(p),j
T )5

j=1.
In this step, we prove that

3∑
j=1

|M j
T | . log T, and

5∑
j=1

|E(p),j
T | . p2 log T. (5.143)

We start with the error term E
(p),1
T . Given F,G ⊂ N with F ∩ G 6= ∅, we have by definition

|CF (x)||CG(y)| . 1JF (x)1JG(y)1|x−y|≤2R. By stationarity, we then find

∑
F,G⊂N

1F∩G 6=∅

∣∣∣∣ ˆ
Rd

E
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪G∪E(p)

T,ξ1 + ξ1)(x)

×(∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]
dx

∣∣∣∣
.

ˆ
B3R

ˆ
B3R

∑
F,G⊂N

E
[
1JF (x)1JG(y) |(∇φF∪G∪E(p)

T,ξ1 + ξ1)(x)| |(∇φF∪G∪E(p)

T,ξ1 + ξ1)(y)|

×|(∇φT,ξ2 + ξ2)(x)||(∇φT,ξ2 + ξ2)(y)|
]
dxdy

. E
[ ∑
F,G⊂N

1JF∩B3R 6=∅1JG∩B3R 6=∅ (∇φF∪G∪E(p)

T,ξ1 + ξ1)2
3R(0)(∇φT,ξ2 + ξ2)2

3R(0)

]
.

Decomposing ∇φF∪G∪E(p)

T,ξ1
+ ξ1 = ∇(φF∪G∪E

(p)

T,ξ1
− φ(p)

T,ξ1
) + (∇φ(p)

T,ξ1
+ ξ1), and noting that an a priori

estimate yields
ˆ
Rd

∣∣∇(φF∪G∪E(p)

T,ξ1 − φ(p)
T,ξ1

)∣∣2 . ˆ
JF∪G

|∇φ(p)
T,ξ1

+ ξ1|2, (5.144)

we easily deduce∑
F,G⊂N

1F∩G 6=∅

∣∣∣∣ ˆ
Rd

E
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪G∪E(p)

T,ξ1 + ξ1)(x)

×(∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]
dx

∣∣∣∣
. E

[ ∑
F,G⊂N

1JF∩B3R 6=∅1JG∩B3R 6=∅ (∇φ(p)
T,ξ1

+ ξ1)2
5R(0)(∇φT,ξ2 + ξ2)2

5R(0)

]
,

and hence, noting that assumption (5.4) implies
∑

F⊂N 1JF∩B3R 6=∅ ≤
∑Γ

k=1

(ρ(B5R)
k

)
. ρ(B5R)Γ, and

using assumption (5.122) and the corrector estimates (H1),

∑
F,G⊂N

1F∩G 6=∅

∣∣∣∣ ˆ
Rd

E
[
(∇φT,ξ2 + ξ2) · CF (∇φF∪G∪E(p)

T,ξ1 + ξ1)(x)

× (∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]
dx

∣∣∣∣ . 1.

This proves that E(p),1
T . p2. The same argument yields E(p),2

T . p2, as well as |M3
T | . 1.
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We now turn to the third term E
(p),3
T . By stationarity, we may estimate∑

F,G⊂N

ˆ
Rd

∣∣∣E[(∇φT,ξ2 + ξ2) · CF∇(φF∪G∪E
(p)

T,ξ1 − φF∪E(p)

T,ξ1 )(x)

×(∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]∣∣∣ dx

.
ˆ
Rd

∑
F,G⊂N

E
[
1JF∩BR(x)6=∅1JG∩BR(0)6=∅

(
∇(φF∪G∪E

(p)

T,ξ1 − φF∪E(p)

T,ξ1 )
)
R

(x) (5.145)

×
(
∇φF∪G∪E(p)

T,ξ1 + ξ1

)
R

(0)(∇φT,ξ2(x) + ξ2)R(x)(∇φT,ξ2(x) + ξ2)R(0)
]
dx.

Given JF ∩BR(x) 6= ∅ and JG ∩BR(0) 6= ∅, a priori estimates as in (5.144) easily yield(
∇φF∪G∪E(p)

T,ξ1 + ξ1

)
3R

(x) .
(
∇φF∪E(p)

T,ξ1 + ξ1

)
3R

(x) +
(
∇φF∪E(p)

T,ξ1 + ξ1

)
3R

(0)

. (∇φ(p)
T,ξ1

+ ξ1)3R(x) +
(
∇φ(p)

T,ξ1
+ ξ1

)
3R

(0), (5.146)

and similarly(
∇(φF∪G∪E

(p)

T,ξ1 − φF∪E(p)

T,ξ1 )
)
R

(x) . (∇φ(p)
T,ξ1

+ ξ1)3R(x) +
(
∇φ(p)

T,ξ1
+ ξ1

)
3R

(0). (5.147)

As the function φF∪G∪E(p)

T − φF∪E(p)

T satisfies( 1

T
−∇ ·AF∪E(p)∇

)(
φF∪G∪E

(p)

T,ξ1 − φF∪E(p)

T,ξ1

)
= ∇ ·

(
AF∪G∪E

(p)−AF∪E(p))(∇φF∪G∪E(p)

T,ξ1 + ξ1),

the Green’s representation formula gives, for JF ∩BR(x) 6= ∅ and JG ∩BR(0) 6= ∅,∣∣∇(φF∪G∪E(p)

T,ξ1 − φF∪E(p)

T,ξ1

)
(x)
∣∣ . ˆ

B3R

∣∣∇1∇2G
F∪E(p)

T (x, y)
∣∣∣∣∇φF∪G∪E(p)

T,ξ1 (y) + ξ1

∣∣ dy.
Together with (5.146) and (5.147), this leads to

(
∇(φF∪G∪E

(p)

T,ξ1 − φF∪E(p)

T,ξ1 )
)
R

(x)

.
(

1 ∧
(
∇1∇2G

F∪E(p)

T

)
3R,3R

(x, 0)
)((
∇φ(p)

T,ξ1
+ ξ1

)
3R

(0) +
(
∇φ(p)

T,ξ1
+ ξ1

)
3R

(x)
)
.

Injecting this and (5.146) into (5.145), applying Lemma 5.A.3, making use of the corrector estimates
and of the optimal annealed estimates on the Green’s functions (cf. (H1)–(H2)), and again using that∑

F⊂N 1JF∩BR 6=∅ . ρ(B3R)Γ, we conclude

∑
F,G⊂N

ˆ
Rd

∣∣∣E[(∇φT,ξ2 + ξ2) · CF∇(φF∪G∪E
(p)

T,ξ1 − φF∪E(p)

T,ξ1 )(x)

× (∇φT,ξ2 + ξ2) · CG(∇φF∪G∪E(p)

T,ξ1 + ξ1)(0)
]∣∣∣dx . ˆ

Rd
(1 + |x|)−de−

1

C
√
T
|x|
dx . log T.

This implies the bound E(p),3
T . p2 log T .

We now turn to the fourth term E
(p),4
T . Using the covariance inequality, arguing as e.g. in [212]

to estimate the vertical derivatives, using the corrector estimates and the optimal annealed estimates
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on the Green’s functions (cf. (H1)–(H2)), applying Lemma 5.A.3, and again using assumptions (5.4)
and (5.122), we obtain∣∣∣∣Cov

[
(∇φT,ξ2 + ξ2)(x) ·

∑
|F |=k

CF (∇φF∪E(p)

T,ξ1 + ξ1) (x) ;

(∇φT,ξ2 + ξ2)(0) ·
∑
|G|=l

CG(∇φG∪E(p)

T,ξ1 + ξ1) (0)

]
dx

∣∣∣∣ . (1 + |x|)−de−
1

C
√
T
|x|
,

which directly leads to |E(p),4
T | . p2 log T . A similar argument implies |E(p),5

T | . p2 log T , as well as
|M1

T |+ |M2
T | . log T .

Step 4. Estimation of the error terms (E
(p),j
T )7

j=6.
In this step, we prove that

7∑
j=6

|E(p),j
T | . p2 log T.

We start with the term E
(p),6
T . Successively using equations( 1

T
−∇ ·An∇

)
(φ
{n}
T,ξ2
− φT,ξ2) = ∇ · Cn(∇φT,ξ2 + ξ2),

and ( 1

T
−∇ ·An∇

)
(φ
{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

) = ∇ · C(p)
‖n (∇φ{n}∪E

(p)

T,ξ1
+ ξ1),

we obtain the identity

(∇φT,ξ2 + ξ2) · Cn∇(φ
{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)

= ∇ ·
(

(∇φT,ξ2 + ξ2) · Cn(φ
{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

) +∇(φ
{n}
T,ξ2
− φT,ξ2) ·An(φ

{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)
)

− 1

T
(φ
{n}
T,ξ2
− φT,ξ2)(φ

{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)−∇(φ
{n}
T,ξ2
− φT,ξ2) ·An∇(φ

{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)
)

= ∇ ·
(

(∇φT,ξ2 + ξ2) · Cn(φ
{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

) +∇(φ
{n}
T,ξ2
− φT,ξ2) ·An(φ

{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

)
)

−∇ ·
(

(φ
{n}
T,ξ2
− φT,ξ2)An∇(φ

{n}∪E(p)

T,ξ1
− φ{n}T,ξ1

) + (φ
{n}
T,ξ2
− φT,ξ2)C

(p)
‖n (∇φ{n}∪E

(p)

T,ξ1
+ ξ1)

)
+∇(φ

{n}
T,ξ2
− φT,ξ2)C

(p)
‖n (∇φ{n}∪E

(p)

T,ξ1
+ ξ1). (5.148)

Arguing as for (5.136) in Step 1, we deduce

E
(p),6
T = p

∑
n

ˆ
Rd

(
E
[
∇(φ

{n}
T,ξ2
− φT,ξ2) · C(p)

‖n (∇φ{n}∪E
(p)

T,ξ1
+ ξ1)(x)

× (∇φT,ξ2 + ξ2) · Cn(∇φ{n}∪E
(p)

T,ξ1
+ ξ1)(0)

]
+ E

[
(∇φT,ξ2 + ξ2) · Cn(∇φ{n}T,ξ1

+ ξ1)(x)∇(φ
{n}
T,ξ2
− φT,ξ2) · C(p)

‖n (∇φ{n}∪E
(p)

T,ξ1
+ ξ1)(0)

])
dx.

Appealing to the inclusion-exclusion formula (5.20) together with assumption (5.4) and with inde-
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pendence (5.6), we find

E
(p),6
T =

Γ∑
k=1

(−1)k+1pk+1
∑
n

∑
|F |=k

ˆ
Rd

(
E
[
∇(φ

{n}
T,ξ2
− φT,ξ2) · CF‖n(∇φ{n}∪F∪E

(p)

T,ξ1
+ ξ1)(x)

× (∇φT,ξ2 + ξ2) · Cn(∇φ{n}∪F∪E
(p)

T,ξ1
+ ξ1)(0)

]
+ E

[
(∇φT,ξ2 + ξ2) · Cn(∇φ{n}T,ξ1

+ ξ1)(x)∇(φ
{n}
T,ξ2
− φT,ξ2) · CF‖n(∇φ{n}∪F∪E

(p)

T,ξ1
+ ξ1)(0)

])
dx.

Now arguing as for the term E
(p),3
T , we conclude |E(p),6

T | . p2 log T . A similar argument leads to
|E(p),7

T | . p2 log T .

Step 5. Conclusion.
Combining the results of Steps 2–4, we find∣∣∣Q̃(p)

T − Q̃
(0)
T − p

3∑
j=1

M j
T

∣∣∣ . T− 1
2 + p2 log T.

Using assumption (5.135), it easily follows that the limit Q̃(0),1 := limT↑∞
∑3

j=1M
j
T exists in R and

that there holds ∣∣Q̃(p) − Q̃(0) − pQ̃(0),1
∣∣ . p2| log p|.

Further using the perturbation argument of Step 3 of Section 5.3.2, the main part of the statement
follows.

It remains to perform an explicit computation of Q̃(0),1 in the case of spherical inclusions Jn :=
BR(qn) of radius R > 0, with constant reference coefficients A := α Id and A′ := β Id. Since A is
constant, the unique decaying solution φT,ξ2 of 1

T φT,ξ2 −∇ · A(∇φT,ξ2 + ξ2) = 0 is clearly φT,ξ2 = 0,
and the formula (5.34) is then reduced to

ξ1 ⊗ ξ2 : Q(0),1 : ξ1 ⊗ ξ2 = lim
T↑∞

∑
n

ˆ
Rd

E
[
ξ2 · Cn(∇φ{n}T,ξ1

+ ξ1)(x) ξ2 · Cn(∇φ{n}T,ξ1
+ ξ1)(0)

]
dx.

For all n the unique solution φ{n}T,ξ1
∈ H1

loc ∩ L∞(Rd) of 1
T φ
{n}
T,ξ1
−∇ · A{n}(∇φ{n}T,ξ1

+ ξ1) = 0 is of the

form φ
{n}
T,ξ1

(x) = ψT,ξ1(x − qn) for some function ψT,ξ1 independent of n, and it admits a weak limit
∇ψT,ξ1 −⇀ ∇ψξ1 in L2

loc(Rd). Moreover, as in the proof of Corollary 5.1.3 in Section 5.3.3, we have
E [
∑

n f(qn)] = σ
´
f(x)dx for all continuous integrable function f : Rd → R. The above then takes

the form

ξ1 ⊗ ξ2 : Q(0),1 : ξ1 ⊗ ξ2

= σ(β − α)2 lim
T↑∞

ˆ
BR

ˆ
BR(y)

ξ2 · (∇ψT,ξ1(x− y) + ξ1) ξ2 · (∇ψT,ξ1(−y) + ξ1) dxdy

= σ(β − α)2

ˆ
BR

ˆ
BR(y)

ξ2 · (∇ψξ1(x− y) + ξ1) ξ2 · (∇ψξ1(−y) + ξ1) dxdy.

Using the explicit formula (5.116)–(5.117) for ∇ψξ, we deduce

ξ1 ⊗ ξ2 : Q(0),1 : ξ1 ⊗ ξ2 = σ|BR|2(ξ1 · ξ2)2
( αd(β − α)

β + α(d− 1)

)2
,

and the conclusion follows as in the proof of Corollary 5.1.4. The elastic counterpart is similarly easily
obtained based on the computations in the proof of Corollary 5.1.5.

288



Part II

Dynamics of Ginzburg-Landau vortices
in disordered media
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Chapter 6

Mean-field limits for Riesz interaction
gradient flows

Inspired by the work of Serfaty [395] in the context of the Ginzburg-Landau vortices, we explain
how a modulated energy method can be used to prove mean-field limit results for the gradient flow
evolution of particle systems with Coulomb-like pairwise interactions when the number of particles
tends to infinity. More precisely, we consider repulsive Riesz pairwise interactions, and we establish
a mean-field limit result in dimensions 1 and 2 in some cases for which this problem was still open.

This chapter corresponds to the article [158], to which various remarks have been added as well
as a detailed section on previous works on the subject.
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6.1 Introduction

6.1.1 General overview

We consider the energy of a system of N particles in the Euclidean space Rd (d ≥ 1) interacting
via pairwise interactions,

HN (x1, . . . , xN ) :=

N∑
i 6=j

g(xi − xj) +N

N∑
i=1

Φ(xi),

where x1, . . . , xN ∈ Rd denote the positions of the particles, where the interaction potential g is
continuous on Rd \ {0}, and where Φ is a smooth external potential on Rd. The corresponding
Newton’s equations of motion then take the form

∂2
t x

t
i,N = − 1

N
∇iHN (xt1,N , . . . , x

t
N,N ), i = 1, . . . , N, (6.1)

or more explicitly,

∂2
t x

t
i,N = − 1

N

∑
j:j 6=i
∇g(xti,N − xtj,N )−∇Φ(xti,N ), i = 1, . . . , N,

with given initial data (xti,N , ∂tx
t
i,N )|t=0 = (x◦i,N , v

◦
i,N ). If the number N of particles is very large,

it quickly becomes infeasible to exactly solve the above large system of ODEs and to describe the
individual trajectories. Nevertheless, in many practical cases, the detail of the dynamics is no longer
relevant and we are only concerned with the “averaged” evolution of the set of particles. The idea of
mean-field limit theory is then the following: the effect of all the other particles on any given particle
should be approximated by a single averaged effect.

In other words, in the large N limit, we would like to pass to a continuum description of the
system, in terms of the particle density distribution. For that purpose, we define the phase-space
empirical measure associated with the particle dynamics: setting vti,N := ∂tx

t
i,N , we define

f tN :=
1

N

N∑
i=1

δ(xti,N ,v
t
i,N ) ∈ P(Rd × Rd), (6.2)

and the question is then to understand the limit of f tN asN ↑ ∞. More precisely, assuming convergence
at initial time

f◦N :=
1

N

N∑
i=1

δx◦i,N ,v
◦
i,N

∗−⇀ f◦, as N ↑ ∞,

formal computations lead us to expect under fairly general assumptions f tN
∗−⇀ f t for all t ≥ 0, where

f t is a solution of the following Vlasov equation, which is a nonlocal nonlinear PDE on R+×Rd×Rd,

∂tf
t + v · ∇xf t = (∇g ∗ µt) · ∇vf t +∇Φ · ∇vf t, µt(x) :=

ˆ
f t(x, v)dv, f t|t=0 = f◦. (6.3)

The first rigorous discussion of such a mean-field limit result seems to be due to Neunzert and
Wick [343] in the 1970s. In the case of a smooth interaction potential g ∈ C1,1

b (Rd), the mean-
field result was first established by Braun and Hepp [82] by a weak compactness argument, while
Dobrushin [148] was the first to give a quantitative proof in 1-Wasserstein distance. Dobrushin’s
proof is based on the crucial observation that the empirical measure fN already satisfies the limiting
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Vlasov equation (6.3) up to diagonal terms: for smooth interaction potential g, we may write in the
distributional sense,

∂tf
t
N + v · ∇xf tN = (∇g ∗ µtN ) · ∇vf tN +∇Φ · ∇vf tN −

1

N
∇g(0) · ∇vf tN ,

µtN (x) :=

ˆ
f tN (x, v)dv,

where the error term 1
N∇g(0) · ∇vf tN is of order O(1/N), so that the mean-field result simply follows

from stability estimates for the Vlasov equation (see e.g. [214] for a general overview of the subject).
Nevertheless, the Coulomb and the gravitational potentials (resp. g(x) ∝ |x|2−d and ∝ −|x|2−d in
dimension d ≥ 3), which are so ubiquitous in nature, are examples of interaction potentials that are
singular at the origin, in which case the classical Dobrushin theory obviously fails. In recent years
great progress has been made in the direction of mean-field limit results for singular potentials [256,
235, 271, 70, 287, 288], but establishing a complete result in the Coulomb or gravitational case in
dimension d ≥ 3 remains a major open problem in the field.

In the present chapter, we focus on repulsive Coulomb-like interaction potentials (thus avoiding
delicate blow-up issues) and consider the whole family of Riesz potentials,

gs(x) :=

{
c−1
d,s|x|

−s, if 0 < s < d;

−c−1
d,0 log(|x|), if s = 0;

(6.4)

with cd,s > 0 some normalization constants. The Coulomb case corresponds to the choice s = d− 2,
d ≥ 2. As the external potential Φ adds no difficulty to the problem, we set Φ := 0 and focus on the
interaction part. In addition, in order to simplify the delicate mean-field limit question, we replace
Newton’s equations (6.1) by the corresponding gradient-flow evolution, that is,

HN (x1, . . . , xN ) :=
N∑
i 6=j

g(xi − xj),

∂tx
t
i,N = − 1

N

∑
j:j 6=i
∇g(xti,N − xtj,N ), xti,N |t=0 = x◦i,N , i = 1, . . . , N, (6.5)

where (x◦i,N )Ni=1 is a sequence of N distinct initial positions. This gradient-flow evolution has the
advantage of being dissipative, which will help us greatly in our arguments. Note that the trajectories
{t 7→ xti,N}Ni=1 are obviously smooth and well-defined on the whole of R+: indeed, since energy can only
decrease in time and since the interaction is repulsive, particles cannot collide, and moreover it is easily
seen that a particle cannot escape to infinity in finite time, so that the conclusion follows from the
Picard-Lindelöf theorem. Particle systems with Riesz interactions as considered here are extensively
motivated in the physics literature (see e.g. [48, 318]), as well as in the context of approximation
theory with the study of Fekete points (see [231] and references therein). In the static case, a detailed
description of such particle systems beyond the mean-field limit has been obtained in [362], and also
in [290] for non-zero temperature.

At a formal level, the mean-field limit of the gradient flow evolution (6.5) as the number N of
particles tends to infinity is again easy to guess: defining the empirical measure associated with the
particle dynamics,

µtN :=
1

N

N∑
i=1

δxti,N , (6.6)
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and assuming convergence at initial time µ◦N
∗−⇀ µ◦ as N ↑ ∞, we expect under fairly general as-

sumptions µtN
∗−⇀ µt for all t ≥ 0, where µt is a solution to the following nonlocal nonlinear PDE on

R+ × Rd,

∂tµ
t = div (µt∇ht), ht := g ∗ µt, µt|t=0 = µ◦. (6.7)

This equation in the weak sense just means the following: there hold µ ∈ L1
loc(R+; L1(Rd)), g ∗ µ ∈

L1
loc(R+;W 1,1

loc (Rd)), µ∇g ∗ µ ∈ L1
loc(R+; L1(Rd)), and for all φ ∈ C∞c (R+ × Rd),

ˆ
R+

ˆ
Rd
µt(x)(∂tφ(t, x)−∇φ(t, x) · ∇g ∗ µt(x))dxdt+

ˆ
Rd
µ◦(x)φ(0, x)dx = 0.

In the case of a Riesz potential g = gs, this equation (6.7) is sometimes called a fractional porous
medium equation (see e.g. [94, 93] for d − 2 < s < d, s ≥ 0, [304, 157, 18, 398] for s = d − 2, d ≥ 2,
and [102] for 0 ≤ s < d−2). Although expected to be much easier than in the conservative case (6.1)–
(6.3), the justification of this mean-field limit result has remained an open problem whenever s ≥ d−2,
s > 0, d ≥ 2. In the present chapter, we devise a modulated energy approach inspired by the work of
Serfaty [395], and we establish the mean-field limit result for 0 ≤ s < 1 in dimensions d = 1 and 2.

6.1.2 Previous works

Similarly as in the conservative case (6.1)–(6.3) discussed above, the classical theory for the
mean-field limit result for the gradient-flow system (6.5)–(6.7) holds for smooth interaction potentials
g ∈ C1

b (Rd): in that case, we indeed check that the empirical measure µN satisfies in the distributional
sense,

∂tµ
t
N = div (µtN∇htN )− 1

N
div (µtN∇g(0)), htN := g ∗ µtN , µtN |t=0 = µ◦N ,

so that the desired convergence result directly follows from a weak compactness argument. If in
addition g ∈ C1,1

b (Rd), then we may also take advantage of the stability properties of the limiting
equation (6.7) in 2-Wasserstein distance, and the following quantitative convergence result is easily
obtained.

Proposition 6.1.1. Let d ≥ 1. Given an interaction potential g ∈ C1,1
b (Rd), let µN ∈ L∞(R+;P(Rd))

be as in (6.5)–(6.6), and let µ ∈ L∞(R+;P ∩L1(Rd)) be the weak solution of (6.7) on [0, T )×Rd with
some initial data µ◦ ∈ P ∩ L1(Rd). Then for all t ≥ 0,

W2(µtN , µ
t) ≤ e2t‖∇2g‖L∞

(
W2(µ◦N , µ

◦) +
2t

N
|∇g(0)|

)
. ♦

Proof. As µt is absolutely continuous, there exists an optimal transportation map T tN between µt and
µtN , (T tN )∗µ

t = µtN . We may then easily estimate the right derivative

∂+
t W2(µtN , µ

t)2 = ∂+
t

ˆ
Rd
|x− T tNx|2dµt(x)

≤ −2

ˆ
Rd

(x− T tNx) ·
(
∇g ∗ µt(x)− 1

N

N∑
j:xj 6=T tNx

∇g(T tNx− xj)
)
dµt(x)

= −2

ˆ
Rd

ˆ
Rd

(x− T tNx) ·
(
∇g(x− z)−∇g(T tNx− T tNz)1T tNx 6=T tNz

)
dµt(x)dµt(z),
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Now note that by definition the cell CtN (x) := {z ∈ Rd : T tNz = T tNx} satisfies µt(CtN (x)) = N−1.
This yields

∂+
t W2(µtN , µ

t)2 ≤ −2

ˆ
Rd

ˆ
Rd

(x− T tNx) ·
(
∇g(x− z)−∇g(T tNx− T tNz)

)
dµt(x)dµt(z)

− 2

N
∇g(0) ·

ˆ
Rd

(x− T tNx)dµt(x)

≤ 2‖∇2g‖L∞
ˆ
Rd

ˆ
Rd
|x− T tNx||x− z − T tNx+ T tNz|dµt(x)dµt(z)

+
2

N
|∇g(0)|

ˆ
Rd
|x− T tNx|dµt(x)

≤ 4‖∇2g‖L∞W2(µtN , µ
t)2 +

2

N
|∇g(0)|W2(µtN , µ

t),

and the result follows from the Grönwall inequality.

We now turn to the case of singular interaction potentials g, for which diagonal terms can no
longer be neglected and for which W2-stability of the limiting equation (6.7) fails. In the early
1990s, in the context of point-vortex numerical methods for the Euler equation, Goodman, Hou and
Lowengrub [215, 246] proposed a way to prove strong mean-field limit results for Coulomb interactions
in dimensions d = 2 and 3 in the case of initial data µ◦N concentrated on a grid. This method, strongly
relying on the symmetry of the potential g, only holds for very symmetric initial particle positions.
As the admissible initial data are not statistically generic, these results are however not really relevant
to our concern.

In the mid-1990s, Schochet [390] studied the case of logarithmic interactions g = g0 (in arbitrary
dimension d) and established the expected mean-field limit result 1, based on his simplification [389]
of the proof of Delort’s theorem [143] on existence of weak solutions to the 2D Euler equation with
vortex-sheet initial data (that is, with nonnegative initial vorticity in H−1). The key idea, which only
holds for logarithmic interactions, consists in exploiting some logarithmic gain of integrability to find
uniform bounds on the number of close particles, which allows to directly pass to the limit in the
equation and conclude by a compactness argument. However, due to a possible lack of uniqueness
of L1 “very weak” solutions to equation (6.7), this proof only establishes that the empirical measure
µtN converges up to a subsequence to some solution of (6.7). As it is instructive for the sequel of the
discussion, a short proof is included.

Theorem 6.1.2 (Schochet). Let d ≥ 1. Let µN ∈ L∞(R+;P(Rd)) be as in (6.5)–(6.6) with loga-
rithmic interaction potential g = g0, and assume the convergence of initial data µ◦N

∗−⇀ µ◦ for some
µ◦ ∈ P ∩ L∞(Rd). Further assume

lim sup
N↑∞

ˆ
Rd
|x|2dµ◦N (x) <∞, lim sup

N↑∞

1

N2

∑
i 6=j

g0(x◦i,N − x◦j,N ) <∞.

Then up to a subsequence we have µN
∗−⇀ µ in L∞(R+;P(Rd)), where µ has finite energy

ˆ T

0

ˆ
Rd

ˆ
Rd
g0(x− y)dµt(x)dµt(y)dt <∞, for all T > 0,

1. Schochet’s original paper [390] was actually only concerned with the mean-field limit for a particle approximation
of the 2D Euler equation, but the same argument directly applies to the present gradient-flow setting, as shown below.

296



and satisfies the limiting equation (6.7) (with g = g0) in the following very weak sense: for all
φ ∈ C∞(R+;C∞c (Rd)) such that φ(t, ·) = 0 for all t > 0 large enough,

ˆ
R+

ˆ
Rd
µt(x)∂tφ(t, x)dxdt+

ˆ
Rd
µ◦(x)φ(0, x)dx

=
1

2

ˆ
R+

ˆ
Rd

ˆ
Rd

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)µt(x)µt(y)dydxdt. ♦

Proof. For all T > 0, we easily check that (dµtNdt|[0,T ]×Rd)N is tight. Up to extraction of a subse-
quence, the Prokhorov theorem then gives dµtNdt|[0,T ]×Rd

∗−⇀ dνtdt|[0,T ]×Rd for all T > 0, for some
ν ∈ L∞(R+;P(Rd)). Let φ ∈ C∞(R+;C∞c (Rd)) such that φ(t, ·) = 0 for all t > T , for some T > 0.
Using an integration by parts as well as the equations (6.5) satisfied by the trajectories, we find

ˆ
R+

ˆ
Rd
∂tφ(t, x)dµtN (x)dt+

ˆ
Rd
φ(0, x)dµ◦N (x) =

1

N2

N∑
i 6=j

ˆ
R+

∇φ(t, xti,N ) · ∇g0(xti,N − xtj,N )dt,

or equivalently, by symmetry of the potential,
ˆ
R+

ˆ
Rd
∂tφ(t, x)dµtN (x)dt+

ˆ
Rd
φ(0, x)dµ◦N (x)

=
1

2

ˆ
R+

¨
Dc

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dµtN (x)dµtN (y)dt, (6.8)

where D := {(x, x) : x ∈ Rd} denotes the diagonal. We may then pass to the limit N ↑ ∞ (along the
given subsequence),

ˆ
R+

ˆ
Rd
∂tφ(t, x)dνt(x)dt+

ˆ
Rd
φ(0, x)dµ◦(x)

=
1

2
lim
N↑∞

ˆ
R+

¨
Dc

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dµtN (x)dµtN (y)dt. (6.9)

It remains to compute to the limit in the right-hand side. Since the integrand is continuous on Dc,
we find for all r > 0,

lim
N↑∞

ˆ
R+

¨
|x−y|>r

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dµtN (x)dµtN (y)dt

=

ˆ
R+

¨
|x−y|>r

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dνt(x)dνt(y)dt. (6.10)

Noting that
|(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)| ≤ ‖∇2φ‖L∞ ,

and that g0(x) ≥ − log r = | log r| for all |x| ≤ r with r ∈ (0, 1), we also obtain

lim sup
r↓0

lim sup
N↑∞

∣∣∣∣ˆ
R+

¨
|x−y|≤r

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dµtN (x)dµtN (y)dt

∣∣∣∣
≤ ‖∇2φ‖L∞ lim sup

r↓0
lim sup
N↑∞

ˆ T

0

¨
|x−y|≤r

dµtN (x)dµtN (y)dt

≤ ‖∇2φ‖L∞ lim sup
r↓0

lim sup
N↑∞

| log r|−1

ˆ T

0

¨
|x−y|≤r

g0(x− y)dµtN (x)dµtN (y)dt. (6.11)
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A direct computation yields

∂t

¨
Dc
|x− y|2dµtN (x)dµtN (y) =

2

N

N∑
i=1

∂t|xti,N |2 − 2∂t

∣∣∣∣ 1

N

N∑
i

xti,N

∣∣∣∣2

= − 4

N2

N∑
i 6=j

xti,N · ∇g0(xti,N − xtj,N ) = − 2

N2

N∑
i 6=j

(xti,N − xtj,N ) · ∇g0(xti,N − xtj,N ) ≤ 2,

and also

∂t

¨
Dc
g0(x− y)dµtN (x)dµtN (y) = −2

ˆ
Rd

∣∣∣∣ˆ
Rd\{x}

∇g0(x− y)dµtN (y)

∣∣∣∣2dµtN (x) ≤ 0.

By assumption, these two estimates imply

lim sup
N↑∞

ˆ T

0

¨
Dc

(g0(x− y) + |x− y|2)dµtN (x)dµtN (y)dt

≤ T 2 + T lim sup
N↑∞

¨
Dc

(g0(x− y) + |x− y|2)dµ◦N (x)dµ◦N (y) <∞.

Combining this with (6.11) and noting that g0(x) + |x|2 ≥ 0, we may conclude

lim sup
r↓0

lim sup
N↑∞

∣∣∣∣ ˆ
R+

¨
|x−y|≤r

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dµtN (x)dµtN (y)dt

∣∣∣∣
≤ ‖∇2φ‖L∞ lim sup

r↓0
| log r|−1 lim sup

N↑∞

ˆ T

0

¨
Dc

(g0(x− y) + |x− y|2)dµtN (x)dµtN (y)dt = 0. (6.12)

It remains to pass to the limit r ↓ 0 also in the right-hand side of (6.10). For that purpose, we note
that

lim sup
r↓0

∣∣∣∣ˆ
R+

¨
|x−y|≤r

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dνt(x)dνt(y)

∣∣∣∣
≤ ‖∇2φ‖L∞ lim sup

r↓0

ˆ T

0

¨
|x−y|≤r

dνt(x)dνt(y)

= ‖∇2φ‖L∞ lim sup
r↓0

lim sup
N↑∞

ˆ T

0

¨
|x−y|≤r

dµtN (x)dµtN (y) = 0, (6.13)

where the last equality follows from the combination of (6.9), (6.11) and (6.12). Now combining (6.10),
(6.12) and (6.13), we may conclude

lim
N↑∞

1

2

ˆ
R+

¨
Dc

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dµtN (x)dµtN (y)dt

=
1

2

ˆ
R+

¨
Dc

(∇φ(t, x)−∇φ(t, y)) · ∇g0(x− y)dνt(x)dνt(y)dt,

and the result follows.

This proof by weak compactness clearly fails for more singular interaction potentials g = gs, s > 0,
as we emphasize now. Recall the symmetrized weak formulation (6.8),
ˆ
R+

ˆ
Rd
∂tφ(t, x)dµtN (x)dt+

ˆ
Rd
φ(0, x)dµ◦N (x)

=
1

2

ˆ
R+

¨
Dc

(∇φ(t, x)−∇φ(t, y)) · ∇gs(x− y)dµtN (x)dµtN (y)dt. (6.14)
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The singularity of the integrand in the right-hand side prevents us from simply passing to the weak
limit: an argument is needed to uniformly neglect the contribution of the integral near the diagonal D,
that is, the contribution due to very close particles. In the case s > 0, using |x||∇gs(x)| ≤ sc−1

d,s|x|
−s,

the right-hand side is bounded by

1

2

ˆ
R+

¨
Dc

(∇φ(t, x)−∇φ(t, y)) · ∇gs(x− y)dµtN (x)dµtN (y)dt

≤ s

2
‖∇2φ‖L∞

ˆ T

0

¨
Dc
gs(x− y)dµtN (x)dµtN (y)dt,

that is, by the energy. Boundedness of the energy or other basic information about the flow therefore
only ensures that the right-hand side is uniformly bounded, but is not enough to neglect the near-
diagonal contribution. In the logarithmic case s = 0, the miracle is that the integrand in the right-
hand side of (6.14) is actually bounded (but discontinuous) at the diagonal, hence is less singular
than the interaction potential. Then comparing with the boundedness of the energy, this logarithmic
gain of integrability at the diagonal clearly gives enough information to neglect the near-diagonal
contribution. More generally, if the interaction potential g is even (i.e., g(x) = g(−x)) and satisfies
g(x) + C|x|2 ≥ 0 for some constant C > 0, then this argument by Schochet works whenever the
interaction potential g is nonnegative and has a subalgebraic blow-up at the origin in the sense of
|x||∇g(x)| � |g(x)| as |x| � 1. Note that an adaptation of this argument in the framework of the
Sandier-Serfaty Γ-convergence of gradient flows [380, 393] is obtained in [418, pp.152–154].

In order to get beyond the logarithmic case, more information thus seems to be needed about the
distribution of close particles along the flow. The first result in that direction was obtained a decade
ago by Hauray and Jabin [234, 233] (see also [102]), and allows in our setting to treat g = gs for all
0 ≤ s < d− 2, d ≥ 3, hence just missing the Coulomb case. The strategy consists in considering the
infinite Wasserstein distance W∞, which indeed allows to take advantage of the localization of the
singularity of the interaction potential gs, and noting that we may control both At := W∞(µtN , µ

t)
and the minimal distance between the particles Bt := mini 6=j |xti,N − xtj,N | via a combined Grönwall
inequality,

∂+
t A

t ≤ CAt
(

1 +
(At)d

(Bt)s+2

)
‖µ‖L∞t (L1 ∩L∞), ∂tB

t ≥ −CBt

(
1 +

(At)d

(Bt)s+2

)
‖µ‖L∞t (L1 ∩L∞).

(We refer to [102] for more general results that are obtained with this method, including the attractive
case.)

Theorem 6.1.3 (Hauray, Jabin). Let 0 ≤ s < d−2, d ≥ 3. Let µN ∈ L∞(R+;P(Rd)) be as in (6.5)–
(6.6) with interaction potential g = gs, and assume the convergence of initial data W∞(µ◦N , µ

◦) → 0
for some µ◦ ∈ P ∩ L∞(Rd). Further assume that the initial data are well-prepared in the sense

lim
N↑∞

W∞(µ◦N , µ
◦)d

mini 6=j |x◦i,N − x◦j,N |s+2
= 0. (6.15)

Let µ ∈ L∞loc(R+;P ∩ L∞(Rd)) ∩ Cb([0, T );P(Rd)) be a solution of (6.7) with initial data µ◦. Then
we have W∞(µtN , µ

t)→ 0 for all t ≥ 0. ♦

As shown in [233], if the initial positions (x◦i,N )Ni=1 are chosen i.i.d. with law µ◦, the well-posedness
condition (6.15) is expected to hold only for s < d

2 − 2, d ≥ 5. Nevertheless, for smooth µ◦, a suitable
discretization method easily allows to construct initial data such that W∞(µ◦N , µ

◦) ∼ mini 6=j |x◦i,N −
x◦j,N | ∼ N−1/d, in which case the condition (6.15) is satisfied for the whole considered range s < d−2.
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Before closing this section on previous works, we briefly explain why the 1D case is actually
much easier than higher dimensions. The key observations are that the interaction potentials gs are
convex on both R+ and R−, and that the particle order in 1D is obviously unchanged along the flow.
Therefore in 1D the interaction has a purely convex structure, which can nicely be exploited e.g. in
terms of W2-stability, as we show now. This has actually been realized only very recently by Berman
and Önnheim [54], who further treat in a similar spirit the case with thermal noise. (A completely
different 1D approach has also been proposed in [185] using the theory of viscosity solutions for
non-local Hamilton-Jacobi equations.)

Theorem 6.1.4 (λ-convex interaction potential and 1D case).
(i) Let d ≥ 1, and let g ∈ C1(Rd) be a λ-convex symmetric interaction potential, that is,

∇g(−x) = −∇g(x), (x− y) · (∇g(x)−∇g(y)) ≥ −λ|x− y|2, for all x, y ∈ Rd,

and assume that −x · ∇g(x) ≤ C holds for all x ∈ Rd. Let µN ∈ L∞(R+;P(Rd)) be as in (6.5)–
(6.6), and let µ ∈ L∞(R+;P ∩ L1(Rd)) be the weak solution of (6.7) with some initial data
µ◦ ∈ P ∩ L1(Rd). Then for all t ≥ 0,

W2(µtN , µ
t) ≤ eλt

(
W2(µ◦N , µ

◦) +
(Ct)1/2

√
N

)
.

(ii) Let d = 1, and let g ∈ C1(R\{0}) be a symmetric interaction potential with λ-convex restriction
on R+, that is,

g′(−x) = −g′(x), (x− y)(g′(x)− g′(y)) ≥ −λ|x− y|2, for all x, y ≥ 0,

and assume that for some 0 ≤ s < 1 we have g(x) ∼ |x|−s at the origin in the following sense,

sup
x≥ε

(−xg′(x)) ≤ Cε−s,
ˆ
|x|<ε

|xg′(x)| ≤ Cε1−s, for all ε > 0.

Let µN ∈ L∞(R+;P(Rd)) be as in (6.5)–(6.6), and let µ ∈ L∞(R+;P ∩ L∞(Rd)) be the weak
solution of (6.7) with some initial data µ◦ ∈ P ∩ L∞(Rd). Then for all t ≥ 0,

W2(µtN , µ
t) ≤ eλt

(
W2(µ◦N , µ

◦) +
(2Ct)1/2‖µ‖s/2L∞t L∞

√
N

1−s

)
. ♦

Proof. We start with the proof of item (i). As µt is absolutely continuous, there exists an optimal
transportation map T tN between µt and µtN , (T tN )∗µ

t = µtN . As in the proof of Proposition 6.1.1, we
may then easily estimate the right derivative

∂+
t W2(µtN , µ

t)2 ≤ −2

ˆ
Rd

ˆ
Rd

(x− T tNx) ·
(
∇g(x− z)−∇g(T tNx− T tNz)1T tNx 6=T tNz

)
dµt(x)dµt(z),

and hence, using the symmetry and the λ-convexity assumptions,

∂+
t W2(µtN , µ

t)2

≤ −
ˆ
Rd

ˆ
Rd

(
(x− z)− (T tNx− T tNz)

)
·
(
∇g(x− z)−∇g(T tNx− T tNz)1T tNx 6=T tNz

)
dµt(x)dµt(z)

= −
¨
T tNx 6=T

t
Nz

(
(x− z)− (T tNx− T tNz)

)
·
(
∇g(x− z)−∇g(T tNx− T tNz)

)
dµt(x)dµt(z)

−
¨
T tNx=T tNz

(x− z) · ∇g(x− z)dµt(x)dµt(z)

≤ 2λW2(µtN , µ
t)2 −

¨
T tNx=T tNz

(x− z) · ∇g(x− z)dµt(x)dµt(z). (6.16)
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Now note that by definition the cell CtN (x) := {z ∈ Rd : T tNz = T tNx} satisfies µt(CtN (x)) = N−1.
The assumption −x · ∇g(x) ≤ C then leads to

∂+
t W2(µtN , µ

t)2 ≤ 2λW2(µtN , µ
t)2 + CN−1,

and the conclusion (i) follows from the Grönwall inequality.
It remains to deduce the result of item (ii). Let d = 1. We note that the optimal transportation

map T tN : R → R is then monotone, that is, sgn(T tNx − T tNz) = sgn(x − z) for all x, z. Therefore,
in (6.16), we only need to use the inequality (x−y)(g′(x)−g′(y)) ≥ −λ|x−y|2 for all x, y ∈ R+ (which
implies by symmetry the same inequality for all x, y ∈ R−). In other words, only the λ-convexity of
the restriction g|R+ is needed, and we again obtain

∂+
t W2(µtN , µ

t)2 ≤ 2λW2(µtN , µ
t)2 −

¨
T tNx=T tNz

(x− z) g′(x− z) dµt(x)dµt(z).

Recalling that by definition the cell CtN (x) := {z ∈ Rd : T tNz = T tNx} satisfies µt(CtN (x)) = N−1, and
using the new assumptions on xg′(x), we obtain for all ε > 0,

∂+
t W2(µtN , µ

t)2 ≤ 2λW2(µtN , µ
t)2 + ‖µt‖L∞

¨
|x−z|<ε

(
(x− z)g′(x− z)

)
−dzdµ

t(x)

+ Cε−s
ˆ
Rd
µt(CtN (x))dµt(x)

≤ 2λW2(µtN , µ
t)2 + Cε1−s‖µt‖L∞ + Cε−sN−1,

and hence, optimizing in ε > 0,

∂+
t W2(µtN , µ

t)2 ≤ 2λW2(µtN , µ
t)2 + 2CN−(1−s)‖µt‖sL∞ ,

so that the conclusion (ii) follows from the Grönwall inequality.

6.1.3 Main result

In the context of the 2D Gross-Pitaevskii and parabolic Ginzburg-Landau equations, Serfaty [395]
recently proposed a new way of proving such mean-field limits 2 based on a so-called “modulated en-
ergy” technique, which is similar in spirit to the relative entropy method first designed by DiPerna [145]
and Dafermos [131, 132] to establish weak-strong stability principles for some hyperbolic systems.
This relative entropy method was later rediscovered by Yau [426] for the hydrodynamic limit of the
Ginzburg-Landau lattice model, was introduced in kinetic theory by Golse [73] for the convergence
of suitably scaled solutions of the Boltzmann equation towards solutions of the incompressible Euler
equations (see e.g. [378] for the many recent developments on the topic), and first took the form of a
modulated energy method in the work by Brenier [86] on the quasi-neutral limit of the Vlasov-Poisson
system. Rather than studying the mean-field limit question in an arbitrary fixed metric like W2 or
W∞, the idea of such methods is to devise a better adapted metric modeled on the available entropy
or energy structure, and to expect that this new metric is much better behaved along the flow and
may lead to stronger stability results. More precisely, if µ 7→ H(µ) is an energy functional for the
system, then a natural notion of distance on the state space is given by the associated Bregman
divergence [84], called in this context “modulated energy”,

H(µ1|µ2) := H(µ1)−H(µ2)−
〈 δH
δµ

(µ2) , µ1 − µ2

〉
.

2. In [395], the questions are different in nature, since they consist in passing to the limit in PDE evolutions, but
are similar in spirit since one wishes to understand the limit dynamics of point vortices which essentially behave like
Coulomb-interacting particles.
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We are able to apply such a method in the present context only in dimensions 1 and 2 and for
interaction potentials g = gs with s not too large. More precisely, we treat in 1D the whole range
0 ≤ s < 1 as in [54] (see also Theorem 6.1.4(ii) above), and in 2D we treat the range 0 ≤ s < 1
which is new and in particular completes Schochet’s partial result [390] in the logarithmic case (cf.
Theorem 6.1.2 above). The argument is essentially based on a Grönwall inequality for a suitable
modulated energy, which is seen as an adapted measure of the distance between the empirical measure
and the (postulated) limit: it strongly exploits the stability properties of the limiting equation (6.7)
as well as the regularity of its solution. The advantage of this method is to be completely global,
bypassing the need for a precise understanding of the particle dynamics, but this is also its limitation:
as explained in Remark 6.2.12 below, in order to get beyond the restriction on s, it is expected that
the method should be combined with further nontrivial information on the particle dynamics. Our
main result is as follows.

Theorem 6.1.5. Let d = 1 or 2, and 0 ≤ s < 1. Let µN ∈ L∞(R+;P(Rd)) be as in (6.5)–(6.6) with
g = gs. Let µ◦ ∈ P(Rd), and assume that equation (6.7) with g = gs and initial data µ◦ admits a
solution µ that belongs to L∞([0, T ];Cσb (Rd)) for some T > 0 and some σ > 2 − d + s. In the case
s = 0, d = 1, also assume ∇µ ∈ L∞([0, T ]; Lp(Rd)) for some p <∞. Assume the initial convergence
µ◦N

∗−⇀ µ◦, as well as the convergence of the initial energy

lim
N↑∞

1

N2
HN (x◦1,N , . . . , x

◦
N,N ) =

ˆ
Rd

ˆ
Rd
gs(x− y)dµ◦(x)dµ◦(y) <∞, (6.17)

and in the case s = 0 also assume that

lim
R↑∞

lim sup
N↑∞

ˆ
|x|>R

log(2 + |x|)dµ◦N (x) = 0. (6.18)

Then µ is the only weak solution of (6.7) in L∞([0, T ]; L∞(Rd)), and for all t ∈ [0, T ] we have
µtN

∗−⇀ µt, as well as the convergence of the energy

lim
N↑∞

1

N2
HN (xt1,N , . . . , x

t
N,N ) =

ˆ
Rd

ˆ
Rd
gs(x− y)dµt(x)dµt(y) <∞. ♦

Remarks 6.1.6.
(a) Regularity assumption. For a compactly supported probability measure µ◦ ∈ L∞(Rd), the lim-

iting equation (6.7) with g = gs always admits a solution in L∞(R+; L∞(Rd)), which remains a
compactly supported probability measure for all times (see Proposition 6.2.4 below). As far as
the additional regularity assumption is concerned, as explained at the end of Section 6.2.2, it has
been proven to hold with T = ∞ in the case 0 ≤ s ≤ d − 2, d ≥ 2, and at least up to some
time T > 0 in the case d − 2 < s ≤ d − 1, s ≥ 0, for sufficiently smooth initial data µ◦. All
other cases remain unsolved, although this additional regularity is crucially needed in the proof
of Theorem 6.1.5. The assumptions may thus be clarified at least in the following two cases:
— In the 2D Coulomb case s = 0, d = 2, using the global regularity result of [304], the conclusion

of Theorem 6.1.5 holds with T = ∞ (that is, with L∞([0, T ]; ·) replaced by L∞loc(R+; ·)),
whenever the initial data µ◦ belongs to P∩Cσb (R2) for some σ > 0. This completes Schochet’s
partial result [390].

— In the case s = 0, d = 1, and in the case 0 < s < 1, d = 2, using the local regularity result
of [424], the conclusion of Theorem 6.1.5 holds for some T > 0 (depending on initial data),
whenever the initial data µ◦ in the 1D case belongs to P ∩Hσ(R) for some σ > 3

2 , and in the
2D case belongs to P ∩ Cσb (R2) for some σ > 1.

(b) Assumption (6.18). As can be seen in the proof, if assumption (6.18) is replaced by the weaker
assumption

´
Rd log(2 + |x|)dµ◦(x) < ∞, then the same result is proven to hold except possibly

the conclusion about the convergence of the energy.
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(c) Quantitative statement. A closer look at the proof actually shows the following quantitative
statement, where the distance between µtN and µt is measured in terms of the modulated energy:
for all t ∈ [0, T ],

EN (t) :=

¨
x 6=y

gs(x− y)d(µtN − µt)(x)d(µtN − µt)(y)

.t

¨
x 6=y

gs(x− y)d(µ◦N − µ◦)(x)d(µ◦N − µ◦)(y) +

{
N−

(1−s)(1−σ)
1+s−σ , if s > 0;

N−1 logN, if s = 0.

Note that as a consequence of Lemma 6.2.9 the initial modulated energy in the right-hand side
indeed converges to 0 under the assumptions µ◦N

∗−⇀ µ◦ and (6.17).
(d) Propagation of chaos. As first formalized by Kac [267], letting f tN (x1, . . . , xN ) denote the image

by the particle dynamics (6.5) of the “chaotic” initial law (µ◦)⊗N ∈ P((Rd)N ), propagation of
chaos is said to hold if for all t ≥ 0 and all k ≥ 1 the k-th marginal

f tN,(k)(x1, . . . , xk) :=

ˆ
(Rd)N−k

f tN (x1, . . . , xN )dxk+1 . . . dxN

satisfies
f tN,(k)

∗−⇀ (µt)⊗k, as N ↑ ∞.

As a consequence of the so-called Grunbaum lemma, this notion of propagation of chaos actually
follows from the weak convergence of empirical measures µtN

∗−⇀ µt for all t ≥ 0 when the initial
particle positions (x◦i,N )Ni=1 are chosen to be i.i.d. with law µ◦ (see e.g. [236]). It is thus enough
to check that the well-preparedness assumption (6.17) in Theorem 6.1.5 is statistically generic for
the initial positions (x◦i,N )Ni=1, in the sense that it is a.s. satisfied for i.i.d. initial positions. This
easily follows from the strong law of large numbers, together with the bound (for s > 0)

¨
|gs(x− y)|dµ◦(x)dµ◦(y)

.
¨
|x−y|≤1

|x− y|−sdµ◦(x)dµ◦(y) +

¨
|x−y|>1

dµ◦(x)dµ◦(y) . ‖µ◦‖L∞ + 1.

(e) External potential. As already mentioned, we may also add to the energy (6.5) a potential Φ. If
Φ ∈ C2(Rd) satisfies ‖∇2Φ‖L∞ <∞, then all the arguments may be directly adapted, as long as
the corresponding limiting equation

∂tµ
t = div (µt∇(ht + Φ)), ht := gs ∗ µt, µt|t=0 = µ◦,

admits a regular enough solution.
(f) Mixed-flow case. In 2D we may also consider a mix between the gradient flow (6.5) and its

conservative counterpart, that is, replace (6.5) by the following system of ODEs, for i = 1, . . . , N ,

∂tx
t
i,N = − α

N

∑
j:j 6=i
∇g(xti,N − xtj,N )− β

N

∑
j:j 6=i
∇⊥g(xti,N − xtj,N )−∇Φ(xti,N ), xti,N |t=0 = x◦i,N .

(6.19)

If α > 0 is fixed, then all the arguments may again be directly adapted, as long as the corre-
sponding limiting equation

∂tµ
t = div (µt(α∇ht + β∇⊥ht +∇Φ)), ht := gs ∗ µt, µt|t=0 = µ◦,
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admits a regular enough solution. Note that the same proof no longer works for the choice
α = 0, since in Step 2 of the proof of Proposition 6.2.11 below some term cannot be estimated
directly and needs instead to be absorbed in the negative dissipation term, which vanishes in
the case α = 0. Nevertheless, a closer inspection of the proof shows that for the choice α = αN
with N−

1
s

(1−s)(1−σ) � αN � 1 the same mean-field limit result holds with the corresponding
conservative limiting equation

∂tµ
t = div (µt(β∇⊥ht +∇Φ)), ht := gs ∗ µt, µt|t=0 = µ◦. ♦

6.1.4 Strategy of the proof

Translating the idea of Serfaty [395] to the present setting, the key observation behind the proof
of Theorem 6.1.5 is the following weak-strong stability estimate, which we first present in the sim-
pler Coulomb case. As explained, the stability is measured in terms of the modulated energy: since
the limiting equation (6.7) can be seen as a Wasserstein gradient flow for the energy functional
µ 7→

´
Rd |∇(−4)−1µ|2, the modulated energy between two measures µ1 and µ2 takes the form´

Rd |∇(−4)−1(µ1 − µ2)|2 =
´
Rd

´
Rd gd−2(x − y)d(µ1 − µ2)(x)d(µ1 − µ2)(y), which coincides here

with the Ḣ−1-distance between µ1 and µ2. (For a discussion of the link between this metric and more
classical Wasserstein metrics, we refer to [307, 365, 106].)

Lemma 6.1.7 (Stability — Coulomb case). Let s = d − 2, d ≥ 2. Let µ◦1, µ
◦
2 ∈ P ∩ L∞(Rd), and

in the case d = 2 also assume
´
R2 log(2 + |x|)d(µ◦1 + µ◦2)(x) < ∞. For i = 1, 2, let µi be a weak

solution of equation (6.7) with g = gd−2 and initial data µ◦i , denote hti := gd−2 ∗ µti, and assume
µ1, µ2 ∈ L∞([0, T ]; L∞(Rd)) and ∇2h2 ∈ L1([0, T ]; L∞(Rd)) for some T > 0. Then for all t ∈ [0, T ],

ˆ
Rd

ˆ
Rd
gd−2(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y)

≤ exp
(
C

ˆ t

0
‖∇2hu2‖L∞du

)ˆ
Rd

ˆ
Rd
gd−2(x− y)d(µ◦1 − µ◦2)(x)d(µ◦1 − µ◦2)(y). (6.20)

♦

Proof. Proposition 6.2.4(ii) below yields ∇(h1 − h2) ∈ L∞([0, T ]; L2(Rd)). Combining this with the
additional boundedness assumptions, all integration by parts arguments in the sequel may be justified.
Using the equations for µ1 and µ2, the time derivative of the left-hand side of (6.20) is computed as
follows,

∂t

ˆ
Rd

ˆ
Rd
gd−2(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y)

= 2

ˆ
Rd

(ht1 − ht2)(∂tµ
t
1 − ∂tµt2) = −2

ˆ
Rd
∇(ht1 − ht2)(µt1∇ht1 − µt2∇ht2)

= −2

ˆ
Rd
|∇(ht1 − ht2)|2µt1 − 2

ˆ
Rd
∇ht2 · ∇(ht1 − ht2) (µt1 − µt2). (6.21)

The first term in the right-hand side is a modulated dissipation term and is nonpositive, so it suffices
to estimate the second term. Using the relations −∆hti = µti, i = 1, 2 (which indeed hold with a
unit factor for the suitable choice of the normalization constant cd,d−2 > 0 in (6.4)), the product
∇(ht1 − ht2) (µt1 − µt2) may be rewritten à la Delort using the stress-energy tensor:

−2∇(ht1 − ht2) (µt1 − µt2) = 2∇(ht1 − ht2) ∆(ht1 − ht2)

= div
(
2∇(ht1 − ht2)⊗∇(ht1 − ht2)− Id |∇(ht1 − ht2)|2

)
, (6.22)
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where we recall that the divergence of a 2-tensor is defined as the vector whose coordinates are the
divergences of the corresponding columns of the tensor. Combining this with an integration by parts,
we find

2

ˆ
Rd
∇ht2 · ∇(ht1 − ht2) (µt1 − µt2) = −

ˆ
Rd

div
(
2∇(ht1 − ht2)⊗∇(ht1 − ht2)− Id |∇(ht1 − ht2)|2

)
· ∇ht2

=

ˆ
Rd

(
2∇(ht1 − ht2)⊗∇(ht1 − ht2)− Id |∇(ht1 − ht2)|2

)
: ∇2ht2.

The inequality 2|ab| ≤ a2 + b2 and an integration by parts then yield∣∣∣∣ ˆ
Rd
∇ht2 · ∇(ht1 − ht2) (µt1 − µt2)

∣∣∣∣ . ‖∇2ht2‖L∞
ˆ
Rd
|∇(ht1 − ht2)|2

= ‖∇2ht2‖L∞
ˆ
Rd

(ht1 − ht2)(µt1 − µt2)

= ‖∇2ht2‖L∞
ˆ
Rd

ˆ
Rd
gd−2(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y),

(6.23)

so that the result (6.20) follows from (6.21) and a Grönwall argument.

In the case of the other Riesz potentials g = gs with d − 2 < s < d, s ≥ 0, we need to use
the extension method popularized by Caffarelli and Silvestre [92] (see also [362]) in order to find a
similar Delort-type formula as in (6.22), and then repeat the same integration by parts argument,
thus circumventing the fact that the Riesz kernels are no longer convolution kernels of local operators.
This trick allows to prove the same estimate (6.20) in all cases 0∨ (d− 2) ≤ s < d with gd−2 replaced
by gs (cf. Lemma 6.2.1 below).

This weak-strong stability estimate provides a control of the Ḣ−1-distance (or the Ḣ−(d−s)/2-
distance, for general 0 ≤ s < d) between µt1 and µt2 in terms of the initial distance, up to a prefactor
that only depends on the regularity of µt2 in the form of ‖∇2ht2‖L∞ — hence the naming “weak-strong”.
We would then like to replace µ2 by the smooth solution µ and to replace µ1 by the empirical measure
µN . Nevertheless, the corresponding Ḣ−(d−s)/2-distance would then be infinite due to the presence of
Dirac masses, and moreover µN does not exactly satisfy the limiting equation (6.7) (diagonal terms
have to be removed). The strategy of the proof of Theorem 6.1.5 is to look for a suitable way to
adapt the above argument to that setting.

First, a natural way to give a meaning to this divergent Ḣ−(d−s)/2-distance between µtN and µt

simply consists in excluding the diagonal terms, thus considering the “renormalized” modulated energy

EN (t) =

¨
x 6=y

gs(x− y)d(µtN − µt)(x)d(µtN − µt)(y).

The goal is then to compute the time derivative ∂tEN (t), and to adapt the proof of the above stability
estimate to bound it by CEN (t) for some constant C > 0, up to a vanishing additive error. Neverthe-
less, at the end of the proof above, the use of the inequality 2|ab| ≤ a2 + b2 is clearly not compatible
with the removal of the diagonal terms. To solve this main issue, we draw inspiration from Serfaty’s
strategy [395] in the context of the Ginzburg-Landau vortices: regularizing the Dirac masses at a
tiny scale η so that the diagonal terms become well-defined and diverge only as η ↓ 0, it suffices to
construct around the particle locations small balls that contain most of the divergent η-approximate
energy, so that excluding diagonal terms essentially amounts to restricting the η-approximate inte-
grals to outside these small balls. Using the same approximation argument as in [395] to be allowed
to restrict all integrals to outside these balls, the end of the above proof is then easily adapted, using
the inequality 2|ab| ≤ a2 + b2 only on the restricted domain. In this way, for all 0 ∨ (d− 2) ≤ s < d,
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we manage to prove ∂tEN (t) ≤ CEN (t) + o(1) under some mesoscopic regularity assumption on the
distribution of particles in time (cf. Proposition 6.2.11 below). Finally, in the case s < 1 (hence our
limitation to that regime), these conditions can be directly checked using a modification of the ball
construction introduced by Jerrard and Sandier [260, 379] for the analysis of the Ginzburg-Landau
vortices (cf. Section 6.2.6 below).

6.1.5 Perspectives and open questions

The regularity question for the fractional porous medium equation (that is, (6.7) with g = gs)
remains an open problem in the range d− 1 < s < d, s ≥ 0, and only a local-in-time regularity result
is available at the moment in the range d − 2 < s < d − 1, s ≥ 0. Improving this regularity would
clarify the assumptions in Theorem 6.1.5 (cf. Remark 6.1.6(a)).

As explained, our modulated energy argument is limited to the range 0 ≤ s < 1 (cf. Re-
mark 6.2.12): going beyond this restriction would require more precise microscopic information on
the particle dynamics and is left as a completely open question. Note that even the limiting case
s = 1 would be particularly interesting, as in dimension d = 3 it corresponds to the Coulomb case.

As our modulated energy argument is limited to the range 0 ≤ s < 1 in any dimension, and as the
mean-field result by Hauray and Jabin (cf. Theorem 6.1.3) already contains the range 0 ≤ s < d− 2,
d ≥ 3, it was natural to restrict attention in Theorem 6.1.5 to the simpler case of dimensions d = 1
and 2. However, the result by Hauray and Jabin requires a well-preparedness assumption (6.15) that
is only expected to be statistically generic in the range 0 ≤ s < d

2 − 2, d ≥ 5, while our modulated
energy argument only requires convergence of initial energies, which is always statistically generic (cf.
Remark 6.1.6(d)). It could therefore be interesting to extend our approach also to higher dimensions
d ≥ 3, as it would improve the result by Hauray and Jabin at least in the ranges 0 ≤ s < 1, 1 ≤ d ≤ 4
and 1

2 ≤ s < 1, d = 5. The main difficulty is to suitably iterate the extension method of Caffarelli
and Silvestre [92] (see e.g. [425, 103]) in order to find a similar Delort-type formula as in (6.22), and
could be addressed in a future work.

Our modulated energy proof of Theorem 6.1.5 makes a crucial use of the dissipation generated
by the gradient flow structure: the dissipation term is indeed essential to absorb some error terms
in our analysis. This prevents us from considering conservative versions of the flow (6.5) (such as
e.g. (6.19) with α = 0 in dimension d = 2), as well as the corresponding (second-order) Hamiltonian
system (6.1). The use of modulated energy methods in these cases is thus let as an open question. In
contrast, note that the methods of proof by Schochet [390] and by Hauray and Jabin [234, 233] (cf.
Section 6.1.2) can both be adapted to these conservative cases.

There is also strong interest in the mean-field limit problem for the corresponding particle system
with thermal noise, that is, when (6.5) is replaced by the following system of coupled SDEs,

dxti,N =
√

2σdBt
i,N −

1

N

N∑
j:j 6=i
∇gs(xti,N − xtj,N )dt, xti,N |t=0 = x◦i,N , i = 1, . . . , N, (6.24)

where σ > 0 is some fixed constant, where (x◦i,N )Ni=1 is a sequence of N distinct initial positions, and
where (Bt

i,N )Ni=1 is a sequence of N independent Brownian motions (defined on some probability space
(Ω,F ,P)). Note that in the 1D logarithmic case this particle dynamics coincides with the so-called
Dyson’s Brownian motion studied in random matrix theory (see e.g. [227, Chapter 12]). Although
clear in higher dimensions [352, 72], the well-posedness of this dynamics requires some more work
in 1D to deal with possible collisions [105]. Assuming convergence at initial time µ◦N

∗−⇀ µ◦, formal
computations lead us to expect µtN

∗−⇀ µt a.s. for all t ≥ 0, where µ is the deterministic solution of
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the following viscous version of (6.7),

∂tµ
t = σ24µt + div (µt∇ht), ht := gs ∗ µt, µt|t=0 = µ◦.

Except in the 1D case [107, 370, 105, 184, 54] and in the 2D Coulomb case [186, 72] (see also [255]),
this mean-field problem is still open. The modulated energy methods developed in this chapter
unfortunately seem useless in this context, as there is strong suggestion that the expectation of the
modulated energy E [EN (t)] should not remain small at any positive time t > 0. The Keller-Segel
model studied in [187, 104] is the analogue of (6.24) with an attractive interaction.

Another interesting open question concerns the mean-field limit of the particle system (6.5) in the
case of a hypersingular Riesz interaction potential g(x) := gs(x) := |x|−s with s > d. It is not difficult
to check in that case that the rescaled particle energy H̃N (x1, . . . , xN ) := N−1−s/d∑N

i 6=j gs(xi − xj)
Γ-converges (with respect to the weak-* convergence of empirical measures) towards the continuum
energy H̃(µ) = Ks

´
Rd µ

1+s/d, where Ks > 0 is some suitable geometric constant (see e.g. [232, 230]).
It is therefore expected that the mean-field limit of the particle system (6.5) with suitable time rescal-
ing should be described by the corresponding slow diffusion equation ∂tµ

t = Ks4((µt)1+s/d). Few
results are known about this delicate mean-field limit problem [350], and its complete understanding
remains open — as it seems to require a very precise monitoring of the particle geometry along the
flow.

A last open question that we would like to mention concerns the mean-field limit for the gradient-
flow evolution of interacting particles with ±1 charges: given a sequence of N distinct initial positions
(x◦i,N )Ni=1 and of corresponding charges (m◦i,N )Ni=1 ⊂ {−1,+1}, we consider the following system of
coupled ODEs, instead of (6.5),

∂tx
t
i,N = − 1

N

N∑
j:j 6=i

mt
i,Nm

t
j,N∇gs(xti,N − xtj,N ), xti,N |t=0 = x◦i,N , i = 1, . . . , N, (6.25)

where for all i the charge mt
i,N remains constant in time until the first collision with a particle of

opposite charge, and takes the value 0 at all later times. We are then interested in the mean-field
evolution of the (signed!) empirical measure

µtN :=
1

N

N∑
i=1

mt
i,Nδxti,N ∈M(Rd).

Assuming convergence at initial time µ◦N
∗−⇀ µ◦ as N ↑ ∞, formal computations lead us to expect

under fairly general assumptions µtN
∗−⇀ µt for all t ≥ 0, where µt is a solution of the following equation

on R+ × Rd,
∂tµ

t = div (|µt|∇ht), ht := gs ∗ µt, µt|t=0 = µ◦.

In the 2D Coulomb case, in the context of Ginzburg-Landau vortices, this mean-field model is the
so-called Chapman-Rubinstein-Schatzman-E equation [173, 111]. No result is known at all for this
mean-field limit problem, even for logarithmic interaction s = 0, and even in dimension d = 1. (Let
us mention that some related simplified problems are studied in [417].)
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6.2 Proof of the main result

6.2.1 Extension representation for fractional Laplacian

We recall here the extension representation for the fractional Laplacian popularized by Caffarelli
and Silvestre [92] (we follow notation of [362, Section 1.2]). Let 0 ∨ (d − 2) < s < d be fixed. For a
finite Borel measure µ on Rd, the associated Riesz potential (−∆)−(d−s)/2µ can be written (up to a
constant) as

hµ(x) := c−1
d,s

ˆ
Rd
|x− z|−sdµ(z) = gs ∗ µ(x). (6.26)

Now denote the coordinates in Rd×R by (x, ξ), and let µδRd×{0} denote the Borel measure on Rd×R
defined as follows, for all φ ∈ C∞c (Rd × R),

ˆ
Rd×R

φ(x, ξ)d(µδRd×{0})(x, ξ) :=

ˆ
Rd
φ(x, 0)dµ(x).

Extending hµ to Rd × R via

hµ(x, ξ) := c−1
d,s

ˆ
Rd
|(x, ξ)− (z, 0)|−sdµ(z) = gs ∗ (µδRd×{0})(x, ξ),

where we abusively denote gs(x, ξ) = c−1
d,s|(x, ξ)|

−s on Rd × R, and choosing γ := s+ 1− d ∈ (−1, 1),
the extended function hµ on Rd × R satisfies in the distributional sense

−div (|ξ|γ∇hµ) = µδRd×{0}.

The function gs is indeed a fundamental solution of the operator −div (|ξ|γ∇) on Rd×R, in the sense
that −div (|ξ|γ∇gs) = δ0 on Rd×R. The normalization constant cd,s is chosen exactly to satisfy this
property with a unit factor (for an explicit value, see Step 1 of the proof of Lemma 6.2.14 below).

In the case s = 0, d = 1, denoting g0(x, ξ) = −c−1
d,0 log(|(x, ξ)|), we have −∆g0 = δ0 on the

extended space R × R, for the suitable choice of the normalization constant c1,0, so the above again
holds with γ = 0 = s+ 1− d. (In the Coulomb case s = d− 2, d ≥ 2, no extension is needed, and the
normalization cd,d−2 is simply chosen such that −∆gd−2 = δ0 on Rd.)

Using this extension representation, we may now directly adapt the weak-strong stability estimate
of Lemma 6.1.7 to the non-Coulomb case.

Lemma 6.2.1 (Stability — Riesz case). Let 0 ∨ (d − 2) ≤ s < d. Let µ◦1, µ
◦
2 ∈ P(Rd) ∩ L∞(Rd),

and in the case s = 0 also assume
´
Rd log(2 + |x|)d(µ◦1 + µ◦2)(x) < ∞. For i = 1, 2, let µi be a

weak solution of equation (6.7) with g = gs and initial data µ◦i , denote h
t
i := gs ∗ µti, and assume

µ1, µ2 ∈ L∞([0, T ]; L∞(Rd)) and ∇2h2 ∈ L1([0, T ]; L∞(Rd)) for some T > 0. Then for all t ∈ [0, T ],

ˆ
Rd

ˆ
Rd
gs(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y)

≤ exp
(
C

ˆ t

0
‖∇2hu2‖L∞du

)ˆ
Rd

ˆ
Rd
gs(x− y)d(µ◦1 − µ◦2)(x)d(µ◦1 − µ◦2)(y). (6.27)

♦

Proof. By Lemma 6.1.7, we only need to consider the case d− 2 < s < d, s ≥ 0. Proposition 6.2.4(ii)
below yields ∇(h1 − h2) ∈ L∞(R+; L2(Rd × R, |ξ|γdxdξ)). Combining this with the boundedness
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assumptions, all integration by parts arguments in the sequel may be justified. Just as in (6.21), the
time derivative of the left-hand side of (6.27) is

∂t

ˆ
Rd

ˆ
Rd
gs(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y)

= −2

ˆ
Rd
|∇(ht1 − ht2)|2µt1 − 2

ˆ
Rd
∇ht2 · ∇(ht1 − ht2) (µt1 − µt2). (6.28)

The first term in the right-hand side is nonpositive, so it suffices to estimate the second one. Using
the relations −div (|ξ|γ∇hti) = µtiδRd×{0}, for i = 1, 2, we find the following proxy for the Delort-type
formula (6.22): for all 1 ≤ k ≤ d,

− 2∂k(h
t
1 − ht2) (µt1δRd×{0} − µt2δRd×{0}) = 2∂k(h

t
1 − ht2) div (|ξ|γ∇(ht1 − ht2))

=

d+1∑
l=1

∂l
(
2|ξ|γ∂k(ht1 − ht2)∂l(h

t
1 − ht2)− δkl|ξ|γ |∇(ht1 − ht2)|2

)
.

Combining this with an integration by parts, we obtain

2

ˆ
Rd
∇ht2 · ∇(ht1 − ht2) (µt1 − µt2)

= −
d∑

k=1

d+1∑
l=1

ˆ
Rd×R

∂l
(
2|ξ|γ∂k(ht1 − ht2)∂l(h

t
1 − ht2)− δkl|ξ|γ |∇(ht1 − ht2)|2

)
∂kh

t
2

=
d∑

k=1

d+1∑
l=1

ˆ
Rd×R

|ξ|γ
(
2∂k(h

t
1 − ht2)∂l(h

t
1 − ht2)− δkl|∇(ht1 − ht2)|2

)
∂klh

t
2.

Hence, arguing as in Lemma 6.1.7, an integration by parts leads to∣∣∣∣ˆ
Rd
∇ht2 · ∇(ht1 − ht2) (µt1 − µt2)

∣∣∣∣ . ‖∇2ht2‖L∞
ˆ
Rd×R

|ξ|γ |∇(ht1 − ht2)|2

= ‖∇2ht2‖L∞
ˆ
Rd×R

(ht1 − ht2)(µt1δRd×{0} − µt2δRd×{0})

= ‖∇2ht2‖L∞
ˆ
Rd

(ht1 − ht2)(µt1 − µt2)

= ‖∇2ht2‖L∞
ˆ
Rd

ˆ
Rd
gs(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y), (6.29)

and the result (6.27) follows.

Remark 6.2.2 (Beyond Riesz potentials). The extension representation popularized by Caffarelli and
Silvestre is unfortunately limited to the case of pure powers |·|−s with 0∨(d−2) ≤ s < d, hence it does
a priori not allow to extend the above weak-strong stability estimate to other non-Riesz interaction
potentials g. Note however that we may at least consider any convex combination of Riesz powers: if
g is of the form g(x) :=

´ d
0∨(d−2) |x|

−sda(s) for some (nonnegative!) a ∈ P([0∨ (d− 2), d] \ {0}), then
we find for hi := g ∗ µi, i = 1, 2,

∂t

ˆ
Rd

ˆ
Rd
g(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y) ≤ −2

ˆ
Rd
∇ht2 · ∇(ht1 − ht2)(µt1 − µt2)

= −2

ˆ d

0∨(d−2)

( ˆ
Rd
∇ht2 · (µt1 − µt2)∇gs ∗ (µt1 − µt2)

)
da(s),
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hence, arguing as in the above proof with a Delort-type identity for each s, and then reconstructing
g, we obtain

∂t

ˆ
Rd

ˆ
Rd
g(x−y)d(µt1−µt2)(x)d(µt1−µt2)(y) . ‖∇2ht2‖L∞

ˆ
Rd

ˆ
Rd
g(x−y)d(µt1−µt2)(x)d(µt1−µt2)(y),

and the conclusion follows. Regarding the case of smaller pure powers | · |−s with 0 ≤ s < d − 2,
although not detailed here, it could be treated using a suitable iteration of the usual extension
representation (see e.g. [425, 103]), and we believe that in this way a similar weak-strong stability
estimate can be established as in the above lemma. ♦

Remark 6.2.3 (Similar stability for Hamiltonian dynamics). Similar weak-strong stability results
have been recently established in [197] for various Hamiltonian dynamics including the Euler-Poisson
system (that is, the monokinetic form of the Vlasov equation (6.3) with Coulomb interaction g =
gd−2), where the modulated kinetic part of the energy then needs to be considered as well (in the spirit
of e.g. [86]). The very same use of the extension representation as above then allows to immediately
generalize these stability results to the corresponding Riesz setting. ♦

6.2.2 Properties of the fractional porous medium equation

Existence

We start with an existence result and some basic properties of weak solutions of (6.7) with
interaction g = gs. We refer to [94, 93] for d − 2 < s < d, s ≥ 0, to [304, 18, 398, 55] for s = d − 2,
d ≥ 2, and to [102, Section 4] for 0 ≤ s < d− 2. 3

Proposition 6.2.4 (Existence for FPME). Let 0 ≤ s < d.

(i) Existence: Let µ◦ ∈ P ∩ L∞(Rd), and in the case d − 2 < s < d, s ≥ 0 also assume that
|µ◦(x)| ≤ Ae−a|x| holds for some a,A > 0. Then there exists a (global) weak solution µ ∈
L∞(R+;P ∩ L∞(Rd)) of (6.7) with g = gs and initial data µ◦, which is unique in this class in
the case 0 ≤ s ≤ d− 2, d ≥ 2.

(ii) General properties: Let µ◦ ∈ P ∩ L∞(Rd), and in the case s = 0 also assume
´
Rd log(2 +

|x|)dµ◦(x) <∞. Any weak solution µ of (6.7) with g = gs and initial data then satisfies for all
t ≥ 0, ˆ

Rd

ˆ
Rd
gs(x− y)dµt(x)dµt(y) ≤

ˆ
Rd

ˆ
Rd
gs(x− y)dµ◦(x)dµ◦(y),

where in particular the left-hand side remains finite. Moreover, for all t ≥ 0,

ˆ
Rd

ˆ
Rd
gs(x−y)d(µt−µ◦)(x)d(µt−µ◦)(y) =

{´
Rd |∇(ht − h◦)|2, if s = d− 2, d ≥ 2;´
Rd×R |ξ|

γ |∇(ht − h◦)|2, if d− 2 < s < d, s ≥ 0;

where both sides remain finite. In addition, if µ◦ is compactly supported, then µt remains com-
pactly supported for all t ≥ 0. ♦

3. Although in [102, Section 4] existence is established only locally in time, this result can easily be extended globally
in the present repulsive context, using that no blow-up can occur in finite time. This follows from the observation that
for 0 ≤ s < d− 2 we have ∆gs(x) = −s(d− 2− s)c−1

d,s|x|
−s−2, and hence for all p ≥ 1 we find (formally) along solutions

∂t

ˆ
(µt)p = (p− 1)

ˆ
(µt)p∆ht ≤ 0.
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Uniqueness

In the case d − 2 < s < d, s ≥ 0, uniqueness remains an open problem: it has been established
in dimension 1 by [61] (integrating the equation with respect to x and then considering viscosity
solutions), but in higher dimensions no uniqueness result is known [94, 93]. Nevertheless, as a con-
sequence of the weak-strong stability result of Lemma 6.2.1, we easily find that the uniqueness of
bounded weak solutions always follows from the existence of a smooth enough strong solution, so that
the uniqueness problem is somehow reduced to a regularity question.

Corollary 6.2.5 (Weak-strong uniqueness for FPME). Let 0∨(d−2) ≤ s < d. Let µ◦ ∈ P∩L∞(Rd),
and in the case s = 0 also assume

´
Rd log(2+ |x|)dµ◦(x) <∞. Assume that equation (6.7) with g = gs

and initial data µ◦ admits a weak solution µ such that µ,∇2h ∈ L∞([0, T ]; L∞(Rd)) for some T > 0.
Then, µ is the unique weak solution of (6.7) with g = gs and initial data µ◦ up to time T in the class
L∞([0, T ]; L∞(Rd)). ♦

Proof. Let µ be a weak solution of (6.7) as in the statement, and let ν ∈ L∞([0, T ]; L∞(Rd)) denote
another weak solution of (6.7). By Lemma 6.2.1, we may then conclude

ˆ
Rd

ˆ
Rd
gs(x− y)d(µt − νt)(x)d(µt − νt)(y) ≤ 0, (6.30)

for all t ∈ [0, T ]. For d−2 < s < d, s ≥ 0, Proposition 6.2.4(ii) gives ∇gs∗(µt−νt) ∈ L2(Rd, |ξ|γdxdξ),
so that (6.30) becomes by integration by parts

ˆ
Rd×R

|ξ|γ |∇gs ∗ (µt − νt)|2 ≤ 0.

This proves ∇gs ∗ µt = ∇gs ∗ νt, and hence, applying the operator −div (|ξ|γ ·) to both sides, µt = νt

for all t. We may argue similarly in the Coulomb case s = d− 2, d ≥ 2.

As the following lemma shows, the required boundedness of ∇2ht is implied by a sufficient amount
of Hölder regularity for µt.

Lemma 6.2.6. Let 0 ∨ (d− 2) ≤ s < d. Let µ ∈ P ∩ Cσb (Rd) for some σ > 2− d+ s, and denote by
hµ := gs∗µ the associated Riesz potential (6.26) on Rd. If s = d−1, we further assume ∇µ ∈ Lp0(Rd)
for some p0 <∞. Then, we have

‖(∇hµ,∇2hµ)‖L∞ . ‖µ‖L1 + ‖µ‖Cσ . (6.31)

Moreover, if s = d− 2 ≥ 0 we have ‖∇2hµ‖Lp .p ‖µ‖Lp for all 1 < p <∞, and if s = d− 1 we have
‖∇2hµ‖Lp .p ‖∇µ‖Lp for all p0 ≤ p <∞, p > 1. ♦

Proof. Without loss of generality we may assume µ ∈ C∞c (Rd), as the claimed result then follows by
an obvious approximation argument. We first prove that for any µ ∈ C∞c (Rd) the Riesz potential
hµ satisfies (6.31). We only argue for the second gradient ‖∇2hµ‖L∞ , the other part being similar
and easier. Let χ ∈ C∞c (Rd) be symmetric around 0, with χ = 1 in B1 and χ = 0 outside B2. If
d− 2 ≤ s < d− 1, decomposing

∇2hµ(x) =

ˆ
Rd
gs(x− y)∇2µ(y)dy

=

ˆ
Rd
gs(x− y)(1− χ(x− y))∇2µ(y)dy +

ˆ
Rd
gs(x− y)χ(x− y)∇2

y(µ(y)− µ(x))dy,
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we find by multiple integrations by parts

∇2hµ(x) =

ˆ
Rd
∇2gs(x− y)(1− χ(x− y))µ(y)dy +

ˆ
Rd
∇2gs(x− y)χ(x− y)(µ(y)− µ(x))dy

− µ(x)

ˆ
Rd
gs(x− y)∇2χ(x− y)dy,

and hence, for any 2− d+ s < σ < 1,

|∇2hµ(x)| .
ˆ
|x−y|≥1

|x− y|−s−2|µ(y)|dy + ‖µ‖Cσ
ˆ
|x−y|≤2

|x− y|σ−s−2dy

+ ‖µ‖L∞
ˆ
|x−y|≤2

|x− y|−sdy . ‖µ‖L1 + ‖µ‖Cσ ,

that is (6.31). If d− 1 ≤ s < d, rather decomposing

∇2hµ(x) =
1

2

ˆ
Rd
∇gs(x− y)⊗ (∇µ(y)−∇µ(2x− y))dy

=

ˆ
Rd
∇2gs(x− y)(1− χ(x− y))µ(y)dy −

ˆ
Rd
∇gs(x− y)⊗∇χ(x− y)µ(y)dy

+
1

2

ˆ
Rd
∇gs(x− y)⊗ (∇µ(y)−∇µ(2x− y))χ(x− y)dy,

the result (6.31) again follows from a direct computation. As far as the additional Lp-boundedness
is concerned, it is a direct consequence of the Lp-boundedness of Riesz transforms for 1 < p < ∞,
simply noting that we have ∇2hµ ' ∇2(−∆)−1µ for s = d − 2 ≥ 0, and ∇2hµ ' ∇(−∆)−1/2∇µ for
s = d− 1.

Regularity

Motivated by these considerations on uniqueness, we wish to show that the regularity of the initial
data µ◦ is preserved along the flow (6.7), so that in particular the required boundedness of ∇2ht would
be ensured by the above lemma for sufficiently smooth µ◦. In the Coulomb case s = d−2, d ≥ 2, such
a result was obtained by Lin and Zhang [304, Theorem 1] (their 2D proof is indeed easily rewritten
in any dimension), and a similar but easier argument leads to the corresponding result in the case
0 ≤ s < d− 2, d ≥ 3.

Proposition 6.2.7 (Lin, Zhang). In the case 0 ≤ s ≤ d − 2, d ≥ 2, given µ◦ ∈ P ∩ Hσ(Rd) with
σ > d

2 , there exists a unique solution µ ∈ L∞(R+;P ∩ Hσ(Rd)) of (6.7) with g = gs and initial
data µ◦. Moreover, given µ◦ ∈ P ∩ Cσb (Rd) with non-integer σ > 0, there exists a unique solution
µ ∈ L∞(R+;P ∩ Cσb (Rd)). ♦

In the case d − 2 < s ≤ d − 1, s ≥ 0, some recent results [430, 424] establish that regularity is
propagated at least locally in time. 4

Proposition 6.2.8 (Xiao, Zheng, Zhou). In the case d − 2 < s ≤ d − 1, s ≥ 0, d ≥ 1, given
µ◦ ∈ Hσ(Rd) nonnegative with σ > d

2 + 1, there exists T > 0 and a unique local solution µ ∈
L∞([0, T ];Hσ(Rd)) of (6.7) with g = gs and initial data µ◦. Moreover, given µ◦ ∈ Cσb (Rd) nonnegative
with non-integer σ > 1, there exists a unique local solution µ ∈ L∞([0, T ];Cσb (Rd)). ♦

4. Note that the paper [430] is however flawed: a crucial term is missing in the integration by parts in their
equation (4.5). This term cannot be estimated easily, and after discussion with the authors it appeared that their
whole iterative argument had to be redone differently. In [424] the authors have then later proposed a suitably corrected
iterative argument and used it to establish local Sobolev regularity, while it can also be applied to correct the proof in
their original paper [430] on local Cσ regularity. The key ingredients are the Kato-Ponce commutator estimates [269]
and Córdoba’s pointwise estimates for fractional derivatives [127, Proposition 2.3].
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In the case d − 1 < s < d, in contrast, even the validity of such a local-in-time regularity
result remains an open problem [94, 93, 419]. This explains the need for the additional regularity
assumptions in the general statement of Theorem 6.1.5.

6.2.3 Modulated energy and elementary properties

Let 0 ≤ s < d, and let µ◦, µ◦N , µ, µN be as in the statement of Theorem 6.1.5, for some T ∈ (0,∞).
Note that in the case s = 0 assumption (6.18) easily entails that µ◦ satisfies

´
Rd log(2+|x|)dµ◦(x) <∞.

Let N ≥ 1. Since µ◦N is assumed to have bounded energy, and since the energy is decreasing along
the flow, we find

sup
t∈[0,T ]

1

N2

N∑
i 6=j

gs(x
t
i,N − xtj,N ) ≤ 1

N2

N∑
i 6=j

gs(x
◦
i,N − x◦j,N ) <∞.

For 0 < s < d, since gs is nonnegative, this proves

ηN :=
N

min
i 6=j

inf
t∈[0,T ]

|xti,N − xtj,N | > 0. (6.32)

For s = 0, g0 changes sign and an additional argument is then needed: noting that by symmetry

∂t
1

N

N∑
i=1

xti,N = − 1

N2

N∑
i 6=j
∇g0(xti,N − xtj,N ) =

c−1
d,0

N2

N∑
i 6=j

xti,N − xtj,N
|xti,N − xtj,N |2

= 0,

a direct computation yields

∂t
1

N2

N∑
i 6=j
|xti,N − xtj,N |2 = ∂t

2

N

N∑
i=1

|xti,N |2 − ∂t
2

N2

∣∣∣∣ N∑
i=1

xti,N

∣∣∣∣2

=
4c−1
d,0

N2

N∑
i 6=j

xti,N ·
xti,N − xtj,N
|xti,N − xtj,N |2

=
2c−1
d,0

N2

N∑
i 6=j

(xti,N − xtj,N ) ·
xti,N − xtj,N
|xti,N − xtj,N |2

=
2c−1
d,0(N − 1)

N
,

and hence

sup
t∈[0,T ]

1

N2

N∑
i 6=j

(
g0(xti,N − xtj,N ) + c−1

d,0|x
t
i,N − xtj,N |2

)
≤ 1

N2

N∑
i 6=j

(
g0(x◦i,N − x◦j,N ) + c−1

d,0|x
◦
i,N − x◦j,N |2

)
+ 2Tc−2

d,0

N − 1

N
<∞.

As g0(x) + c−1
d,0|x|

2 ≥ 0, this proves that (6.32) also holds in the case s = 0 as well.
Next, we recall the truncation procedure introduced in [362], which serves to make energies finite

without removing the diagonal. For fixed N ≥ 1, let η > 0 be small enough such that 2η < 1 ∧ ηN ,
and define

µtN,η :=
1

N

N∑
i=1

δ
(η)

xti,N
∈ P(Rd),
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where δ(η)
z denotes the uniform unit Dirac mass on the sphere ∂Bη(z). Define

ht := gs ∗ µt, htN := gs ∗ µtN , htN,η := gs ∗ µtN,η,

and use the same notation for their extensions to Rd × R as in Section 6.2.1. Also define gs,η :=
gs(η) ∧ gs. Noting that by symmetry

−div (|ξ|γ∇gs,η) = δ
(η)
0 δRd×{0},

where δ(η)
0 δRd×{0} denotes the unit Dirac mass on ∂Bη × {0}, we find

htN,η(x, ξ) =
1

N

N∑
i=1

gs,η(x− xti,N , ξ). (6.33)

Let us now introduce our notation for the small balls around the particle locations, which we will
be crucially using in the proof: for all R > 0, let BtN (R) denote a union of disjoint balls

BtN (R) :=

Mt
N (R)⋃
m=1

B(ytm,N , r
t
m,N ), (6.34)

with total radius R =
∑

m r
t
m,N and such that xti,N ∈ BtN (R) for all 1 ≤ i ≤ N . These balls will be

carefully chosen in Section 6.2.6 below.
As already announced, for all N ≥ 1, we will consider the following modulated energy

EN (t) :=

¨
Dc
gs(x− y)d(µtN − µt)(x)d(µtN − µt)(y), (6.35)

where D := {(x, x) : x ∈ Rd} denotes the diagonal. This quantity can be thought of as a natural
renormalization of the Ḣ−(d−s)/2-distance in the presence of Dirac masses. Its main property is as
follows.

Lemma 6.2.9 (Modulated energy). Given µ, µN as in the statement of Theorem 6.1.5, if for some
t ≥ 0 the sequence (µtN )N is tight, then the following two conditions are equivalent:

(i) lim supN↑∞ EN (t) ≤ 0;

(ii) µtN
∗−⇀ µt and

˜
Dc gs(x− y)dµtN (x)dµtN (y)→

´
Rd

´
Rd gs(x− y)dµt(x)dµt(y). ♦

Proof. Property (ii) clearly implies (i) (and even EN (t) → 0), so it suffices to check the converse.
Assume that lim supN EN (t) ≤ 0 holds. By tightness, up to extraction of a subsequence, the Prokhorov
theorem gives µtN

∗−⇀ νt for some νt ∈ P(Rd). For any K > 0, we may write
¨
Dc
gs(x− y)dµtN (x)dµtN (y) ≥

¨
Dc
K ∧ gs(x− y)dµtN (x)dµtN (y)

= −K
N

+

ˆ
Rd

ˆ
Rd
K ∧ gs(x− y)dµtN (x)dµtN (y), (6.36)

and hence, successively passing to the limits N ↑ ∞ and K ↑ ∞, we find in the case 0 < s < d,

lim inf
N↑∞

¨
Dc
gs(x− y)dµtN (x)dµtN (y) ≥

ˆ
Rd

ˆ
Rd
gs(x− y)dνt(x)dνt(y). (6.37)
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We now argue that the same result (6.37) holds in the case s = 0. Using that in the logarithmic case
the particle dynamics satisfies |∂txti,N | ≤ c

−1
d,0, we may compute for all R ≥ 1,∣∣∣∣∂t ˆ

Rd

ˆ
Rd

(
1− e−|x−y|/R

)
log(2 + |x− y|)dµtN (x)dµtN (y)

∣∣∣∣
≤ 2c−1

d,0

ˆ
Rd

ˆ
Rd

1− e−|x−y|/R

2 + |x− y|
dµtN (x)dµtN (y)

+2c−1
d,0R

−1

ˆ
Rd

ˆ
Rd

log(2 + |x− y|)e−|x−y|/RdµtN (x)dµtN (y)

≤ 2c−1
d,0R

−1(2 + logR),

and the assumption (6.18) then easily leads to

lim sup
R↑∞

lim sup
N↑∞

ˆ
Rd

ˆ
Rd

(
1− e−|x−y|/R

)
log(2 + |x− y|)dµtN (x)dµtN (y)

≤ lim
R↑∞

lim sup
N↑∞

ˆ
Rd

ˆ
Rd

(
1− e−|x−y|/R

)
log(2 + |x− y|)dµ◦N (x)dµ◦N (y) = 0,

which in particular also implies

lim sup
R↑∞

ˆ
Rd

ˆ
Rd

(
1− e−|x−y|/R

)
log(2 + |x− y|)dνt(x)dνt(y) ≤ 0.

Decomposing
ˆ
Rd

ˆ
Rd
K ∧ g0(x− y)dµtN (x)dµtN (y) ≥

ˆ
Rd

ˆ
Rd

(K ∧ g0(x− y)) e−|x−y|/R dµtN (x)dµtN (y)

− (c−1
d,0 +K)

ˆ
Rd

ˆ
Rd

(
1− e−|x−y|/R

)
log(e+ |x− y|)dµtN (x)dµtN (y),

and noting that x 7→ (K ∧ g0(x)) e−|x|/R is now continuous and bounded, we deduce from the above

lim
N↑∞

ˆ
Rd

ˆ
Rd
K ∧ g0(x− y)dµtN (x)dµtN (y) ≥ lim

R↑∞

ˆ
Rd

ˆ
Rd

(K ∧ g0(x− y)) e−|x−y|/R dνt(x)dνt(y)

≥
ˆ
Rd

ˆ
Rd
K ∧ g0(x− y)dνt(x)dνt(y).

Injecting this result into (6.36) finally entails that (6.37) holds in the case s = 0 as well. Combin-
ing (6.37) with the convergence µtN

∗−⇀ νt and with the assumption lim supN EN (t) ≤ 0, we obtain

0 ≥ lim sup
N↑∞

¨
Dc
gs(x− y)dµtN (x)dµtN (y)− 2

ˆ
Rd

ˆ
Rd
gs(x− y)dνt(x)dµt(y)

+

ˆ
Rd

ˆ
Rd
gs(x− y)dµt(x)dµt(y)

≥
ˆ
Rd

ˆ
Rd
gs(x− y)dνt(x)dνt(y)− 2

ˆ
Rd

ˆ
Rd
gs(x− y)dνt(x)dµt(y)

+

ˆ
Rd

ˆ
Rd
gs(x− y)dµt(x)dµt(y)

=

ˆ
Rd

ˆ
Rd
gs(x− y)d(νt − µt)(x)d(νt − µt)(y).
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The conclusion then follows, noting that µt has bounded energy by Proposition 6.2.4, that νt has
bounded energy by (6.37), and noting that for any two Radon measures µ, ν with finite energy we
have ˆ

Rd

ˆ
Rd
gs(x− y)d(ν − µ)(x)d(ν − µ)(y) ≥ 0,

with equality if only if µ = ν (see e.g. [300, Theorem 9.8] for 0 < s < d, and [377, Lemma 1.8] for
s = 0).

In the case of bounded weak solutions µ1, µ2 of (6.7) as given by Proposition 6.2.4, the following
identity follows from an integration by parts and was crucially used in the proofs of Lemmas 6.1.7
and 6.2.1 (cf. (6.23) and (6.29)),
ˆ
Rd

ˆ
Rd
gs(x− y)d(µt1 − µt2)(x)d(µt1 − µt2)(y)

=

{´
Rd |∇(ht1 − ht2)|2, if s = d− 2, d ≥ 2;´
Rd×R |ξ|

γ |∇(ht1 − ht2)|2, if d− 2 < s < d, s ≥ 0.
(6.38)

Now we would need a corresponding identity in the context of the modulated energy EN . Since ∇htN
cannot belong to L2(Rd) or L2(Rd × R, |ξ|γdxdξ), a regularization is needed. Besides the modulated
energy EN , we thus define the following η-approximation, based on the truncation (6.33) introduced
above,

EN,η(t) :=

{´
Rd |∇(htN,η − ht)|2, if s = d− 2, d ≥ 2;´
Rd×R |ξ|

γ |∇(htN,η − ht)|2, if d− 2 < s < d, s ≥ 0.

An integration by parts then yields the following proxy for identity (6.38), showing that the difference
between the modulated energy EN (t) and its approximation EN,η(t) just comes from the diagonal terms
(which are indeed excluded in EN (t) but not in EN,η(t)). We refer to [362, Section 2.1] for a detailed
proof.

Lemma 6.2.10 (Approximate modulated energy). Let 0∨ (d− 2) ≤ s < d. For all t ≥ 0, N ≥ 1 and
η > 0,

EN,η(t) = EN (t) +
gs(η)

N
+ o

(η)
N (1),

where for any fixed N we have o(η)
N (1)→ 0 as η ↓ 0. ♦

6.2.4 Grönwall argument on the modulated energy

By Lemma 6.2.9, in order to prove the convergence µtN
∗−⇀ µt and the convergence of energies,

up to tightness issues, it suffices to check that lim supN EN (t) ≤ 0. This is achieved by a Grönwall
argument. From now on we focus on the Riesz case d−2 < s < d, s ≥ 0. The Coulomb case s = d−2,
d ≥ 2 can be treated in exactly the same way, but is actually easier since it does not require to use
the extension representation for the fractional Laplacian introduced in Section 6.2.1.

Proposition 6.2.11. Let d − 2 < s < d, s ≥ 0. Let µN ∈ L∞(R+;P(Rd)) be as in (6.5)–(6.6) with
g = gs. Let µ◦ ∈ P(Rd), and in the case s = 0, d = 1 also assume

´
R log(2+ |x|)dµ◦(x) <∞. Assume

that equation (6.7) with g = gs and initial data µ◦ admits a local solution µ ∈ L∞([0, T ];P ∩Cσb (Rd))
for some T > 0 and some σ > 2 − d + s. In the case s = 0, d = 1, also assume that ∇µ ∈
L∞([0, T ]; Lp(R)) for some p <∞. Assume that the initial data satisfy µ◦N

∗−⇀ µ◦ and

lim sup
N↑∞

¨
x 6=y

gs(x− y)dµ◦N (x)dµ◦N (y) <∞, (6.39)
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Assume that for all t ∈ [0, T ] the collection BtN (RtN ) can be chosen with RtN → 0 in such a way that

lim inf
N↑∞

lim inf
η↓0

( ˆ
BtN (RtN )×R

|ξ|γ |∇htN,η|2 −
gs(η)

N

)
≥ 0, (6.40)

and, denoting g+
s (t) := c−1

d,st
−s for s > 0 and g+

0 (t) := c−1
d,0(− log t) ∨ 0 for s = 0,

lim
N↑∞

1

N2

N∑
i=1

g+
s (d(xti,N , ∂BtN (RtN ))) = 0. (6.41)

Then for all t ∈ [0, T ] we have EN (t) .t EN (0) + o(1) as N ↑ ∞. ♦

Remark 6.2.12. We briefly examine the conditions (6.40) and (6.41). In the ideal case when all
particles remain well-separated, that is, with a minimal distance ηN ' N−1/d, then taking BtN (RtN )
to be the union of balls of radius RtN/N centered at the points xti,N with RtN/N � N−1/d, condi-
tion (6.41) simply becomes gs(RtN/N)/N � 1. On the other hand, neglecting interactions between
particles, hence focusing on the (divergent) self-interactions, we formally find

ˆ
BtN (RtN )×R

|ξ|γ |∇htN,η|2 =
1

N2

N∑
i=1

ˆ
|x−xti,N |<R

t
N/N
|ξ|γ |∇gs,η(x− xti,N , ξ)|2 + . . .

=
1

N

ˆ
η<|x|<RtN/N

|ξ|γ |∇gs(x, ξ)|2 + . . .

=
1

N
(gs(η)− gs(RtN/N)) + . . . ,

so that condition (6.40) would amount to requiring gs(RtN/N)/N � 1, which is thus just the same
as condition (6.41). In other words, for s > 0, both conditions would take the form RtN � N−(1−s)/s,
which is compatible with the condition RtN → 0 only if s < 1. In Section 6.2.6 below, we prove that
a consistent choice of the small balls BtN (RtN ) is indeed possible whenever 0 ≤ s < 1.
To go beyond the restriction s < 1 via this approach, we would need to modify Proposition 6.2.11
in order to relax the smallness condition for the total radius RtN → 0. For that purpose, it would
be necessary to refine the blind approximation argument used in Step 2 of the proof below: this
approximation argument is indeed based on a worst-case scenario and could be improved with precise
microscopic information on the particle dynamics. Getting a handle on such information seems to
be a very difficult task and is not pursued here. Note that even an optimal bound on the minimal
distance between particles would be of no help to improve this approximation argument, and that it
is not clear how to formulate the needed geometric information. ♦

Proof. By the regularity assumption for µ, Lemma 6.2.6 ensures that we have ‖(∇xht,∇2
xh

t)‖L∞ .t 1,
and also, in the case s = 0, d = 1, ‖∇2

xh
t‖Lp .t 1 for some p <∞. We split the proof into four steps.

Step 1. Time derivative of EN (t) and modulated stress-energy tensor.
In this step, we prove

∂tEN (t) = −
ˆ
Rd×R

|ξ|γ∇2
xh

t(x) : T tN (x, ξ)dxdξ

− 2

ˆ
Rd

∣∣∣∣p. v. ˆ
Rd\{x}

∇gs(x− y)d(µtN − µt)(y)

∣∣∣∣2dµtN (x), (6.42)

where we use the usual principal value symbol

p. v.

ˆ
Rd\{x}

:= lim
r↓0

ˆ
Rd\B(x,r)
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and where the modulated stress-energy tensor T tN = (T t;klN )d+1
k,l=1 is defined as follows: for all 1 ≤ k, l ≤

d+ 1,

T t;klN (x, ξ) := 2

¨
Dc
∂kgs(x− y, ξ)∂lgs(x− z, ξ)d(µN − µ)(y)d(µN − µ)(z)

− δkl
¨
Dc
∇gs(x− y, ξ) · ∇gs(x− z, ξ)d(µN − µ)(y)d(µN − µ)(z). (6.43)

Moreover, as checked at the end of this step, the integrals in (6.42) are summable: more precisely,
we prove that |T tN | belongs to L1(Rd × R, |ξ|γdxdξ) if s > 0, and that |∇2

xh
t(x)||T tN (x, ξ)| belongs to

L1(Rd × R, |ξ|γdxdξ) if s = 0, d = 1. Although the second term in the right-hand side of (6.42) is
nonpositive, we do not bound it by 0 yet, contrarily to what is done in the proof of Lemmas 6.1.7
and 6.2.1, since it will be useful in Step 2 below to absorb some other error terms.

Using the equations satisfied by µ and by the trajectories xi,N , and noting that the gradient ∇ht
is given by

∇ht(x) = p. v.

ˆ
Rd\{x}

∇gs(x− y)dµt(y),

where the principal value may only be omitted for s < d− 1, we find the following expression for the
time derivative of the modulated energy EN (t) defined in (6.35),

∂tEN (t) = ∂t

ˆ
Rd

ˆ
Rd
gs(x− y)dµt(x)dµt(y)

+ ∂t
1

N2

N∑
i 6=j

gs(x
t
i,N − xtj,N )− ∂t

2

N

N∑
i=1

ˆ
Rd
gs(x

t
i,N − y)dµt(y)

= −2

ˆ
Rd
∇ht(x) · p. v.

ˆ
Rd\{x}

∇gs(x− y)dµt(y)dµt(x)

− 2

N

N∑
i=1

∣∣∣∣ 1

N

∑
j,j 6=i
∇gs(xti,N − xtj,N )

∣∣∣∣2 +
2

N2

N∑
i 6=j
∇ht(xti,N ) · ∇gs(xti,N − xtj,N )

+
2

N

N∑
i=1

p. v.

ˆ
Rd\{xti,N}

∇ht(x) · ∇gs(x− xti,N )dµt(x).

Let us rearrange the terms as follows,

∂tEN (t) = −2

ˆ
Rd

∣∣∣∣ p. v.ˆ
Rd\{x}

∇gs(x− y)d(µtN − µt)(y)

∣∣∣∣2dµtN (x)

− 2

ˆ
Rd
∇ht(x) · p. v.

ˆ
Rd\{x}

∇gs(x− y)dµt(y)dµt(x)

+ 2

ˆ
Rd
∇ht(x) · p. v.

ˆ
Rd\{x}

∇gs(x− y)dµt(y)dµtN (x)

− 2

ˆ
Rd
∇ht(x) ·

ˆ
Rd\{x}

∇gs(x− y)dµtN (y)dµtN (x)

+ 2

ˆ
Rd

p. v.

ˆ
Rd\{y}

∇ht(x) · ∇gs(x− y)µt(x)µtN (y),

and note that the last four terms in the right-hand side may be combined to yield the following
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simpler expression,

∂tEN (t) = −2

ˆ
Rd

∣∣∣∣ p. v.ˆ
Rd\{x}

∇gs(x− y)d(µtN − µt)(y)

∣∣∣∣2dµtN (x)

−
¨
Dc

(∇ht(x)−∇ht(y)) · ∇gs(x− y)d(µtN − µt)(y)d(µtN − µt)(x)︸ ︷︷ ︸
=: IN (t)

. (6.44)

In the distributional sense on Rd, using canonical regularizations, we may alternatively write

IN (t) = 〈StN ;∇ht〉 =

d∑
k=1

〈St;kN ; ∂kh
t〉, (6.45)

where StN = (St;kN )dk=1 is given by

St;kN (x) := 2(µtN − µt)(x) p. v.

ˆ
Rd\{x}

∂kgs(x− y)d(µtN − µt)(y).

Since −div (|ξ|γ∇gs(x − x0, ξ)) = δx0(x)δRd×{0}(x, ξ) for all x0 ∈ Rd, we have in the distributional
sense on Rd × R,

St,kN (x)δRd×{0}(x, ξ) = −2 p. v.

¨
Dc

div (|ξ|γ∇gs(x− z, ξ))∂kgs(x− y, ξ)d(µtN − µt)(z)d(µtN − µt)(y)

= −p. v.

¨
Dc

(
div (|ξ|γ∇gs(x− z, ξ))∂kgs(x− y, ξ) + div (|ξ|γ∇gs(x− y, ξ))∂kgs(x− z, ξ)

)
× d(µtN − µt)(z)d(µtN − µt)(y).

Now note the following algebraic identity in the distributional sense on Rd × R: for all 1 ≤ k ≤ d,

div (|ξ|γ∇gs(x− y, ξ))∂kgs(x− z, ξ) + div (|ξ|γ∇gs(x− z, ξ))∂kgs(x− y, ξ)

=
1

2

d+1∑
l=1

(
∂l(|ξ|γGlks (x, ξ; y, z)) + ∂l(|ξ|γGlks (x, ξ; z, y))

)
,

where we have set

Glks (x, ξ; y, z) := 2∂lgs(x− y, ξ)∂kgs(x− z, ξ)− δlk
d+1∑
m=1

∂mgs(x− y, ξ)∂mgs(x− z, ξ). (6.46)

This proves the (Delort-type) identity

St;kN (x)δRd×{0}(x, ξ) = −
d+1∑
l=1

∂l(|ξ|γT t;lkN (x, ξ)) (6.47)

for all 1 ≤ k ≤ d, and the conclusion (6.42) then follows from (6.44), (6.45), and an integration by
parts.

We now turn to the claimed integrability of the modulated stress-energy tensor T tN . We first
consider the case d− 2 < s < d, s > 0. For that purpose, we start with the bound
ˆ
Rd×R

|ξ|γ |T tN | .
ˆ
Rd×R

|ξ|γ
¨
Dc
|(x− y, ξ)|−s−1|(x− z, ξ)|−s−1d(µtN + µt)(y)d(µtN + µt)(z)dxdξ

=

¨
Dc

(ˆ
Rd×R

|ξ|γ |(x− y, ξ)|−s−1|(x− z, ξ)|−s−1dxdξ

)
d(µtN + µt)(y)d(µtN + µt)(z). (6.48)
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Let us compute the integral over Rd ×R. Denoting for simplicity cyz := (y + z)/2 and q := s+ 1, we
decompose, for all y 6= z,ˆ

Rd
(|x− y|2 + 1)−q/2(|x− z|2 + 1)−q/2dx = I1

yz + I2
yz + I3

yz + I4
yz,

where

I1
yz :=

ˆ
|x−y|≤ 1

2
|y−z|

(|x− y|2 + 1)−q/2(|x− z|2 + 1)−q/2dx,

I2
yz :=

ˆ
|x−z|≤ 1

2
|y−z|

(|x− y|2 + 1)−q/2(|x− z|2 + 1)−q/2dx,

I3
yz :=

ˆ
|x−y|,|x−z|> 1

2 |y−z|
|x−cyz |≤|y−z|

(|x− y|2 + 1)−q/2(|x− z|2 + 1)−q/2dx,

I4
yz :=

ˆ
|x−cyz |>|y−z|

(|x− y|2 + 1)−q/2(|x− z|2 + 1)−q/2dx,

Using that |x− y| ≤ 1
2 |y − z| implies |x− z| ≥ 1

2 |y − z|, we may estimate

I1
yz ≤ (|y − z|2/4 + 1)−q/2

ˆ
|x−y|≤ 1

2
|y−z|

(|x− y|2 + 1)−q/2dx . (|y − z|/2 + 1)d−2q,

and similarly for I2
yz. Moreover,

I3
yz ≤ (|y − z|2/4 + 1)−q

ˆ
|x−cyz |≤|y−z|

dx . (|y − z|2/4 + 1)−q|y − z|d . (|y − z|/2 + 1)d−2q,

and also, since d− 2q < 0 follows from the choice s > d− 2, s ≥ 0,

I4
yz .

ˆ
|x−cyz |>|y−z|

(|x− y|+ 1)−q(|x− z|+ 1)−qdx

≤
ˆ
|x−cyz |>|y−z|

(|x− cyz| − |y − z|/2 + 1)−2qdx . (|y − z|/2 + 1)d−2q.

This proves, for all y 6= z,ˆ
Rd

(|x− y|2 + 1)−q/2(|x− z|2 + 1)−q/2dx . (|y − z|/2 + 1)d−2q,

and hence by scaling ˆ
Rd
|(x− y, ξ)|−q|(x− z, ξ)|−qdx . (|y − z|/2 + |ξ|)d−2q,

so that we obtain, with by definition γ = q − d ∈ (−1, 1),ˆ
Rd×R

|ξ|γ |(x− y, ξ)|−q|(x− z, ξ)|−qdxdξ .
ˆ
R
|ξ|q−d(|y − z|+ |ξ|)d−2qdξ,

Splitting the integrals over ξ into the part where |ξ| ≤ |y− z| and that where |ξ| > |y− z|, and noting
that q > 1 follows from s > 0, we find
ˆ
Rd×R

|ξ|γ |(x− y, ξ)|−q|(x− z, ξ)|−qdxdξ

. |y − z|d−2q

ˆ
|ξ|≤|y−z|

|ξ|q−ddξ +

ˆ
|ξ|>|y−z|

|ξ|q−d|ξ|d−2qdξ . |y − z|1−q = |y − z|−s.
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Combining this with (6.48) finally yields
ˆ
Rd×R

|ξ|γ |T tN | .
¨
Dc
|y − z|−sd(µtN + µt)(y)d(µtN + µt)(z),

and hence, by assumption (6.39), since both the particle and the mean-field energies are decreasing
along the flow (see Proposition 6.2.4 for the mean-field energy),
ˆ
Rd×R

|ξ|γ |T tN | .
ˆ
Rd

ˆ
Rd
gs(y − z)dµt(y)dµt(z) +

¨
Dc
gs(y − z)dµtN (y)dµtN (z) + 2

ˆ
htdµtN

≤
ˆ
Rd

ˆ
Rd
gs(y − z)dµ◦(y)dµ◦(z) +

¨
Dc
gs(y − z)dµ◦N (y)dµ◦N (z) + 2‖ht‖L∞ .t 1.

It remains to consider the case s = 0, d = 1 (hence γ = 0, q = 1). Let 1 < p < ∞ be such that
‖∇2ht‖Lp .t 1. Arguing as above, we obtain

ˆ
R
|∇2ht(x)||(x− y, ξ)|−1|(x− z, ξ)|−1dx . ‖∇2ht‖L∞(|y − z|+ |ξ|)−1,

and similarly, by the Hölder inequality, for 1
p + 1

p′ = 1, p′ > 1,

ˆ
R
|∇2ht(x)||(x− y, ξ)|−1|(x− z, ξ)|−1dx . ‖∇2ht‖Lp

( ˆ
R
|(x− y, ξ)|−p′ |(x− z, ξ)|−p′dx

)1/p′

. ‖∇2ht‖Lp(|y − z|+ |ξ|)
1
p′−2

.

Splitting the integral over ξ into the part where |ξ| ≤ |y − z| ∨ 1 and that where |ξ| > |y − z| ∨ 1, we
may then estimate

ˆ
R×R
|∇2ht(x)||(x− y, ξ)|−1|(x− z, ξ)|−1dxdξ

. ‖∇2ht‖L∞
ˆ
|ξ|≤|y−z|∨1

(|y − z|+ |ξ|)−1dξ + ‖∇2ht‖Lp
ˆ
|ξ|>|y−z|∨1

(|y − z|+ |ξ|)
1
p′−2

dξ

.t 1− 0 ∧ log(|y − z|) = 1 + 0 ∨ g0(y − z),

and the conclusion now easily follows just as in the case s > 0.

Step 2. Approximation argument.
For all t ≥ 0 and all R ∈ (0, 1), applying [382, Proposition 9.6], there exists a smooth approxima-

tion vt of the function ∇ht ∈ C0,1
b (Rd)d such that vt is constant on each ball of the collection BtN (R),

and satisfies for all α ∈ [0, 1],

‖vt −∇ht‖Cα ≤ CR1−α‖∇2ht‖L∞ ≤ CtR1−α, (6.49)

and in addition ‖∇vt‖Lp .t 1 for some p < ∞ in the case s = 0, d = 1. In this step, we prove the
following estimate,

∂tEN (t) ≤ −
ˆ
Rd×R

|ξ|γ∇vt : T tN + Ct o
(R)(1), (6.50)

where o(R)(1) denotes a quantity that goes to 0 as R ↓ 0.
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Using relation (6.47) as well as the integrability properties of T tN , we may decompose the first
term in the right-hand side of (6.42) as follows,ˆ

Rd×R
|ξ|γ∇2

xh
t(x) : T tN (x, ξ)dxdξ = 〈StN ;∇ht〉 = 〈StN ; vt〉+ 〈StN ;∇ht − vt〉

= 〈StNδRd×{0}; vt〉+ 〈StN ;∇ht − vt〉

=

ˆ
Rd×R

|ξ|γ∇vt : T tN + 〈StN ;∇ht − vt〉. (6.51)

It remains to estimate the last term in the right-hand side of (6.51). Denoting for simplicity wt :=
∇ht − vt, we may decompose by symmetry

〈StN ;∇ht − vt〉 =

¨
Dc

(wt(x)− wt(y)) · ∇gs(x− y)d(µtN − µt)(y)d(µtN − µt)(x)

= 2

ˆ
Rd

ˆ
Rd
wt(x) · ∇gs(x− y)dµt(y)dµt(x) + 2

¨
Dc
wt(x) · ∇gs(x− y)dµtN (y)dµtN (x)

− 2

ˆ
Rd

ˆ
Rd

(wt(x)− wt(y)) · ∇gs(x− y)dµtN (y)dµt(x). (6.52)

For the first right-hand side term, we simply have by (6.49),∣∣∣∣ ˆ
Rd

ˆ
Rd
wt(x) · ∇gs(x− y)dµt(y)dµt(x)

∣∣∣∣ =

∣∣∣∣ˆ
Rd
wt · ∇htdµt

∣∣∣∣ ≤ ‖wt‖L∞‖∇ht‖L∞ ≤ CtR.
Regarding the third right-hand side term in (6.52), choosing σ > s+ 1− d, 0 ≤ σ < 1, and recalling
that µt remains bounded by assumption, we find by (6.49),∣∣∣∣ˆ

Rd

ˆ
Rd

(wt(x)− wt(y)) · ∇gs(x− y)dµtN (y)dµt(x)

∣∣∣∣
. ‖wt‖Cσ sup

y∈Rd

ˆ
|x− y|−s−1+σdµt(x)

≤ ‖wt‖Cσ sup
y∈Rd

(
‖µt‖L∞

ˆ
|x−y|≤1

|x− y|−s−1+σdx+

ˆ
|x−y|>1

dµt(x)

)
≤ ‖wt‖Cσ(1 + ‖µt‖L∞) ≤ CtR1−σ.

Injecting these two estimates in (6.52), and using (6.49) once again, we obtain, for R ↓ 0,

|〈StN ;∇ht − vt〉| .t o(R)(1) +R

ˆ
Rd

∣∣∣∣ ˆ
Rd\{x}

∇gs(x− y)dµtN (y)

∣∣∣∣ dµtN (x)

.t o
(R)(1) +R

ˆ
Rd

∣∣∣∣ p. v. ˆ
Rd\{x}

∇gs(x− y)d(µtN − µt)(y)

∣∣∣∣ dµtN (x)

+R

ˆ
Rd

∣∣∣∣p. v.ˆ
Rd\{x}

∇gs(x− y)dµt(y)

∣∣∣∣ dµtN (x),

and thus, noting that
ˆ
Rd

∣∣∣∣p. v. ˆ
Rd\{x}

∇gs(x− y)dµt(y)

∣∣∣∣ dµtN (x) ≤ ‖∇ht‖L∞ ≤ Ct,

we find

|〈StN ;∇ht − vt〉| .t o(R)(1) +R

ˆ
Rd

∣∣∣∣ p. v.ˆ
Rd\{x}

∇gs(x− y)d(µtN − µt)(y)

∣∣∣∣ dµtN (x).
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Hence, for all ε ∈ (0, 1), using the inequality R|a| ≤ εa2 + (4ε)−1R2, we obtain

|〈StN ;∇ht − vt〉| .t ε−1o(R)(1) + ε

ˆ
Rd

∣∣∣∣ p. v.ˆ
Rd\{x}

∇gs(x− y)d(µtN − µt)(y)

∣∣∣∣2 dµtN (x),

and the result (6.50) then follows from (6.51) and (6.42), choosing ε > 0 small enough (depending
on t).

Step 3. Modification with η-approximations.
In the definition (6.43) of T tN , the diagonal terms were excluded. In order to apply inequality

2|ab| ≤ a2 + b2 to T tN as in the proof of Lemmas 6.1.7 and 6.2.1, we would need to add these diagonal
terms explicitly. Then η-approximations become needed to avoid the divergence of the corresponding
diagonal terms that will appear after application of the above-mentioned inequality. More precisely,
we prove in this step

∂tEN (t) .t

ˆ
(Rd\BtN (R))×R

|ξ|γ |∇(htN,η − ht)|2

+
1

N2

N∑
i=1

ˆ
(Rd\BtN (R))×R

|ξ|γ |∇vt(x)||∇gs(x− xti,N , ξ)|2dxdξ + o(R)(1) + o
(η)
N,R(1). (6.53)

By the choice of vt to be constant on each ball of the collection BtN (R), and by the bound on ∇vt,
equation (6.50) takes the form

∂tEN (t) .t

ˆ
(Rd\BtN (R))×R

|ξ|γ |∇vt(x)||T tN |+ oR(1). (6.54)

Denote for simplicity

Ht
N (x, ξ) := (htN − ht)(x, ξ), Ht

N,η(x, ξ) := (htN,η − ht)(x, ξ),

and for all 1 ≤ k, l ≤ d+ 1 define

T t;klN,η(x, ξ) := 2∂kHN,η(x, ξ)∂lHN,η(x, ξ)− δkl|∇Ht
N,η(x, ξ)|2.

For all x with d(x, {xti,N}Ni=1) > η, we note that

∇Ht
N,η(x, ξ) =

1

N

N∑
i=1

∇gs,η(x− xti,N )−∇ht(x) =
1

N

N∑
i=1

∇gs(x− xti,N )−∇ht(x) = ∇Ht
N (x, ξ).

(6.55)

Also noting that the definition (6.46) may be rewritten as

1

N2

N∑
i=1

Gkls (x, ξ;xti,N , x
t
i,N ) = 2

¨
D
∂kgs(x− y; ξ)∂lgs(x− z; ξ)d(µtN − µt)(y)d(µtN − µt)(z)

− δkl
¨
D
∇gs(x− y; ξ) · ∇gs(x− z; ξ)d(µtN − µt)(y)d(µtN − µt)(z),
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the definition (6.43) yields

T t;klN (x, ξ) +
1

N2

N∑
i=1

Gkls (x, ξ;xti,N , x
t
i,N )

= 2

ˆ
Rd

ˆ
Rd
∂kgs(x− y; ξ)∂lgs(x− z; ξ)d(µtN − µt)(y)d(µtN − µt)(z)

− δkl
ˆ
Rd

ˆ
Rd
∇gs(x− y; ξ) · ∇gs(x− z; ξ)d(µtN − µt)(y)d(µtN − µt)(z)

= 2∂kH
t
N (x, ξ)∂lH

t
N (x, ξ)− δkl|∇Ht

N (x, ξ)|2.

Combining this with (6.55) yields, for all 1 ≤ k, l ≤ d+ 1 and all x with d(x, {xti,N}Ni=1) > η,

T t;klN (x, ξ) +
1

N2

N∑
i=1

Gkls (x, ξ;xti,N , x
t
i,N )

= 2∂kH
t
N,η(x, ξ)∂lH

t
N,η(x, ξ)− δkl|∇Ht

N,η(x, ξ)|2 = T t;klN,η(x, ξ).

From (6.54), we then deduce, for all η > 0 small enough such that
⋃N
i=1B(xti,N , η) ⊂ BtN (R),

∂tEN (t) .t

ˆ
(Rd\BtN (R))×R

|ξ|γ |T tN,η|

+
1

N2

N∑
i=1

ˆ
(Rd\BtN (R))×R

|ξ|γ |∇vt(x)||Gs(x, ξ;xti,N , xti,N )|+ o(R)(1).

The result (6.53) then follows, using inequality 2|ab| ≤ a2 + b2 in the form of

|T tN,η| . |∇(htN,η − ht)|2, and |Gs(x, ξ;xti,N , xti,N )| . |∇gs(x− xti,N , ξ)|2.

Step 4. Conclusion.
In this step, we show that

∂tEN (t) .t EN (t) +
gs(η)

N
−
ˆ
BtN (R)×R

|ξ|γ |∇htN,η|2

+
1

N2

N∑
i=1

g+
s (d(xti,N , ∂BtN (R))) + o(R)(1) + o(N)(1) + o

(η)
N,R(1). (6.56)

The statement of Proposition 6.2.11 immediately follows from this inequality and the suitable choice
of R = RtN , together with a Grönwall argument.

By Lemma 6.2.10, inequality (6.53) may be rewritten as follows,

∂tEN (t) .t EN (t) +
gs(η)

N
−
ˆ
BtN (R)×R

|ξ|γ |∇(htN,η − ht)|2

+
1

N2

N∑
i=1

ˆ
(Rd\BtN (R))×R

|ξ|γ |∇vt(x)||∇gs(x− xti,N , ξ)|2dxdξ + o(R)(1) + o
(η)
N,R(1),
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or equivalently, expanding the square,

∂tEN (t) .t EN (t)+
gs(η)

N
−
ˆ
BtN (R)×R

|ξ|γ |∇htN,η|2−
ˆ
BtN (R)×R

|ξ|γ |∇ht|2+2

ˆ
BtN (R)×R

|ξ|γ∇htN,η ·∇ht

+
1

N2

N∑
i=1

ˆ
(Rd\BtN (R))×R

|ξ|γ |∇vt(x)||∇gs(x− xti,N , ξ)|2dxdξ + o(R)(1) + o
(η)
N,R(1). (6.57)

The last term in the first line is easily estimated as follows, using the notation (6.34) for the union
BtN (R) of small balls,∣∣∣∣ˆ

BtN (R)×R
|ξ|γ∇htN,η · ∇ht

∣∣∣∣ . ‖∇ht‖L∞ 1

N

N∑
i=1

ˆ
BtN (R)×R

|ξ|γ |(x− xti,N , ξ)|−s−1dxdξ

.t
1

N

N∑
i=1

ˆ
BtN (R)

|x− xti,N |1−ddx

.

Mt
N∑

m=1

ˆ
|x|≤2rtm,N

|x|1−ddx .
Mt
N∑

m=1

rtm,N = R, (6.58)

while the term in the second line of (6.57) is estimated as follows, in the case s > 0,

1

N2

N∑
i=1

ˆ
(Rd\BtN (R))×R

|ξ|γ |∇vt(x)||∇gs(x− xti,N , ξ)|2dxdξ

.t
1

N2

N∑
i=1

ˆ
(Rd\BtN (R))×R

|ξ|γ |(x− xti,N , ξ)|−2(s+1)dxdξ

.
1

N2

N∑
i=1

ˆ
Rd\BtN (R)

|x− xti,N |−d−sdx .
1

N2

N∑
i=1

d(xti,N , ∂BtN (R))−s. (6.59)

In the case s = 0, d = 1 (hence γ = 0), denoting ρti,N := d(xti,N , ∂BtN (R)), and applying the Hölder
inequality with 1

p + 1
p′ = 1 and with p <∞ chosen such that ‖∇vt‖Lp .t 1, we rather estimate

1

N2

N∑
i=1

ˆ
(R\BtN (R))×R

|∇vt(x)||∇g0(x− xti,N , ξ)|2dxdξ

.
1

N2

N∑
i=1

ˆ
R\BtN (R)

|∇vt(x)||x− xti,N |−1dx

.
1

N2

N∑
i=1

ˆ
ρti,N<|x−x

t
i,N |≤1

|∇vt(x)||x− xti,N |−1dx+
1

N2

N∑
i=1

ˆ
|x−xti,N |>1

|∇vt(x)||x− xti,N |−1dx

.t
1

N2

N∑
i=1

ˆ
ρti,N<|x−x

t
i,N |≤1

|x− xti,N |−1dx+
1

N2

N∑
i=1

(ˆ
|x−xti,N |>1

|x− xti,N |−p
′
dx

)1/p′

,

and hence, by the choice p′ > 1,

1

N2

N∑
i=1

ˆ
(R\BtN (R))×R

|∇vt(x)||∇g0(x− xti,N , ξ)|2dxdξ .t
1

N2

N∑
i=1

(− 0 ∧ log ρti,N ) +N−1. (6.60)

The result (6.56) then follows from inequality (6.57) together with (6.58) and with (6.59) or (6.60).
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6.2.5 Bypass of tightness issues

Assuming that EN (0) ≤ o(1) as N ↑ ∞, Proposition 6.2.11 yields EN (t) ≤ ot(1) for all t ∈ [0, T ].
If in addition the sequence (µtN )N is known to be tight, then Lemma 6.2.9 allows us to conclude with
the desired convergence µtN

∗−⇀ µt. Tightness can for example be directly checked under the additional
assumption that the initial measures µ◦N are well localized in the sense of lim supN

´
|x|2dµ◦N < ∞.

However, in the spirit of [395, Section 4.3.5], the following refinement of Lemma 6.2.9 shows that much
more information can be directly extracted from the fact that EN (t) ≤ ot(1), so that in particular
tightness is obtained a posteriori without any additional assumption.

Corollary 6.2.13. Let the assumptions of Proposition 6.2.11 prevail. Also assume that EN (0) ≤ o(1)
as N ↑ ∞. Then for all t ∈ [0, T ] we have ∇htN → ∇ht in Lploc(R

d; L2(R, |ξ|γdξ)) for all 1 ≤ p <

2d/(s+ d), and hence µtN
∗−⇀ µt. In particular, (µtN )N is tight and Lemma 6.2.9 thus also implies the

convergence of the energy under the assumptions of Theorem 6.1.5. ♦

Proof. By assumption, Proposition 6.2.11 yields EN (t) .t oN (1) as N ↑ ∞. We split the proof into
three steps.

Step 1. Strong convergence outside small balls.
In this step, we prove

¨
(Rd\BtN )×R

|ξ|γ |∇(htN − ht)|2 .t oN (1), (6.61)

and hence for any 1 ≤ p ≤ 2 the Hölder inequality implies for all R > 0,
ˆ
BR\BtN

( ˆ
R
|ξ|γ |∇(htN − ht)|2

)p/2
. Rd(1−p/2)

(¨
(Rd\BtN )×R

|ξ|γ |∇(htN − ht)|2
)p/2

.R,t oN (1).

(6.62)

Applying Lemma 6.2.10 and expanding the square, the L2(Rd×R, |ξ|γdxdξ)-norm of ∇(htN,η−ht)
outside the small balls BtN can be decomposed as follows,

¨
(Rd\BtN )×R

|ξ|γ |∇(htN,η − ht)|2 = EN,η(t)−
¨
BtN×R

|ξ|γ |∇(htN,η − ht)|2

= EN (t) +
gs(η)

N
−
¨
BtN×R

|ξ|γ |∇(htN,η − ht)|2 + o(N)
η (1)

= EN (t) +
gs(η)

N
−
¨
BtN×R

|ξ|γ |∇htN,η|2 −
¨
BtN×R

|ξ|γ |∇ht|2

+ 2

¨
BtN×R

|ξ|γ∇htN,η · ∇ht + o(N)
η (1).

Applying Proposition 6.2.11 in the form of EN (t) .t oN (1), and using assumption (6.40), this turns
into ¨

(Rd\BtN )×R
|ξ|γ |∇(htN,η − ht)|2 ≤ 2

¨
BtN×R

|ξ|γ∇htN,η · ∇ht + o
(t)
N (1) + o(N)

η (1).

Now arguing just as in (6.58), we find∣∣∣∣¨
BtN×R

|ξ|γ∇htN,η · ∇ht
∣∣∣∣ .t RtN .t oN (1),
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and hence ¨
(Rd\BtN )×R

|ξ|γ |∇(htN,η − ht)|2 ≤ o
(t)
N (1) + o(N,t)

η (1).

Passing to the limit η ↓ 0 in this inequality, and noting that ∇htN,η → ∇htN holds in the distributional
sense, the result (6.61) follows.

Step 2. Neglecting the contribution inside small balls.
The contribution inside the small balls BtN is of course infinite, since ∇htN does not belong to

L2(Rd×R, |ξ|γdxdξ). However, we show that it is small in Lploc(R
d; L2(R, |ξ|γdξ)) for p small enough.

More precisely, for any 1 ≤ p < 2d/(s+ d), we show that we have for all R > 0
ˆ
BR∩BtN

( ˆ
R
|ξ|γ |∇(htN − ht)|2

)p/2
.R,t oN (1). (6.63)

Decomposing ∇htN (x) = 1
N

∑N
i=1∇gs(x− xti,N , ξ), the triangle inequality yields(ˆ

BR∩BtN

(ˆ
R
|ξ|γ |∇htN |2

)p/2)1/p

.
1

N

N∑
i=1

(ˆ
BR

( ˆ
R
|ξ|γ |(x− xti,N , ξ)|−2(s+1)dξ

)p/2
dx

)1/p

.

A direct computation of the integral over ξ yields( ˆ
BR∩BtN

(ˆ
R
|ξ|γ |∇htN |2

)p/2)1/p

.
1

N

N∑
i=1

(ˆ
BR

|x− xti,N |
p
2

(γ+1−2(s+1))dx

)1/p

.

As for each i the integral over x ∈ BR is clearly bounded above by the same integral over x ∈ BR(xti,N ),
we obtain (ˆ

BR∩BtN

(ˆ
R
|ξ|γ |∇htN |2

)p/2)1/p

.

(ˆ
BR

|x|
p
2

(γ+1−2(s+1))dx

)1/p

,

and hence for any 1 ≤ p < 2d/(s+ d),
ˆ
BR∩BtN

(ˆ
R
|ξ|γ |∇htN |2

)p/2
.
ˆ
BR

|x|
p
2

(γ+1−2(s+1))dx =

ˆ
BR

|x|−(s+d)p/2dx .R 1,

Now, for any 1 ≤ p < 2d/(s+ d), choosing any p < q < 2d/(s+ d), the Hölder inequality yields
ˆ
BR∩BtN

(ˆ
R
|ξ|γ |∇htN |2

)p/2
≤ |BtN |1−p/q

( ˆ
BR∩BtN

( ˆ
R
|ξ|γ |∇htN |2

)q/2)p/q
.R |BtN |1−p/q .t oN (1).

The result (6.63) follows from this and from the Hölder inequality in the form
ˆ
BR∩BtN

(ˆ
R
|ξ|γ |∇ht|2

)p/2
≤ |BtN |1−p/2

(¨
BR×R

|ξ|γ |∇ht|2
)p/2

.R,t oN (1).

Step 3. Conclusion.
Combining (6.62) and (6.63) for any 1 ≤ p < 2d/(s+ d), we conclude for all R > 0,

ˆ
BR

( ˆ
R
|ξ|γ |∇(htN − ht)|2

)p/2
.R,t oN (1).

This proves ∇htN → ∇ht in Lploc(R
d; L2(R, |ξ|γdξ)) for any 1 ≤ p < 2d/(s+d). Applying the operator

−div (|ξ|γ ·) to both sides, we deduce µtN → µt in the distributional sense on Rd×R, and the conclusion
follows.
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6.2.6 Ball construction

In this section, we make the heuristics of Remark 6.2.12 rigorous, showing that for 0 ≤ s < 1 the
collection of small balls BtN (RtN ) can indeed be chosen with total radius RtN → 0 in such a way that
both conditions (6.40) and (6.41) are satisfied.

Let us describe the Jerrard-Sandier ball construction, which was first introduced in [260, 379] for
the analysis of the Ginzburg-Landau vortices (see also [382, Chapter 4]). We consider N disjoint
small balls centered at the points xti,N with equal radii (smaller than ηN/2), and we grow their radii
by the same multiplicative factor. At some point during this growth process, two (or more) balls
may become tangent to one another. We then merge them into a larger ball: if tangent balls are of
the form B(ai, ri), we merge them into B(

∑
i airi/

∑
i ri,

∑
i ri). If the resulting ball intersects other

balls, we proceed to another similar merging, and so on, until all the balls are again disjoint. Then
again we grow all the resulting radii by a multiplicative factor, etc., and we stop when the total radius
R is the one desired.

As we will see, condition (6.41) is easily checked as a direct consequence of the above ball con-
struction, so that we may focus on the validity of condition (6.40). For that purpose we need to study
integrals of the form

´
BtN (R)×R |ξ|

γ |∇htN,η|2 with R > 0. The basic tool is the following lower bound,
which is a refinement of [362, Lemma 2.2]. In the sequel, for x ∈ Rd and t > 0, we denote by B′(x, t)
the ball of radius t centered at (x, 0) in the extended space Rd × R, and we set B′t := B′(0, t).

Lemma 6.2.14 (Embryo of a lower bound). Let d − 2 < s < d, s ≥ 0, let R > r, let (zi)
k
i=1 be a

collection of points inside the ball Br, and let (zk+i)
l
i=1 be a collection of points outside the ball BR.

Then
ˆ
B′R\B′r

|ξ|γ
∣∣∣∣ k+l∑
i=1

∇gs(x− zi, ξ)
∣∣∣∣2dxdξ ≥ k2(gs(r)− gs(R)). (6.64)

The same remains true if point charges are smeared out on small spheres around them, that is, if gs is
replaced by gs,η with η < d({zi}k+l

i=1, BR \Br). In particular, for any z1, R > η > 0, and any collection
(zi)

1+l
i=2 of points outside the ball B(z1, R+ η),

ˆ
B′(z1,R)

|ξ|γ
∣∣∣∣ 1+l∑
i=1

∇gs,η(x− zi, ξ)
∣∣∣∣2dxdξ ≥ gs(η)− gs(R). (6.65)

♦

Proof. We split the proof into two steps.

Step 1. Explicit value of cd,s.
We claim that the normalization constant cd,s for the Riesz kernel gs is given by the following

formula, in terms of the beta function B(a, b) = Γ(a)Γ(b)/Γ(a + b) and of the measure ωd−1 of the
unit sphere of dimension d− 1,

cd,s = sωd−1 B

(
s+ 2− d

2
,
d

2

)
. (6.66)

Integrating the equality −div (|ξ|γ∇gs) = δ0 on the infinite cylinder C0 := B1 ×R in Rd ×R, we
find by integration by parts

− 1 =

ˆ
C0

div (|ξ|γ∇gs) =

ˆ
∂C0

|ξ|γn · ∇gs

=

ˆ ∞
−∞

ˆ
∂B1

|ξ|γ∂rgs(u, ξ)dσ(u)dξ = 2ωd−1

ˆ ∞
0

ξγ∂rgs(1, ξ)dξ.
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Since by definition gs(x, ξ) = c−1
d,s(|x|

2 + |ξ|2)−s/2, computing the radial derivative yields

cd,s = 2sωd−1

ˆ ∞
0

ξγ(1 + ξ2)−s/2−1dξ = sωd−1

ˆ ∞
0

ξ(γ−1)/2(1 + ξ)−s/2−1dξ.

The result (6.66) then easily follows using the formula B(a, b) =
´∞

0 ta−1(1 + t)−a−bdt for all a, b > 0.

Step 2. Conclusion.
Set µk,l :=

∑k+l
i=1 δzi . The Cauchy-Schwarz inequality yields

ˆ
B′R\B′r

|ξ|γ |∇gs ∗ µk,l|2 =

ˆ R

r
dt

ˆ
∂B′t

|ξ|γ |∇gs ∗ µk,l|2

≥
ˆ R

r
dt

( ˆ
∂B′t

|ξ|γ
)−1(ˆ

∂B′t

|ξ|γn · ∇gs ∗ µk,l
)2

,

where for all r ≤ t ≤ R an integration by parts then leads to
ˆ
∂B′t

|ξ|γn · ∇gs ∗ µk,l =

ˆ
B′t

div (|ξ|γ∇gs ∗ µk,l) = −µk,l(Bt) = −k,

hence
ˆ
B′R\B′r

|ξ|γ |∇gs ∗ µk,l|2 ≥ k2

ˆ R

r
dt

(ˆ
∂B′t

|ξ|γ
)−1

.

In order to compute this last integral, we use spherical coordinates,

ˆ
∂B′t

|ξ|γ = ts+1ωd−1

ˆ π

0
(sin θ)d−1| cos θ|γdθ = ts+1ωd−1

ˆ 1

−1
(1− u2)(d−2)/2|u|γdu

= ts+1ωd−1

ˆ 1

0
(1− u)(d−2)/2u(γ−1)/2du = ts+1ωd−1 B

(
s+ 2− d

2
,
d

2

)
,

where the last equality follows from the formula B(a, b) =
´ 1

0 t
a−1(1 − t)b−1dt for all a, b > 0. By

Step 1, this last expression is nothing but ts+1cd,s/s, so that we may conclude

ˆ
B′R\B′r

|ξ|γ |∇gs ∗ µk,l|2 ≥ k2sc−1
d,s

ˆ R

r
t−s−1dt = k2c−1

d,s(r
−s −R−s) = k2(gs(r)− gs(R)).

With this result at hand, arguing as in [382, Chapter 4], we may now deduce the following lower
bound for the energy on the balls of the collection BtN (R). For logarithmic interactions (thus in
particular for the Ginzburg-Landau vortices, as treated in [382, Chapter 4]), a particularly simple
additive structure shows up, simplifying computations a lot; here we show that the same result still
holds for all s ≤ 1.

Proposition 6.2.15 (Lower bound). Let d− 2 < s < d, s ≥ 0, and let R > 0. If s ≤ 1, then, for all
0 < η < ηN ∧ (R/N),

ˆ
BtN (R)×R

|ξ|γ |∇htN,η|2 ≥
1

N
(gs(η)− gs(R/N)). (6.67)

♦
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Proof. For all R > 0, we prove the following: if B(y, r) is a ball belonging to the collection BtN (R)
and containing n of the particles (xti,N )Ni=1, then

ˆ
B′(y,r)

|ξ|γ |∇htN,η|2 ≥
n

N2
(gs(η)− gs(R/N)). (6.68)

The desired result (6.67) follows by summing the inequalities (6.68) associated with each ball B(y, r)
of the collection BtN (R), and noting that B′(y, r) ⊂ B(y, r) × R. We prove (6.68) by induction: we
first show that it holds when B(y, r) contains only one particle xti,N , and then that it is preserved
through the growth process.

First, suppose that B(y, r) is a ball of BtN (R) and contains only one particle xti,N . By definition
we must have B(y, r) = B(xti,N , r) and xtj,N /∈ B(y, r + η) for all j 6= i. Lemma 6.2.14 in the form
of (6.65) then yields ˆ

B′(y,r)
|ξ|γ |∇htN,η|2 ≥

1

N2
(gs(η)− gs(r)).

This proves (6.68) when B(y, r) contains only one particle xti,N , since in that case we have by definition
r = R/N .

Now we need to prove that (6.68) is preserved by the growth process, i.e. that it remains true
through both expansion and merging of balls. On the one hand, suppose that, for some R > 0,
B(y, r) is a ball of BtN (R) for which (6.68) holds, and suppose that B(y, r) inflates into B(y, αr)
without merging when passing from BtN (R) to BtN (αR) for some α > 1. Let n denote the number
of particles in B(y, r). By definition, B(y, αr) contains the same number of particles, and the choice
of η small enough ensures that no particle may lie in the annulus B(y, αr + η) \ B(y, αr). Hence,
combining (6.68) for B(y, r) and Lemma 6.2.14 in the form (6.64), we obtain

ˆ
B′(y,αr)

|ξ|γ |∇htN,η|2 =

ˆ
B′(y,r)

|ξ|γ |∇htN,η|2 +

ˆ
B′(y,αr)\B′(y,r)

|ξ|γ |∇htN,η|2

≥ n

N2
(gs(η)− gs(R/N)) +

n2

N2
(gs(r)− gs(αr)).

Noting that by definition r = nR/N , using the choice s ≤ 1, and noting that gs(R/N)−gs(αR/N) ≥ 0,
we deduce

ˆ
B′(y,αr)

|ξ|γ |∇htN,η|2 ≥
n

N2
(gs(η)− gs(R/N)) +

n2−s

N2
(gs(R/N)− gs(αR/N))

≥ n

N2
(gs(η)− gs(R/N)) +

n

N2
(gs(R/N)− gs(αR/N))

=
n

N2
(gs(η)− gs(αR/N)),

so that B(y, αr) also satisfies (6.68).
On the other hand, suppose that B(yi, ri), i = 1, . . . , k, are k disjoint balls of BtN (R−) for some

R > 0, suppose that each of them satisfies (6.68), and suppose that these balls are merged by the
growth process into a larger ball B(y, r), which is then disjoint of all other balls of the collection
BtN (R). Denoting by ni the number of points in B(yi, ri), we then find

ˆ
B′(y,r)

|ξ|γ |∇htN,η|2 ≥
k∑
i=1

ˆ
B′(yi,ri)

|ξ|γ |∇htN,η|2 ≥
1

N2

( k∑
i=1

ni

)
(gs(η)− gs(R/N)),

so that B(y, r) also satisfies (6.68). This completes the proof.
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We are now in position to prove that both conditions (6.40) and (6.41) can be satisfied whenever
s < 1, thus finishing the proof of Theorem 6.1.5.

Corollary 6.2.16 (Checking conditions (6.40) and (6.41)). Let d− 2 < s < d, s ≥ 0 with s < 1. If
R 7→ BtN (R) is constructed as above, then the conditions (6.40) and (6.41) are automatically satisfied
for any choice N−(1−s)/s � RtN � 1 if 0 < s < 1, and for any choice e−NoN (1) .t RtN � 1 if
s = 0. ♦

Proof. On the one hand, Proposition 6.2.15 gives

lim
η↓0

( ˆ
BtN (R)×R

|ξ|γ |∇htN,η|2 −
1

N
gs(η)

)
≥ − 1

N
gs(R/N).

On the other hand, since by definition
⋃N
i=1B(xti,N , R/N) ⊂ BtN (R), we may estimate

1

N2

N∑
i=1

g+
s (d(xti,N , ∂BtN (R))) .

1

N
g+
s (R/N).

Therefore, both conditions (6.40) and (6.41) are satisfied if we choose RtN such that 1
N g

+
s (RtN/N)� 1,

and the conclusion follows.
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Chapter 7

Well-posedness for mean-field evolutions
arising in superconductivity

In Chapter 8 below, we establish mean-field limit results for the evolution of the supercurrent
density in a (2D section of a) type-II superconductor with pinning and with imposed electric current.
Since in certain regimes the corresponding mean-field equations appear to be new in the literature, we
establish in the present chapter a complete well-posedness theory: we prove global existence results,
consider general vortex-sheet initial data, and investigate the uniqueness and regularity properties
of the solution. For some choice of parameters, the equation under investigation coincides with the
so-called lake equation from 2D shallow water fluid dynamics, and our analysis then leads to a new
existence result for rough initial data.

This chapter corresponds to the article [159], to the exception of the global results for the degen-
erate case in Section 7.6, which have been obtained in collaboration with Julian Fischer.

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.1.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.1.2 Relation to previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.1.3 Notions of weak solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
7.1.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
7.1.5 Perspectives and open questions . . . . . . . . . . . . . . . . . . . . . . . . . . 340
7.1.6 Roadmap to the proof of the main results . . . . . . . . . . . . . . . . . . . . . 342

7.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
7.3 Local-in-time existence of smooth solutions . . . . . . . . . . . . . . . . . . . . . . . . 355
7.4 Global existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

7.4.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
7.4.2 Propagation of regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
7.4.3 Global existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

7.5 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
7.6 Degenerate parabolic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

333





7.1 Introduction

7.1.1 General overview

We study the well-posedness of the following two evolution models coming from the mean-field
limit equations of Ginzburg-Landau vortices: first, for α ≥ 0, β ∈ R, we consider the “incompressible”
flow

∂tv = ∇p−α(Ψ + v) curl v +β(Ψ + v)⊥curl v, div (av) = 0, in R+ × R2, (7.1)

and second, for 0 ≤ λ <∞, α > 0, β ∈ R, we consider the “compressible” flow

∂tv = λ∇(a−1 div (av))− α(Ψ + v) curl v +β(Ψ + v)⊥curl v, in R+ × R2, (7.2)

with v : R+ × R2 → R2 and curl v ≥ 0, where Ψ : R2 → R2 is a given forcing vector field, and where
the weight a := eh is determined by a given “pinning potential” h : R2 → R. More precisely, we
investigate existence, uniqueness, and regularity, both locally and globally in time, for the associated
Cauchy problems; we also consider vortex-sheet initial data, and we study the degenerate case λ = 0
as well. Note that the incompressible model (7.1) can be seen as the limiting case λ = ∞ of the
family of compressible models (7.2). As established in Chapter 8 below, these equations are obtained
in certain regimes as the mean-field evolution of the supercurrent density in a (2D section of a) type-
II superconductor described by the 2D Ginzburg-Landau equation with pinning and with imposed
electric current — but without gauge and in whole space, for simplicity. In this context, the cases
λ =∞, 0 < λ <∞, and λ = 0 correspond respectively to a low, an intermediate, and a high vortex
density regime. Note that in the parabolic case α > 0, β = 0, the incompressible model (7.1) can
be seen as a Wasserstein gradient flow for the vorticity curl v, but a common gradient flow structure
seems to be missing for the whole family of equations (7.2) with λ ∈ [0,∞]. In the conservative case
α = 0 with Ψ = 0, the incompressible model (7.1) takes the form of the so-called lake equation from
2D shallow water fluid dynamics [217, p.235] (see also [96, 97]), which reduces to the usual 2D Euler
equation if the weight a is constant.

7.1.2 Relation to previous works

In the simpler parabolic case without pinning and forcing, α = 1, β = 0, a = 1, Ψ = 0, equa-
tion (7.1) for the mean-field supercurrent density v takes on the following guise,

∂tv = ∇p− v curl v, div v = 0, in R+ × R2, (7.3)

or alternatively, in terms of the mean-field vortex density m := curl v ≥ 0, noting that the incom-
pressibility constraint div v = 0 allows to write v = ∇⊥4−1 m,

∂tm = div (m∇(−4)−1m), in R+ × R2. (7.4)

This simplified model actually describes the mean-field limit of the gradient-flow evolution of any
particle system with Coulomb interactions (see indeed (6.7) in Chapter 6). As such, it is related
to nonlocal aggregation and swarming models, which have attracted a lot of mathematical interest
in recent years (see e.g. [55, 102] and the references therein); these models consist in replacing the
Coulomb potential (−4)−1 by a convolution with a more general kernel corresponding to an attractive
(rather than repulsive) nonlocal interaction. Equation (7.4) was first studied by Lin and Zhang [304],
who established global existence for vortex-sheet initial data m |t=0 ∈ P(R2), and uniqueness in some
Zygmund space. To prove global existence for such rough initial data, they proceed by regularization
of the data, then pass to the limit in the equation using the compactness given by some very strong a
priori estimates obtained by ODE type arguments. As our main source of inspiration, their approach is
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described in more detail in the sequel. When viewing (7.4) as a mean-field model for the motion of the
2D Ginzburg-Landau vortices in a superconductor, there is also interest in sign-changing solutions and
the correct model then rather takes on the form of the following Chapman-Rubinstein-Schatzman-E
equation [173, 111] (see also the discussions in Sections 6.1.3 and 7.1.5),

∂tm = div (|m|∇(−4)−1m), in R+ × R2, (7.5)

for which global existence and uniqueness have been investigated in [157, 316]. In [18, 17], using
an energy approach where the equation is seen as a formal gradient flow in the Wasserstein space of
probability measures à la Otto [353], made rigorous by the minimizing movement approach of Jordan,
Kinderlehrer, and Otto [266] (see also [16]), analogues of equations (7.4)–(7.5) were studied in a 2D
bounded domain, taking into account the possibility of mass entering or exiting the domain. In the
case of nonnegative vorticity m ≥ 0, essentially the same existence and uniqueness results as those
by Lin and Zhang are established in that setting in [18]. In the case m ≥ 0 on the whole plane, still
a different approach was developed by Serfaty and Vázquez [398], where equation (7.4) is obtained
as a limit of nonlocal diffusions, and where uniqueness is further established for bounded solutions
using transport arguments à la Loeper [307]. Note that no uniqueness is expected to hold for general
measure solutions of (7.4) (see [18, Section 8]). In the sequel, we focus on the case m ≥ 0 on the
whole plane R2.

In the context of superfluidity, a conservative counterpart of the usual parabolic Ginzburg-Landau
equation is used as a mesoscopic model, and there is also strong physical interest in rather considering
the corresponding “mixed-flow” (or “complex”) Ginzburg-Landau equation. The above mean-field
equation for the supercurrent density (7.3) is then replaced by the following, for α ≥ 0, β ∈ R,

∂tv = ∇p−αv curl v +βv⊥ curl v, div v = 0, in R+ × R2. (7.6)

Note that in the conservative case α = 0, this equation is equivalent to the 2D Euler equation,
as is clear from the identity v⊥ curl v = (v ·∇) v−1

2∇|v|
2. This model (7.6) is thus seen as a linear

interpolation between the gradient-flow equation (7.4) (obtained for α = 1, β = 0) and its conservative
counterpart that is the 2D Euler equation (obtained for α = 0, β = 1). The theory for the 2D Euler
equation has been well-developed for a long time: global existence for vortex-sheet initial data is due
to Delort [143], while the only known uniqueness result, due to Yudovich [427], holds in the class of
bounded vorticity (see also [45] and the references therein). Regarding the general model (7.6), global
existence and uniqueness results for smooth solutions are easily obtained by standard methods (see
e.g. [116]). Although not surprising, global existence for this model is further established here for
vortex-sheet initial data, as well as uniqueness in the class of bounded vorticity.

The first rigorous deductions of such (macroscopic) mean-field models (7.6) from the (mesoscopic)
2D Ginzburg-Landau equation are due to [281, 263, 395]. However, as discovered by Serfaty [395], in
some regimes with α > 0, the limiting model (7.6) is no longer correct, and must be replaced by the
following “compressible” flow,

∂tv = λ∇(div v)− αv curl v +βv⊥ curl v, in R+ × R2, (7.7)

for some λ > 0. We further show in Chapter 8 that the degenerate case λ = 0 also appears as the
correct mean-field evolution in some other regimes. To our knowledge, this compressible model is
completely new in the literature. In [395, Appendix B], only local-in-time existence and uniqueness
of smooth solutions are proven in the non-degenerate case λ > 0, using a standard iterative method.
In the present chapter, in the parabolic regime α = 1, β = 0, global existence with vortex-sheet
data is further established in the non-degenerate case λ > 0, while in the degenerate case λ = 0
global existence with bounded data is obtained by exploiting the particular scalar structure of the
corresponding equation.
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The general equations (7.1)–(7.2) are derived in some regimes in Chapter 8 as the mean-field
evolution of the supercurrent density v in the 2D Ginzburg-Landau model with pinning and with
imposed electric current, where the forcing Ψ is then decomposed as Ψ := F⊥ − ∇⊥h in terms of
the pinning force −∇h and of some vector field F : R2 → R2 related to the imposed electric current.
These equations (7.1)–(7.2) are seen as inhomogeneous versions of (7.6)–(7.7) with forcing. Since
they are new in the literature (except in the conservative incompressible case discussed below), we
wish to provide in the present chapter a detailed discussion of local and global existence, uniqueness,
and regularity issues.

In the conservative regime α = 0, β = 1, the incompressible model (7.1) takes the form of the fol-
lowing inhomogeneous version of the 2D Euler equation: using the identity v⊥ curl v = (v ·∇) v−1

2∇|v|
2,

and setting p̃ := p−1
2 |v|

2,

∂tv = ∇p̃ + Ψ⊥curl v +(v ·∇) v, div (av) = 0, in R+ × R2. (7.8)

In the context of 2D fluid mechanics, this conservative equation is known as the lake equation [217,
p.235] (see also [96, 97]): the pinning weight a corresponds to the effect of a varying depth in shallow
water [351], while the forcing Ψ is similar to a background flow. This equation has been studied in
a bounded domain by Levermore, Oliver, and Titi [297, 298, 351] (see also [87]), who established
global existence for L2 initial vorticity, as well as uniqueness in the class of bounded vorticity. In the
present paper, we improve on these previous results by establishing for equation (7.8) on the whole
plane R2 a global existence result for initial data in Lq(R2) with q > 1. It should be clear from
the Delort type identity (7.11) below that inhomogeneities give rise to important difficulties: indeed,
for h non-constant, the first term −1

2 |v|
2∇⊥h in (7.11) does not vanish and is clearly not weakly

continuous as a function of v (although the second term is, as in Delort’s classical theory for the 2D
Euler equation [143]). Because of this difficulty and of the lack of strong enough a priori estimates
for the conservative equation (7.8), we do not manage to reach vortex-sheet initial data in that case,
as opposed to the simpler situation of the 2D Euler equation.

7.1.3 Notions of weak solutions

We first introduce the vorticity formulation of equations (7.1) and (7.2), which will be more
convenient to work with. Setting m := curl v and d := div (av), each of these equations may be
rewritten as a nonlinear nonlocal transport equation for the vorticity m,

∂tm = div
(

m
(
α(Ψ + v)⊥ + β(Ψ + v)

))
, curl v = m, div (av) = d, (7.9)

where in the incompressible case (7.1) we have d := 0, while in the compressible case (7.2) d is the
solution of the following transport-diffusion equation (which is highly degenerate as λ = 0),

∂td−λ4d +λ div (d∇h) = div
(
am
(
− α(Ψ + v) + β(Ψ + v)⊥

))
. (7.10)

Let us now precisely define our notions of weak solutions for (7.1) and (7.2).

Definition 7.1.1. Let h,Ψ ∈ L∞(R2), T > 0, and set a := eh.

(a) Given v◦ ∈ L2
loc(R2)2 with m◦ = curl v◦ ∈M+

loc(R
2) and d◦ := div (av◦) ∈ L2

loc(R2), we say that v
is a weak solution of (7.2) on [0, T )×R2 with initial data v◦, if v ∈ L2

loc([0, T )×R2)2 satisfies m :=
curl v ∈ L1

loc([0, T );M+
loc(R

2)), d := div (av) ∈ L2
loc([0, T ); L2(R2)), |v|2 m ∈ L1

loc([0, T ); L1(R2))
(hence also mv ∈ L1

loc([0, T ) × R2)2), and satisfies (7.2) in the distributional sense, that is, for
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all ψ ∈ C∞c ([0, T )× R2)2,
ˆ
Rd
ψ(0, ·) · v◦+

¨
R+×Rd

v · ∂tψ

= λ

¨
R+×Rd

a−1 d div ψ +

¨
R+×Rd

ψ · (α(Ψ + v)− β(Ψ + v)⊥) m .

(b) Given v◦ ∈ L2
loc(R2)2 with m◦ := curl v◦ ∈ M+

loc(R
2) and div (av◦) = 0, we say that v is a

weak solution of (7.1) on [0, T ) × R2 with initial data v◦, if v ∈ L2
loc([0, T ) × R2)2 satisfies

m := curl v ∈ L1
loc([0, T );M+

loc(R
2)), |v|2 m ∈ L1

loc([0, T ); L1(R2)2) (hence also mv ∈ L1
loc([0, T )×

R2)2), div (av) = 0 in the distributional sense, and satisfies the vorticity formulation (7.9) in the
distributional sense, that is, for all ψ ∈ C∞c ([0, T )× R2),

ˆ
Rd
ψ(0, ·) m◦+

¨
R+×Rd

m ∂tψ =

¨
R+×Rd

∇ψ · (α(Ψ + v)⊥ + β(Ψ + v)) m .

(c) Given v◦ ∈ L2
loc(R2)2 with m◦ := curl v◦ ∈ M+

loc(R
2) and div (av◦) = 0, we say that v is a

very weak solution of (7.1) on [0, T ) × R2 with initial data v◦, if v ∈ L2
loc([0, T ) × R2)2 satisfies

m := curl v ∈ L1
loc([0, T );M+

loc(R
2)), div (av) = 0 in the distributional sense, and satisfies, for all

ψ ∈ C∞c ([0, T )× R2),
ˆ
Rd
ψ(0, ·) m◦+

¨
R+×Rd

m ∂tψ =

¨
R+×Rd

(α∇ψ + β∇⊥ψ) ·
(

Ψ⊥m +
1

2
|v|2∇h

)
−
¨

R+×Rd
aSv : ∇

(
a−1(α∇ψ + β∇⊥ψ)

)
,

in terms of the stress-energy tensor Sv := v⊗ v−1
2 Id |v|2. ♦

Remarks 7.1.2.
(i) Weak solutions of (7.2) are defined directly from (7.2), and satisfy in particular the vortic-

ity formulation (7.9)–(7.10) in the distributional sense. Regarding weak solutions of (7.1),
they are rather defined in terms of the vorticity formulation (7.9), in order to avoid com-
pactness and regularity issues related to the pressure p. Nevertheless, if v is a weak solution
of (7.1) in the above sense, then under mild regularity assumptions we may use the formula
v = a−1∇⊥(div a−1∇)−1 m to deduce that v actually satisfies (7.1) in the distributional sense
on [0, T )× R2 for some distribution p (cf. Lemma 7.2.8 below for detail).

(ii) The definition (c) of a very weak solution of (7.1) is motivated as follows (see also the notion
of “general weak solutions” of (7.4) in [304]). In the purely conservative case α = 0, there are
too few a priori estimates to make sense of the product mv. As is now common in 2D fluid
mechanics (see e.g. [116]), the idea is to reinterpret this product in terms of the stress-energy
tensor Sv, using the following identity: given div (av) = 0, we have for smooth enough fields

mv = −1

2
|v|2∇⊥h− a−1(div (aSv))⊥, (7.11)

where the right-hand side now makes sense in L1
loc([0, T );W−1,1

loc (R2)2) whenever v ∈ L2
loc([0, T )×

R2)2. In particular, if m ∈ Lploc([0, T ) × R2) and v ∈ Lp
′

loc([0, T ) × R2) for some 1 ≤ p ≤ ∞,
1
p + 1

p′ = 1, then the product mv makes perfect sense and the above identity (7.11) holds
in the distributional sense, hence in that case v is a weak solution of (7.1) whenever it is a
very weak solution. In reference to Delort’s work [143], identity (7.11) is henceforth called an
“(inhomogeneous) Delort type identity”. ♦
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7.1.4 Main results

Global existence and regularity results are summarized in the following theorem. Our approach
relies on proving a priori estimates for the vorticity m in Lq(R2) for some q > 1. For the compress-
ible model (7.2), such estimates are only obtained in the parabolic regime, hence our limitation to
that setting. In parabolic cases, particularly strong estimates are available, and existence is then
established even for vortex-sheet initial data, thus completely extending the known theory for (7.4)
(see [304, 398]). Note that the additional exponential growth in the boundedness effect (7.12) below
is only due to the forcing Ψ. In the conservative incompressible case, the situation is the most delicate
because of a lack of strong enough a priori estimates, and only existence of very weak solutions is
expected and proven. As is standard in 2D fluid mechanics (see e.g. [116]), the natural space for the
solution v is L∞loc(R+; v̄◦ + L2(R2)2) for a given smooth reference field v̄◦ : R2 → R2.

Theorem 7.1.3 (Global existence). Let λ > 0, α ≥ 0, β ∈ R, h,Ψ ∈ W 1,∞(R2)2, and set a := eh.
Let v̄◦ ∈ W 1,∞(R2)2 be some reference map with m̄◦ := curl v̄◦ ∈ P ∩ Hs0(R2) for some s0 > 1,
and with either div (av̄◦) = 0 in the case (7.1), or d̄

◦
:= div (av̄◦) ∈ Hs0(R2) in the case (7.2). Let

v◦ ∈ v̄◦ + L2(R2)2, with m◦ := curl v◦ ∈ P(R2), and with either div (av◦) = 0 in the case (7.1), or
d◦ := div (av◦) ∈ L2(R2) in the case (7.2). The following hold:
(i) Parabolic compressible case (that is, (7.2) with α > 0, β = 0):

There exists a weak solution v ∈ L∞loc(R+; v̄◦ + L2(R2)2) on R+ × R2 with initial data v◦, with
m := curl v ∈ L∞(R+;P(R2)) and d := div (av) ∈ L2

loc(R+; L2(R2)), and with

‖mt‖L∞ ≤ (αt)−1 + Cα−1eCt, for all t > 0, (7.12)

where the constant C > 0 depends only on an upper bound on α, |β|, and ‖(h,Ψ)‖W 1,∞. More-
over, if m◦ ∈ Lq(R2) for some q > 1, then m ∈ L∞loc(R+; Lq(R2)).

(ii) Parabolic incompressible case (that is, (7.1) with α > 0, β = 0, or with α > 0, β ∈ R, h
constant):
There exists a weak solution v ∈ L∞loc(R+; v̄◦ + L2(R2)2) on R+ × R2 with initial data v◦, with
m := curl v ∈ L∞(R+;P(R2)), and with the boundedness effect (7.12). Moreover, if m◦ ∈ Lq(R2)
for some q > 1, then m ∈ L∞loc(R+; Lq(R2)) ∩ Lq+1

loc (R+; Lq+1(R2)).
(iii) Mixed-flow incompressible case (that is, (7.1) with α > 0, β ∈ R):

If m◦ ∈ Lq(R2) for some q > 1, there exists a weak solution v ∈ L∞loc(R+; v̄◦ + L2(R2)2) on
R+×R2 with initial data v◦, and with m := curl v ∈ L∞loc(R+;P∩Lq(R2))∩Lq+1

loc (R+; Lq+1(R2)).
(iv) Conservative incompressible case (that is, (7.1) with α = 0, β ∈ R):

If m◦ ∈ Lq(R2) for some q > 1, there exists a very weak solution v ∈ L∞loc(R+; v̄◦ + L2(R2)2)
on R+ × R2 with initial data v◦, and with m := curl v ∈ L∞loc(R+;P ∩ Lq(R2)). This is a weak
solution whenever q ≥ 4/3.

We set d◦, d̄
◦
,d := 0 in the incompressible case (7.1). If in addition m◦,d◦ ∈ L∞(R2), then we further

have v ∈ L∞loc(R+; L∞(R2)2), m ∈ L∞loc(R+; L1 ∩L∞(R2)), and d ∈ L∞loc(R+; L2 ∩L∞(R2)). If h, Ψ,
v̄◦ ∈W s+1,∞(R2)2 and m◦, m̄◦, d◦, d̄

◦ ∈ Hs(R2) for some s > 1, then v ∈ L∞loc(R+; v̄◦ +Hs+1(R2)2)
and m,d ∈ L∞loc(R+;Hs(R2)). If h, Ψ, v◦ ∈ Cs+1(R2)2 for some non-integer s > 0, then v ∈
L∞loc(R+;Cs+1(R2)2). ♦

Regarding the regimes that are not described in the above (that is, the mixed-flow compressible
case as well as the a priori unphysical case α < 0), only local-in-time existence is proven for smooth
enough initial data (stated here in Sobolev spaces). Note that for the mixed-flow degenerate case
λ = 0, α > 0, β 6= 0, even local-in-time existence remains an open problem.

Theorem 7.1.4 (Local existence). Given some s > 1, let h,Ψ, v̄◦ ∈ W s+1,∞(R2)2, set a := eh, and
let v◦ ∈ v̄◦ + Hs+1(R2)2 with m◦ := curl v◦, m̄◦ := curl v̄◦ ∈ Hs(R2), and with either div (av◦) =
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div (av̄◦) = 0 in the case (7.1), or d◦ := div (av◦), d̄
◦

:= div (av̄◦) ∈ Hs(R2) in the case (7.2). The
following hold:

(i) Incompressible case (that is, (7.1) with α, β ∈ R):
There exists T > 0 and a weak solution v ∈ L∞loc([0, T ); v̄◦ + Hs+1(R2)2) on [0, T ) × R2 with
initial data v◦.

(ii) Non-degenerate compressible case (that is, (7.2) with α, β ∈ R, λ > 0):
There exists T > 0 and a weak solution v ∈ L∞loc([0, T ); v̄◦ + Hs+1(R2)2) on [0, T ) × R2 with
initial data v◦.

(iii) Degenerate parabolic compressible case (that is, (7.2) with α ∈ R, β = λ = 0):
If Ψ, v̄◦ ∈ W s+2,∞(R2)2 and m◦, m̄◦ ∈ Hs+1(R2), there exists T > 0 and a weak solution
v ∈ L∞loc([0, T ); v̄◦ + Hs+1(R2)2) on [0, T ) × R2 with initial data v◦, and with m := curl v ∈
L∞loc([0, T );Hs+1(R2)). ♦

We now turn to uniqueness issues. No uniqueness is expected to hold for general weak measure
solutions of (7.1), as it is already known to fail for the 2D Euler equation (see e.g. [45] and the
references therein), and as it is also expected to fail for equation (7.4) (see [18, Section 8]). In both
cases, as already explained, the only known uniqueness results are in the class of bounded vorticity. For
the general incompressible model (7.1), similar arguments are still available and the same uniqueness
result holds. For the compressible model (7.2), we only obtain uniqueness in a class with stronger
regularity, as a consequence of a weak-strong principle stated in Proposition 7.5.1.

Theorem 7.1.5 (Uniqueness). Let λ ≥ 0, α, β ∈ R, T > 0, h,Ψ ∈ W 1,∞(R2), and set a := eh. Let
v◦ : R2 → R2 with curl v◦ ∈ P(R2), and with either div (av◦) = 0 in the case (7.1), or div (av◦) ∈
L2(R2) in the case (7.2).

(i) Incompressible case (that is, (7.1) with α, β ∈ R):
There exists at most a unique weak solution v on [0, T )×R2 with initial data v◦, in the class of
all w’s such that curlw ∈ L∞loc([0, T ); L∞(R2)).

(ii) Non-degenerate compressible case (that is, (7.2) with α, β ∈ R, λ > 0):
There exists at most a unique weak solution v on [0, T )×R2 with initial data v◦, in the class in
the class L2

loc([0, T ); v◦+ L2(R2)2) ∩ L∞loc([0, T );W 1,∞(R2)2). ♦

In the degenerate parabolic case λ = 0, α = 1, β = 0, we obtain the following global well-posedness
result in collaboration with Julian Fischer. The proof is of a very different nature from the other
cases, exploiting the explicit scalar structure of the solution v.

Theorem 7.1.6 (Degenerate parabolic compressible case). Let λ = β = 0, α = 1, let v◦,Ψ ∈
W 1,∞(R2)2 with curl v◦ ∈ P(R2). Then there exists a global strong solution v ∈ L∞loc(R+; L∞(R2)) ∩
L∞loc(R+; v◦+L1(R2)) of (7.2) on R+×R2 with initial data v◦ and with curl v ∈ L∞loc(R+;P∩L∞(R2)).
This solution v is unique in the class of all w’s in L∞loc(R+×R2) with curlw ∈ L∞loc(R+;P ∩L∞loc(R2)).
If in addition for some s ≥ 0 we have v◦,Ψ ∈ W 1∨s,∞(R2)2 and curl v◦, curl Ψ ∈ W s,∞(R2), then
v ∈ W 1,∞

loc (R+;W s,∞(R2)2). If for some s ≥ 1 we further have v◦,Ψ ∈ W s,∞(R2)2, curl v◦ ∈
Hs ∩W s,∞(R2), and curl Ψ ∈W s,∞(R2), then v ∈ L∞loc(R+; v◦ +Hs ∩W s,∞(R2)2). ♦

7.1.5 Perspectives and open questions

In the mixed-flow compressible case, only short-time well-posedness is proved in this chapter for
smooth initial data, although it seems very likely that a global existence result should hold as well
and that it should even be valid for vortex-sheet initial data. We are however unable to establish
Lq a priori estimates for the vorticity in that case (cf. Lemmas 7.4.2 and 7.4.3), which is precisely
the missing ingredient for a global result in our analysis. On the other hand, in the mixed-flow
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incompressible case, global existence is only established for Lq initial data with q > 1, while we
believe that vortex-sheet initial data could be considered as well. Again, the missing ingredient is
some strong enough a priori estimate on the vorticity (cf. Lemma 7.4.3(iii)). This is left as an open
problem.

Another interesting open question concerns the mixed-flow degenerate case (that is, (7.2) with
λ = 0, α > 0, β 6= 0), for which we have not even obtained any local existence result. Note that the
particular scalar structure of the parabolic degenerate equation obviously breaks down in this mixed-
flow case. Let us briefly explain why even the proof of local existence fails (in the homogeneous case
a ≡ 1, for simplicity). The vector field driving the vorticity m takes the form −α(Ψ + v)⊥−β(Ψ + v)
and has divergence αm−βd +O(1). In the mixed-flow case β 6= 0, the Hs-norm of the vorticity m for
large s is therefore a priori only controlled by the Hs-norm of d (in short time), while on the other
hand the degenerate equation (7.10) for the divergence d has no regularizing effect and the Hs-norm
of d is only controlled by the Hs+1 norm of m (in short time). This loss of derivative prevents us
from concluding any iterative scheme, and it is unclear to us how to get around this difficulty. In
contrast, in the parabolic case β = 0, the divergence of the vector field driving the vorticity takes the
form αm +O(1), which only involves the vorticity itself.

For the incompressible model (7.1), we have established uniqueness only in the class of bounded
vorticity — in parallel to the known results for the 2D Euler equation [427] and for the corresponding
gradient flow (7.4) [398]. Proving uniqueness for the 2D Euler equation with initial vorticity in
P ∩ Lp(R2) with p > 1 is indeed a major open problem in the field (see e.g. [312, Chapter 8]), and
the corresponding uniqueness problem for (7.4) is open as well.

There is also strong interest in the corresponding mean-field models for a signed vorticity, that
is, equations (7.1) and (7.2) with m = curl v replaced by |m| = |curl v| (as in (7.5)). Even for
the simpler case of the Chapman-Rubinstein-Schatzman-E equation (7.5) the understanding is very
partial: (global) well-posedness is only known for initial vorticity either in L1 ∩W 1,p(R2) with 2 <
p < ∞, or in L1 ∩Cαb (R2) with 0 < α < 1 (cf. [157, 316]), although existence is actually expected to
hold for any initial vorticity in L1 ∩(L4/3 log L)(R2). Let us mention [17] as an inconclusive attempt
to prove such an Lp existence result for this equation. A priori Lp bounds for smooth solutions
of (7.5) are easily established, but the main difficulty comes from the fact that this equation is not
well-adapted to weak convergence methods since the absolute value | · | is not continuous with respect
to the weak-Lp topology. Since only a little compactness is missing, it seems that the existence result
could be reached for any initial vorticity in L1 ∩W ε,4/3(R2) for any ε > 0; this improvement of the
available results [316] could be pursued in a future work. We believe that a deeper Lp understanding
of this equation would be of great help to solve the corresponding mean-field limit problem (6.25).

In the context of (edge) dislocations, it is also relevant to consider a (±1) charged particle system
where particles of opposite charge must not annihilate but can somehow cross each other. It leads to a
simpler version of equation (7.5) where the evolution of the densities of positive and of negative charges
split. This is sometimes called the Groma-Balogh model [219, 220], and well-posedness questions are
studied in [311], where existence is established for initial densities in L1 ∩L4(R2), and uniqueness for
bounded densities. It seems to us that an existence result in the optimal space L1 ∩(L4/3 log L)(R2) is
within reach and can be further generalized to the case of other Coulomb-like potentials, which could
be the object of a future work. Understanding this equation does however not lead to any progress
at the level of the original equation (7.5), for which the main problem remains the understanding of
the structure of the mass sink.

Finally note that in Chapter 8 the mean-field models (7.1)–(7.2) are derived from a mesoscopic
2D Ginzburg-Landau model for which we neglect for simplicity the coupling with electromagnetism.
Rather starting from the physically relevant version with magnetic gauge, no new difficulty is expected
to occur at the level of the mean-field limit result, but the corresponding mean-field equations then
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need to be modified and take the form given in Section 8.2.3. Global well-posedness for these more
complex mean-field models is then a natural question that we do not pursue here.

7.1.6 Roadmap to the proof of the main results

To ease the presentation, various independent PDE results needed in the proofs are isolated in
Section 7.2, including general a priori estimates for transport and transport-diffusion equations, some
global elliptic regularity results, as well as critical potential theory estimates. The interest of such
estimates for our purposes should be already clear from a quick look at the vorticity formulation (7.9)–
(7.10). To the best of our knowledge, most of these PDE results are not standard and cannot be
found in this form in the literature.

We start in Section 7.3 with the local existence of smooth solutions, summarized in Theorem 7.1.4
above. In the non-degenerate case λ > 0, the proof follows from a standard iterative scheme as
in [395, Appendix B]. It is performed here in Sobolev spaces, but could be done in Hölder spaces as
well. In the degenerate parabolic case λ = β = 0, α > 0, a similar argument holds, but requires a
more careful analysis of the iterative scheme.

In Section 7.4 we then turn to global existence. In order to pass from local to global existence,
we prove estimates for the Sobolev and Hölder norms of solutions through the norm of their initial
data. As shown in Section 7.4.2, these estimates essentially follow from an a priori control of the
vorticity in L∞(R2). In the work by Lin and Zhang [304] on the simpler model (7.4), such an a priori
estimate for the vorticity is achieved by a direct ODE argument, using that for (7.4) the evolution of
the vorticity along characteristics can be integrated explicitly. This explicit structure is lost in the
more sophisticated models (7.1) and (7.2), but in the parabolic case we still manage to design suitable
ODE type arguments (cf. Lemma 7.4.3(iii)). This leads to the nice boundedness effect (7.12) for the
vorticity (depending on the initial mass

´
m◦ = 1 only!), which of course differs from [304] by the

additional exponential growth due to the forcing Ψ, and which is at the core of the existence results
for vortex-sheet initial data. In the mixed-flow case for the incompressible model (7.1), such ODE
arguments are no longer available, and only a weaker estimate is obtained, controlling the Lq-norm
of the solution (as well as its space-time Lq+1-norm if α > 0) through the Lq-norm of the data for all
1 < q ≤ ∞ (cf. Lemma 7.4.2). This is proven by a careful examination of the evolution of Lq-norms
of the vorticity.

In order to handle rough initial data, we regularize the data and then pass to the limit in the
equation, using the compactness given by the available a priori estimates. As already noticed, for h
non-constant, the usual Delort’s argument [143] fails (due to the first right-hand side term in (7.11)),
so that stronger compactness is needed to pass to the limit in the nonlinearity mv than in the simpler
case of the 2D Euler equation. While energy estimates only give bounds for v in v̄◦ + L2(R2)2 and
for d in L2(R2) (cf. Lemma 7.4.1), the additional estimates for the vorticity in Lq(R2), q > 1, turn
out to be crucial. As in [304], we need to make use of some compactness result due to Lions [305]
in the context of the compressible Navier-Stokes equations. The model (7.1) in the conservative case
α = 0 is however more subtle because of a lack of strong enough a priori estimates: only very weak
solutions are then expected and obtained (for initial vorticity in Lq(R2) with q > 1), and compactness
is in that case carefully proven by hand, which is one of the main achievements in this paper (cf.
Proposition 7.4.10(iv)).

Uniqueness issues are addressed in Section 7.5. Similarly as in [395, Appendix B] and in Lemma 6.1.7
in Chapter 6, weak-strong uniqueness principles for both (7.1) and (7.2) are established by energy
methods in the non-degenerate case λ > 0. In the degenerate parabolic case λ = β = 0, these energy
methods fail: an additional term needs to be added to the usual energy, and on this basis a different
weak-strong uniqueness principle is obtained. Following the modulated energy strategy developed
by Serfaty [395] and exemplified in Chapter 6 in the context of Coulomb-like interaction gradient
flows, these weak-strong principles are the key to the mean-field limit results for Ginzburg-Landau
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vortices in Chapter 8. For the incompressible model (7.1), uniqueness in the class of bounded vortic-
ity is further obtained using the approach by Serfaty and Vázquez [398] for the simpler model (7.4),
which consists in adapting the corresponding uniqueness result for the 2D Euler equation due to
Yudovich [427] together with a transport argument à la Loeper [307].

Finally, the degenerate parabolic case λ = 0, α = 1, β = 0 is treated in Section 7.6 in collaboration
with Julian Fischer. The proof consists in exploiting the scalar structure of the solution v to reduce
the equation to a Burgers type equation with additional quadratic damping and forcing terms, and
with unit initial data. Suitable ODE type arguments then allow to explicitly integrate this equation,
and the desired properties of the solution easily follow.

7.2 Preliminary results

In this section, we establish various PDE results that are needed in the sequel and are of indepen-
dent interest. As most of them do not depend on the choice of space dimension 2, they are stated here
in general dimension d ≥ 1. We first recall the following useful proxy for a fractional Leibniz rule,
which is essentially due to Kato and Ponce [269] based on ideas by Coifman and Meyer [121, 122]
(see e.g. [228, Theorem 1.4]).

Lemma 7.2.1 (Kato-Ponce inequality). Let d ≥ 1, s ≥ 0, p ∈ (1,∞), and let 1
pi

+ 1
qi

= 1
p with

pi, qi ∈ (1,∞] for i = 1, 2. Then for f, g ∈ C∞c (Rd) we have

‖fg‖W s,p . ‖f‖Lp1‖g‖W s,q1 + ‖g‖Lp2‖f‖W s,q2 . ♦

The following gives a general estimate for the evolution of the Sobolev norms of the solutions of
transport equations (see also [304, equation (7)] for a simpler version), which will be useful in the
sequel since the vorticity m indeed satisfies an equation of this form (7.9).

Lemma 7.2.2 (A priori estimate for transport equations). Let d ≥ 1, s ≥ 0, T > 0. Given a
vector field w ∈ L∞loc([0, T );W 1,∞(Rd)d) with w−W ∈ L∞loc([0, T );Hs+1(Rd)d) for some reference map
W ∈ W s+1,∞(Rd)d, let ρ ∈ L∞loc([0, T );Hs(Rd)) satisfy the transport equation ∂tρ = div (ρw) in the
distributional sense on [0, T )× Rd. Then for all t ∈ [0, T ) we have

∂t‖ρt‖Hs .s ‖(∇wt,∇W )‖L∞‖ρt‖Hs + ‖W‖W s+1,∞‖ρt‖L2

+ min
{
‖ρt‖L∞‖ div (wt −W )‖Hs + ‖ρt‖W 1,∞‖wt −W‖Hs ; ‖ρt‖L∞‖wt −W‖Hs+1

}
, (7.13)

where we use the notation ‖(∇wt,∇W )‖L∞ := ‖∇wt‖W 1,∞∨‖∇W‖W 1,∞. Moreover, for all t ∈ [0, T ),

‖ρt − ρ◦‖Ḣ−1 ≤ ‖ρ‖L∞t L2‖w‖L1
t L∞ . (7.14)

♦

Proof. We split the proof into two steps: we first prove (7.13) as a corollary of the celebrated Kato-
Ponce commutator estimate, and then we check estimate (7.14), which is but a straightforward
observation.

Step 1. Proof of (7.13).
Let s ≥ 0. The time derivative of the Hs-norm of the solution ρ can be computed as follows,

using the notation 〈∇〉 := (1 + |∇|2)1/2,

∂t‖ρt‖2Hs = 2

ˆ
(〈∇〉sρt)(〈∇〉s div (ρtwt)) = 2

ˆ
(〈∇〉sρt)[〈∇〉s div , wt]ρt + 2

ˆ
(〈∇〉sρt)(wt · ∇〈∇〉sρt)

= 2

ˆ
(〈∇〉sρt)[〈∇〉s div , wt]ρt −

ˆ
|〈∇〉sρt|2 div wt

≤ 2‖ρt‖Hs‖[〈∇〉s div , wt]ρt‖L2 + ‖(div wt)−‖L∞‖ρt‖2Hs ,
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and hence,

∂t‖ρt‖Hs ≤ ‖[〈∇〉s div , wt −W ]ρt‖L2 + ‖[〈∇〉s div ,W ]ρt‖L2 +
1

2
‖(div wt)−‖L∞‖ρt‖Hs . (7.15)

Now we recall the following forms of the Kato-Ponce commutator estimate [269, Lemma X1] (see
e.g. [299]): given p ∈ (1,∞), and 1

pi
+ 1

qi
= 1

p with pi, qi ∈ (1,∞] for i = 1, 2, we have for all
f, g ∈ C∞c (Rd),

‖[〈∇〉s∇, f ]g‖Lp .s,p,p1,p2 ‖f‖W s+1,q1‖g‖Lp1 + ‖∇f‖Lp2‖g‖W s,q2 ,

and also

‖[〈∇〉s, f ]∇g‖Lp .s,p,p1,p2 ‖f‖W s,q1‖g‖W 1,p1 + 1s≥1‖∇f‖Lp2‖g‖W s,q2 . (7.16)

Together with the Kato-Ponce inequality of Lemma 7.2.1, these estimates yield on the one hand

‖[〈∇〉s div ,W ]ρt‖L2 .s ‖W‖W s+1,∞‖ρt‖L2 + ‖∇W‖L∞‖ρt‖Hs ,

and

‖[〈∇〉s div , wt −W ]ρt‖L2 .s ‖ρt‖L∞‖wt −W‖Hs+1 + ‖∇(wt −W )‖L∞‖ρt‖Hs ,

and on the other hand,

‖[〈∇〉s div , wt −W ]ρt‖L2 ≤ ‖ρt div (wt −W )‖Hs + ‖[〈∇〉s, (wt −W )· ]∇ρt‖L2

.s ‖∇(wt −W )‖L∞‖ρt‖Hs + ‖ρt‖L∞‖div (wt −W )‖Hs + ‖ρt‖W 1,∞‖wt −W‖Hs .

Injecting these estimates into (7.15), the result (7.13) follows.

Step 2. Proof of (7.14).
Let ε > 0. We denote by û the Fourier transform of a function u on Rd. Set G := ρw, so that

the equation for ρ takes the form ∂tρ = div G. Rewriting this equation in Fourier space and testing
it against (ε+ |ξ|)−2(ρ̂t − ρ̂◦)(ξ), we find

∂t

ˆ
(ε+ |ξ|)−2|ρ̂t(ξ)− ρ̂◦(ξ)|2dξ = 2i

ˆ
(ε+ |ξ|)−2ξ · Ĝt(ξ)(ρ̂t(ξ)− ρ̂◦(ξ))dξ

≤ 2

ˆ
(ε+ |ξ|)−1|ρ̂t(ξ)− ρ̂◦(ξ)||Ĝt(ξ)|dξ,

and hence, by the Cauchy-Schwarz inequality,

∂t

(ˆ
(ε+ |ξ|)−2|ρ̂t(ξ)− ρ̂◦(ξ)|2dξ

)1/2

≤
(ˆ

|Ĝt(ξ)|2dξ
)1/2

.

Integrating in time and letting ε ↓ 0, we obtain

‖ρt − ρ◦‖Ḣ−1 ≤ ‖G‖L1
t L2 ≤ ‖ρ‖L∞t L2‖w‖L1

t L∞ ,

that is, (7.14).

As the evolution of the divergence d in the compressible model (7.2) is given by the transport-
diffusion equation (7.10), the following parabolic regularity results will be needed. While items (i)
and (ii) are classical, item (iii) is less standard (see however [40, Section 3.4] for a variant of this
estimate).
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Lemma 7.2.3 (A priori estimates for transport-diffusion equations). Let d ≥ 1, T > 0. Let g ∈
L1

loc([0, T ) × Rd)d, and let w satisfy ∂tw − 4w + div (w∇h) = div g in the distributional sense on
[0, T )× Rd with initial data w◦. The following hold:

(i) for all s ≥ 0, if ∇h ∈W s,∞(Rd)d, w ∈ L∞loc([0, T );Hs(Rd)), and g ∈ L2
loc([0, T );Hs(Rd)d), then

we have for all t ∈ [0, T ),

‖wt‖Hs ≤ CeCt(‖w◦‖Hs + ‖g‖L2
t H

s),

where the constant C depends only on an upper bound on s and ‖∇h‖W s,∞;

(ii) if ∇h ∈ L∞(Rd), w◦ ∈ L2(Rd), w ∈ L∞loc([0, T ); L2(Rd)), and g ∈ L2
loc([0, T ); L2(Rd)), then we

have for all t ∈ [0, T ),

‖wt − w◦‖Ḣ−1∩L2 ≤ CeCt(‖w◦‖L2 + ‖g‖L2
t L2),

where the constant C depends only on an upper bound on ‖∇h‖L∞;
(iii) for all 1 ≤ p, q ≤ ∞, and all dq

d+q < s ≤ q, s ≥ 1, if ∇h ∈ L∞(Rd), w ∈ Lploc([0, T ); Lq(Rd)), and
g ∈ Lploc([0, T ); Ls(Rd)), then we have for all t ∈ [0, T ),

‖w‖Lpt Lq ≤ C(‖w◦‖Lq + κ−1tκ‖g‖Lpt Ls) exp
(

inf
2<r<∞

r−1
(
1 + (r − 2)−r/2

)
(Ct)r/2

)
.

where κ := d
2(1
d + 1

q −
1
s ) > 0, and where the constant C depends only on an upper bound on

‖∇h‖L∞. ♦

Proof. We split the proof into three steps, proving items (i), (ii), and (iii) separately.

Step 1. Proof of (i).
Denote G := g − w∇h, so that w satisfies ∂tw − 4w = div G. Set 〈ξ〉 := (1 + |ξ|2)1/2, and let

û denote the Fourier transform of a function u on Rd. Let s ≥ 0 be fixed, and assume that ∇h,w, g
are as in the statement of (i) (which implies G ∈ L2

loc([0, T );Hs(Rd)) as shown below). In this step,
we use the notation . for ≤ up to a constant C as in the statement. For all ε > 0, rewriting the
equation for w in Fourier space and testing it against (ε+ |ξ|)−2〈ξ〉2s∂tŵ(ξ), we obtain

ˆ
(ε+ |ξ|)−2〈ξ〉2s|∂tŵt(ξ)|2dξ +

1

2

ˆ
|ξ|2

(ε+ |ξ|)2
〈ξ〉2s∂t|ŵt(ξ)|2dξ

= i

ˆ
(ε+ |ξ|)−2〈ξ〉2sξ · Ĝt(ξ)∂tŵt(ξ)dξ,

and hence, integrating over [0, t], and using the inequality 2xy ≤ x2 + y2,
ˆ t

0

ˆ
(ε+ |ξ|)−2〈ξ〉2s|∂uŵu(ξ)|2dξdu+

1

2

ˆ
|ξ|2

(ε+ |ξ|)2
〈ξ〉2s|ŵt(ξ)|2dξ

=
1

2

ˆ
|ξ|2

(ε+ |ξ|)2
〈ξ〉2s|ŵ◦(ξ)|2dξ + i

ˆ t

0

ˆ
(ε+ |ξ|)−2〈ξ〉2sξ · Ĝu(ξ)∂uŵu(ξ)dξdu

≤ 1

2

ˆ
〈ξ〉2s|ŵ◦(ξ)|2dξ +

1

2

ˆ t

0

ˆ
〈ξ〉2s|Ĝu(ξ)|2dξdu+

1

2

ˆ t

0

ˆ
(ε+ |ξ|)−2〈ξ〉2s|∂uŵu(ξ)|2dξdu.

Absorbing in the left-hand side the last right-hand side term, and letting ε ↓ 0, it follows that
ˆ
〈ξ〉2s|ŵt(ξ)|2dξ ≤

ˆ
〈ξ〉2s|ŵ◦(ξ)|2dξ +

ˆ t

0

ˆ
〈ξ〉2s|Ĝu(ξ)|2dξdu,
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or equivalently
‖wt‖Hs ≤ ‖w◦‖Hs + ‖G‖L2

t H
s .

Lemma 7.2.1 yields

‖G‖L2
t H

s ≤ ‖g‖L2
t H

s + ‖w∇h‖L2
t H

s . ‖g‖L2
t H

s + ‖∇h‖W s,∞‖w‖L2
t L2 + ‖∇h‖L∞‖w‖L2

t H
s

. ‖g‖L2
t H

s + ‖w‖L2
t H

s ,

so that we obtain

‖wt‖2Hs . ‖w◦‖2Hs + ‖g‖2
L2
t H

s +

ˆ t

0
‖wu‖2Hsdu,

and item (i) now follows from the Grönwall inequality.

Step 2. Proof of (ii).
Set again G := g−w∇h, and let ∇h,w◦, w, g be as in the statement of (ii). For all ε > 0, rewriting

the equation for w in Fourier space and then integrating it against (ε + |ξ|)−2(ŵt − ŵ◦)(ξ), we may
estimate

∂t

ˆ
(ε+ |ξ|)−2|(ŵt − ŵ◦)(ξ)|2dξ = 2

ˆ
(ε+ |ξ|)−2(ŵt − ŵ◦)(ξ)∂tŵt(ξ)dξ

≤ − 2

ˆ
|ξ|2

(ε+ |ξ|)2
|(ŵt − ŵ◦)(ξ)|2 + 2

ˆ
|ξ|2

(ε+ |ξ|)2
|(ŵt − ŵ◦)(ξ)||ŵ◦(ξ)|

+ 2

ˆ
(ε+ |ξ|)−1|(ŵt − ŵ◦)(ξ)||Ĝt(ξ)|dξ

≤
ˆ

|ξ|2

(ε+ |ξ|)2
|ŵ◦(ξ)|2 +

ˆ
(ε+ |ξ|)−2|(ŵt − ŵ◦)(ξ)|2dξ +

ˆ
(1 + |ξ|2)−1|Ĝt(ξ)|2dξ,

that is

∂t

ˆ
(ε+ |ξ|)−2|(ŵt − ŵ◦)(ξ)|2dξ ≤

ˆ
(ε+ |ξ|)−2|(ŵt − ŵ◦)(ξ)|2dξ + ‖w◦‖2

L2 + ‖Gt‖2H−1 ,

and hence by the Grönwall inequality,
ˆ

(ε+ |ξ|)−2|(ŵt − ŵ◦)(ξ)|2dξ ≤ et
(
t‖w◦‖2

L2 + ‖G‖2
L2
t H
−1

)
.

Letting ε ↓ 0, it follows that wt − w◦ ∈ Ḣ−1(R2) with

‖wt − w◦‖Ḣ−1 ≤ eCt(‖w◦‖L2 + ‖G‖L2
t H
−1) ≤ eCt(‖w◦‖L2 + ‖g‖L2

t H
−1 + ‖∇h‖L∞‖w‖L2

t L2).

Combining this with (i) for s = 0, item (ii) follows.

Step 3. Proof of (iii).
Let 1 ≤ p, q ≤ ∞, and assume that w ∈ Lp([0, T ); Lq(Rd)),∇h ∈ L∞(Rd), and g ∈ Lp([0, T ); Lq(Rd)).

In this step, we use the notation . for ≤ up to a constant C as in the statement. Denoting by
Γt(x) := Ct−d/2e−|x|

2/(2t) the heat kernel, Duhamel’s representation formula yields

wt(x) = Γt ∗ w◦(x) + φtg(x)−
ˆ t

0

ˆ
∇Γu(y) · ∇h(x− y)wt−u(x− y)dydu,

where we have set

φtg(x) :=

ˆ t

0

ˆ
∇Γu(y) · gt−u(x− y)dydu.
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We find by the triangle inequality

‖wt‖Lq ≤ ‖w◦‖Lq
ˆ
|Γt(y)|dy + ‖φtg‖Lq + ‖∇h‖L∞

ˆ t

0
‖wt−u‖Lq

ˆ
|∇Γu(y)|dydu,

hence by a direct computation

‖wt‖Lq . ‖w◦‖Lq + ‖φtg‖Lq +

ˆ t

0
‖wt−u‖Lqu−1/2du.

Integrating with respect to t, and using the triangle and the Hölder inequalities, we find

‖w‖Lpt Lq . t
1/p‖w◦‖Lq + ‖φg‖Lpt Lq +

(ˆ t

0

(ˆ t

0
1u<v‖wv−u‖Lqu−1/2du

)p
dv

)1/p

. t1/p‖w◦‖Lq + ‖φg‖Lpt Lq +

ˆ t

0
‖w‖Lpu Lq(t− u)−1/2du

. t1/p‖w◦‖Lq + ‖φg‖Lpt Lq + (1− r′/2)−1/r′t
1
2
− 1
r

( ˆ t

0
‖w‖rLpu Lqdu

)1/r

,

for all r > 2. Noting that (1 − r′/2)−1/r′ . 1 + (r − 2)−1/2, and optimizing in r, the Grönwall
inequality then leads to

‖w‖Lpt Lq . (t1/p‖w◦‖Lq + ‖φg‖Lpt Lq) exp
(

inf
2<r<∞

Cr

r
(1 + (r − 2)−r/2) tr/2

)
. (7.17)

Now it remains to estimate the norm of φg. A similar computation as above yields ‖φg‖Lpt Lq .

t1/2‖g‖Lpt Lq , but a more careful estimate is needed. For 1 ≤ s ≤ q, we may estimate by the Hölder
inequality

|φtg(x)| ≤
ˆ t

0

( ˆ
|∇Γu|s′/2

)1/s′(ˆ
|∇Γu(x− y)|s/2|gt−u(y)|sdy

)1/s

du,

and hence, by the triangle inequality,

‖φtg‖Lq ≤
ˆ t

0

(ˆ
|∇Γu|s′/2

)1/s′( ˆ
|∇Γu|q/2

)1/q(ˆ
|gt−u|s

)1/s

du.

Assuming that κ := d
2

(
1
d + 1

q −
1
s

)
> 0 (note that κ ≤ 1/2 follows from the choice s ≤ q), a direct

computation then yields

‖φtg‖Lq .
ˆ t

0
uκ−1‖gt−u‖Lsdu.

Integrating with respect to t, we find by the triangle inequality

‖φg‖Lpt Lq .
ˆ t

0
uκ−1

( ˆ t−u

0
‖gv‖pLsdv

)1/p

du . κ−1tκ‖gv‖Lpt Ls ,

and the result (iii) follows from this together with (7.17).

Another ingredient that we need is the following string of critical potential theory estimates. The
Sobolev embedding for W 1,d(Rd) gives that ‖∇4−1w‖L∞ is almost bounded by the Ld(Rd)-norm of
w, while the Calderón-Zygmund theory gives that ‖∇24−1w‖L∞ is almost bounded by the L∞(Rd)-
norm of w. The following result makes these assertions precise in a quantitative way in the spirit of
Brézis and Gallouët [88]. Item (iii) can be found e.g. in [304, Appendix] in a slightly different form,
but we were unable to find items (i) and (ii) in the literature. (By −4−1 we henceforth mean the
convolution with the Green kernel.)
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Lemma 7.2.4 (Potential estimates in L∞). Let d ≥ 2. For all w ∈ C∞c (Rd) the following hold: 1

(i) for all 1 ≤ p < d < q ≤ ∞, choosing θ ∈ (0, 1) such that 1
d = θ

p + 1−θ
q , we have

‖∇4−1w‖L∞ .
(
(1− d/q) ∧ (1− p/d)

)−1+1/d ‖w‖Ld
(

1 + log
‖w‖θLp‖w‖

1−θ
Lq

‖w‖Ld

)1−1/d

;

(ii) if w = div ξ for ξ ∈ C∞c (Rd)d, then, for all d < q ≤ ∞ and 1 ≤ p <∞, we have

‖∇4−1w‖L∞ . (1− d/q)−1+1/d‖w‖Ld
(

1 + log+ ‖w‖Lq
‖w‖Ld

)1−1/d

+ p‖ξ‖Lp ;

(iii) for all 0 < s ≤ 1 and 1 ≤ p <∞, we have

‖∇24−1w‖L∞ . s−1‖w‖L∞
(

1 + log
‖w‖Cs
‖w‖L∞

)
+ p‖w‖Lp . ♦

Proof. Recall that −4−1w = gd∗w, where we define gd(x) := cd|x|2−d if d > 2 and g2(x) := −c2 log |x|
if d = 2. The stated results are based on suitable decompositions of this Green’s integral. We split
the proof into three steps, separately proving items (i), (ii) and (iii).

Step 1. Proof of (i).
Let 0 < γ ≤ Γ < ∞. The obvious estimate |∇4−1w(x)| .

´
|x − y|1−d|w(y)|dy may be decom-

posed as

|∇4−1w(x)| .
ˆ
|x−y|<γ

|x− y|1−d|w(y)|dy

+

ˆ
γ<|x−y|<Γ

|x− y|1−d|w(y)|dy +

ˆ
|x−y|>Γ

|x− y|1−d|w(y)|dy.

Let 1 ≤ p < d < q ≤ ∞. We use the Hölder inequality with exponents (q/(q − 1), q) for the first
term, (d/(d− 1), d) for the second, and (p/(p− 1), p) for the third, which yields after straightforward
computations

|∇4−1w(x)| . (q′(1− d/q))−1/q′γ1−d/q‖w‖Lq

+ (log(Γ/γ))(d−1)/d‖w‖Ld + (p′(d/p− 1))−1/p′Γ1−d/p‖w‖Lp .

Item (i) now easily follows, choosing γ1−d/q = ‖w‖Ld/‖w‖Lq and Γd/p−1 = ‖w‖Lp/‖w‖Ld , noting that
γ ≤ Γ follows from interpolation of Ld between Lp and L∞, and observing that

(q′(1− d/q))−1/q′ . (1− d/q)−1+1/d, (p′(d/p− 1))−1/p′ . (1− p/d)−1+1/d.

Step 2. Proof of (ii).
Let 0 < γ ≤ 1 ≤ Γ <∞, and let χΓ denote a cut-off function with χΓ = 0 on BΓ, χΓ = 1 outside

BΓ+1, and |∇χΓ| ≤ 2. We may then decompose

−∇4−1w(x) =

ˆ
|x−y|<γ

∇gd(x− y)w(y)dy +

ˆ
γ≤|x−y|≤Γ

∇gd(x− y)w(y)dy

+

ˆ
Γ≤|x−y|≤Γ+1

∇gd(x− y)(1− χΓ(x− y))w(y)dy +

ˆ
|x−y|≥Γ

∇gd(x− y)χΓ(x− y)w(y)dy.

1. A direct adaptation of the proof further shows that in parts (i) and (ii) the L∞-norms in the left-hand sides could
be replaced by Hölder Cε-norms with ε ∈ [0, 1): the exponents d in the right-hand sides then need to be all replaced
by d/(1− ε) > d, and an additional multiplicative prefactor (1− ε)−1 is further needed.
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Using w = div ξ and integrating by parts, the last term becomes
ˆ
∇gd(x− y)χΓ(x− y)w(y)dy

= −
ˆ
∇gd(x− y)⊗∇χΓ(x− y) · ξ(y)dy −

ˆ
χΓ(x− y)∇2gd(x− y) · ξ(y)dy.

Choosing Γ = 1, we may then estimate

|∇4−1w(x)| .
ˆ
|x−y|<γ

|x− y|1−d|w(y)|dy

+

ˆ
γ≤|x−y|≤2

|x− y|1−d|w(y)|dy +

ˆ
|x−y|≥1

|x− y|−d|ξ(y)|dy.

Using the Hölder inequality just as in Step 1 for the first two terms, with d < q ≤ ∞, and using the
Hölder inequality with exponents (p/(p− 1), p) for the last term, we obtain, for any 1 ≤ p <∞,

|∇4−1w(x)| . (q′(1− d/q))−1/q′γ1−d/q‖w‖Lq + (log(2/γ))(d−1)/d‖w‖Ld + (d(p′ − 1))−1/p′‖ξ‖Lp ,

so that item (ii) follows from the choice γ1−d/q = 1∧ (‖w‖Ld/‖w‖Lq), noting that (d(p′−1))−1/p′ ≤ p.

Step 3. Proof of (iii).
Given 0 < γ ≤ 1, using the integration by parts

ˆ
|x−y|<γ

∇2gd(x− y)dy =

ˆ
|x−y|=γ

n⊗∇gd(x− y)dy,

we may decompose

|∇24−1w(x)| .
∣∣∣∣ ˆ
|x−y|<γ

(x− y)⊗2

|x− y|d+2
w(y)dy

∣∣∣∣
+

∣∣∣∣ ˆ
γ≤|x−y|<1

(x− y)⊗2

|x− y|d+2
w(y)dy

∣∣∣∣+

∣∣∣∣ ˆ
|x−y|≥1

(x− y)⊗2

|x− y|d+2
w(y)dy

∣∣∣∣
.

∣∣∣∣ˆ
|x−y|<γ

(x− y)⊗2

|x− y|d+2
(w(x)− w(y))dy

∣∣∣∣+ |w(x)|
∣∣∣∣ˆ
|x−y|=γ

x− y
|x− y|d

dy

∣∣∣∣
+

∣∣∣∣ ˆ
γ≤|x−y|<1

(x− y)⊗2

|x− y|d+2
w(y)dy

∣∣∣∣+

∣∣∣∣ ˆ
|x−y|≥1

(x− y)⊗2

|x− y|d+2
w(y)dy

∣∣∣∣.
Let 0 < s ≤ 1 and 1 ≤ p <∞. Using the inequality |w(x)−w(y)| ≤ |x− y|s|w|Cs , and then applying
the Hölder inequality with exponents (1,∞) for the first three terms, and (p/(p − 1), p) for the last
one, we obtain after straightforward computations

|∇24−1w(x)| . s−1γs|w|Cs + ‖w‖L∞ + | log γ|‖w‖L∞ + (d(p′ − 1))−1/p′‖w‖Lp .

Item (iii) then follows for the choice γs = ‖w‖L∞/‖w‖Cs ≤ 1.

In addition to the Sobolev regularity of solutions of (7.1)–(7.2), we study in the sequel their Hölder
regularity as well, in the framework of the usual Besov spaces Cs∗(Rd) := Bs

∞,∞(Rd) (see e.g. [40]).
These spaces actually coincide with the usual Hölder spaces Csb (Rd) only for non-integer s ≥ 0 (for
integer s ≥ 0 they are strictly larger than W s,∞(Rd) ⊃ Csb (Rd) and coincide with the corresponding
Zygmund spaces). The following potential theory estimates are then needed both in Sobolev and in
Hölder-Zygmund spaces. As we were unable to find item (ii) stated in the literature, a short proof is
included below.
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Lemma 7.2.5 (Potential estimates in Sobolev and Hölder-Zygmund spaces). Let d ≥ 2. For all
w ∈ C∞c (Rd), the following hold:
(i) for all s ≥ 0,

‖∇4−1w‖Hs . ‖w‖Ḣ−1∩Hs−1 , ‖∇24−1w‖Hs . ‖w‖Hs ;

(ii) for all s ∈ R,

‖∇4−1w‖Cs∗ .s ‖w‖Ḣ−1∩Cs−1
∗

, ‖∇24−1w‖Cs∗ .s ‖w‖Ḣ−1∩Cs∗
,

and for all 1 ≤ p < d and 1 ≤ q <∞,

‖∇4−1w‖Cs∗ .p,s ‖w‖Lp ∩L∞ ∩Cs−1
∗

, ‖∇24−1w‖Cs∗ .q,s ‖w‖Lq ∩Cs∗ ,

where the subscripts s, p, q indicate the additional dependence of the multiplicative constants on an
upper bound on s, (d− p)−1, and q, respectively. ♦

Proof. As item (i) is obvious via Fourier transform, we focus on item (ii). Let s ∈ R, let χ ∈ C∞c (Rd)
be a fixed even function with χ = 1 in a neighborhood of the origin, and let χ(∇) denote the
corresponding pseudo-differential operator. Applying [40, Proposition 2.78] to the operator (1 −
χ(∇))∇4−1, we find

‖∇4−1w‖Cs∗ ≤ ‖(1− χ(∇))∇4−1w‖Cs∗ + ‖χ(∇)∇4−1w‖Cs∗ .s ‖w‖Cs−1
∗

+ ‖χ(∇)∇4−1w‖Cs∗ .

Let k denote the smallest nonnegative integer ≥ s. Noting that ‖v‖Cs∗ .
∑k

j=0 ‖∇jv‖L∞ holds for all
v, we deduce

‖∇4−1w‖Cs∗ . ‖w‖Cs−1
∗

+

k∑
j=0

‖∇jχ(∇)∇4−1w‖L∞ ,

and similarly

‖∇24−1w‖Cs∗ . ‖w‖Cs∗ +
k∑
j=0

‖∇jχ(∇)∇24−1w‖L∞ .

Writing ∇jχ(∇)∇4−1w = ∇jχ̂ ∗ ∇4−1w, we find

‖∇jχ(∇)∇4−1w‖L∞ ≤ ‖∇jχ̂‖L2‖∇4−1w‖L2 = ‖∇jχ̂‖L2‖w‖Ḣ−1 ,

and the first two estimates in item (ii) follow. Rather writing ∇jχ(∇)∇4−1w = ∇4−1(∇jχ̂ ∗ w),
and using the estimate |∇4−1v(x)| .

´
|x − y|1−d|v(y)|dy as in the proof of Lemma 7.2.4, we find

for all 1 ≤ p < d,

‖∇jχ(∇)∇4−1w‖L∞ . sup
x

ˆ
|x−y|≤1

|x−y|1−d|∇jχ̂∗w(y)|dy+sup
x

ˆ
|x−y|>1

|x−y|1−d|∇jχ̂∗w(y)|dy

.p ‖∇jχ̂ ∗ w‖Lp ∩L∞ ≤ ‖∇jχ̂‖L1‖w‖Lp ∩L∞ ,

and the third estimate in item (ii) follows. The last estimate in item (ii) is now easily obtained,
arguing similarly as in the proof of Lemma 7.2.4(iii).

We now state some global elliptic regularity results for the operator −div (b∇) on the whole plane
R2. Considering both the case of a right-hand side f and the case of a right-hand side in divergence
form div g, we compare the properties of the corresponding solutions in terms of assumptions on
(f, g). As no reference was found in the literature for this 2D setting, a detailed proof is included.
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Lemma 7.2.6 (2D global elliptic regularity). Let b ∈ W 1,∞(R2)2×2 be uniformly elliptic, that is,
Id ≤ b ≤ Λ Id for some Λ < ∞. Given f ∈ C∞c (R2) and g ∈ C∞c (R2)2, we consider the decaying
solutions u and v of the following equations in R2,

−div (b∇u) = f, and − div (b∇v) = div g.

The following properties hold.

(i) Meyers type estimates: There exists 2 < p0, q0, r0 < ∞ (depending only on an upper bound on
Λ) such that for all 2 < p ≤ p0, all q0 ≤ q <∞, and all r′0 ≤ r ≤ r0 with 1

r0
+ 1

r′0
= 1,

‖∇u‖Lp ≤ Cp‖f‖L2p/(p+2) , ‖v‖Lq ≤ Cq‖g‖L2q/(q+2) , ‖∇v‖Lr ≤ C‖g‖Lr ,

for some constant C depending only on an upper bound on Λ, and for constants Cp and Cq
further depending on an upper bound on (p− 2)−1 and q, respectively.

(ii) Sobolev regularity: For all s ≥ 0 we have

‖∇u‖Hs ≤ Cs‖f‖Ḣ−1∩Hs−1 , ‖∇v‖Hs ≤ Cs‖g‖Hs ,

where the constant Cs depends only on an upper bound on s and on ‖b‖W s,∞.

(iii) Schauder type estimate: For all s ∈ (0, 1) we have

|∇u|Cs ≤ Cs‖f‖L2/(1−s) , |v|Cs ≤ C ′s‖g‖L2/(1−s) ,

where the constant Cs (resp. C ′s) depends only on s and on an upper bound on ‖b‖W s,∞ (resp.
on s and on the modulus of continuity of b).

In particular, we have

‖∇u‖L∞ ≤ C‖f‖L1 ∩L∞ , ‖v‖L∞ ≤ C ′‖g‖L1 ∩L∞ ,

where the constant C (resp. C ′) depends only on an upper bound on ‖b‖W 1,∞ (resp. Λ). ♦

Proof. We split the proof into three steps, first proving (i) as a consequence of Meyers’ perturbative
argument, then turning to the Sobolev regularity (ii), and finally to the Schauder type estimate (iii).
The additional L∞-estimate for v directly follows from item (i) and the Sobolev embedding, while
the corresponding estimate for ∇u follows from items (i) and (iii) by interpolation: for 2 < p ≤ p0

and s ∈ (0, 1), we indeed find

‖∇u‖L∞ . ‖∇u‖Lp + |∇u|Cs ≤ Cp‖f‖L2p/(p+2) + Cs‖f‖L2/(1−s) ≤ Cp,s‖f‖L1 ∩L∞ .

In the proof below, we use the notation . for ≤ up to a constant C > 0 that depends only on an
upper bound on Λ, and we add subscripts to indicate dependence on further parameters.

Step 1. Proof of (i).
We start with the norm of v. By Meyers’ perturbative argument [322], there exists some 1 < r0 < 2

(depending only on Λ) such that ‖∇v‖Lr . ‖g‖Lr holds for all r0 ≤ r ≤ r′0, 1
r0

+ 1
r′0

= 1. On the other
hand, decomposing the equation for v as

−4v = div (g + (b− 1)∇v),

we deduce from Riesz potential theory that for all 1 < r < 2

‖v‖L2r/(2−r) .r ‖g + (b− 1)∇v‖Lr . ‖g‖Lr + ‖∇v‖Lr ,
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and hence ‖v‖L2r/(2−r) .r ‖g‖Lr for all r0 ≤ r < 2, that is, ‖v‖Lq .q ‖g‖L2q/(q+2) for all 2r0
2−r0 ≤ q <∞.

We now turn to the norm of∇u. The proof follows from a suitable adaptation of Meyers’ perturba-
tive argument [322], again combined with Riesz potential theory. For the reader’s convenience a com-
plete proof is included. First recall that the Calderón-Zygmund theory yields ‖∇24w‖Lp ≤ Kp‖w‖Lp
for all 1 < p < ∞ and all w ∈ C∞c (R2), where the constants Kp’s moreover satisfy lim supp→2Kp ≤
K2, while a simple energy estimate allows to choose K2 = 1. Now rewriting the equation for u as

−4u =
2

Λ + 1
f + div

(
2

Λ + 1

(
b− Λ + 1

2

)
∇u
)
,

we deduce from Riesz potential theory and from the Calderón-Zygmund theory (applied to the first
and to the second right-hand side term, respectively), for all 2 < p <∞,

‖∇u‖Lp ≤
2

Λ + 1
‖∇4−1f‖Lp +

∥∥∥∥∇4−1 div

(
2

Λ + 1

(
b− Λ + 1

2

)
∇u
)∥∥∥∥

Lp

≤ 2Cp
Λ + 1

‖f‖L2p/(p+2) +
2Kp

Λ + 1

∥∥∥(b− Λ + 1

2

)
∇u
∥∥∥

Lp

≤ 2Cp
Λ + 1

‖f‖L2p/(p+2) +
Kp(Λ− 1)

Λ + 1
‖∇u‖Lp ,

where the last inequality follows from Id ≤ b ≤ Λ Id. Since we have Λ−1
Λ+1 < 1 and lim supp→2Kp ≤

K2 = 1, we may choose p0 > 2 close enough to 2 such that Kp(Λ−1)
Λ+1 < 1 holds for all 2 ≤ p ≤ p0.

This allows to absorb the last right-hand side term, and to conclude ‖∇u‖Lp .p ‖f‖L2p/(p+2) for all
2 < p ≤ p0.

Step 2. Proof of (ii).
We focus on the result for u, as the argument for v is very similar. A simple energy estimate

yields ˆ
|∇u|2 ≤

ˆ
∇u · b∇u =

ˆ
fu ≤ ‖f‖Ḣ−1‖∇u‖L2 ,

hence ‖∇u‖L2 ≤ ‖f‖Ḣ−1 , that is, (ii) with s = 0. The result (ii) for any integer s ≥ 0 is then
deduced by induction, successively differentiating the equation. It remains to consider the case of
fractional values s ≥ 0. We only display the argument for 0 < s < 1, while the other cases are
similarly obtained after differentiation of the equation. Let 0 < s < 1 be fixed. We use the following
finite difference characterization of the fractional Sobolev space Hs(R2): a function w ∈ L2(R2)
belongs to Hs(R2), if and only if it satisfies ‖w − w(· + h)‖L2 ≤ K|h|s for all h ∈ R2, for some
K > 0, and we then have ‖w‖Ḣs ≤ K. This characterization is easily checked, using e.g. the identity
‖w − w(· + h)‖2

L2 '
´
|1 − eiξ·h|2|ŵ(ξ)|2dξ, where ŵ denotes the Fourier transform of w, and noting

that |1 − eia| ≤ 2 ∧ |a| holds for all a ∈ R. Now applying finite difference to the equation for u, we
find for all h ∈ R2,

−div (b(·+ h)(∇u−∇u(·+ h))) = div ((b− b(·+ h))∇u) + f − f(·+ h),

and hence, testing against u− u(·+ h),
ˆ
|∇u−∇u(·+ h)|2 ≤ −

ˆ
(∇u−∇u(·+ h)) · (b− b(·+ h))∇u+

ˆ
(u− u(·+ h))(f − f(·+ h))

≤ |h|s|b|Cs‖∇u‖L2‖∇u−∇u(·+ h)‖L2 + ‖f − f(·+ h)‖Ḣ−1‖∇u−∇u(·+ h)‖L2 ,

where we compute by means of Fourier transforms

‖f − f(·+ h)‖2
Ḣ−1 '

ˆ
|ξ|−2|1− eiξ·h|2|f̂(ξ)|2dξ .

ˆ
|ξ|−2|ξ · h|2s|f̂(ξ)|2dξ . |h|2s‖f‖2

Ḣ−1∩Hs−1 .
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Further combining this with the L2-estimate for ∇u proven at the beginning of this step, we conclude

‖∇u−∇u(·+ h)‖L2 . |h|s(|b|Cs‖∇u‖L2 + ‖f‖Ḣ−1∩Hs−1) . |h|s(1 + |b|Cs)‖f‖Ḣ−1∩Hs−1 ,

and the result follows from the above stated characterization of Hs(R2).

Step 3. Proof of (iii).
We focus on the result for u, while that for v is easily obtained as an adaptation of [229, Theo-

rem 3.8]. Let x0 ∈ R2 be fixed. The equation for u may be rewritten as

−div (b(x0)∇u) = f + div ((b− b(x0))∇u).

For all r > 0, let wr ∈ u+H1
0 (B(x0, r)) be the unique solution of −div (b(x0)∇wr) = 0 in B(x0, r).

The difference vr := u− wr ∈ H1
0 (B(x0, r)) then satisfies in B(x0, r)

−div (b(x0)∇vr) = f + div ((b− b(x0))∇u).

Testing this equation against vr itself, we obtain
ˆ
|∇vr|2 ≤

∣∣∣∣ˆ
B(x0,r)

fvr

∣∣∣∣+

ˆ
B(x0,r)

|b− b(x0)||∇u||∇vr| ≤
∣∣∣∣ ˆ

B(x0,r)
fvr

∣∣∣∣+ rs|b|Cs‖∇u‖L2(B(x0,r))
‖∇vr‖L2 .

We estimate the first term as follows∣∣∣∣ ˆ
B(x0,r)

fvr

∣∣∣∣ =

∣∣∣∣ˆ
B(x0,r)

∇vr · ∇4−1(1B(x0,r)f)

∣∣∣∣ ≤ ‖∇vr‖Lp′ (B(x0,r))
‖∇4−1(1B(x0,r)f)‖Lp ,

and hence by Riesz potential theory, for all 2 < p <∞,∣∣∣∣ ˆ
B(x0,r)

fvr

∣∣∣∣ .p ‖∇vr‖Lp′ (B(x0,r))
‖f‖L2p/(p+2)(B(x0,r))

.

The Hölder inequality then yields, choosing q := 2
1−s > 2,∣∣∣∣ ˆ

B(x0,r)
fvr

∣∣∣∣ .p r 2
p′−1‖∇vr‖L2 r

1+ 2
p
− 2
q ‖f‖Lq = r

2(1− 1
q

)‖∇vr‖L2‖f‖Lq = r1+s‖∇vr‖L2‖f‖L2/(1−s) .

Combining the above estimates, we deduce
ˆ
|∇vr|2 . r2(1+s)‖f‖2

L2/(1−s) + r2s|b|2Cs‖∇u‖2L2(B(x0,r))
.

We are now in position to conclude exactly as in the classical proof of the Schauder estimates (see
e.g. [229, Theorem 3.13]).

The interaction force v in equation (7.9) is defined by the values of curl v and div (av). The
following result shows how v is controlled by such specifications.

Lemma 7.2.7. Let a, a−1 ∈ L∞(R2). For all δm, δd ∈ Ḣ−1(R2), there exists a unique δv ∈ L2(R2)2

such that curl δv = δm and div (aδv) = δd. Moreover, for all s ≥ 0, if a, a−1 ∈ W s,∞(R2) and
δm, δd ∈ Ḣ−1 ∩Hs−1(R2), we have

‖δv‖Hs ≤ C‖δm‖Ḣ−1∩Hs−1 + C‖δd‖Ḣ−1∩Hs−1 ,

where the constant C depends only on an upper bound on s and ‖(a, a−1)‖W s,∞. ♦
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Proof. We split the proof into two steps.

Step 1. Uniqueness.
We prove that at most one function δv ∈ L2(R2)2 can be associated with a given couple (δm, δd).

For that purpose, we assume that δv ∈ L2(R2)2 satisfies curl δv = 0 and div (aδv) = 0, and we
deduce δv = 0. By the Hodge decomposition in L2(R2)2, there exist functions φ, ψ ∈ H1

loc(R2)
such that aδv = ∇φ + ∇⊥ψ with ∇φ,∇ψ ∈ L2(R2)2. Now note that 4φ = div (aδv) = 0 and
div (a−1∇ψ) + curl (a−1∇φ) = curl δv = 0, which implies ∇φ = 0 and ∇ψ = 0, hence δv = 0.

Step 2. Existence.
Given δm, δd ∈ Ḣ−1(R2), we observe that ∇(div a−1∇)−1δm and ∇(div a∇)−1δd are well-defined

in L2(R2)2. The vector field

δv := a−1∇⊥(div a−1∇)−1δm +∇(div a∇)−1δd

is thus well-defined in L2(R2)2, and trivially satisfies curl δv = δm, div (aδv) = δd. The additional
estimate follows from Lemmas 7.2.1 and 7.2.6(ii).

As emphasized in Remark 7.1.2(i), weak solutions of the incompressible model (7.1) are rather
defined via the vorticity formulation (7.9) in order to avoid compactness issues related to the pressure
p. Although this will not be used in the sequel, we quickly check that under mild regularity assump-
tions a weak solution v of (7.1) automatically also satisfies equation (7.1) in the distributional sense
on [0, T )× R2 for some pressure p : R2 → R.

Lemma 7.2.8 (Control on the pressure). Let α, β ∈ R, T > 0, h ∈W 1,∞(R2), and Ψ, v̄◦ ∈ L∞(R2)2.
There exists some 2 < q0 . 1 large enough (depending only on an upper bound on ‖h‖L∞) such that
the following holds: If v ∈ L∞loc([0, T ); v̄◦ + L2(R2)2) is a weak solution of (7.1) on [0, T ) × R2 with
m := curl v ∈ L∞loc([0, T );P ∩Lq0(R2)), then v satisfies (7.1) in the distributional sense on [0, T )×R2

for some pressure p ∈ L∞loc([0, T ); Lq0(R2)). ♦

Proof. In this proof, we use the notation . for ≤ up to a constant C depending only on an upper
bound on ‖(h,Ψ, v̄◦)‖L∞ . Let 2 < p0, q0 . 1 and r0 = p0 be as in Lemma 7.2.6(i) (with b replaced
by a or a−1), and note that q0 can be chosen large enough such that 1

p0
+ 1

q0
≤ 1

2 . Assume that
m ∈ L∞loc([0, T );P ∩ Lq0(R2)) holds for this choice of the exponent q0. By Lemma 7.2.6(i), the
function

p := (−div a∇)−1 div (am(−α(Ψ + v) + β(Ψ + v)⊥))

is well-defined in L∞loc([0, T ); Lq0(R2)) and satisfies for all t ≥ 0,

‖pt‖Lq0 . ‖amt(−α(Ψ + vt) + β(Ψ + vt)⊥)‖L2q0/(2+q0)

. ‖Ψ + v̄◦‖L∞‖mt‖L2q0/(2+q0) + ‖vt−v̄◦‖L2‖mt‖Lq0

. (1 + ‖vt−v̄◦‖L2)‖mt‖L1 ∩Lq0 .

Now note that the following Helmholtz-Leray type identity follows from the proof of Lemma 7.2.7:
for any vector field F ∈ C∞c (R2)2,

F = a−1∇⊥(div a−1∇)−1curlF +∇(div a∇)−1 div (aF ). (7.18)

This implies in particular, for the choice F = m
(
− α(Ψ + v) + β(Ψ + v)⊥

)
,

a−1∇⊥(div a−1∇)−1 div
(

m(α(Ψ + v)⊥ + β(Ψ + v))
)

= a−1∇⊥(div a−1∇)−1curl
(

m(−α(Ψ + v) + β(Ψ + v)⊥)
)

= m
(
− α(Ψ + v) + β(Ψ + v)⊥

)
+∇p . (7.19)
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For φ ∈ C∞c ([0, T ) × R2)2, it follows from Lemma 7.2.6(i) that (div a−1∇)−1curl (a−1φ) belongs to
C∞c ([0, T ); Lq0(R2)) and that ∇(div a−1∇)−1curl (a−1φ) belongs to C∞c ([0, T ); L2 ∩Lp0(R2)). With
the choice 1

p0
+ 1

q0
≤ 1

2 , the Lq0-regularity of m then allows to test the weak formulation of (7.9)
(which defines weak solutions of (7.1), cf. Definition 7.1.1(b)) against (div a−1∇)−1curl (a−1φ), to
the effect of
ˆ

m◦(div a−1∇)−1curl (a−1φ(0, ·)) +

¨
m(div a−1∇)−1curl (a−1∂tφ)

=

¨
m(α(Ψ + v)⊥ + β(Ψ + v)) · ∇(div a−1∇)−1curl (a−1φ).

Since by (7.18) the constraint div (av) = 0 implies v = a−1∇⊥(div a−1∇)−1 m and similarly v◦ =
a−1∇⊥(div a−1∇)−1 m◦, and since by definition m ∈ L∞loc([0, T ); L1 ∩L2(R2)), Lemma 7.2.6(i) implies
v ∈ L∞loc([0, T ); Lp0(R2)2). We may then integrate by parts in the weak formulation above, which yields

ˆ
φ(0, ·) · v◦+

¨
∂tφ · v = −

¨
a−1φ · ∇⊥(div a−1∇)−1 div (m(α(Ψ + v)⊥ + β(Ψ + v))),

and the result now directly follows from the decomposition (7.19).

7.3 Local-in-time existence of smooth solutions

In this section, we prove the local-in-time existence of smooth solutions of (7.1)–(7.2) as summa-
rized in Theorem 7.1.4. Note that we choose to work here in the framework of Sobolev spaces, but
the results could easily be adapted to Hölder spaces (compare indeed with Lemma 7.4.7). We start
with the non-degenerate case λ > 0, using a standard iterative scheme as e.g. in [395, Appendix B].

Proposition 7.3.1 (Local existence, non-degenerate case). Let α, β ∈ R, λ > 0. Let s > 1, and let
h,Ψ, v̄◦ ∈ W s+1,∞(R2)2. Let v◦ ∈ v̄◦ + Hs+1(R2)2 with m◦ := curl v◦, m̄◦ := curl v̄◦ ∈ Hs(R2), and
with either div (av◦) = div (av̄◦) = 0 in the case (7.1), or d◦ := div (av◦), d̄

◦
:= div (av̄◦) ∈ Hs(R2)

in the case (7.2). Then there exists T > 0 and a weak solution v ∈ L∞([0, T ); v̄◦+Hs+1(R2)2) of (7.1)
or of (7.2) on [0, T )× R2 with initial data v◦. Moreover, T depends only on an upper bound on |α|,
|β|, λ, λ−1, s, (s− 1)−1, ‖(h,Ψ, v̄◦)‖W s+1,∞, ‖v◦−v̄◦‖Hs+1, ‖(m◦, m̄◦,d◦, d̄◦)‖Hs. ♦

Proof. We focus on the compressible case (7.2), the situation being similar and simpler in the in-
compressible case (7.1). Let s > 1. We set up the following iterative scheme: let v0 := v◦,
m0 := m◦ = curl v◦ and d0 := d◦ = div (av◦), and for all n ≥ 0 given vn, mn := curl vn, and
dn := div (avn) we let mn+1 and dn+1 solve on R+ × R2 the linear equations

∂tmn+1 = div (mn+1(α(Ψ + vn)⊥ + β(Ψ + vn))), mn+1 |t=0 = m◦, (7.20)

∂tdn+1 = λ4dn+1−λ div (dn+1∇h) + div (amn(−α(Ψ + vn) + β(Ψ + vn)⊥)), dn+1 |t=0 = d◦,
(7.21)

and we let vn+1 satisfy curl vn+1 = mn+1 and div (avn+1) = dn+1. For all n ≥ 0, let also

tn := sup
{
t ≥ 0 : ‖(mt

n, d
t
n)‖Hs + ‖vtn−v̄◦‖Hs+1 ≤ C0

}
,

for some C0 ≥ 1 to be suitably chosen (depending on the initial data), and let T0 := infn tn. We
show that this iterative scheme is well-defined with T0 > 0, and that it converges to a solution of
equation (7.2) on [0, T0)× R2.

We split the proof into two steps. In this proof, we use the notation . for ≤ up to a constant
C > 0 that depends only on an upper bound on |α|, |β|, λ, λ−1, s, (s − 1)−1, ‖(h,Ψ, v̄◦)‖W s+1,∞ ,
‖v◦−v̄◦‖Hs+1 , ‖(d◦, d̄◦)‖Hs , and ‖(m◦, m̄◦)‖Hs .
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Step 1. The iterative scheme is well-defined.
In this step, we show that for all n ≥ 0 the system (7.20)–(7.21) admits a unique solution

(mn+1,dn+1, vn+1) with mn+1 ∈ L∞loc(R+;Hs(R2)), dn+1 ∈ L∞loc(R+;Hs(R2)), and vn+1 ∈ L∞loc(R+; v̄◦+
Hs+1(R2)2), and that moreover for a suitable choice of 1 ≤ C0 . 1 we have T0 ≥ C−4

0 > 0.
We argue by induction. Let n ≥ 0 be fixed, and assume that (mn,dn, vn) is well-defined with
mn ∈ L∞loc(R+;Hs(R2)), dn ∈ L∞loc(R+;Hs(R2)), and vn ∈ L∞loc(R+; v̄◦+Hs+1(R2)2). (For n = 0, this
is indeed trivial by assumption.)

We first study the equation for mn+1. By the Sobolev embedding with s > 1, vn is Lipschitz-
continuous, and by assumption Ψ is also Lipschitz-continuous, hence the transport equation (7.20) ad-
mits a unique continuous solution mn+1, which automatically belongs to L∞loc(R+; m◦+Ḣ−1∩Hs(R2))
by Lemma 7.2.2. More precisely, for all t ≥ 0, Lemma 7.2.2 together with the Sobolev embedding for
s > 1 yields

∂t‖mt
n+1‖Hs ≤ C(1 + ‖vtn‖W 1,∞)‖mt

n+1‖Hs + C‖mt
n+1‖L∞‖vtn−v̄◦‖Hs+1

≤ C(1 + ‖vtn−v̄◦‖Hs+1)‖mt
n+1‖Hs .

Hence, for all t ∈ [0, tn], we obtain ∂t‖mt
n+1‖Hs ≤ CC0‖mt

n+1‖Hs , which proves

‖mt
n+1‖Hs ≤ eCC0t‖m◦‖Hs ≤ CeCC0t.

Noting that
‖m◦−m̄◦‖Ḣ−1 ≤ ‖v◦−v̄◦‖L2 ≤ C,

Lemma 7.2.2 together with the Sobolev embedding for s > 1 also gives for all t ≥ 0,

‖mt
n+1−m̄◦‖Ḣ−1 ≤ C + ‖mt

n+1−m◦‖Ḣ−1 ≤ C + Ct‖mn+1‖L∞t L2(1 + ‖vn ‖L∞t L∞)

≤ C + Ct‖mn+1‖L∞t Hs(1 + ‖vn−v̄◦‖L∞t Hs),

and hence, for all t ∈ [0, tn],

‖mt
n+1−m̄◦‖Ḣ−1 ≤ C(1 + tC0)eCC0t.

We now turn to dn+1. Equation (7.21) (with λ > 0) is a transport-diffusion equation and admits
a unique solution dn+1, which belongs to L∞loc(R+; d◦+Ḣ−1 ∩Hs(R2)) by Lemma 7.2.3(i)–(ii). More
precisely, for all t ≥ 0, Lemma 7.2.3(i) yields for s > 1

‖dtn+1 ‖Hs ≤ CeCt
(
‖d◦‖Hs + ‖amn(α(Ψ + vn)⊥ + β(Ψ + vn))‖L2

t H
s

)
≤ CeCt

(
1 + t1/2‖mn ‖L∞t Hs(1 + ‖vn−v̄◦‖L∞t Hs)

)
, (7.22)

where we have used Lemma 7.2.1 together with the Sobolev embedding to estimate the terms. Noting
that

‖d◦−d̄
◦‖Ḣ−1 ≤ ‖av◦−av̄◦‖L2 ≤ C,

Lemma 7.2.3(ii) together with the Sobolev embedding for s > 1 also gives for all t ≥ 0,

‖dtn+1−d̄
◦‖Ḣ−1 ≤ C + ‖dtn+1−d◦‖Ḣ−1 ≤ C + CeCt(‖d◦‖L2 + ‖amn(α(Ψ + vn)⊥ + β(Ψ + vn))‖L2

t L2)

≤ CeCt(1 + t1/2‖mn ‖L∞t Hs(1 + ‖vn−v̄◦‖L∞t Hs).

Combining this with (7.22) yields for all t ∈ [0, tn],

‖dtn+1 ‖Hs + ‖dtn+1−d̄
◦‖Ḣ−1 ≤ CeCt

(
1 + t1/2C0(1 + C0)

)
≤ C(1 + t1/2C2

0 )eCt.
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We finally turn to vn+1. By the above properties of mn+1 and dn+1, Lemma 7.2.7 ensures
that vn+1 is uniquely defined in L∞loc(R+; v̄◦ + Hs+1(R2)2) with curl (vtn+1−v̄◦) = mt

n+1−m̄◦ and
div (a(vtn+1−v̄◦)) = dtn+1−d̄

◦ for all t ≥ 0. More precisely, Lemma 7.2.7 gives for all t ∈ [0, tn],

‖vtn+1−v̄◦‖Hs+1 ≤ C‖mt
n+1−m̄◦‖Ḣ−1∩Hs + C‖dtn+1−d̄

◦‖Ḣ−1∩Hs

≤ C + C‖mt
n+1−m̄◦‖Ḣ−1 + C‖mt

n+1‖Hs + C‖dtn+1−d̄
◦‖Ḣ−1 + C‖dtn+1 ‖Hs

≤ C(1 + tC0 + t1/2C2
0 )eCC0t.

Hence, we have proven that (mn+1, dn+1, vn+1) is well-defined in the correct space, and moreover,
combining all the previous estimates, we find for all t ∈ [0, tn],

‖(mt
n+1,d

t
n+1)‖Hs + ‖vtn+1−v̄◦‖Hs+1 ≤ C(1 + tC0 + t1/2C2

0 )eCC0t.

Therefore, choosing C0 = 1 + 3CeC . 1, we obtain for all t ≤ tn ∧ C−4
0 ,

‖(mt
n+1, d

t
n+1)‖Hs + ‖vtn+1−v̄◦‖Hs+1 ≤ C0,

and thus tn+1 ≥ tn ∧ C−4
0 . The result follows by induction.

Step 2. Passing to the limit in the scheme.
In this step, we show that up to an extraction the iterative scheme (mn, dn, vn) converges to a

weak solution of equation (7.2) on [0, T0)× R2.
By Step 1, the sequences (mn)n and (dn)n are bounded in L∞([0, T0];Hs(R2)2), and the sequence

(vn)n is bounded in L∞([0, T0]; v̄◦+Hs+1(R2)2). Up to an extraction, we thus have mn
∗−⇀ m, dn

∗−⇀ d

in L∞([0, T0];Hs(R2)), and vn
∗−⇀ v in L∞([0, T0]; v̄◦ +Hs+1(R2)2). Comparing with equation (7.20),

we deduce that (∂tmn)n is bounded in L∞([0, T0];Hs−1(R2)). Since by the Rellich theorem the space
Hs(U) is compactly embedded in Hs−1(U) for any bounded domain U ⊂ R2, the Aubin-Simon
lemma ensures that we have mn → m strongly in C0([0, T0];Hs−1

loc (R2)). This implies in particular
mnvn → mv in the distributional sense, and hence we may pass to the limit in the weak formulation
of equations (7.20)–(7.21), which yields curl v = m, div (av) = d, with m and d satisfying in the
distributional sense on [0, T0)× R2,

∂tm = div (m(α(Ψ + v)⊥ + β(Ψ + v))), m |t=0 = m◦,

∂td = λ4d−λdiv (d∇h) + div (am(−α(Ψ + v) + β(Ψ + v)⊥)), d |t=0 = d◦,

that is, the vorticity formulation (7.9)–(7.10). Let us quickly deduce that v is a weak solution
of (7.2). From the above equations, we deduce ∂tm ∈ L∞([0, T0]; Ḣ−1 ∩ Hs−1(R2)) and ∂td ∈
L∞([0, T0]; Ḣ−1 ∩Hs−2(R2)). Lemma 7.2.7 then implies ∂tv ∈ L∞([0, T0];Hs−1(R2)2). We may then
deduce that the quantity

V := ∂tv−λ∇(a−1d) + α(Ψ + v) m−β(Ψ + v)⊥m

belongs to L∞([0, T0]; L2(R2)2) and satisfies curlV = div (aV ) = 0 in the distributional sense. Using
the Hodge decomposition in L2(R2)2, we easily conclude V = 0, hence v ∈ L∞([0, T0]; v̄◦+Hs+1(R2)2)
is indeed a weak solution of (7.2) on [0, T0)× R2.

We turn to the local-in-time existence of smooth solutions of (7.2) in the degenerate case λ = 0.
The analysis of the iterative scheme needs to be carefully adapted in this case, as m and v are now
on an equal footing with regard to regularity. Note that the proof only holds in the parabolic regime
β = 0.
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Proposition 7.3.2 (Local existence, degenerate case). Let α ∈ R, β = λ = 0. Let s > 2, and let h ∈
W s,∞(R2), Ψ, v̄◦ ∈W s+1,∞(R2)2. Let v◦ ∈ v̄◦+Hs(R2)2 with m◦ := curl v◦, m̄◦ := curl v̄◦ ∈ Hs(R2)
and d◦ := div (av◦), d̄

◦
:= div (av̄◦) ∈ Hs−1(R2). Then, there exists T > 0 and a weak solution

v ∈ L∞([0, T ); v̄◦ +Hs(R2)2) of (7.2) on [0, T )×R2, with initial data v◦. Moreover, T depends only
on an upper bound on |α|, s, (s − 2)−1, ‖h‖W s,∞, ‖(Ψ, v̄◦)‖W s+1,∞, ‖v◦−v̄◦‖Hs, ‖(m◦, m̄◦)‖Hs, and
‖(d◦, d̄◦)‖Hs−1. ♦

Proof. We consider the same iterative scheme (mn,dn, vn) as in the proof of Proposition 7.3.1, but
with λ = β = 0. Let s > 2. For all n ≥ 0, let

tn := sup
{
t ≥ 0 : ‖mt

n‖Hs + ‖dtn‖Hs−1 + ‖vtn−v̄◦‖Hs ≤ C0

}
,

for some C0 ≥ 1 to be suitably chosen (depending on initial data), and let T0 := infn tn. In this proof,
we use the notation . for ≤ up to a constant C > 0 that depends only on an upper bound on |α|, s,
(s− 2)−1, ‖h‖W s,∞ , ‖(Ψ, v̄◦)‖W s+1,∞ , ‖v◦−v̄◦‖Hs , ‖(d◦, d̄◦)‖Hs−1 , and ‖(m◦, m̄◦)‖Hs .

Just as in the proof of Proposition 7.3.1, we first need to show that this iterative scheme is well-
defined and that T0 > 0. We proceed by induction: let n ≥ 0 be fixed, and assume that (mn,dn, vn) is
well-defined with mn ∈ L∞loc(R+;Hs(R2)), dn ∈ L∞loc(R+;Hs−1(R2)), and vn ∈ L∞loc(R+; v̄◦+Hs(R2)2).
(For n = 0 this is indeed trivial by assumption.)

We first study dn+1. As λ = 0, equation (7.21) takes the form ∂tdn+1 = −α div (amn(Ψ + vn)).
Integrating this equation in time then yields

‖dtn+1 ‖Hs−1 ≤ ‖d◦‖Hs−1 + |α|
ˆ t

0
‖mu

n(Ψ + vun)‖Hsdu . 1 + t(1 + ‖vn−v̄◦‖L∞t Hs)‖mn‖L∞t Hs .

where we have used Lemma 7.2.1 together with the Sobolev embedding to estimate the last term.
Similarly, noting that ‖d◦−d̄

◦‖Ḣ−1 ≤ ‖av◦−av̄◦‖L2 ≤ C, we find for s > 1,

‖dtn+1−d̄
◦‖Ḣ−1 ≤ C + ‖dtn+1−d◦‖Ḣ−1 ≤ ‖d◦‖Hs−1 + |α|

ˆ t

0
‖mu

n(Ψ + vun)‖L2du

. 1 + t(1 + ‖vn−v̄◦‖L∞t Hs)‖mn‖L∞t Hs .

Hence we obtain for all t ∈ [0, tn],

‖dtn+1 ‖Hs−1 + ‖dtn+1−d̄
◦‖Ḣ−1 ≤ C + Ct(1 + C0)C0 ≤ C(1 + tC2

0 ).

We now turn to the study of mn+1. As β = 0, equation (7.20) takes the form ∂tmn+1 =
α div (mn+1(Ψ + vn)⊥). For all t ≥ 0, Lemma 7.2.2 together with the Sobolev embedding for s > 2
then yields (here the choice β = 0 is crucial, since otherwise the higher norm ‖vtn−v̄◦‖Hs+1 would
appear in the right-hand side!)

∂t‖mt
n+1‖Hs . (1 + ‖vtn‖W 1,∞)‖mt

n+1‖Hs + ‖mt
n+1‖L∞‖curl (vtn−v̄◦)‖Hs + ‖mt

n+1‖W 1,∞‖vtn−v̄◦‖Hs

. (1 + ‖mt
n ‖Hs + ‖vtn−v̄◦‖Hs)‖mt

n+1‖Hs .

For all t ∈ [0, tn], this implies ∂t‖mt
n+1‖Hs ≤ C(1 + 2C0)‖mt

n+1‖Hs , and thus

‖mt
n+1‖Hs ≤ ‖m◦‖HseC(1+2C0)t ≤ CeCC0t.

Moreover, noting that ‖m◦−m̄◦‖Ḣ−1 ≤ ‖v◦−v̄◦‖L2 ≤ C, and applying Lemma 7.2.2 together with
the Sobolev embedding, we obtain

‖mt
n+1−m̄◦‖Ḣ−1 ≤ C + ‖mt

n+1−m◦‖Ḣ−1

≤ C + Ct(1 + ‖vn ‖L∞t L∞)‖mn+1‖L∞t L2

≤ C + Ct(1 + ‖vn−v̄◦‖L∞t Hs)‖mn+1‖L∞t L2 ,
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hence for all t ∈ [0, tn]

‖mt
n+1−m̄◦‖Ḣ−1 ≤ C + Ct(1 + C0)‖mn+1‖L∞t L2 ≤ C + CC0te

CC0t.

We finally turn to vn+1. By the above properties of mn+1 and dn+1, Lemma 7.2.7 ensures that
vn+1 is uniquely defined in L∞loc(R+; v̄◦ +Hs(R2)2), and for all t ∈ [0, tn] we have

‖vtn+1−v̄◦‖Hs ≤ C‖mt
n+1−m̄◦‖Ḣ−1∩Hs−1 + C‖dtn+1−d̄

◦‖Ḣ−1∩Hs−1

≤ C + C‖mt
n+1−m̄◦‖Ḣ−1 + C‖mt

n+1‖Hs + C‖dtn+1−d̄
◦‖Ḣ−1 + C‖dtn+1‖Hs−1

≤ C(1 + tC2
0 )eCC0t.

Hence, we have proven that (mn+1, dn+1, vn+1) is well-defined in the correct space, and moreover,
combining all the previous estimates, we find for all t ∈ [0, tn]

‖mt
n+1‖Hs + ‖dtn+1 ‖Hs−1 + ‖vtn+1−v̄◦‖Hs ≤ C(1 + tC2

0 )eCC0t.

Therefore, choosing C0 = 1 + 2CeC . 1, we obtain for all t ≤ tn ∧ C−2
0

‖mt
n+1‖Hs + ‖dtn+1 ‖Hs−1 + ‖vtn+1−v̄◦‖Hs ≤ C0,

and thus tn+1 ≥ tn ∧ C−2
0 . The conclusion now follows just as in the proof of Proposition 7.3.1.

7.4 Global existence

As local existence is proven above in the framework of Sobolev spaces, the strategy for global
existence consists in looking for a priori estimates on the Sobolev norms. Since we are also interested
in Hölder regularity of solutions, we establish a priori estimates on Hölder-Zygmund norms as well.
As we will see, the key ingredient is given by some a priori estimates for the vorticity m in L∞(R2).

7.4.1 A priori estimates

We start with the following elementary energy estimates. Note that in the degenerate case λ = 0,
the a priori estimate for d in L2

loc(R+; L2(R2)) disappears, which is the main difficulty to establish
a global result in that case. Although we stick in the sequel to the framework of item (iii), a priori
estimates in slightly more general spaces are obtained in item (ii) for the compressible model (7.2).

Lemma 7.4.1 (Energy estimates). Let λ ≥ 0, α ≥ 0, β ∈ R, T > 0 and Ψ ∈ W 1,∞(R2). Let
v◦ ∈ L2

loc(R2)2 be such that m◦ := curl v◦ ∈ P ∩ L2
loc(R2), and such that either div (av◦) = 0 in the

case (7.1), or d◦ := div (av◦) ∈ L2
loc(R2) in the case (7.2). Let v ∈ L2

loc([0, T ) × R2)2 be a weak
solution of (7.1) or of (7.2) on [0, T ) × R2 with initial data v◦. Set d := 0 in the case (7.1). Then
the following properties hold.
(i) For all t ∈ [0, T ), we have mt ∈ P(R2).
(ii) Localized energy estimate for (7.2): If v ∈ L2

loc([0, T ); L2
uloc(R2)2) satisfies m ∈ L∞loc([0, T ); L∞(R2))

and d ∈ L2
loc([0, T ); L2

uloc(R2)), then we have for all t ∈ [0, T ),

‖vt‖2
L2

uloc
+ α‖|v|2 m‖L1

t L1
uloc

+ λ‖d‖2
L2
t L2

uloc

≤


CeC(1+λ−1)t‖v◦‖2

L2
uloc

, if α = 0, λ > 0;

Cα−1λ−1(eλt − 1) + Ceλt‖v◦‖2
L2

uloc
, if α > 0, λ > 0;

Cα−1t+ C‖v◦‖2
L2

uloc
, if α > 0, λ = 0;

where the constant C depends only on an upper bound on α, |β|, λ, ‖h‖W 1,∞, ‖Ψ‖L∞, and
additionally on ‖∇Ψ‖L∞ in the case α = 0.
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(iii) Relative energy estimate for (7.1) and (7.2): If there is some v̄◦ ∈ W 1,∞(R2)2 such that
v◦ ∈ v̄◦ + L2(R2)2, m̄◦ := curl v̄◦ ∈ L2(R2), and such that either div (av̄◦) = 0 in the
case (7.1), or d̄

◦
:= div (av̄◦) ∈ L2(R2) in the case (7.2), and if v ∈ L∞loc([0, T ); v̄◦ + L2(R2)),

m ∈ L∞loc([0, T ); L∞(R2)), d ∈ L2
loc([0, T ); L2(R2)), then we have for all t ∈ [0, T ),

ˆ
R2

a|vt−v̄◦|2 + α

ˆ t

0
du

ˆ
R2

a|vu−v̄◦|2 mu +λ

ˆ t

0
du

ˆ
R2

a−1|du|2

≤


Ct(1 + α−1) +

´
R2 a|v◦−v̄◦|2, in both cases (7.1) and (7.2), with α > 0;

eCt
(
1 +

´
R2 a|v◦−v̄◦|2

)
, in the case (7.1), with α = 0

C(eC(1+λ−1)t − 1) + eC(1+λ−1)t
´
R2 a|v◦−v̄◦|2, in the case (7.2), with α = 0, λ > 0;

where the constant C depends only on an upper bound on α, |β|, λ, ‖h‖W 1,∞, ‖(Ψ, v̄◦)‖L∞,
‖d̄◦‖L2, and additionally on ‖m̄◦‖L2 and ‖(∇Ψ,∇v̄◦)‖L∞ in the case α = 0. ♦

Proof. Item (i) is a standard consequence of the fact that m satisfies a transport equation (7.9). It
thus remains to check items (ii) and (iii). We split the proof into three steps.

Step 1. Proof of (ii).
Let v be a weak solution of the compressible equation (7.2) as in the statement, and let also C > 0

denote any constant as in the statement. We prove more precisely, for all t ∈ [0, T ) and x0 ∈ R2,
ˆ
ae−|x−x0||vt|2 + α

ˆ t

0
du

ˆ
ae−|x−x0||vu|2 mu +λ

ˆ t

0
du

ˆ
a−1e−|x−x0||du|2 (7.23)

≤


eC(1+λ−1)t

´
ae−|x−x0||v◦|2, if α = 0, λ > 0;

Cα−1λ−1(eλt − 1) + eλt
´
ae−|x−x0||v◦|2, if α > 0, λ > 0;

Cα−1t+
´
ae−|x−x0||v◦|2, if α > 0, λ = 0.

Item (ii) directly follows from this, noting that

‖f‖p
Lpuloc

' sup
x0∈R2

ˆ
e−|x−x0||f(x)|pdx

holds for all 1 ≤ p < ∞. So it suffices to prove (7.23). Let x0 ∈ R2 be fixed, and denote by
χ(x) := e−|x−x0| the exponential cut-off function centered at x0. From equation (7.2) we compute the
following time derivative

∂t

ˆ
aχ|vt|2 = 2

ˆ
aχ
(
λ∇(a−1 dt)− α(Ψ + vt) mt +β(Ψ + vt)⊥mt

)
· vt,

and hence, by integration by parts with |∇χ| ≤ χ,

∂t

ˆ
aχ|vt|2 = −2λ

ˆ
a−1χ|dt|2 − 2λ

ˆ
∇χ · vt dt−2α

ˆ
aχ|vt|2 mt +2

ˆ
aχ(−αΨ + βΨ⊥) · vtmt

≤ −2λ

ˆ
a−1χ|dt|2 + 2λ

ˆ
χ|dt||vt| − 2α

ˆ
aχ|vt|2 mt +2

ˆ
aχ(−αΨ + βΨ⊥) · vtmt . (7.24)

First consider the case α > 0. We may then bound the terms as follows, using the inequality
2xy ≤ x2 + y2,

∂t

ˆ
aχ|vt|2 ≤ −2λ

ˆ
a−1χ|dt|2 + 2λ

ˆ
χ|dt||vt| − 2α

ˆ
aχ|vt|2 mt +2C

ˆ
aχ|vt|mt

≤ −λ
ˆ
a−1χ|dt|2 + λ

ˆ
aχ|vt|2 − α

ˆ
aχ|vt|2 mt +Cα−1

ˆ
aχmt︸ ︷︷ ︸
≤C

.
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As mt is nonnegative by item (i), the first and third right-hand side terms are nonpositive, and the
Grönwall inequality yields

´
aχ|vt|2 ≤ Cα−1λ−1(eλt − 1) + eλt

´
aχ|v◦|2 (or

´
aχ|vt|2 ≤ Cα−1t +´

aχ|v◦|2 if λ = 0). The above estimate may then be rewritten as follows,

α

ˆ
aχ|vt|2 mt +λ

ˆ
a−1χ|dt|2 ≤ Cα−1 + λ

ˆ
aχ|vt|2 − ∂t

ˆ
aχ|vt|2

≤ Cα−1eλt + λeλt
ˆ
aχ|v◦|2 − ∂t

ˆ
aχ|vt|2.

Integrating in time yields

α

ˆ t

0
du

ˆ
aχ|vt|2 mu +λ

ˆ t

0
du

ˆ
a−1χ|du|2 ≤ Cα−1λ−1(e−λt − 1) + eλt

ˆ
aχ|v◦|2 −

ˆ
aχ|vt|2,

so that (7.23) is proven for α > 0. We now turn to the case α = 0, λ > 0. In that case, using the
following Delort type identity, which holds here in L∞loc([0, T );W−1,1

loc (R2)2),

mv = a−1 dv⊥−1

2
|v|2∇⊥h− a−1(div (aSv))⊥, Sv := v⊗ v−1

2
|v|2 Id,

the estimate (7.24) becomes, by integration by parts with |∇χ| ≤ χ,

∂t

ˆ
aχ|vt|2 ≤ −2λ

ˆ
a−1χ|dt|2 + 2λ

ˆ
χ|dt||vt| − 2α

ˆ
aχ|vt|2 mt +2

ˆ
χ(−αΨ + βΨ⊥) · (vt)⊥ dt

−
ˆ
aχ(−αΨ + βΨ⊥) · ∇⊥h|vt|2 + 2

ˆ
aχ(α∇Ψ⊥ + β∇Ψ) : Svt + 2

ˆ
aχ|αΨ⊥ + βΨ||Svt |,

and hence, noting that |Svt | ≤ C|vt|2, and using the inequality 2xy ≤ x2 + y2,

∂t

ˆ
aχ|vt|2 ≤ −2λ

ˆ
a−1χ|dt|2 + 2C

ˆ
χ|dt||vt| − 2α

ˆ
aχ|vt|2 mt +C

ˆ
aχ|vt|2

≤ −λ
ˆ
a−1χ|dt|2 + C(1 + λ−1)

ˆ
aχ|vt|2.

The Grönwall inequality yields
´
aχ|vt|2 ≤ eC(1+λ−1)t

´
aχ|v◦|2. The above estimate may then be

rewritten as follows,

λ

ˆ
a−1χ|dt|2 ≤ C(1 + λ−1)

ˆ
aχ|vt|2 − ∂t

ˆ
aχ|vt|2

≤ C(1 + λ−1)eC(1+λ−1)t

ˆ
aχ|v◦|2 − ∂t

ˆ
aχ|vt|2.

Integrating in time, the result (7.23) is proven for α = 0. (Note that this proof cannot be adapted to
the incompressible case (7.1), due to the lack of a sufficiently good control on the pressure p in (7.1)
in general.)

Step 2. Proof of (iii) for (7.2).
We denote by C any positive constant as in the statement of item (iii). From equation (7.2), we

compute the following time derivative,

∂t

ˆ
a|vt−v̄◦|2 = 2

ˆ
a(λ∇(a−1 dt)− α(Ψ + vt) mt +β(Ψ + vt)⊥mt) · (vt−v̄◦),
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or equivalently, integrating by parts and suitably regrouping the terms,

∂t

ˆ
a|vt−v̄◦|2 = −2λ

ˆ
a−1|dt|2 + 2λ

ˆ
a−1 dt d̄

◦ − 2α

ˆ
a|vt−v̄◦|2 mt

+ 2

ˆ
a(−α(Ψ + v̄◦) + β(Ψ + v̄◦)⊥) · (vt−v̄◦) mt . (7.25)

First consider the case α > 0. We may then bound the terms as follows, using the inequality
2xy ≤ x2 + y2,

∂t

ˆ
a|vt−v̄◦|2 ≤ −2λ

ˆ
a−1|dt|2 + 2λ

ˆ
a−1 dt d̄

◦ − 2α

ˆ
a|vt−v̄◦|2 mt +2C

ˆ
a|vt−v̄◦|mt

≤ −λ
ˆ
a−1|dt|2 + λ

ˆ
a−1|d̄◦|2 − α

ˆ
a|vt−v̄◦|2 mt +Cα−1,

and the result of item (iii) in the case α > 0 follows by integration. We now turn to the case α = 0,
λ > 0. In that case, we rather rewrite (7.25) in the form

∂t

ˆ
a|vt−v̄◦|2 = −2λ

ˆ
a−1|dt|2 + 2λ

ˆ
a−1 dt d̄

◦ − 2α

ˆ
a|vt−v̄◦|2 mt

+2

ˆ
a(−α(Ψ+v̄◦)+β(Ψ+v̄◦)⊥)·(vt−v̄◦)(mt−m̄◦)+2

ˆ
a(−α(Ψ+v̄◦)+β(Ψ+v̄◦)⊥)·(vt−v̄◦)m̄◦,

so that, using the following Delort type identity, which holds here in L∞loc([0, T );W−1,1
loc (R2)2),

(m−m̄◦)(v−v̄◦) = a−1(d−d̄
◦
)(v−v̄◦)⊥ − 1

2
|v−v̄◦|2∇⊥h− a−1(div (aSv−v̄◦))

⊥,

we find by integration by parts

∂t

ˆ
a|vt−v̄◦|2 = −2λ

ˆ
a−1|dt|2 + 2λ

ˆ
a−1 dt d̄

◦ − 2α

ˆ
a|vt−v̄◦|2 mt

+ 2

ˆ
(−α(Ψ + v̄◦) +β(Ψ + v̄◦)⊥) · (vt−v̄◦)⊥(dt−d̄

◦
)−

ˆ
a(−α(Ψ + v̄◦) +β(Ψ + v̄◦)⊥) ·∇⊥h|vt−v̄◦|2

+ 2

ˆ
a∇(α(Ψ + v̄◦)⊥ + β(Ψ + v̄◦)) : Svt−v̄◦ + 2

ˆ
a(−α(Ψ + v̄◦) + β(Ψ + v̄◦)⊥) · (vt−v̄◦) m̄◦.

We may then bound the terms as follows, using the inequality 2xy ≤ x2 + y2,

∂t

ˆ
a|vt−v̄◦|2 ≤ −2λ

ˆ
a−1|dt|2 + 2λ

ˆ
a−1|dt||d̄◦| − 2α

ˆ
a|vt−v̄◦|2 mt

+ C

ˆ
|vt−v̄◦| |dt|+ C

ˆ
|vt−v̄◦| |d̄◦|+ C

ˆ
a|vt−v̄◦|2 + C

ˆ
a|vt−v̄◦|m̄◦

≤ −λ
ˆ
a−1|dt|2 + C

ˆ
a−1|d̄◦|2 + C

ˆ
|m̄◦|2 + C(1 + λ−1)

ˆ
a|vt−v̄◦|2.

Item (iii) in the case α = 0 then easily follows from the Grönwall inequality.

Step 3. Proof of (iii) for (7.1).
We denote by C any positive constant as in the statement of item (iii). Noting that the identity

v−v̄◦ = a−1∇⊥(div a−1∇)−1(m−m̄◦) follows from (7.18) together with the constraint div (av) =
div (av̄◦) = 0, and recalling that by assumption v−v̄◦ ∈ L2

loc([0, T ); L2(R2)2), we deduce m−m̄◦ ∈
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L2
loc([0, T ); Ḣ−1(R2)) and (div a−1∇)−1(m−m̄◦) ∈ L2

loc([0, T ); Ḣ1(R2)). In particular, this implies by
integration by partsˆ

a|v−v̄◦|2 =

ˆ
a−1|∇(div a−1∇)−1(m−m̄◦)|2 =

ˆ
(m−m̄◦)(−div a−1∇)−1(m−m̄◦). (7.26)

From equation (7.9), we compute the following time derivative

∂t

ˆ
(m−m̄◦)(−div a−1∇)−1(m−m̄◦)

= 2

ˆ
∇(div a−1∇)−1(m−m̄◦) · (α(Ψ + v)⊥ + β(Ψ + v)) m

= −2

ˆ
a(v−v̄◦)⊥ ·

(
α(v−v̄◦)⊥ + β(v−v̄◦) + α(Ψ + v̄◦)⊥ + β(Ψ + v̄◦)

)
m

= −2α

ˆ
a|v−v̄◦|2 m−2

ˆ
am(v−v̄◦)⊥ · (α(Ψ + v̄◦)⊥ + β(Ψ + v̄◦)).

Combining this with identity (7.26), we are now in position to conclude exactly as in Step 2 after
equation (7.25) (but with here d, d̄

◦
= 0).

The energy estimates given by Lemma 7.4.1 above are not strong enough to deduce global exis-
tence, and the key is to find an additional a priori Lp-estimate for the vorticity m with p > 1. We
start with the following new result, based on a careful examination of the evolution of Lp-norms of
the vorticity. The argument can unfortunately not be adapted to the mixed-flow compressible case
(that is, (7.2) with α ≥ 0, β 6= 0), as it would require a too strong additional control on the norm
‖dt‖Lp+1 ; this is why this case is excluded from our global results in Theorem 7.1.3.

Lemma 7.4.2 (Lp-estimates for vorticity). Let λ, α ≥ 0, β ∈ R, T > 0, h,Ψ ∈ W 1,∞(R2), v̄◦ ∈
L∞(R2)2, and v◦ ∈ v̄◦ + L2(R2)2, with m◦ := curl v◦ ∈ P(R2), m̄◦ := curl v̄◦ ∈ P ∩ L∞(R2). In
the case (7.1), also assume div (av◦) = div (av̄◦) = 0. Let v ∈ L∞loc([0, T ); v̄◦ + L2 ∩L∞(R2)2) be
a weak solution of (7.1) or of (7.2) on [0, T ) × R2 with initial data v◦, and with m := curl v ∈
L∞loc([0, T );P ∩ L∞(R2)). For all 1 < p ≤ ∞ and t ∈ [0, T ),
(i) in the case (7.1) with α > 0, β ∈ R, we have(

α(p− 1)

2

)1/p

‖m‖1+1/p

Lp+1
t Lp+1 + ‖mt‖Lp ≤ ‖m◦‖Lp + Cp, (7.27)

where the constant Cp depends only on an upper bound on (p−1)−1, α, α−1, |β|, T , ‖(h,Ψ)‖W 1,∞,
‖(v̄◦, m̄◦)‖L∞, and on ‖v◦−v̄◦‖L2;

(ii) in both cases (7.1) and (7.2) with α ≥ 0, β = 0, λ ≥ 0, the same estimate (7.27) holds, where
the constant Cp = C depends only on an upper bound on α, T , and on ‖(curl Ψ)−‖L∞. ♦

Proof. It is sufficient to prove the result for all 1 < p < ∞. In this proof, we use the notation .
for ≤ up to a constant C > 0 as in the statement but independent of p. As explained at the end of
Step 1, we may focus on item (i), the other being much simpler. We split the proof into three steps.
Set θ̄◦ := div v̄◦, θ := div v. In the sequel, we repeatedly use the a priori estimate of Lemma 7.4.1(i)
in the following interpolated form: for all s ≤ q and t ∈ [0, T ),

‖mt‖Ls ≤ ‖mt‖q
′/s′

Lq ‖m
t‖1−q

′/s′

L1 = ‖mt‖q
′/s′

Lq . (7.28)

Step 1. Preliminary estimate for m (in case (i)): for all 1 < p <∞ and all t ∈ [0, T ),

α(p− 1)‖m‖p+1

Lp+1
t Lp+1 + ‖mt‖pLp ≤ ‖m

◦‖pLp + C(p− 1)(t1/p + ‖v‖Lpt L∞)‖m‖p−1/p

Lp+1
t Lp+1 . (7.29)
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Using equation (7.9) and integrating by parts we may compute

∂t

ˆ
(mt)p = p

ˆ
(mt)p−1 div (mt(α(Ψ + vt)⊥ + β(Ψ + vt)))

= −p(p− 1)

ˆ
(mt)p−1∇mt ·(α(Ψ + vt)⊥ + β(Ψ + vt))

= −(p− 1)

ˆ
∇(mt)p · (α(Ψ + vt)⊥ + β(Ψ + vt))

= (p− 1)

ˆ
(mt)p div (α(Ψ + vt)⊥ + β(Ψ + vt)).

In case (i), using the constraint div (av) = 0 to compute div (αv⊥+βv) = −αm +β div v = −αm−β∇h·
v, we find

(p− 1)−1∂t

ˆ
(mt)p ≤ −α

ˆ
(mt)p+1 + C

ˆ
(mt)p(1 + |vt|) ≤ −α

ˆ
(mt)p+1 + C(1 + ‖vt‖L∞)

ˆ
(mt)p.

By interpolation (7.28), we obtain

α

ˆ
(mt)p+1 + (p− 1)−1∂t

ˆ
(mt)p ≤ C(1 + ‖vt‖L∞)‖mt‖p−1/p

Lp+1 ,

and the result (7.29) directly follows by integration with respect to t and by the Hölder inequality.
In case (ii) we rather have div (α(Ψ + v)⊥ + β(Ψ + v)) = −α(curl Ψ + m), and hence

α

ˆ
(mt)p+1 + (p− 1)−1∂t

ˆ
(mt)p ≤ α‖(curl Ψ)−‖L∞

ˆ
(mt)p ≤ α‖(curl Ψ)−‖L∞

(ˆ
(mt)p+1

)1−1/p
,

from which the conclusion (ii) already follows.

Step 2. Preliminary estimate for v (in case (i)): for all 2 < q ≤ ∞ and t ∈ [0, T ),

‖vt‖L∞ . 1 + (1− 2/q)−1/2‖mt‖q
′/2

Lq log1/2(2 + ‖mt‖Lq). (7.30)

Let 2 < q ≤ ∞. Note that vt−v̄◦ = ∇⊥4−1(mt−m◦) +∇4−1(θt − θ̄◦). By Lemma 7.2.4(i) for
w := mt−m̄◦ and Lemma 7.2.4(ii) for w := θt − θ̄◦ = div (vt−v̄◦), we find

‖vt‖L∞ ≤ ‖v̄◦‖L∞ + ‖∇4−1(mt−m̄◦)‖L∞ + ‖∇4−1(θt − θ̄◦)‖L∞

. 1 + (1− 2/q)−1/2‖mt−m̄◦‖L2 log1/2(2 + ‖mt−m̄◦‖L1 ∩Lq)

+ ‖θt − θ̄◦‖L2 log1/2(2 + ‖θt − θ̄◦‖L2 ∩L∞) + ‖vt−v̄◦‖L2 .

Noting that θt − θ̄◦ = −∇h · (vt−v̄◦), using interpolation (7.28) in the form ‖mt‖L2 . ‖mt‖q
′/2

Lq , and
using the a priori estimates of Lemma 7.4.1 in the form ‖vt−v̄◦‖L2 + ‖mt‖L1 . 1, we obtain

‖vt‖L∞ . (1− 2/q)−1/2‖mt‖q
′/2

Lq log1/2(2 + ‖mt‖Lq) + log1/2(2 + ‖vt−v̄◦‖L∞),

and the result follows, absorbing in the left-hand side the last norm of v.

Step 3. Conclusion.
Let 1 < p <∞. From (7.30) with q = p+ 1, we deduce in particular

‖vt‖L∞ . 1 + (1− 1/p)−1/2‖mt‖
1
2

(1+1/p)

Lp+1 log1/2(2 + ‖mt‖Lp+1) . (1− 1/p)−1/2
(
1 + ‖mt‖

3
4

(1+1/p)

Lp+1

)
,
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and hence, integrating with respect to t and combining with (7.29),

α(p− 1)‖m‖p+1

Lp+1
t Lp+1 + ‖mt‖pLp ≤ ‖m

◦‖pLp + Cp
(
1 + ‖m‖

3
4

(1+1/p)

Lp+1
t Lp+1

)
‖m‖p−1/p

Lp+1
t Lp+1

≤ ‖m◦‖pLp + Cp‖m‖p−1/p

Lp+1
t Lp+1 + Cp‖m‖p+

3
4

Lp+1
t Lp+1 .

We may now absorb in the left-hand side the last two terms, to the effect of

α(p− 1)

2
‖m‖p+1

Lp+1
t Lp+1 + ‖mt‖pLp ≤ ‖m

◦‖pLp + Cpp ,

where the constant Cp further depends on an upper bound on (p−1)−1, and the conclusion follows.

The following result partially improves and completes the results of Lemma 7.4.2 above in the
case (7.1) with either α = 0 or h constant (cf. item (ii)), and in both cases (7.1) and (7.2) with α > 0
and β = 0 (cf. item (iii)). For that purpose, inspired by the work of Lin and Zhang [304], we exploit
by ODE arguments the very particular structure of the transport equation (7.9). In the parabolic
case α > 0, β = 0, note that we establish an a priori Lp-estimate for the vorticity m through its initial
L1-norm only (cf. item (iii)), which is the key for global existence results with vortex-sheet initial
data. While in [304] for the simpler model (7.4) such an a priori estimate is achieved by explicitly
integrating the evolution of the vorticity along characteristics, this explicit structure is lost for the
more sophisticated models (7.1) and (7.2), and a more subtle argument is required.

Lemma 7.4.3 (Lp-estimates for vorticity, cont’d). Let λ ≥ 0, α ≥ 0, β ∈ R, T > 0, and h,Ψ, v◦ ∈
W 1,∞(R2)2, with m◦ := curl v◦ ∈ P ∩C0(R2). Set d◦ := div (av◦), and in the case (7.1) assume that
div (av◦) = 0. Let v ∈W 1,∞

loc ([0, T );W 1,∞(R2)2) be a weak solution of (7.1) or of (7.2) on [0, T )×R2

with initial data v◦. For all 1 ≤ p ≤ ∞ and t ∈ [0, T ), the following properties hold,

(i) in both cases (7.1) and (7.2), without restriction on the parameters,

‖mt‖Lp ≤ ‖m◦‖Lp min

{
exp

(p− 1

p

(
Ct+ C|β|‖d‖L1

t L∞ + C|β|‖∇h‖L∞‖v‖L1
t L∞

))
;

exp
(p− 1

p

(
C + Ct+ C|β|‖d‖L1

t L∞ + Cα‖∇h‖L∞‖v‖L1
t L∞

))}
;

(ii) in the case (7.1) with either β = 0 or α = 0 or h constant, and in the case (7.2) with β = 0, we
have

‖mt‖Lp ≤ CeCt‖m◦‖Lp ;

(iii) given α > 0, in the case (7.1) with either β = 0 or h constant, and in the case (7.2) with β = 0,
we have

‖mt‖Lp ≤
(

(αt)−1 + Cα−1eCt
)1−1/p

;

where the constant C depends only on an upper bound on α, |β|, and on ‖(h,Ψ)‖W 1,∞. ♦

Remark 7.4.4. In the context of item (iii), if we further assume Ψ ≡ 0 (i.e. no forcing), then the
constant C in Step 2 of the proof below may then be set to 0, so that we simply obtain, for all
1 ≤ p <∞ and all t > 0,

‖mt‖Lp ≤
( ˆ

|m◦|p(1 + αtm◦)1−p
)1/p

≤ (αt)−(1−1/p),

without additional exponential growth. ♦
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Proof. We split the proof into two steps, and we use the notation . for ≤ up to a constant C > 0 as
in the statement.

Step 1. General bounds.
In this step, we prove (i) (from which (ii) directly follows, noting that choosing a constant implies

∇h ≡ 0). Let us consider the flow

∂tψ
t(x) = −α(Ψ + vt)⊥(ψt(x))− β(Ψ + vt)(ψt(x)), ψt(x)|t=0 = x.

The Lipschitz assumptions ensure that ψ is well-defined in W 1,∞
loc ([0, T );W 1,∞(R2)2). As m satis-

fies the transport equation (7.9) with initial data m◦ ∈ C0(R2), the method of propagation along
characteristics yields

mt(x) = m◦((ψt)−1(x))|det∇(ψt)−1(x)| = m◦((ψt)−1(x))|det∇ψt((ψt)−1(x))|−1,

and hence for all 1 ≤ p <∞ we have
ˆ
|mt|p =

ˆ
|m◦((ψt)−1(x))|p| det∇ψt((ψt)−1(x))|−pdx =

ˆ
|m◦(x)|p|det∇ψt(x)|1−pdx, (7.31)

while for p =∞,
‖mt‖L∞ ≤ ‖m◦‖L∞‖(det∇ψt)−1‖L∞ .

Now let us examine this determinant more closely. By the Liouville-Ostrogradski formula,

|det∇ψt(x)|−1 = exp

( ˆ t

0
div

(
α(Ψ + vu)⊥ + β(Ψ + vu)

)
(ψu(x))du

)
. (7.32)

A simple computation gives

div (α(vt)⊥ + βvt) = −αcurl vt +β div vt = −αmt +βa−1 dt−β∇h · vt, (7.33)

hence by non-negativity of m,

div (α(vt)⊥ + βvt) ≤ |β|‖a−1‖L∞‖dt‖L∞ + |β|‖∇h‖L∞‖vt‖L∞ .

We then deduce from (7.32),

|det∇ψt(x)|−1 ≤ exp
(
tα‖curl Ψ‖L∞ + t|β|‖div Ψ‖L∞ + |β|‖a−1‖L∞‖d‖L1

t L∞ + |β|‖∇h‖L∞‖v‖L1
t L∞

)
,

and thus, combined with (7.31), for all 1 ≤ p ≤ ∞,

‖mt‖Lp ≤ ‖m◦‖Lp exp

(
p− 1

p

(
tα‖curl Ψ‖L∞ + t|β|‖div Ψ‖L∞

+ |β|‖a−1‖L∞‖d‖L1
t L∞ + |β|‖∇h‖L∞‖v‖L1

t L∞
))
. (7.34)

On the other hand, noting that

∂th(ψt(x)) = −∇h(ψt(x)) · (α(Ψ + vt)⊥ + β(Ψ + vt))(ψt(x)),

we may alternatively rewrite

div (α(vt)⊥ + βvt)(ψt(x)) =
(
− αmt +βa−1 dt−β∇h · vt

)
(ψt(x))

= ∂th(ψt(x)) +
(
− αmt +βa−1 dt−α∇⊥h · vt +∇h · (αΨ⊥ + βΨ)

)
(ψt(x)).
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Integrating this identity with respect to t and using again the same formula for |det∇ψt|−1, we obtain

‖mt‖Lp ≤ ‖m◦‖Lp exp

(
p− 1

p

(
tα‖curl Ψ‖L∞ + t|β|‖div Ψ‖L∞ + |β|‖a−1‖L∞‖d‖L1

t L∞

+ 2‖h‖L∞ + t(α+ |β|)‖∇h‖L∞‖Ψ‖L∞ + α‖∇h‖L∞‖v‖L1
t L∞

))
. (7.35)

Combining (7.34) and (7.35), the conclusion (i) follows.

Step 2. Proof of (iii).
It suffices to prove the result for any 1 < p < ∞. Let such a p be fixed. Assuming either β = 0,

or d ≡ 0 and a constant, we deduce from (7.31), (7.32), and (7.33),
ˆ
|mt|p =

ˆ
|m◦(x)|p exp

(
(p− 1)

ˆ t

0
div

(
α(Ψ + vu)⊥ + β(Ψ + vu)

)
(ψu(x))du

)
dx

≤ eC(p−1)t

ˆ
|m◦(x)|p exp

(
− α(p− 1)

ˆ t

0
mu(ψu(x))du

)
dx. (7.36)

Let x be momentarily fixed, and set fx(t) := mt(ψt(x)). We need to estimate the integral
´ t

0 fx(u)du.
For that purpose, we first compute ∂tfx: again using (7.33) (with either β = 0, or d ≡ 0 and a
constant), we find

∂tfx(t) = div
(
mt(α(Ψ + vt)⊥ + β(Ψ + vt))

)
(ψt(x))−∇mt(ψt(x)) ·

(
α(Ψ + vt)⊥ + β(Ψ + vt)

)
(ψt(x))

= mt(ψt(x)) div
(
α(Ψ + vt)⊥ + β(Ψ + vt))

)
(ψt(x))

= −α(mt(ψt(x)))2 +
(
− αmt curl Ψ + βmt div Ψ

)
(ψt(x)),

and hence
∂tfx ≥ −αf2

x − Cfx.
We may then deduce fx ≥ gx pointwise, where gx satisfies

∂tgx = −αg2
x − Cgx, gx(0) = fx(0) = m◦(x).

A direct computation yields

gx(t) =
Ce−Ct m◦(x)

C + α(1− e−Ct) m◦(x)
,

and hence ˆ t

0
fx(u)du ≥

ˆ t

0
gx(u)du = α−1 log

(
1 + αC−1(1− e−Ct) m◦(x)

)
.

Inserting this into (7.36), we obtain for all t > 0ˆ
|mt|p ≤ eC(p−1)t

ˆ
|m◦(x)|p

(
1 + αC−1(1− e−Ct) m◦(x)

)1−p
dx

≤
(
Cα−1eCt

1− e−Ct

)p−1 ˆ
|m◦(x)|dx =

(
Cα−1eCt

1− e−Ct

)p−1

.

The result (iii) then follows from the obvious inequality eCt(1 − e−Ct)−1 ≤ eCt + 1 + (Ct)−1 for all
t > 0.

The previous two lemmas establish uniform bounds on the vorticity m in various regimes. As
a preliminary to the propagation of regularity, we now show that this bound on m implies similar
uniform bounds on v and on the divergence d. In the incompressible case (7.1), this already follows
from Step 2 of the proof of Lemma 7.4.2 above, but more analysis is needed in the compressible
case (7.2).
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Lemma 7.4.5 (Relative Lp-estimates). Let λ > 0, α ≥ 0, β ∈ R, T > 0, h,Ψ, v̄◦ ∈ W 1,∞(R2)2,
and v◦ ∈ v̄◦ + L2(R2)2, with m◦ := curl v◦ ∈ P(R2), m̄◦ := curl v̄◦ ∈ P ∩ L∞(R2), and with either
div (av◦) = div (av̄◦) = 0 in the case (7.1), or d◦ := div (av◦), d̄

◦
:= div (av̄◦) ∈ L2 ∩L∞(R2) in the

case (7.2). Let v ∈ L∞loc([0, T ); v̄◦ + L2(R2)2) be a weak solution of (7.1) or of (7.2) on [0, T ) × R2

with initial data v◦, and with m := curl v ∈ L∞([0, T ]; L∞(R2)). Then we have for all t ∈ [0, T )

‖dt‖L2 ∩L∞ ≤ C, ‖div (vt−v̄◦)‖L2 ∩L∞ ≤ C, ‖vt‖L∞ ≤ C,

where the constant C depends only on an upper bound on α, |β|, λ, λ−1, T , ‖h‖W 1,∞, ‖(Ψ, v̄◦)‖L∞ ,
‖v◦−v̄◦‖L2, ‖m̄◦‖L1 ∩L∞, ‖(d

◦, d̄
◦
)‖L2 ∩L∞, ‖m‖L∞T L∞, and additionally on ‖(∇Ψ,∇v̄◦)‖L∞ (resp. on

α−1) in the case α = 0 (resp. α > 0). ♦

Proof. In this proof, we use the notation . for ≤ up to a constant C > 0 as in the statement, and
we also set θ := div v and θ̄◦ := div v̄◦. In the incompressible case (7.1) the conclusion follows from
Step 2 of the proof of Lemma 7.4.2 together with the identity div v = −∇h · v. We may thus focus
on the case of the compressible equation (7.2). We split the proof into three steps.

Step 1. Preliminary estimate for v: for all t ∈ [0, T ),

‖vt‖L∞ . 1 + ‖θt − θ̄◦‖L2 log1/2(2 + ‖θt − θ̄◦‖L2 ∩L∞). (7.37)

Note that vt−v̄◦ = ∇⊥4−1(mt−m̄◦) + ∇4−1(θt − θ̄◦). By Lemma 7.2.4(i)–(ii), we may then
estimate

‖vt−v̄◦‖L∞ ≤ ‖∇4−1(mt−m̄◦)‖L∞ + ‖∇4−1(θt − θ̄◦)‖L∞

. ‖mt−m̄◦‖L2 log1/2(2 + ‖mt−m̄◦‖L1 ∩L∞) + ‖θt− θ̄◦‖L2 log1/2(2 + ‖θt− θ̄◦‖L2 ∩L∞) + ‖vt−v̄◦‖L2 ,

so that (7.37) follows from the a priori estimates of Lemma 7.4.1 (in the form ‖vt−v̄◦‖L2 +‖mt‖L1 . 1)
and from the boundedness assumption ‖m‖L∞T L∞ . 1.

Step 2. Boundedness of θ: we prove ‖θt − θ̄◦‖L2 ∩L∞ . 1 for all t ∈ [0, T ).
We start with the L2-estimate. As d satisfies the transport-diffusion equation (7.10), Lemma 7.2.3(i)

with s = 0 leads to

‖dt‖L2 . ‖d◦‖L2 + ‖am(−α(Ψ + v) + β(Ψ + v)⊥)‖L2
t L2

. 1 + ‖m‖L2
t L∞‖v−v̄◦‖L∞t L2 + ‖m‖L2

t L2‖(Ψ, v̄◦)‖L∞ ,

and hence ‖dt‖L2 . 1 follows from the a priori estimates of Lemma 7.4.1 (in the form ‖vt−v̄◦‖L2 +
‖mt‖L1 . 1) and the boundedness assumption for m. Similarly, for θt = a−1 dt−∇h · vt, we deduce
‖θt − θ̄◦‖L2 . 1. We now turn to the L∞-estimate. Lemma 7.2.3(iii) with p = q = s =∞ gives

‖dt‖L∞ . ‖d◦‖L∞ + ‖am(−α(Ψ + v) + β(Ψ + v)⊥)‖L∞t L∞ . 1 + ‖m‖L∞t L∞(1 + ‖v‖L∞t L∞), (7.38)

or alternatively, for θt = a−1 dt−∇h · vt,

‖θt‖L∞ . 1 + ‖vt‖L∞ + ‖m‖L∞t L∞(1 + ‖v‖L∞t L∞).

Combining this estimate with the result of Step 1 yields

‖θt‖L∞ . 1 + ‖θt − θ̄◦‖L2 log1/2(2 + ‖θt − θ̄◦‖L2 ∩L∞)

+ ‖m‖L∞t L∞(1 + ‖θ − θ̄◦‖L∞t L2 log1/2(2 + ‖θ − θ̄◦‖L∞t (L2 ∩L∞))).
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Now the boundedness assumption on m and the L2-estimate for θ proven above reduce this expression
to

‖θt‖L∞ . log1/2(2 + ‖θ‖L∞t L∞).

Taking the supremum with respect to t, we may then conclude ‖θt‖L∞ . 1 for all t ∈ [0, T ).

Step 3. Conclusion.
By the result of Step 2, the estimate (7.37) of Step 1 takes the form ‖vt‖L∞ . 1. The esti-

mate (7.38) of Step 2 then yields ‖dt‖L∞ . 1, while the L2-estimate for d is already established in
Step 2.

7.4.2 Propagation of regularity

Since local existence is established in Section 7.3 only for smooth enough data, it is necessary for
the global existence result to first prove propagation of regularity along the flow. In this section, we
show that propagation of regularity is a consequence of the boundedness of the vorticity m, which
was indeed proven to hold in various regimes in Lemmas 7.4.2 and 7.4.3 above. We start with the
propagation of Sobolev Hs-regularity.

Lemma 7.4.6 (Sobolev regularity). Let s > 1. Let λ > 0, α ≥ 0, β ∈ R, T > 0, h,Ψ, v̄◦ ∈
W s+1,∞(R2)2, and v◦ ∈ v̄◦ + L2(R2)2, with m◦ := curl v◦, m̄◦ := curl v̄◦ ∈ P ∩ Hs(R2), and with
either div (av◦) = div (av̄◦) = 0 in the case (7.1), or d◦ := div (av◦), d̄

◦
:= div (av̄◦) ∈ Hs(R2) in the

case (7.2). Let v ∈ L∞([0, T ]; v̄◦ +Hs+1(R2)2) be a weak solution of (7.1) or of (7.2) on [0, T )×R2

with initial data v◦. Then for all t ∈ [0, T ) we have

‖mt‖Hs ≤ C, ‖dt‖Hs ≤ C, ‖vt−v̄◦‖Hs+1 ≤ C, ‖∇vt‖L∞ ≤ C,

where the constant C depends only on an upper bound on s, (s− 1)−1, α, |β|, λ, λ−1, T , ‖v◦−v̄◦‖L2,
‖(h,Ψ, v̄◦)‖W s+1,∞, ‖(m◦, m̄◦,d◦, d̄◦)‖Hs, ‖m‖L∞T L∞, and additionally on α−1 in the case α > 0. ♦

Proof. We set θ := div v, θ̄◦ := div v̄◦. In this proof, we use the notation . for ≤ up to a constant
C > 0 as in the statement. We focus on the compressible case (7.2), the other case being similar and
simpler. We split the proof into four steps.

Step 1. Time derivative of ‖m‖Hs : for all s ≥ 0 and t ∈ [0, T ),

∂t‖mt‖Hs . (1 + ‖∇vt‖L∞)(1 + ‖mt‖Hs) + ‖θt − θ̄◦‖Hs .

Lemma 7.2.2 with ρ = m, w = α(Ψ + v)⊥ + β(Ψ + v), and W = α(Ψ + v̄◦)⊥ + β(Ψ + v̄◦) yields

∂t‖mt‖Hs . (1 + ‖∇vt‖L∞)‖mt‖Hs + ‖vt−v̄◦‖Hs+1‖mt‖L∞ . (7.39)

Using Lemma 7.2.7, noting that ‖(mt−m̄◦, θt− θ̄◦)‖Ḣ−1 . ‖vt−v̄◦‖L2 , and using Lemma 7.4.1(iii) in
the form ‖vt−v̄◦‖L2 . 1, we obtain

‖vt−v̄◦‖Hs+1 . ‖mt−m̄◦‖Ḣ−1∩Hs + ‖θt − θ̄◦‖Ḣ−1∩Hs . 1 + ‖mt−m̄◦‖Hs + ‖θt − θ̄◦‖Hs .

Injecting this into (7.39), the claim follows from Lemma 7.4.5 and the boundedness assumption
‖m‖L∞T L∞ . 1.

Step 2. Lipschitz estimate for v: for all s > 1 and t ∈ [0, T ),

‖∇vt‖L∞ . log(2 + ‖mt‖Hs + ‖θt − θ̄◦‖Hs). (7.40)
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Since vt−v̄◦ = ∇⊥4−1(mt−m̄◦) + ∇4−1(θt − θ̄◦), Lemma 7.2.4(iii) yields, together with the
Sobolev embedding of Hs into a Hölder space for all s > 1,

‖∇(vt−v̄◦)‖L∞ ≤ ‖∇24−1(mt−m̄◦)‖L∞ + ‖∇24−1(θt − θ̄◦)‖L∞
. ‖mt−m̄◦‖L∞ log(2 + ‖mt−m̄◦‖Hs) + ‖mt−m̄◦‖L1

+ ‖θt − θ̄◦‖L∞ log(2 + ‖θt − θ̄◦‖Hs) + ‖θt − θ̄◦‖L2 ,

and the claim (7.40) then follows from Lemma 7.4.1(i), Lemma 7.4.5, and the boundedness assumption
on m.

Step 3. Sobolev estimate for θ: for all s ≥ 0 and t ∈ [0, T ),

‖θt − θ̄◦‖Hs . 1 + ‖m‖L∞t Hs . (7.41)

As d satisfies the transport-diffusion equation (7.10), Lemma 7.2.3(i) gives for all s ≥ 0,

‖dt‖Hs . ‖d◦‖Hs + ‖am(−α(Ψ + v) + β(Ψ + v)⊥)‖L2
t H

s .

Using Lemma 7.2.1 to estimate the right-hand side, we find for all s ≥ 0,

‖dt‖Hs . 1 + ‖am(−α(v−v̄◦) + β(v−v̄◦)⊥)‖L2
t H

s + ‖am(−α(Ψ + v̄◦) + β(Ψ + v̄◦)⊥)‖L2
t H

s

. 1 + ‖m‖L∞t L∞‖v−v̄◦‖L2
t H

s + ‖m‖L2
t H

s‖v−v̄◦‖L∞t L∞

+ ‖m‖L2
t L2(1 + ‖v̄◦‖W s,∞) + ‖m‖L2

t H
s(1 + ‖v̄◦‖L∞),

and hence, by Lemma 7.4.5 and the boundedness assumption on m,

‖dt‖Hs . 1 + ‖m‖L∞t Hs + ‖v−v̄◦‖L∞t Hs . (7.42)

Lemma 7.2.7 then yields for all s ≥ 0,

‖dt‖Hs . 1 + ‖m‖L∞t Hs + ‖m−m̄◦‖L∞t (Ḣ−1∩Hs−1) + ‖d−d̄
◦‖L∞t (Ḣ−1∩Hs−1).

Noting that ‖(m−m̄◦,d−d̄
◦
)‖Ḣ−1 . ‖v−v̄◦‖L2 , and using Lemma 7.4.1(iii) in the form ‖v−v̄◦‖L2 .

1, we deduce

‖dt‖Hs . 1 + ‖m‖L∞t Hs + ‖d‖L∞t Hs−1 .

Taking the supremum in time, we find by induction ‖d‖L∞t Hs . 1 + ‖m‖L∞t Hs + ‖d‖L∞t L2 for all
s ≥ 0. Recalling that Lemma 7.4.5 gives ‖θt− θ̄◦‖L2 . 1, and using the identity θt = a−1 dt−∇h · vt,
the claim (7.41) directly follows.

Step 4. Conclusion.
Combining the results of the three previous steps yields, for all s > 1,

∂t‖mt‖Hs . (1 + ‖mt‖Hs) log(2 + ‖mt‖Hs + ‖θt − θ̄◦‖Hs) + ‖θt − θ̄◦‖Hs

. (1 + ‖m‖L∞t Hs) log(2 + ‖m‖L∞t Hs),

hence

∂t‖m‖L∞t Hs ≤ sup
[0,t]

∂t‖m‖Hs . (1 + ‖m‖L∞t Hs) log(2 + ‖m‖L∞t Hs),

and the Grönwall inequality then gives ‖m‖L∞t Hs . 1. Combining this with (7.40), (7.41) and (7.42),
and recalling the identity vt−v̄◦ = ∇⊥4−1(mt−m̄◦) +∇4−1(θt − θ̄◦), the conclusion follows.
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We now turn to the propagation of Hölder regularity. More precisely, we consider the Besov spaces
Cs∗(R2) := Bs

∞,∞(R2). Recall that these spaces coincide with the usual Hölder spaces Csb (R2) only
for non-integer s ≥ 0 (for integer s > 0, they are strictly larger and coincide with the corresponding
Zygmund spaces).

Lemma 7.4.7 (Hölder-Zygmund regularity). Let s > 0. Let λ > 0, α ≥ 0, β ∈ R, T > 0, and
h,Ψ, v◦ ∈ Cs+1

∗ (R2)2 with m◦ := curl v◦ ∈ P(R2), and with either div (av◦) = 0 in the case (7.1), or
d◦ := div (av◦) ∈ L2(R2) in the case (7.2). Let v ∈ L∞([0, T ];Cs+1

∗ (R2)2) be a weak solution of (7.1)
or of (7.2) on [0, T )× R2 with initial data v◦. Then we have for all t ∈ [0, T ),

‖mt‖Cs∗ ≤ C, ‖dt‖Cs∗ ≤ C, ‖vt‖Cs+1
∗
≤ C,

where the constant C depends only on an upper bound on s, s−1, α, |β|, λ, λ−1, T , ‖(h,Ψ, v◦)‖Cs+1
∗

,
‖d◦‖L2, ‖m‖L∞T L∞, and additionally on α−1 in the case α > 0. ♦

Proof. We set θ := div v. In this proof, we use the notation . for ≤ up to a constant C > 0 as
in the statement. We may focus on the compressible equation (7.2), the other case being similar
and simpler. We split the proof into four steps, and make a systematic use of the standard Besov
machinery as presented in [40].

Step 1. Time derivative of ‖mt‖Cs∗ : for all s > 0 and t ∈ [0, T ),

∂t‖mt‖Cs∗ . (1 + ‖mt‖Cs∗)(1 + ‖∇vt‖L∞ ∩Cs−1
∗

) + ‖θt‖Cs∗ .

The transport equation (7.9) has the form ∂tm
t = div (mtwt) with wt = α(Ψ + vt)⊥ + β(Ψ + vt).

Arguing as in [40, Chapter 3.2] (that is, similarly as in the proof of Lemma 7.2.2, but using the
corresponding commutator estimates in Besov spaces [40, Lemma 2.100]), we obtain for all s > 0,

∂t‖mt‖Cs∗ . ‖m
t‖Cs∗‖∇w

t‖L∞ ∩Cs−1
∗

+ ‖mt div wt‖Cs∗ .

Using the usual product rules [40, Corollary 2.86] for all s > 0,

∂t‖mt‖Cs∗ . ‖m
t‖Cs∗‖∇w

t‖L∞ ∩Cs−1
∗

+ ‖mt‖L∞‖div wt‖Cs∗ + ‖mt‖Cs∗‖ div wt‖L∞

. ‖mt‖Cs∗(1 + ‖∇vt‖L∞ ∩Cs−1
∗

) + ‖mt‖L∞(1 + ‖mt‖Cs∗ + ‖θt‖Cs∗),

and the result follows from the boundedness assumption ‖m‖L∞T L∞ . 1.

Step 2. Lipschitz estimate for v: for all s > 0 and t ∈ [0, T ),

‖∇vt‖L∞ ∩Cs−1
∗
. ‖mt‖Cs−1

∗
+ ‖θt‖Cs−1

∗
+ log(2 + ‖mt‖Cs∗ + ‖θt‖Cs∗).

Since vt− v◦ = ∇⊥4−1(mt−m◦) +∇4−1(θt − θ◦), Lemma 7.2.5(ii) yields for all s ∈ R,

‖∇vt‖Cs−1
∗
. 1 + ‖mt−m◦‖Ḣ−1∩Cs−1

∗
+ ‖θt − θ◦‖Ḣ−1∩Cs−1

∗
,

and thus, noting that ‖(m−m◦, θ − θ◦)‖Ḣ−1 . ‖v− v◦ ‖L2 , and using Lemma 7.4.1(iii) in the form
‖v− v◦‖L2 . 1,

‖∇vt‖Cs−1
∗
. 1 + ‖mt‖Cs−1

∗
+ ‖θt‖Cs−1

∗
.

Arguing as in Step 2 of the proof of Lemma 7.4.6 further yields for all s > 0,

‖∇vt‖L∞ . log(2 + ‖mt‖Cs∗ + ‖θt − θ◦‖Cs∗),

and the result follows.
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Step 3. Estimate for θ: for all s > 0 and t ∈ [0, T ),

‖θt‖Cs∗ . 1 + ‖m‖L∞t Cs−1
∗

.

As d satisfies the transport-diffusion equation (7.10), we obtain for all s > 0, arguing as in [40,
Chapter 3.4],

‖dt‖Cs∗ . ‖d
◦‖Cs∗ + ‖am(−α(Ψ + v) + β(Ψ + v)⊥)‖L∞t Cs−1

∗
,

and thus, by the usual product rules [40, Corollary 2.86], the boundedness assumption on m, and
Lemma 7.4.5, we deduce for all s > 0,

‖dt‖Cs∗ . 1 + ‖m‖L∞t (L∞ ∩Cs−1
∗ )(1 + ‖v‖L∞t L∞) + ‖m‖L∞t L∞(1 + ‖v‖L∞t (L∞ ∩Cs−1

∗ ))

. 1 + ‖m‖L∞t Cs−1
∗

+ ‖v‖L∞t Cs−1
∗

,

or alternatively, in terms of θt = a−1 dt−∇h · vt,

‖θt‖Cs∗ . ‖d
t‖L∞ ∩Cs∗ + ‖vt‖L∞ ∩Cs∗ . 1 + ‖m‖L∞t Cs−1

∗
+ ‖v‖L∞t Cs∗ .

Decomposing vt− v◦ = ∇⊥4−1(mt−m◦)+∇4−1(θt−θ◦), using Lemma 7.2.5(ii), and again Lemma 7.4.1(iii)
in the form ‖(m−m◦, θ − θ◦)‖Ḣ−1 . ‖v− v◦‖L2 . 1, we find

‖vt‖Cs∗ . 1 + ‖mt−m◦‖Ḣ−1∩Cs−1
∗

+ ‖θt − θ◦‖Ḣ−1∩Cs−1
∗
. 1 + ‖mt‖Cs−1

∗
+ ‖θt‖Cs−1

∗
,

and hence

‖θ‖L∞t Cs∗ . 1 + ‖m‖L∞t Cs−1
∗

+ ‖θ‖L∞t Cs−1
∗

.

If s ≤ 1, then we have ‖ · ‖Cs−1
∗
. ‖ · ‖L∞ , so that the above estimate, the boundedness assumption

on m, and Lemma 7.4.5 yield ‖θ‖L∞t Cs∗ . 1. The result for s > 1 then follows by induction.

Step 4. Conclusion.
Combining the results of the three previous steps yields, for all s > 0,

∂t‖m‖L∞t Cs∗ ≤ sup
[0,t]

∂t‖m‖Cs∗

. (1 + ‖m‖L∞t Cs∗)
(
‖m‖L∞t Cs−1

∗
+ ‖θ‖L∞t Cs−1

∗
+ log(2 + ‖mt‖Cs∗ + ‖θt‖Cs∗)

)
+ ‖θ‖L∞t Cs∗

. (1 + ‖m‖L∞t Cs∗)
(
‖m‖L∞t Cs−1

∗
+ log(2 + ‖m‖L∞t Cs∗)

)
.

If s ≤ 1, then we have ‖ ·‖Cs−1
∗
. ‖ ·‖L∞ , so that the above estimate and the boundedness assumption

on m yield ∂t‖m‖L∞t Cs∗ . (1 + ‖m‖L∞t Cs∗) log(2 + ‖m‖L∞t Cs∗), hence ‖m‖L∞t Cs∗ . 1 by the Grönwall
inequality. The conclusion for s > 1 then follows by induction.

7.4.3 Global existence of solutions

With Lemmas 7.4.6 and 7.4.7 at hand, together with the a priori bounds of Lemmas 7.4.2 and 7.4.3,
it is straightforward to deduce the following global existence result from the local existence statement
of Proposition 7.3.1.

Corollary 7.4.8 (Global existence of smooth solutions). Let s > 1. Let λ > 0, α ≥ 0, β ∈ R,
h,Ψ, v̄◦ ∈W s+1,∞(R2)2, and v◦ ∈ v̄◦+ L2(R2)2, with m◦ := curl v◦, m̄◦ := curl v̄◦ ∈ P ∩Hs(R2), and
with either div (av◦) = div (av̄◦) = 0 in the case (7.1), or d◦ := div (av◦), d̄

◦
:= div (av̄◦) ∈ Hs(R2)

in the case (7.2). Then,
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(i) there exists a global weak solution v ∈ L∞loc(R+; v̄◦+Hs+1(R2)2) of (7.1) on R+×R2 with initial
data v◦, and with m := curl v ∈ L∞loc(R+;P ∩Hs(R2));

(ii) if β = 0, there exists a global weak solution v ∈ L∞loc(R+; v̄◦ + Hs+1(R2)2) of (7.2) on R+ ×
R2 with initial data v◦, and with m := curl v ∈ L∞loc(R+;P ∩ Hs(R2)) and d := div (av) ∈
L∞loc(R+;Hs(R2)). ♦

Proof. We may focus on item (ii), the first item being completely similar. In this proof we use the
notation ' and . for = and ≤ up to positive constants that depend only on an upper bound on α,
α−1, |β|, λ, λ−1, s, (s− 1)−1, ‖(h,Ψ, v̄◦)‖W s+1,∞ , ‖v◦−v̄◦‖L2 , ‖(m◦, m̄◦, d◦, d̄◦)‖Hs .

Given v̄◦ ∈W s+1,∞(R2)2 and v◦ ∈ v̄◦+ L2(R2)2 with m◦, m̄◦ ∈ P ∩Hs(R2) and d◦, d̄
◦ ∈ Hs(R2),

Proposition 7.3.1 gives a time T > 0, T ' 1, such that there exists a weak solution v ∈ L∞([0, T ); v̄◦+
Hs(R2)2) of (7.2) on [0, T )×R2 with initial data v◦. For all t ∈ [0, T ), Lemma 7.4.3(ii) (with β = 0)
then gives ‖mt‖L∞ . 1, which implies by Lemma 7.4.6,

‖mt‖Hs + ‖dt‖Hs + ‖vt−v̄◦‖Hs+1 . 1,

and moreover by Lemma 7.4.1(i) we have mt ∈ P(R2) for all t ∈ [0, T ). These a priori estimates show
that the solution v can be extended globally in time.

We now extend this global existence result beyond the setting of smooth initial data. We start
with the following result for L2-data, which is easily deduced by approximation.

Corollary 7.4.9 (Global existence for L2-data). Let λ > 0, α ≥ 0, β ∈ R, h,Ψ ∈ W 1,∞(R2)2.
Let v̄◦ ∈ W 1,∞(R2)2 be some reference map with m̄◦ := curl v̄◦ ∈ P ∩ Hs(R2) for some s > 1,
and with either div (av̄◦) = 0 in the case (7.1), or d̄

◦
:= div (av̄◦) ∈ Hs(R2) in the case (7.2). Let

v◦ ∈ v̄◦ + L2(R2)2, with m◦ := curl v◦ ∈ P ∩ L2(R2), and with either div (av◦) = 0 in the case (7.1),
or d◦ := div (av◦) ∈ L2(R2) in the case (7.2). Then,
(i) there exists a global weak solution v ∈ L∞loc(R+; v̄◦ + L2(R2)2) of (7.1) on R+ × R2 with initial

data v◦, and with v ∈ L2
loc(R+; v̄◦ +H1(R2)2) and m := curl v ∈ L∞loc(R+;P ∩ L2(R2));

(ii) if β = 0, there exists a global weak solution v ∈ L∞loc(R+; v̄◦+ L2(R2)2) of (7.2) on R+×R2 with
initial data v◦, and with v ∈ L2

loc(R+; v̄◦ + H1(R2)2), m := curl v ∈ L∞loc(R+;P ∩ L2(R2)) and
d := div (av) ∈ L2

loc(R+; L2(R2)). ♦

Proof. We may focus on the case (ii) (with β = 0), the other case being exactly similar. In this proof
we use the notation . for ≤ up to a positive constant that depends only on an upper bound on α,
α−1, λ, (s−1)−1, ‖(h,Ψ, v̄◦)‖W 1,∞ , ‖(m̄◦, d̄◦)‖Hs , ‖v◦−v̄◦‖L2 , and ‖(m◦,d◦)‖L2 . We use the notation
.t if it further depends on an upper bound on time t.

Let ρ ∈ C∞c (R2) with ρ ≥ 0,
´
ρ = 1, and ρ(0) = 1. Define ρε(x) := ε−dρ(x/ε) for all ε > 0, and

set m◦ε := ρε∗m◦, m̄◦ε := ρε∗m̄◦, d◦ε := ρε∗d◦, d̄
◦
ε := ρε∗d̄

◦, aε := ρε∗a and Ψε := ρε∗Ψ. For all ε > 0,
we have m◦ε, m̄◦ε ∈ P ∩ H∞(R2), d◦ε, d̄

◦
ε ∈ H∞(R2), and aε, a−1

ε , Ψε ∈ C∞b (R2)2. By construction,
we have aε → a, a−1

ε → a−1, Ψε → Ψ in W 1,∞(R2), m̄◦ε − m̄◦, d̄
◦
ε − d̄

◦ → 0 in Ḣ−1 ∩ Hs(R2), and
m◦ε −m◦, d◦ε −d◦ → 0 in Ḣ−1 ∩ L2(R2). The additional convergence in Ḣ−1(R2) indeed follows from
the following computation with Fourier transforms,

‖m◦ε −m◦‖2
Ḣ−1 =

ˆ
|ξ|−2|ρ̂(εξ)− 1|2|m̂◦(ξ)|2dξ ≤ ε2‖∇ρ̂‖2L∞‖m◦‖2L2 ,

and similarly for m̄◦ε, d◦ε, and d̄
◦
ε. Lemma 7.2.7 then gives a unique v◦ε ∈ v◦+H1(R2)2 and a unique

v̄◦ε ∈ v̄◦ + Hs+1(R2)2 such that curl v◦ε = m◦ε, curl v̄◦ε = m̄◦ε, div (aεv
◦
ε) = d◦ε, div (aεv̄

◦
ε) = d̄

◦
ε, and

we have v◦ε − v◦ → 0 in H1(R2)2 and v̄◦ε − v̄◦ → 0 in Hs+1(R2)2. In particular, the assumption
v̄◦ ∈W 1,∞(R2)2 yields by the Sobolev embedding with s > 1, for ε > 0 small enough,

‖v̄◦ε‖W 1,∞ . ‖v̄◦ε − v̄◦‖Hs+1 + ‖v̄◦‖W 1,∞ . 1,
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and the assumption v◦−v̄◦ ∈ L2(R2)2 implies

‖ v◦ε −v̄◦ε‖L2 ≤ ‖ v◦ε − v◦ ‖L2 + ‖v◦−v̄◦‖L2 + ‖v̄◦ε − v̄◦‖L2 . 1.

Corollary 7.4.8 then gives a solution vε ∈ L∞loc(R+; v̄◦ε +H∞(R2)2) of (7.2) on R+×R2 with initial
data v◦ε, and with (a,Ψ) replaced by (aε,Ψε). Lemma 7.4.1(iii) and Lemma 7.4.3(ii) (with β = 0)
give for all t ≥ 0,

‖vε−v̄◦ε‖L∞t L2 + ‖dε‖L2
t L2 + ‖mε‖L∞t L2 .t 1,

hence by Lemma 7.2.7, together with the obvious estimate ‖(mε−m̄◦ε, dε−d̄
◦
ε)‖Ḣ−1 . ‖vε−v̄◦ε‖L2 ,

‖vε−v̄◦ε‖L2
t H

1 . ‖vε−v̄◦ε‖L2
t L2 + ‖dε−d̄

◦
ε‖L2

t L2 + ‖mε−m̄◦ε‖L2
t L2 .t 1.

As v̄◦ε is bounded in H1
loc(R2)2, we deduce up to an extraction vε −⇀ v in L2

loc(R+;H1
loc(R2)2), and

also mε −⇀ m, dε −⇀ d in L2
loc(R+; L2(R2)), for some functions v,m, d. Comparing equation (7.9) with

the above estimates, we deduce that (∂tmε)ε is bounded in L1
loc(R+;W−1,1

loc (R2)). Since by the Rellich
theorem the space L2(U) is compactly embedded in H−1(U) ⊂ W−1,1(U) for any bounded domain
U ⊂ R2, the Aubin-Simon lemma ensures that we have mε → m strongly in L2

loc(R+;H−1
loc (R2)). This

implies mεvε → mv in the distributional sense. We may then pass to the limit in the weak formulation
of equation (7.2), and the result follows.

We turn to the case of rougher initial data. Using the a priori estimates of Lemmas 7.4.2
and 7.4.3(ii), we establish global existence for Lq-data with q > 1. In the parabolic regime α > 0,
β = 0, the finer a priori estimates of Lemma 7.4.3(iii) further imply global existence for vortex-sheet
data m◦ ∈ P(R2). Arguing by approximation, the main work consists in passing to the limit in
the nonlinear term mv. For that purpose, as in [304], we make a crucial use of some compactness
result due to Lions [305] in the context of the compressible Navier-Stokes equations. The conservative
regime (iv) below is however more subtle due to a lack of strong enough a priori estimates: only very
weak solutions are then expected and obtained in that case, and compactness is carefully proven by
hand.

Proposition 7.4.10 (Global existence for general data). Let λ > 0, α ≥ 0, β ∈ R, and h,Ψ ∈
W 1,∞(R2)2. Let v̄◦ ∈ W 1,∞(R2)2 be some reference map with m̄◦ := curl v̄◦ ∈ P ∩Hs(R2) for some
s > 1, and with either div (av̄◦) = 0 in the case (7.1), or d̄

◦
:= div (av̄◦) ∈ Hs(R2) in the case (7.2).

Let v◦ ∈ v̄◦ + L2(R2)2 with m◦ = curl v◦ ∈ P(R2), and with either div (av◦) = 0 in the case (7.1), or
d◦ := div (av◦) ∈ L2(R2) in the case (7.2). Then the following hold.

(i) Case (7.2) with α > 0, β = 0: There exists a weak solution v ∈ L∞loc(R+; v̄◦+L2(R2)2) on R+×R2

with initial data v◦, and with m = curl v ∈ L∞(R+;P(R2)) and d = div (av) ∈ L2
loc(R+; L2(R2)).

(ii) Case (7.1) with α > 0, and either β = 0 or a constant: There exists a weak solution v ∈
L∞loc(R+; v̄◦+ L2(R2)2) on R+×R2 with initial data v◦, and with m = curl v ∈ L∞(R+;P(R2)).

(iii) Case (7.1) with α > 0: If m◦ ∈ Lq(R2) for some q > 1, there exists a weak solution v ∈
L∞loc(R+; v̄◦ + L2(R2)2) on R+ × R2 with initial data v◦, and with m = curl v ∈ L∞loc(R+;P ∩
Lq(R2)).

(iv) Case (7.1) with α = 0: If m◦ ∈ Lq(R2) for some q > 1, there exists a very weak solution
v ∈ L∞loc(R+; v̄◦+ L2(R2)2) on R+×R2 with initial data v◦, and with m = curl v ∈ L∞loc(R+;P ∩
Lq(R2)). This is a weak solution whenever q ≥ 4/3. ♦

Proof. We split the proof into three steps, first proving item (i), then explaining how the argument
has to be adapted to prove items (ii) and (iii), and finally turning to item (iv).
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Step 1. Proof of (i).
In this step, we use the notation . for ≤ up to a positive constant that depends only on an upper

bound on α, α−1, λ, ‖(h,Ψ, v̄◦)‖W 1,∞ , ‖(m̄◦, d̄◦)‖Hs , ‖v◦−v̄◦‖L2 , and ‖d◦‖L2 . We use the notation
.t (resp. .t,U ) if it further depends on an upper bound on time t (resp. and on the size of U ⊂ R2).

Let ρ ∈ C∞c (R2) with ρ ≥ 0,
´
ρ = 1, ρ(0) = 1, and ρ|R2\B1

= 0, define ρε(x) := ε−dρ(x/ε)

for all ε > 0, and set m◦ε := ρε ∗ m◦, m̄◦ε := ρε ∗ m̄◦, d◦ε := ρε ∗ d◦, d̄
◦
ε := ρε ∗ d̄

◦. For all ε > 0,
we have m◦ε, m̄◦ε ∈ P ∩ H∞(R2), d◦ε, d̄

◦
ε ∈ H∞(R2). As in the proof of Corollary 7.4.9, we have

by construction m̄◦ε − m̄◦, d̄
◦
ε − d̄

◦ → 0 in Ḣ−1 ∩ Hs(R2), and d◦ε −d◦ → 0 in Ḣ−1 ∩ L2(R2). The
assumption v◦−v̄◦ ∈ L2(R2)2 further yields m◦−m̄◦ ∈ Ḣ−1(R2), which implies m◦ε −m̄◦ε → m◦−m̄◦,
hence m◦ε −m◦ → 0, in Ḣ−1(R2). Lemma 7.2.7 then gives a unique v◦ε ∈ v◦+ L2(R2)2 and a unique
v̄◦ε ∈ v̄◦ + Hs+1(R2)2 such that curl v◦ε = m◦ε, curl v̄◦ε = m̄◦ε, div (aεv

◦
ε) = d◦ε, div (aεv̄

◦
ε) = d̄

◦
ε, and we

have v◦ε − v◦ → 0 in L2(R2)2 and v̄◦ε − v̄◦ → 0 in Hs+1(R2)2. In particular, arguing as in the proof
of Corollary 7.4.9, the assumption v̄◦ ∈ W 1,∞(R2)2 yields ‖v̄◦ε‖W 1,∞ . 1 by the Sobolev embedding
with s > 1, and the assumption v◦−v̄◦ ∈ L2(R2)2 implies ‖v◦ε −v̄◦ε‖L2 . 1.

Corollary 7.4.9 then gives a global weak solution vε ∈ L∞loc(R+; v̄◦ε + L2(R2)2) of (7.2) on R+×R2

with initial data v◦ε, and Lemma 7.4.1(iii) yields for all t ≥ 0,

‖vε−v̄◦ε‖L∞t L2 + ‖dε‖L2
t L2 .t 1, (7.43)

while Lemma 7.4.3(iii) (with β = 0) yields after time integration for all 1 ≤ p < 2,

‖mε‖Lpt Lp .

( ˆ t

0

(
u1−p + eCu

)
du

)1/p

.t (2− p)−1/p.

Using this last estimate for p = 3/2 and 11/6, and combining it with Lemma 7.4.1(i) in the form
‖mε‖L∞t L1 ≤ 1, we deduce by interpolation

‖mε‖L2
t (L

4/3 ∩L12/7) .t 1.

Now we need to prove more precise estimates on vε. First recall the identity

vε = vε,1 + vε,2, vε,1 := ∇⊥4−1 mε, vε,2 := ∇4−1 div vε . (7.44)

On the one hand, as mε is bounded in L2
loc(R+; L4/3 ∩L12/7(R2)), we deduce from Riesz potential

theory that vε,1 is bounded in L2
loc(R+; L4 ∩L12(R2)2), and we deduce from the Calderón-Zygmund

theory that ∇vε,1 is bounded in L2
loc(R+; L4/3(R2)). On the other hand, decomposing

vε,2 = ∇4−1 div (vε−v̄◦ε) + v̄◦ε −∇⊥4−1m̄◦ε,

noting that vε−v̄◦ε is bounded in L∞loc(R+; L2(R2)2) (cf. (7.43)), that v̄◦ε is bounded in L2
loc(R2)2,

and that ‖∇4−1m̄◦ε‖L2 . ‖m̄◦ε‖L1 ∩L∞ . 1 (cf. Lemma 7.2.4), we deduce that vε,2 is bounded in
L∞loc(R+; L2

loc(R2)2). Further, decomposing

vε,2 = ∇4−1(a−1(dε−d̄
◦
ε))−∇4−1(∇h · (vε−v̄◦ε)) + v̄◦ε −∇⊥4−1m̄◦ε,

we easily check that ∇vε,2 is bounded in L2
loc(R+; L2

loc(R2)2). We then conclude from the Sobolev
embedding that vε,2 is bounded in L2

loc(R+; Lqloc(R
2)2) for all q < ∞. For our purposes it is enough

to choose q = 4 and 12. In particular, we have proven that for all bounded subset U ⊂ R2,

‖mε‖L2
t L4/3 + ‖dε‖L2

t L2 + ‖vε‖L∞t L2(U)

+ ‖vε,1‖L2
t (L

4 ∩L12) + ‖∇vε,1‖L2
t L4/3 + ‖vε,2‖L2

t (L
4 ∩L12(U)) + ‖∇vε,2‖L2

t L2(U) .t,U 1. (7.45)
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Therefore we have up to an extraction mε −⇀ m in L2
loc(R+; L4/3(R2)), dε −⇀ d in L2

loc(R+; L2(R2)),
vε,1 −⇀ v1 in L2

loc(R+; L4(R2)2), and vε,2 −⇀ v2 in L2
loc(R+; L4

loc(R2)2), for some functions m, d, v1, v2.
Comparing the above estimates with (7.9), we deduce that (∂tmε)ε is bounded in L1

loc(R+;W−1,1
loc (R2)).

Moreover, we find by interpolation for all |ξ| < 1 and all bounded domain U ⊂ R2, denoting by
U1 := U +B1 its 1-fattening,

‖vε− vε(·+ ξ)‖L2
t L4(U) ≤ ‖vε,1− vε,1(·+ ξ)‖L2

t L4(U) + ‖vε,2− vε,2(·+ ξ)‖L2
t L4(U)

≤ ‖vε,1− vε,1(·+ ξ)‖1/4
L2
t L4/3(U)

‖vε,1− vε,1(·+ ξ)‖3/4
L2
t L12(U)

+‖vε,2− vε,2(·+ ξ)‖2/5
L2
t L2(U)

‖vε,2− vε,2(·+ ξ)‖3/5
L2
t L12(U)

≤ 2‖vε,1− vε,1(·+ ξ)‖1/4
L2
t L4/3(U)

‖vε,1‖3/4L2
t L12(U1)

+ 2‖vε,2− vε,2(·+ ξ)‖2/5
L2
t L2(U)

‖vε,2‖3/5L2
t L12(U1)

≤ 2|ξ|1/4‖∇vε,1‖1/4L2
t L4/3(U1)

‖vε,1‖3/4L2
t L12(U1)

+ 2|ξ|2/5‖∇vε,2‖2/5L2
t L2(U1)

‖vε,2‖3/5L2
t L12(U1)

,

and hence by (7.45),

‖vε− vε(·+ ξ)‖L2
t L4(U) .t,U |ξ|

1/4 + |ξ|2/5.

Let us summarize the previous observations: up to an extraction, setting v := v1 + v2, we have

mε −⇀ m in L2
loc(R+; L4/3(R2)), vε −⇀ v in L2

loc(R+; L4
loc(R2)2),

(∂tmε)ε bounded in L1
loc(R+;W−1,1

loc (R2)),

sup
ε>0
‖vε− vε(·+ ξ)‖L2

t L4(U) → 0 as |ξ| → 0, for all t ≥ 0 and all bounded subset U ⊂ R2.

We may then apply [305, Lemma 5.1], which ensures that mεvε → mv holds in the distributional
sense. This allows to pass to the limit in the weak formulation of equation (7.2), and the result
follows.

Step 2. Proof of (ii) and (iii).
The proof of item (ii) is again based on Lemma 7.4.3(iii), and is completely analogous to the proof

of item (i) above. Regarding item (iii), Lemma 7.4.3(iii) does no longer apply in that case, but, since
we further assume m◦ ∈ Lq(R2) for some q > 1, Lemma 7.4.2 gives the following a priori estimate:
for all t ≥ 0

‖m‖
Lq+1
t Lq+1 + ‖m‖L∞t Lq .t 1, (7.46)

hence in particular by interpolation ‖m‖Lpt Lp .t 1 for all 1 ≤ p ≤ 2. (Here we use the notation .t for
≤ up to a constant that depends only on an upper bound on t, (q − 1)−1, α, α−1, |β|, ‖(h,Ψ)‖W 1,∞ ,
‖v◦−v̄◦‖L2 , and ‖m◦‖Lq .) The conclusion follows from a similar argument as in Step 1.

Step 3. Proof of (iv).
We finally turn to the incompressible equation (7.1) in the conservative regime α = 0. Let q > 1 be

such that m◦ ∈ Lq(R2). Lemma 7.4.2 or 7.4.3(ii) ensures that mε is bounded in L∞loc(R+; L1 ∩Lq(R2)),
and hence, for q > 4/3, replacing the exponents 4/3 and 12/7 of Step 1 by 4/3 and q, the argument of
Step 1 can be immediately adapted to this case, for which we thus obtain global existence of a weak
solution. In the remaining case 1 < q < 4/3, the product m∇∆−1 m (hence the product mv, cf. (7.44))
does not make sense any more for m ∈ Lq(R2). Since in the conservative regime α = 0 no additional
regularity is available (in particular, (7.46) does not hold), we do not expect the existence of a weak
solution, and we need to turn to the notion of very weak solutions as defined in Definition 7.1.1(c),
where the product mv is reinterpreted à la Delort. Let 1 < q ≤ 4/3. We establish the global existence
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of a very weak solution. (For the critical exponent q = 4/3, the integrability of v found below directly
implies by Remark 7.1.2(ii) that the constructed very weak solution is automatically a weak solution.)
In this step, we use the notation . for ≤ up to a constant C that depends only on an upper bound on
(q − 1)−1, |β|, ‖(h,Ψ, v̄◦)‖W 1,∞ , ‖v◦−v̄◦‖L2 , ‖m̄◦‖L2 , and ‖m◦‖Lq , and we use the notation .t (resp.
.t,U ) if it further depends on an upper bound on time t (resp. on t and on the size of U ⊂ R2).

Let m◦ε, m̄◦ε, v◦ε, v̄◦ε be defined as in Step 1 (with of course d◦ε = d̄
◦
ε = 0), and let vε ∈ L∞loc(R+; v̄◦ε +

L2(R2)2) be a global weak solution of (7.1) on R+×R2 with initial data v◦ε, as given by Corollary 7.4.9.
Lemmas 7.4.1(iii) and 7.4.3(ii) then give for all t ≥ 0,

‖mε‖L∞t (L1 ∩Lq) + ‖vε−v̄◦ε‖L∞t L2 .t 1. (7.47)

As v̄◦ε is bounded in L2
loc(R2)2, we deduce in particular that vε is bounded in L∞loc(R+; L2

loc(R2)).
Moreover, using the Delort type identity

mεvε = −1

2
|vε|2∇⊥h− a−1(div (aSvε))

⊥,

we then deduce that mεvε is bounded in L∞loc(R+;W−1,1
loc (R2)2). Let us now recall the following useful

decomposition,

vε = vε,1 + vε,2, vε,1 := ∇⊥4−1 mε, vε,2 := ∇4−1 div vε . (7.48)

By Riesz potential theory vε,1 is bounded in L∞loc(R+; Lp(R2)2) for all 2 < p ≤ 2q
2−q , while as in

Step 1 we check that vε,2 is bounded in L∞loc(R+;H1
loc(R2)2). Hence by the Sobolev embedding, for

all bounded domain U ⊂ R2 and all t ≥ 0,

‖(vε, vε,1)‖L∞t L2q/(2−q)(U) .t,U 1. (7.49)

Up to an extraction we then have vε
∗−⇀ v in L∞loc(R+; L2

loc(R2)2) and mε
∗−⇀ m in L∞loc(R+; Lq(R2)), for

some functions v,m, with necessarily m = curl v and div (av) = 0.
We now need to pass to the limit in the nonlinearity mεvε. For that purpose, for all η > 0, we set

vε,η := ρη ∗ vε and mε,η := ρη ∗mε = curl vε,η, where ρη(x) := η−dρ(x/η) is the regularization kernel
defined in Step 1, and we then decompose the nonlinearity as follows,

mεvε = (mε,η −mε)(vε,η − vε)−mε,η vε,η + mε,ηvε + mεvε,η .

We study each right-hand side term separately, and split the proof into four further substeps.

Substep 3.1. We prove that (mε,η −mε)(vε,η − vε) → 0 holds in the distributional sense (and even
strongly in L∞loc(R+;W−1,1

loc (R2)2)) as η ↓ 0, uniformly in ε > 0.
For that purpose, we use the Delort type identity

(mε,η −mε)(vε,η − vε) = a−1(vε,η − vε) div (a(vε,η − vε))−
1

2
|vε,η − vε|2∇⊥h− a−1(div (aSvε,η − vε))

⊥.

Noting that the constraint 0 = a−1 div (avε) = ∇h · vε + div vε yields

a−1 div (a(vε,η − vε)) = ∇h ·vε,η + div vε,η = ∇h · (ρη ∗vε)+ρη ∗div vε = ∇h · (ρη ∗vε)−ρη ∗ (∇h ·vε),

the above identity becomes

(mε,η −mε)(vε,η − vε) = (vε,η − vε)
(
∇h · (ρη ∗ vε)− ρη ∗ (∇h · vε)

)
− 1

2
|vε,η − vε|2∇⊥h− a−1(div (aSvε,η − vε))

⊥.
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First, using the boundedness of vε (hence of vε,η) in L∞loc(R+; L2
loc(R2)2), we may estimate, for all

bounded domain U ⊂ R2, denoting by Uη := U +Bη its η-fattening,
ˆ
U

∣∣(vε,η − vε)
(
∇h · (ρη ∗ vε)− ρη ∗ (∇h · vε)

)∣∣
≤ ‖(vε, vε,η)‖L2(U)

(ˆ
U

(ˆ
ρη(y)|∇h(x)−∇h(x− y)||vε(x− y)|dy

)2
dx

)1/2

. ‖(vε, vε,η)‖2L2(Uη)

( ˆ
ρη(y)

ˆ
U
|∇h(x)−∇h(x− y)|2dxdy

)1/2
,

where the right-hand side converges to 0 as η ↓ 0, uniformly in ε. Second, using the decomposi-
tion (7.48), and setting vε,η,1 := ρη ∗ vε,1, vε,η,2 := ρη ∗ vε,2, the Hölder inequality yields for all
bounded domain U ⊂ R2,
ˆ
U
|(vε− vε,η)⊗ (vε− vε,η)| ≤

ˆ
U
|vε− vε,η || vε,1− vε,η,1 |+

ˆ
U
| vε− vε,η || vε,2− vε,η,2 |

≤ ‖(vε, vε,η)‖L2q/(2−q)(U)‖vε,1− vε,η,1 ‖L2q/(3q−2)(U) + ‖(vε, vε,η)‖L2(U)‖vε,2− vε,η,2 ‖L2(U).

Recalling the choice 1 < q ≤ 4/3, we find by interpolation

‖vε,1− vε,η,1‖L2q/(3q−2)(U) ≤ ‖vε,1− vε,η,1‖
4−3q
2−q

L2(U)
‖vε,1− vε,η,1‖

2 q−1
2−q

Lq(U)

≤ η2 q−1
2−q ‖(vε,1, vε,η,1)‖

4−3q
2−q

L2(U)
‖∇vε,1‖

2 q−1
2−q

Lq ,

and hence by the Calderón-Zygmund theory,

‖vε,1− vε,η,1‖L2q/(3q−2)(U) . η
2 q−1

2−q ‖(vε,1, vε,η,1)‖
4−3q
2−q

L2(U)
‖mε‖

2 q−1
2−q

Lq ,

while as in Step 1 we find

‖vε,2− vε,η,2 ‖L2
t L2(U) ≤ η‖∇vε,2‖L2

t L2(Uη) .U η.

Combining this with the a priori estimate (7.49), we may conclude
ˆ t

0

ˆ
U
|(vε− vε,η)⊗ (vε− vε,η)| .t,U η2 q−1

2−q + η,

and the claim follows.

Substep 3.2. We set vη := ρη∗v, mη := ρη∗m = curl vη, and we prove that−mε,ηvε,η + mε,ηvε + mεvε,η →
−mηvη + mηv + mvη in the distributional sense as ε ↓ 0, for any fixed η > 0.

As q < 2 < q′, the weak convergences vε
∗−⇀ v in L∞loc(R+; L2

loc(R2)2) and mε
∗−⇀ m in L∞loc(R+; Lq(R2))

imply for instance vε,η
∗−⇀ vη in L∞loc(R+;W 1,q′

loc (R2)2) and mε,η
∗−⇀ mη in L∞loc(R+;H1(R2)) as ε ↓ 0, for

any fixed η > 0 (note that these are still only weak-* convergences because no regularization occurs
with respect to the time variable t). Moreover, examining equation (7.9) together with the a priori esti-
mates obtained at the beginning of this step, we observe that ∂tmε is bounded in L∞loc(R+;W−2,1

loc (R2)),
hence ∂tmε,η = ρη ∗ ∂tmε is also bounded in the same space. Since by the Rellich theorem the
space Lq(U) is compactly embedded in W−1,q(U) ⊂ W−2,1(U) for all bounded domain U ⊂ R2, the
Aubin-Simon lemma ensures that we have mε → m strongly in L∞loc(R+;W−1,q

loc (R2)), and similarly,
since H1(U) is compactly embedded in L2(U) ⊂ W−2,1(U), we also deduce mε,η → mη strongly in
L∞loc(R+; L2

loc(R2)). This proves the claim.
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Substep 3.3. We prove that −mηvη + mηv + mvη → −1
2 |v|

2∇⊥h − a−1(div (aSv))⊥ holds in the
distributional sense as η ↓ 0.

For that purpose, we use the following Delort type identity,

−mηvη + mηv + mvη = −a−1(vη − v) div (a(vη − v)) +
1

2
|vη − v|2∇⊥h+ a−1(div (aSvη − v))⊥

+ a−1v div (av)− 1

2
|v|2∇⊥h− a−1(div (aSv))⊥.

Noting that the limiting constraint 0 = a−1 div (av) = ∇h · v + div v gives

a−1 div (a(vη − v)) = ∇h · vη + div vη = ∇h · (ρη ∗ v) + ρη ∗ div v = ∇h · (ρη ∗ v)− ρη ∗ (∇h · v),

the above identity takes the form

−mηvη + mηv + mvη = −a−1(vη − v)
(
∇h · (ρη ∗ v)− ρη ∗ (∇h · v)

)
+

1

2
|vη − v|2∇⊥h+ a−1(div (aSvη − v))⊥ − 1

2
|v|2∇⊥h− a−1(div (aSv))⊥,

and it is thus sufficient to prove that the first three right-hand side terms tend to 0 in the distributional
sense as η ↓ 0. This is proven just as in Substep 3.1 above, with vε,η, vε replaced by vη, v.

Substep 3.4. Conclusion.
Combining the three previous substeps yields mεvε → −1

2 |v|
2∇⊥h − a−1(div (aSv))⊥ in the dis-

tributional sense as ε ↓ 0. Passing to the limit in the very weak formulation of equation (7.9), the
conclusion follows.

7.5 Uniqueness

We turn to the uniqueness results stated in Theorem 7.1.5. Using similar energy arguments as
in the proof of Lemma 7.4.1, in the spirit of [395, Appendix B], we prove a general weak-strong
uniqueness principle. Note that in the degenerate case λ = 0 an additional term needs to be added
to the usual energy, in link with the fact that m and v are then on an equal footing with regard to
regularity. In the incompressible case, we further prove uniqueness in the class of bounded vorticity
based on transport arguments à la Loeper [307] (see also [398]), but these tools are not available in
the compressible case.

Proposition 7.5.1 (Uniqueness). Let α, β ∈ R, λ ≥ 0, T > 0, and h,Ψ ∈ W 1,∞(R2)2. Let v◦ :
R2 → R2 with m◦ := curl v◦ ∈ P(R2), and in the incompressible case (7.1) further assume that
div (av◦) = 0.
(i) Weak-strong uniqueness principle for (7.1) and (7.2) in the non-degenerate case λ > 0, α ≥ 0:

If (7.1) or (7.2) admits a weak solution v ∈ L2
loc([0, T ); v◦+ L2(R2)2) ∩ L∞loc([0, T );W 1,∞(R2)2)

on [0, T ) × R2 with initial data v◦, then it is the unique weak solution of (7.1) or of (7.2) on
[0, T )× R2 in the class L2

loc([0, T ); v◦+ L2(R2)2) with initial data v◦.
(ii) Weak-strong uniqueness principle for (7.2) in the degenerate parabolic case λ = β = 0, α ≥ 0:

Let E2
T,v◦ denote the class of all w ∈ L2

loc([0, T ); v◦+ L2(R2)2) with curlw ∈ L2
loc([0, T ); L2(R2)).

If (7.2) admits a weak solution v ∈ E2
T,v◦ ∩L∞loc([0, T ); L∞(R2)2) on [0, T )×R2 with initial data

v◦, and with m := curl v ∈ L∞loc([0, T );W 1,∞(R2)), then it is the unique weak solution of (7.2)
on [0, T )× R2 in the class E2

T,v◦ with initial data v◦.
(iii) Uniqueness for (7.1) with bounded vorticity, α, β ∈ R:

There exists at most a unique weak solution v of (7.1) on [0, T )×R2 with initial data v◦, in the
class of all w’s such that curlw ∈ L∞loc([0, T ); L∞(R2)).
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Moreover, in items (i)–(ii), the condition α ≥ 0 may be dropped if we further restrict to weak solutions
v such that curl v ∈ L∞loc([0, T ); L∞(R2)). ♦

Proof. In this proof, we use the notation . for ≤ up to a constant C > 0 that depends only on an
upper bound on α, |β|, λ, λ−1, and ‖(h,Ψ)‖W 1,∞ , and we add subscripts to indicate dependence on
further parameters. We split the proof into four steps, first proving item (i) in the case (7.1), then in
the case (7.2), and finally turning to items (ii) and (iii).

Step 1. Proof of (i) in the case (7.1).
Let α ≥ 0, β ∈ R, and let v1, v2 ∈ L2

loc([0, T ); v◦+ L2(R2)2) be two weak solutions of (7.1) on
[0, T ) × R2 with initial data v◦, and assume v2 ∈ L∞loc([0, T );W 1,∞(R2)2). Set δv := v1− v2 and
δm := m1−m2. As the constraint div (aδv) = 0 yields δv = a−1∇⊥(div a−1∇)−1δm, and as by
assumption δv ∈ L2

loc([0, T ); L2(R2)2), we deduce δm ∈ L2
loc([0, T ); Ḣ−1(R2)) and (div a−1∇)−1δm ∈

L2
loc([0, T ); Ḣ1(R2)). Moreover, the definition of a weak solution ensures that mi := curl vi ∈

L∞([0, T );P(R2)) (cf. Lemma 7.4.1(i)), and |vi|2 mi ∈ L1
loc([0, T ); L1(R2)), for i = 1, 2, so that all the

integrations by parts below are directly justified. From equation (7.9), we compute the following time
derivative

∂t

ˆ
δm(−div a−1∇)−1δm = 2

ˆ
∇(div a−1∇)−1δm ·

(
(α(Ψ + v1)⊥ + β(Ψ + v1)) m1

− (α(Ψ + v2)⊥ + β(Ψ + v2)) m2

)
= −2

ˆ
aδv⊥ ·

(
(α(δv)⊥ + βδv) m1 +(α(Ψ + v2)⊥ + β(Ψ + v2))δm

)
= −2α

ˆ
a|δv|2 m1−2

ˆ
aδm δv⊥ ·(α(Ψ + v2)⊥ + β(Ψ + v2)). (7.50)

Since v2 is Lipschitz-continuous, and since the definition of a weak solution ensures that m1v1 ∈
L1

loc([0, T ); L1(R2)2), the following Delort type identity holds in L1
loc([0, T );W−1,1

loc (R2)2),

δm δv⊥ =
1

2
|δv|2∇h+ a−1 div (aSδv).

Combining this with (7.50) and the non-negativity of αm1 yields

∂t

ˆ
δm(−div a−1∇)−1δm ≤ −

ˆ
a|δv|2∇h · (α(Ψ + v2)⊥ + β(Ψ + v2))

+ 2

ˆ
aSδv : ∇(α(Ψ + v2)⊥ + β(Ψ + v2))

≤ C(1 + ‖v2‖W 1,∞)

ˆ
a|δv|2.

The uniqueness result δv = 0 then follows from the Grönwall inequality, since by integration by parts
ˆ
a|δv|2 =

ˆ
a−1|∇(div a−1∇)−1δm|2 =

ˆ
δm(−div a−1∇)−1δm .

Note that if we further assume m1 ∈ L∞([0, T ); L∞(R2)), then the non-negativity of α can be dropped:
it indeed suffices to estimate in that case −2α

´
a|δv|2 m1 ≤ C‖m1‖L∞

´
a|δv|2, and the result then

follows as above. A similar observation also holds in the context of item (ii).

Step 2. Proof of (i) in the case (7.2).
Let α ≥ 0, β ∈ R, λ > 0, and let v1, v2 ∈ L2

loc([0, T ); v◦+ L2(R2)2) be two weak solutions of (7.2)
on [0, T ) × R2 with initial data v◦, and assume v2 ∈ L∞loc([0, T );W 1,∞(R2)2). The definition of a
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weak solution ensures that mi := curl vi ∈ L∞([0, T );P(R2)) (cf. Lemma 7.4.1(i)), di := div (avi) ∈
L2

loc([0, T ); L2(R2)), and |vi|2 mi ∈ L1
loc([0, T ); L1(R2)), for i = 1, 2, and hence the integrations by

parts below are directly justified. Set δv := v1− v2, δm := m1−m2, and δd := d1−d2. From
equation (7.2), we compute the following time derivative

∂t

ˆ
a|δv|2 = 2

ˆ
aδv ·

(
λ∇(a−1δd)− α(Ψ + v1) m1 +β(Ψ + v1)⊥m1

+ α(Ψ + v2) m2−β(Ψ + v2)⊥m2

)
= −2λ

ˆ
a−1|δd |2 − 2α

ˆ
a|δv|2 m1 +2

ˆ
aδm δv ·

(
α(Ψ + v2)− β(Ψ + v2)⊥

)
.

As v2 is Lipschitz-continuous, and as the definition of a weak solution implies m1v1 ∈ L1
loc([0, T )×R2)2,

the following Delort type identity holds in L1
loc([0, T );W−1,1

loc (R2)2),

δm δv = a−1δd δv⊥−1

2
|δv|2∇⊥h− a−1(div (aSδv))⊥.

The above may then be estimated as follows, after integration by parts,

∂t

ˆ
a|δv|2 ≤ −2λ

ˆ
a−1|δd|2 − 2α

ˆ
a|δv|2 m1

+ C(1 + ‖v2‖L∞)

ˆ
|δd||δv|+ C(1 + ‖v2‖W 1,∞)

ˆ
a|δv|2,

and thus, using the choice λ > 0, the inequality 2xy ≤ x2 + y2, and the non-negativity of αm1,

∂t

ˆ
a|δv|2 ≤ C(1 + λ−1

ε )(1 + ‖v2‖2W 1,∞)

ˆ
a|δv|2.

The Grönwall inequality then implies uniqueness, δv = 0.

Step 3. Proof of (ii).
Let λ = β = 0, α = 1, and let v1, v2 ∈ L2

loc([0, T ); v◦+ L2(R2)2) be two weak solutions of (7.2)
on [0, T ) × R2 with initial data v◦, and with mi := curl vi ∈ L2

loc([0, T ); L2(R2)) for i = 1, 2, and
further assume v2 ∈ L∞loc([0, T ); L∞(R2)2) and m2 ∈ L∞loc([0, T );W 1,∞(R2)). The definition of a
weak solution ensures that mi := curl vi ∈ L∞([0, T );P(R2)) (cf. Lemma 7.4.1(i)), di := div (avi) ∈
L2

loc([0, T ); L2(R2)), and |vi|2 mi ∈ L1
loc([0, T ); L1(R2)), for i = 1, 2, and hence the integrations by

parts below are directly justified. Denoting δv := v1− v2 and δm := m1−m2, equation (7.2) yields

∂tδv = −(Ψ + v2)δm−m1 δv, (7.51)

while equation (7.9) takes the form

∂tδm = div ((Ψ + v2)⊥δm) + div (m1 δv
⊥)

= div ((Ψ + v2)⊥δm) +∇m1 ·δv⊥−m1 δm

= div ((Ψ + v2)⊥δm) +∇m2 ·δv⊥+∇δm ·δv⊥−m1 δm . (7.52)

Testing equation (7.51) against δv yields, by non-negativity of m1,

∂t

ˆ
|δv|2 = −2

ˆ
|δv|2 m1−2

ˆ
δv ·(Ψ + v2)δm ≤ C(1 + ‖v2‖L∞)

ˆ
|δv||δm|.
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Testing equation (7.52) against δm and integrating by parts yields, by non-negativity of m1 and m2,

∂t

ˆ
|δm|2 = −

ˆ
∇|δm|2 · (Ψ + v2)⊥ + 2

ˆ
δm∇m2 ·δv⊥+

ˆ
∇|δm|2 · δv⊥−2

ˆ
|δm|2 m1

= −
ˆ
|δm|2(curl Ψ + m2) + 2

ˆ
δm∇m2 ·δv⊥+

ˆ
|δm|2(m1−m2)− 2

ˆ
|δm|2 m1

≤ C
ˆ
|δm|2 + 2‖∇m2‖L∞

ˆ
|δv||δm|.

Combining the above two estimates and using the inequality 2xy ≤ x2 + y2, we find

∂t

ˆ
(|δv|2 + |δm|2) ≤ C(1 + ‖(v2,∇m2)‖L∞)

ˆ
(|δv|2 + |δm|2),

and the uniqueness result follows from the Grönwall inequality.

Step 4. Proof of (iii).
Let α, β ∈ R, and let v1, v2 denote two solutions of (7.1) on [0, T ) × R2 with initial data v◦,

and with m1,m2 ∈ L∞loc([0, T ); L∞(R2)). First we prove that vt1, v
t
2 are log-Lipschitz for all t ∈ [0, T )

(compare with the easier situation in [398, Lemma 4.1]). For i = 1, 2, using the identity vti =
∇⊥4−1 mt

i +∇4−1 div vti with div vti = −∇h · vti, we may decompose for all x, y,

|vti(x)− vti(y)| ≤ |∇4−1 mt
i(x)−∇4−1 mt

i(y)|+ |∇4−1(∇h · vti)(x)−∇4−1(∇h · vti)(y)|.

By the embedding of the Zygmund space C1
∗ (R2) = B1

∞,∞(R2) into the space of log-Lipschitz functions
(see e.g. [40, Proposition 2.107]), we may estimate

|vti(x)− vti(y)| .
(
‖∇24−1 mt

i ‖C0
∗

+ ‖∇24−1(∇h · vti)‖C0
∗

)
|x− y|(1 + log−(|x− y|)),

and hence, applying Lemma 7.2.5(ii) and recalling that L∞(R2) is embedded in C0
∗ (R2) = B0

∞,∞(R2),
we find for all 1 ≤ p <∞,

|vti(x)− vti(y)| .p
(
‖mt

i‖L1 ∩C0
∗

+ ‖∇h · vti‖Lp ∩C0
∗

)
|x− y|(1 + log−(|x− y|))

.
(
‖mt

i‖L1 ∩L∞ + ‖vti‖Lp ∩L∞
)
|x− y|(1 + log−(|x− y|)).

Noting that vti = a−1∇⊥(div a−1∇)−1 mt
i, the elliptic estimates of Lemma 7.2.6 yield ‖vti‖Lp0 ∩L∞ .

‖mt
i‖L1 ∩L∞ for some exponent 2 < p0 . 1. For the choice p = p0, the above thus takes the following

form,

|vti(x)− vti(y)| . ‖mt
i‖L1 ∩L∞ |x− y|(1 + log−(|x− y|))

≤ (1 + ‖mt
i‖L∞)|x− y|(1 + log−(|x− y|)), (7.53)

which proves that vt1, v
t
2 are log-Lipschitz for all t ∈ [0, T ).

For i = 1, 2, as the vector field α(Ψ + vi) + β(Ψ + vi)
⊥ is log-Lipschitz in space, the associated

flow ψi : [0, T )× R2 → R2 is well-defined globally,

∂tψi(x) = −(α(Ψ + vi) + β(Ψ + vi)
⊥)(ψi(x)).

As the transport equation (7.9) ensures that mt
i = (ψti)∗m◦ for i = 1, 2, the 2-Wasserstein distance

between the solutions mt
1,m

t
2 ∈ P(R2) is bounded by

W2(mt
1,m

t
2)2 ≤ Qt :=

ˆ
|ψt1(x)− ψt2(x)|2 m◦(x)dx. (7.54)
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Now the time derivative of Q is estimated by

∂tQ
t = −2

ˆ
(ψt1(x)− ψt2(x)) ·

(
(αΨ + βΨ⊥)(ψt1(x))− (αΨ + βΨ⊥)(ψt2(x))

)
m◦(x)dx

− 2

ˆ
(ψt1(x)− ψt2(x)) ·

(
(αvt1 +β(vt1)⊥)(ψt1(x))− (αvt2 +β(vt2)⊥)(ψt2(x))

)
m◦(x)dx

≤ CQt + C(Qt)1/2

(ˆ
|vt1(ψt1(x))− vt2(ψt2(x))|2 m◦(x)dx

)1/2

≤ CQt + C(Qt)1/2(T t1 + T t2)1/2,

where we have set

T t1 :=

ˆ
|(vt1− vt2)(ψt2(x))|2 m◦(x)dx, T t2 :=

ˆ
|vt1(ψt1(x))− vt1(ψt2(x))|2 m◦(x)dx.

We first study T1. Using that vi = a−1∇⊥(div a−1∇)−1 mi, we find

T t1 =

ˆ
|vt1− vt2|2 mt

2 ≤ ‖mt
2‖L∞

ˆ
|vt1− vt2|2 = ‖mt

2‖L∞
ˆ
|∇(div a−1∇)−1(mt

1−mt
2)|2

. ‖mt
2‖L∞

ˆ
|∇4−1(mt

1−mt
2)|2.

(Here, we use the fact that if −div (a−1∇u1) = −4u2 with u1, u2 ∈ H1(R2), then
´
a−1|∇u1|2 =´

∇u1 ·∇u2 ≤ 1
2

´
a−1|∇u1|2+ 1

2

´
a|∇u2|2, hence

´
a−1|∇u1|2 ≤

´
a|∇u2|2.) Loeper’s inequality [307,

Proposition 3.1] and the bound (7.54) then imply

T t1 ≤ ‖mt
2‖L∞(‖mt

1‖L∞ ∨ ‖mt
2‖L∞)W2(mt

1,m
t
2)2 ≤ ‖(mt

1,m
t
2)‖2L∞Qt.

We finally turn to T2. Using the log-Lipschitz property (7.53) and the concavity of the function
x 7→ x(1 + log− x)2, we obtain by Jensen’s inequality,

T t2 . ‖mt
1‖2L∞

ˆ
(1 + log−(|ψt1 − ψt2|))2|ψt1 − ψt2|2 m◦

≤ ‖mt
1‖2L∞

(
1 + log−

ˆ
|ψt1 − ψt2|2 m◦

)2
ˆ
|ψt1 − ψt2|2 m◦

. ‖mt
1‖2L∞(1 + log−Q

t)2Qt.

We may thus conclude ∂tQ . (1 + ‖(m1,m2)‖L∞)(1 + log−Q)Q, and the uniqueness result follows
from a Grönwall argument.

7.6 Degenerate parabolic case

We now turn to the study of the compressible equation (7.2) in the degenerate parabolic case
λ = β = 0, α = 1, that is,

∂tv = −(Ψ + v)curl v, in R+ × R2, (7.55)

with initial data v|t=0 = v◦. A local existence result is already established in Proposition 7.3.2 above,
and uniqueness is obtained in Proposition 7.5.1(ii), but the absence of strong enough a priori estimates
on the divergence div v due to the degeneracy of the equation make the question of global existence
delicate. In the present section, we show how to exploit the particular scalar structure of the solution
v to establish global existence and finer uniqueness results. More precisely, we establish the following,
which in particular implies Theorem 7.1.6. This result is a joint work with Julian Fischer.
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Theorem 7.6.1. Let λ = 0, α = 1, β = 0, let v◦,Ψ ∈ L∞loc(R2)2 with curl v◦, curl Ψ ∈ L∞loc(R2) and
curl v◦ ≥ 0, and assume that v◦,Ψ are log-Lipschitz, that is, for all x, y,

|v◦(x)− v◦(y)|+ |Ψ(x)−Ψ(y)| ≤ C|x− y|(1 + log−(|x− y|)), for all x, y.

There exists a unique global strong solution v ∈ L∞loc(R+ × R2) of (7.55) with curl v ∈ L∞loc(R+ × R2)
and curl v ≥ 0. Moreover the following hold:

(i) if v◦,Ψ ∈W 1,∞(R2)2, then the solution v satisfies curl v ∈ L∞loc(R+; L∞(R2)), and if in addition
curl v◦ ∈ P(R2), then there holds v ∈ L∞loc(R+; v◦+ L1 ∩L∞(R2)2) and curl v ∈ L∞loc(R+;P ∩
L∞(R2));

(ii) if for some s ≥ 0 we have v◦,Ψ ∈ W s∨1,∞(R2)2 and curl v◦, curl Ψ ∈ W s,∞(R2), then for all
0 ≤ u ≤ s the solution v belongs to W u+1,∞

loc (R+;W s−u,∞(R2)2);

(iii) if for some s ≥ 1 we have v◦,Ψ ∈W s,∞(R2)2, curl v◦ ∈ Hs∩W s,∞(R2), and curl Ψ ∈W s,∞(R2),
then the solution v belongs to L∞loc(R+; v◦+Hs ∩W s,∞(R2)2). ♦

We start with a suitable reduction of equation (7.55), making its scalar structure appear. Assume
that v ∈ W 1,∞

loc (R+; L∞loc(R2)) is a strong solution of (7.55) with curl v ∈ L∞loc(R+ × R2). Since the
forcing vector field Ψ is time-independent, equation (7.55) for v can be rewritten as follows,

∂t(Ψ + v) = −(Ψ + v)curl v, (Ψ + v)|t=0 = Ψ + v◦,

which implies for all x ∈ R2 and t ≥ 0,

(Ψ + vt)(x) = κt(x)(Ψ + v◦)(x), κt(x) := exp
(
−
ˆ t

0
curl vs(x) ds

)
, (7.56)

together with the following scalar equation for κ,

∂tκ = −κ curl v, κ|t=0 = 1.

Assuming curl Ψ ∈ L∞loc(R2), the definition (7.56) of κ in the form v = −Ψ + κ(Ψ + v◦) and the
assumption curl v ∈ L∞loc(R+ × R2) ensure that the directional derivative ((Ψ + v◦)⊥ · ∇)κ is well-
defined in L∞loc(R+ × R2), and the above scalar equation for κ turns into

∂tκ = κ ((Ψ + v◦)⊥ · ∇)κ− κ2curl v◦+κ(1− κ)curl Ψ, κ|t=0 = 1. (7.57)

Along the characteristic curves of the vector field (Ψ+v◦)⊥, this equation takes the form of a Burgers’
equation with additional quadratic damping and forcing terms. Although such a Burgers’ equation
may in general develop discontinuities in finite time (shock waves), we show that it cannot happen for
constant initial data κ|t=0 = 1 as considered here. Recall that we focus here on the case with signed
vorticity curl v◦ ≥ 0.

Lemma 7.6.2. LetW ∈ L∞loc(R2)2 be log-Lipschitz (that is, |W (x)−W (y)| ≤ C|x−y|(1+log−(|x−y|))
for all x, y), and let f, g ∈ L∞loc(R2) with f ≥ 0. We consider the following Cauchy problem on R+×R2,

∂tκ = κ (W · ∇)κ− κ2f + κ(1− κ)g, κ|t=0 = 1. (7.58)

There exists a global strong solution κ ∈ W 1,∞
loc (R+; L∞loc(R2)) ∩ L∞(R+ × R2) with 1

κ , (W · ∇)κ ∈
L∞loc(R+ × R2). This solution is unique in the class

C :=
{
κ ∈W 1,∞

loc (R+; L∞loc(R2)) : (W · ∇)κ ∈ L∞loc(R+ × R2)
}
.

Moreover the following hold:
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(i) if f, g ∈ L∞(R2) andW ∈W 1,∞(R2)2, then the solution κ satisfies 1
κ , (W ·∇)κ ∈ L∞loc(R+; L∞(R2)),

and if in addition f ∈ L1(R2), then there holds 1− κ ∈ L∞loc(R+; L1 ∩L∞(R2));
(ii) if for some s ≥ 0 we have W ∈ W s∨1,∞(R2)2 and f, g ∈ W s,∞(R2), then for all 0 ≤ u ≤ s the

solution κ belongs to W u+1,∞
loc (R+;W s−u,∞(R2));

(iii) if for some s ≥ 1 we have f ∈ Hs ∩W s,∞(R2), W ∈ W s,∞(R2)2, and g ∈ W s,∞(R2), then the
solution κ satisfies 1− κ ∈ L∞loc(R+;Hs(R2)). ♦

Proof. Let W ∈ L∞loc(R2)2 be log-Lipschitz, and let f, g ∈ L∞loc(R2) with f ≥ 0. Then the flow
ψ : R×R2 → R2 : (s, x) 7→ ψsx associated with the vector field −W is well-defined globally on R×R2,

∂sψ
s
x = −W (ψsx), ψsx|s=0 = x.

We have ψ ∈ C1(R;C(R2)), and for all s ∈ R the map ψs : R2 → R2 is a homeomorphism with
inverse ψ−s. More precisely, since W is log-Lipschitz, the map ψs is a Hölder homeomorphism in the
following sense: we have for all s, x, y,

e−e
C|s|

(1 ∧ |x− y|)eC|s| ≤ 1 ∧ |ψsx − ψsy| ≤ e(1 ∧ |x− y|)e
−C|s|

.

We split the proof into three steps.

Step 1. Uniqueness.
In this step, we show that for all x ∈ Rd and σ◦ ∈ R there exists a unique global solution

σx(σ◦) : R+ → R : t 7→ σtx(σ◦) of

∂tσx(σ◦) = 1−
ˆ σx(σ◦)

σ◦
f(ψsx) exp

(
−
ˆ σx(σ◦)

s
(f + g)(ψux) du

)
ds, σx(σ◦)|t=0 = σ◦, (7.59)

and that the corresponding map σtx : R→ R is invertible on R. In addition, assuming that for some
T > 0 there exists a local strong solution κ ∈ W 1,∞

loc ([0, T ); L∞loc(R2)) of (7.58) on [0, T ) × R2 with
(W · ∇)κ ∈ L∞loc([0, T ) × R2), we show that such a solution κ is necessarily given by the following
explicit formula,

κt(x) = 1−
ˆ 0

(σtx)−1(0)
f(ψsx) exp

(
−
ˆ 0

s
(f + g)(ψux)du

)
ds. (7.60)

This implies the stated uniqueness result.
Setting κ̂tx(s) := κt(ψsx), and noting that ∂sκ̂tx(s) = −(W · ∇κt)(ψsx), we deduce by assumption

κ̂x ∈ W 1,∞
loc ([0, T ) × R) for almost all x. Picard’s existence theorem then ensures the local existence

and uniqueness of the flow σx on R associated with the vector field κ̂x: for almost all x, for all σ◦,
there exists 0 < Tx(σ◦) ≤ T and a unique local solution σx(σ◦) ∈ C1([0, Tx(σ◦))) of the Cauchy
problem

∂tσ
t
x(σ◦) = κ̂tx(σtx(σ◦)), σtx(σ◦)|t=0 = σ◦. (7.61)

Now note that by definition the function t 7→ κ̂tx(σtx(σ◦)) belongs to W 1,∞
loc ([0, Tx(σ◦))) and satisfies

∂t
(
κ̂tx(σtx(σ◦))

)
= −

(
κ̂tx(σtx(σ◦))

)2
f(ψσ

t
x(σ◦)
x ) + κ̂tx(σtx(σ◦))

(
1− κ̂tx(σtx(σ◦))

)
g(ψσ

t
x(σ◦)
x ), (7.62)

κ̂tx(σtx(σ◦))|t=0 = 1.

For f, g ∈ L∞loc(R2), this equation admits a unique global solution in W 1,∞
loc ([0, Tx(σ◦))), which must

be given by the explicit formula

κ̂tx(σtx(σ◦)) = 1−
ˆ σtx(σ◦)

σ0

f(ψsx) exp
(
−
ˆ σtx(σ◦)

s
(f + g)(ψux) du

)
ds. (7.63)
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On the one hand, since the positive part 0∨ κ̂x(σx(σ◦)) belongs toW 1,∞
loc ([0, Tx(σ◦))) and also satisfies

equation (7.62), we deduce by uniqueness that κ̂x(σx(σ◦)) must remain nonnegative. Moreover,
formula (7.63) with f ≥ 0 ensures that κ̂x(σx(σ◦)) remains bounded above by 1, so that it is actually
[0, 1]-valued on its domain. On the other hand, due to formula (7.63), equation (7.61) takes on the
following guise,

∂tσx(σ◦) = Z(σx(σ◦), σ◦), σx(σ◦)|t=0 = σ◦, (7.64)

where we have set

Z(σ, σ◦) := max

{
0 ; 1−

ˆ σ

σ0

f(ψsx) exp
(
−
ˆ σ

s
(f + g)(ψux)du

)
ds

}
.

As 0 ≤ Z(σ, σ◦) ≤ 1, we deduce σ◦ ≤ σtx(σ◦) ≤ σ◦+t for all t ≥ 0. Since in addition for f, g ∈ L∞loc(R2)
we have Z ∈W 1,∞

loc (R×R), the flow σx(σ◦) must exist globally. We may therefore choose Tx(σ◦) = T
and the representation (7.63) holds for all 0 ≤ t < T .

It remains to invert (7.63) and deduce the formula (7.60) for the solution κ itself. For that purpose,
we need to invert the (non-decreasing) map σtx : R → R globally for all t ≥ 0. Since we have shown
κ̂tx(σtx(σ◦)) = Z(σtx(σ◦), σ◦) ∈ [0, 1] for all t ∈ [0, T ), equation (7.64) leads to

∂t
∂σtx(σ◦)

∂σ◦
= f(ψσ

◦
x ) exp

(
−
ˆ σtx(σ◦)

σ◦
(f + g)(ψux)du

)
(7.65)

+
∂σtx(σ◦)

∂σ◦

(
− f(ψσ

t
x(σ◦)
x ) + (f + g)(ψσ

t
x(σ◦)
x )

ˆ σtx(σ◦)

σ◦
f(ψsx) exp

(
−
ˆ σtx(σ◦)

s
(f + g)(ψux)du

)
ds

)
.

For all x, t, σ◦, define the compact set Kt
x(σ◦) := B + {ψsx : σ◦ ≤ s ≤ σ◦ + t}, where B is the closed

unit Euclidean ball at the origin in R2. Hence, for f, g ∈ L∞loc(R2) with f ≥ 0, we find for almost all
x, for all t ∈ [0, T ),

∂t
∂σtx(σ◦)

∂σ◦
≥ −∂σ

t
x(σ◦)

∂σ◦
‖f‖L∞(Kt

x(σ◦))

(
1 + ‖g‖L∞(Kt

x(σ◦))

ˆ σtx(σ◦)

σ◦
e

(σtx(σ◦)−s)‖g‖
L∞(Ktx(σ◦))ds

)
≥ −∂σ

t
x(σ◦)

∂σ◦
‖f‖L∞(Kt

x(σ◦))

(
1 + e

(σtx(σ◦)−σ◦)‖g‖
L∞(Ktx(σ◦))

)
≥ −2

∂σtx(σ◦)

∂σ◦
‖f‖L∞(Kt

x(σ◦)) e
t‖g‖

L∞(Ktx(σ◦)) ,

while from (7.63) we deduce

∂t
∂σtx(σ◦)

∂σ◦
= f(ψσ

◦
x ) exp

(
−
ˆ σtx(σ◦)

σ◦
(f + g)(ψux)du

)
+
∂σtx(σ◦)

∂σ◦

(
(1− κ̂tx(σtx(σ◦))) g(ψσ

t
x(σ◦)
x )− κ̂tx(σtx(σ◦) f(ψσ

t
x(σ◦)
x )

)
≤ et‖g‖L∞(Ktx(σ◦))‖f‖L∞(K0

x(σ◦)) +
∂σtx(σ◦)

∂σ◦
‖g‖L∞(Kt

x(σ◦)).

For almost all x, for all t ∈ [0, T ), this implies

exp
(
− 2t‖f‖L∞(Kt

x(σ◦))e
t‖g‖

L∞(Ktx(σ◦))
)
≤ ∂σtx(σ◦)

∂σ◦
≤
(
1 + t‖f‖L∞(K0

x(σ◦))

)
e
t‖g‖

L∞(Ktx(σ◦)) ,

which shows that the map σtx : R→ R is a Lipschitz diffeomorphism, with also(
1 + t‖f‖L∞(K0

x(σ◦))

)−1
e
−t‖g‖

L∞(Ktx(σ◦)) ≤ ∂(σtx)−1(σ◦)

∂σ◦
≤ exp

(
2t‖f‖L∞(Kt

x(σ◦))e
t‖g‖

L∞(Ktx(σ◦))
)
.

(7.66)
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The representation (7.63) applied to σ◦ = (σtx)−1(0) then yields the desired result (7.60).

Step 2. Existence.
Let κ, σ be given by (7.60)–(7.59). Using the relation

∂t(σ
t
x)−1(0) = −κt(x)

∂(σtx)−1

∂σ◦
(0),

the definition (7.60) and the estimate (7.66) ensure that κ ∈W 1,∞
loc (R+; L∞loc(R2)). We now check that

(W · ∇)κ ∈ L∞loc(R+ × R2). For almost all x and for all t, σ◦, rewriting equation (7.59) in the form

∂tσψrx(σ◦) = 1−
ˆ r+σψrx (σ◦)

r+σ◦
f(ψsx) exp

(
−
ˆ r+σψrx (σ◦)

s
(f + g)(ψux) du

)
ds,

we easily find that the map r 7→ σtψrx(σ◦) belongs to W 1,∞
loc (R). Using the relation

∂r(σ
t
ψrx

)−1(0) = −
(
∂rσ

t
ψrx

)(
(σtψrx)−1(0)

) ∂(σtψrx)−1

∂σ◦
(0),

it follows that the map r 7→ (σtψrx)−1(0) also belongs to W 1,∞
loc (R). For almost all x and for all t,

writing (W · ∇)κt(x) = −∂rκt(ψrx)|r=0, and using the definition (7.60) in the form

κt(ψrx) = 1−
ˆ r

r+(σt
ψrx

)−1(0)
f(ψsx) exp

(
−
ˆ r

s
(f + g)(ψux)du

)
ds,

we then easily deduce that (W · ∇)κ ∈ L∞loc(R+ × R2). We now check that κ is a strong solution of
the Cauchy problem (7.58). By construction, the map t 7→ κt(ψ

σtx(σ◦)
x ) is given by (7.63) and thus

satisfies

∂t
(
κt(ψσ

t
x(σ◦)
x )

)
= −

(
κt(ψσ

t
x(σ◦)
x )

)2
f(ψσ

t
x(σ◦)
x ) + κt(ψσ

t
x(σ◦)
x )

(
1− κt(ψσtx(σ◦)

x )
)
g(ψσ

t
x(σ◦)
x ),

or alternatively, (
∂tκ

t − κt (W · ∇)κt
)
(ψσ

t
x(σ◦)
x ) =

(
− (κt)2f + κt(1− κt)g

)
(ψσ

t
x(σ◦)
x ).

As this holds for almost all x and for all σ◦, we indeed deduce that κ is a strong solution of (7.58).
It remains to check that 1

κ ∈ L∞loc(R+ × R2). For that purpose, we note that equation (7.58) implies∣∣∂t(|κt(x)|−1
)∣∣ ≤ |κt(x)|−1

(
|(W · ∇)κt(x)|+ (1 + |κt(x)|)|g(x)|

)
+ |f(x)|,

which easily implies by a Grönwall argument that 1
κ ∈ L∞loc(R+ × R2).

Step 3. Regularity and integrability.
The additional regularity statement (ii) in W s,∞ is a straightforward consequence of formu-

las (7.60)–(7.59), together with the identity (7.65) and the estimate (7.66). Also note that for f, g ∈
L∞(R2) and W ∈W 1,∞(R2) the argument in Step 2 ensures that 1

κ , (W · ∇)κ ∈ L∞loc(R+; L∞(R2)).
We now turn to the additional integrability (i) for 1 − κ. Assume that f ∈ L1 ∩L∞(R2), W ∈

W 1,∞(R2), and g ∈ L∞(R2). For all R ≥ 1, denote by χR(x) := e−|x|/R the exponential cut-off
function at scale R. We compute

∂t

ˆ
R2

χR|1− κt| ≤
ˆ
R2

χRκ
tW · ∇|1− κt|+

ˆ
R2

χR(κt)2f +

ˆ
R2

χ|κtg||1− κt|,
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and hence, after integration by parts, using the property |∇χR| ≤ χR of the exponential cut-off
function, for all R ≥ 1,

∂t

ˆ
R2

χR|1− κt| ≤ ‖κt‖2L∞‖f‖L1 + (‖χ−1
R div (κtχRW )‖L∞ + ‖κtg‖L∞)

ˆ
R2

χR|1− κt|

≤ ‖κt‖2L∞‖f‖L1 + (‖(W · ∇)κt‖L∞ + ‖κt‖L∞‖W‖W 1,∞ + ‖κt‖L∞‖g‖L∞)

ˆ
R2

χR|1− κt|.

Applying the Grönwall inequality, and letting R ↑ ∞, we deduce 1− κ ∈ L∞loc(R+; L1(R2)).
We finally turn to the Hs-regularity. Let s ≥ 1 be fixed. Assume that f ∈ Hs ∩ W s,∞(R2),

W ∈W s,∞(R2)2, g ∈W s,∞(R2). For all R ≥ 1, denote by χ̃R(x) := exp(−(1 + |x|2)1/2/R) a smooth
exponential cut-off function at scale R. We compute

∂t‖χ̃R(1− κt)‖2Hs = −2

ˆ
R2

〈∇〉s
(
χ̃R(1− κt)

)
〈∇〉s

(
κtχ̃RW · ∇κt

)
− 2

ˆ
R2

〈∇〉s
(
χ̃R(1− κt)

)
〈∇〉s

(
− χ̃R(κt)2f + χ̃Rκ

t(1− κt)g
)
. (7.67)

Decomposing

− 2〈∇〉s
(
κtχ̃RW · ∇κt

)
= 2[〈∇〉s, κtW ·]∇(χ̃R(1− κt)) + 2κtW · ∇〈∇〉s(χ̃R(1− κt))

− 2〈∇〉s
(
(1− κt)κtW · ∇χ̃R

)
,

we find, after integration by parts in the second right-hand side term,

∂t‖χ̃R(1− κt)‖2Hs = 2

ˆ
R2

〈∇〉s
(
χ̃R(1− κt)

)
[〈∇〉s, κtW ·]∇(χ̃R(1− κt))

−
ˆ
R2

|〈∇〉s(χ̃R(1− κt))|2 div (κtW )

− 2

ˆ
R2

〈∇〉s
(
χ̃R(1− κt)

)
〈∇〉s

(
(1− κt)κtW · ∇χ̃R − χ̃R(κt)2f + χ̃Rκ

t(1− κt)g
)
,

and hence,

∂t‖χ̃R(1− κt)‖Hs . ‖[〈∇〉s, κtW ·]∇(χ̃R(1− κt))‖L2 + ‖κt‖2W s,∞‖χ̃Rf‖Hs

+
(
‖ div (κtW )‖L∞ + ‖χ̃−1

R κtW · ∇χ̃R‖W s,∞ + ‖κtg‖W s,∞
)
‖χ̃R(1− κt)‖Hs .

Applying the Kato-Ponce commutator estimate [269, Lemma X1] in the form (7.16) with s ≥ 1 in
order to estimate the first right-hand side term, we find

∂t‖χ̃R(1− κt)‖Hs .
(
‖κtW‖W s,∞ + ‖χ̃−1

R κtW · ∇χ̃R‖W s,∞ + ‖κtg‖W s,∞
)
‖χ̃R(1− κt)‖Hs

+ ‖κt‖2W s,∞‖χ̃Rf‖Hs ,

and thus, for all R ≥ 1, using the properties of the smooth exponential cut-off function χ̃R,

∂t‖χ̃R(1− κt)‖Hs . ‖κt‖W s,∞‖(W, g)‖W s,∞‖χ̃R(1− κt)‖Hs + ‖κt‖2W s,∞‖f‖Hs ,

Applying the Grönwall inequality, using the regularity result for the solution κ in W s,∞(R2), and
letting R ↑ ∞, this implies 1− κ ∈ L∞loc(R+;Hs(R2)).

We may now conclude with the proof of Theorem 7.6.1.

388



Proof of Theorem 7.6.1. Let v◦,Ψ ∈ L∞loc(R2)2 be log-Lipschitz vector fields with curl v◦, curl Ψ ∈
L∞loc(R2) and curl v◦ ≥ 0. We start with the existence part. By Lemma 7.6.2 withW := (Ψ+v◦)⊥, f :=
curl v◦, and g := curl Ψ, there exists a global strong solution κ ∈ W 1,∞

loc (R+; L∞loc(R2)) of (7.57) with
1
κ , ((Ψ+v◦)⊥ ·∇)κ ∈ L∞loc(R+×R2). Then the function v := −Ψ+κ(Ψ+v◦) ∈W 1,∞

loc (R+; L∞loc(R2)) is
by construction a global strong solution of (7.55) with initial data v◦ and with curl v ∈ L∞loc(R+×R2).
The additional regularity statements follow from the corresponding statements for κ in Lemma 7.6.2
together with the representation v− v◦ = −(1− κ)(v◦+Ψ).

We now turn to the uniqueness part. Assume that v1, v2 ∈ W 1,∞
loc ([0, T ); L∞loc(R2)) are strong

solutions of (7.55) on [0, T ) × R2 with curl v1, curl v2 ∈ L∞loc([0, T ) × R2) and curl v1, curl v2 ≥ 0.
From (7.56), it follows that for i = 1, 2 we have vi = −Ψ + κi(Ψ + v◦) where κi is given by

κti(x) := exp
(
−
ˆ t

0
curl vsi (x) ds

)
.

As vi is a strong solution of (7.55) on [0, T ) × R2, we deduce that κi is a strong solution of equa-
tion (7.57) on [0, T ) × R2, and the boundedness assumption on curl vi implies that κi belongs to
W 1,∞

loc ([0, T ); L∞loc(R2)) and satisfies 1
κi
, ((Ψ + v◦)⊥ · ∇)κi ∈ L∞loc([0, T )× R2).
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Chapter 8

Mean-field dynamics of Ginzburg-Landau
vortices with pinning and applied force

We consider the time-dependent 2D Ginzburg-Landau equation in the whole plane with terms
modeling the applied current and the impurities in the sample. The Ginzburg-Landau vortices are
then subjected to three forces: their mutual repulsive Coulomb interaction, the Lorentz-like force due
to the applied current and pushing the vortices in a given direction, and the pinning force attracting
them towards the impurities. The competition between the three is expected to lead to complicated
glassy effects.

We first rigorously study the limit in which the number of vortices Nε blows up as the inverse
Ginzburg-Landau parameter ε goes to 0, and we derive via a modulated energy method the limiting
fluid-like mean-field evolution equations. These results hold in the case of parabolic, conservative,
and mixed-flow dynamics in appropriate regimes of Nε ↑ ∞. We next consider the problem of
homogenization of the limiting mean-field equations when the pinning potential oscillates rapidly: we
formulate a number of questions and heuristics on the appropriate limiting stick-slip equations, as
well as some rigorous results on the simplest regimes.

This chapter essentially corresponds to the article [169] jointly written with Sylvia Serfaty, to
the exception of the mean-field results in the superdense parabolic regime (cf. Theorem 8.1.3 and
Sections 8.3.3 and 8.8).
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8.1 Introduction

8.1.1 General overview

Superconductors are materials that lose their resistivity at sufficiently low temperature (or low
pressure), which allows them to carry electric currents without energy dissipation. Another important
property of these materials is the so-called Meissner effect: (moderate) external magnetic fields are
completely expelled from the sample. If the external field is much too strong, however, the supercon-
ducting material returns to a normal state. In the case of a type-II superconductor, an intermediate
regime is possible between two critical values of the external field: the material is then in a mixed
state, allowing a partial penetration of the external field through “vortex filaments”. This mixed
state has however a major drawback: when an electric current is applied, it flows through the sam-
ple, inducing a Lorentz-like force that sets the vortices in motion, and hence, since vortices are flux
filaments, their movement generates an electric field in the direction of the electric current, which
dissipates energy and destroys the superconductivity property.

While ordinary superconductors need extreme cooling to achieve superconductivity, the discovery
of high-temperature superconductors from the 1980s onwards has given an major boost to technologi-
cal applications, as the critical temperature of such materials is now reached with only liquid nitrogen.
These high-temperature superconductors happen to be in practice strongly of type II and, as such,
they show vortices for a very wide range of values of the applied magnetic field. Most technological
applications of superconductors therefore occur in this mixed state, and it is thus crucial to design
ways to prevent vortices from moving in order to recover the desired property of dissipation-free
current flow. For that purpose a common attempt consists in introducing normal impurities in the
material, which are meant to destroy superconductivity locally and therefore “pin down” the vortices
to their locations if the applied current is not too strong.

With these applications in mind, there is a strong interest in the physics community in understand-
ing the precise effect of such impurities (which are typically randomly scattered around the sample)
on the statics and dynamics of vortices. Of particular interest is the critical applied current needed to
depin the vortices from their pinning sites, as well as the slow motion of vortices — named creep — in
the disordered sample when the applied current has a small intensity and thermal or quantum effects
are taken into consideration (see e.g. [65, 195, 369]). In the sequel, we are interested in the collective
dynamics of many vortices in a (2D section of a) type-II superconductor with applied current and
impurities, and wish to establish in various regimes the correct mean-field equations describing the
vortex matter. The richness of the dynamic phase diagram is particularly striking for this vortex
matter in terms of the different tunable parameters (see e.g. [306, 369]).

The phenomenology of superconductivity is accurately described by the (mesoscopic) Ginzburg-
Landau theory. Restricting ourselves to a 2D section of a superconducting material, we rather consider
the simpler 2D Ginzburg-Landau model, and vortex filaments are replaced by “point vortices”. We
refer e.g. to [412, 411] for further reference on these models, and to [382] for a mathematical intro-
duction. The (mesoscopic) impurities in the material are usually modeled by introducing a pinning
weight a : R2 → [0, 1], which locally lowers the energy penalty associated with the vortices [284, 109]
(see also [108]): regions with a = 1 correspond to the pure superconducting material, while points
with a ≈ 0 define the normal inclusions. In the time-dependent 2D Ginzburg-Landau equation (which
is the gradient flow for the corresponding energy), the pinning weight and the applied electric current
appear as follows, 

∂twε = 4wε + wε
ε2

(a− |wε|2), in R+ × Ω,

n · ∇wε = iwε|log ε|n · Jex, on R+ × ∂Ω,

wε|t=0 = w◦ε ,

(8.1)

where Ω is a domain of R2, where n is the outer unit normal on ∂Ω, where wε : R+ × Ω → C is the
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complex-valued order parameter describing superconductivity, where |log ε|Jex : ∂Ω→ R2 denotes the
(critically-scaled) applied electric current, and where ε > 0 is the inverse Ginzburg-Landau parameter
(a characteristic of the material, which is typically very small for real-life superconductors). More
precisely, as first derived by Schmid [386] and by Gor’kov and Eliashberg [216], the true Ginzburg-
Landau model should further be coupled to electromagnetism, replacing the above equation by a
suitable version with magnetic gauge, and in particular the imposed electric current Jex should then
rather appear as a boundary condition for the electric and magnetic fields themselves. Since the gauge
does not introduce any significant mathematical difficulty, we however focus on the above simplified
form of the model, and only briefly comment on the case with gauge in Section 8.2.3. (Note that in
the simplified model the number of vortices has to be imposed artificially via the boundary condition,
while in the true model it is determined by the value of the external magnetic field.) The order
parameter wε has the following meaning: the values |wε| = 1 and 0 correspond to a superconducting
and to a normal phase, respectively, and the vortices are the zeroes of wε with non-zero topological
degree. Vortices typically have a core of size of order ε. Moreover, a vortex of degree d at a point
x carries a (self-interaction) energy π|d|a(x)|log ε|, which varies with its location due to the pinning
weight a and implies that vortices are indeed attracted to the minima of the weight, that is, to the
normal inclusions.

An important variant of this model (8.1) is the corresponding (conservative) Schrödinger flow,
with ∂twε replaced by i∂twε. This coincides with the so-called Gross-Pitaevskii equation, which is an
example of a nonlinear Schrödinger equation and serves as a model for Bose-Einstein condensates and
superfluidity [4, 376], as well as for nonlinear optics [27]. As argued e.g. in [26], there is also physical
interest in the “mixed-flow” (or “complex”) Ginzburg-Landau equation, which is a mix between the
(parabolic) Ginzburg-Landau and the (conservative) Gross-Pitaevskii equations. Instead of (8.1) we
thus turn to the following more general equation, for any α ≥ 0, β ∈ R, α2 + β2 = 1,

(α+ i|log ε|β)∂twε = 4wε + wε
ε2

(a− |wε|2), in R+ × Ω,

n · ∇wε = iwε|log ε|n · Jex, on R+ × ∂Ω,

wε|t=0 = w◦ε ,

(8.2)

which indeed allows to consider by the same token both the parabolic or Ginzburg-Landau case
(α > 0, β = 0) and the conservative or Gross-Pitaevskii case (α = 0, β ∈ R). The mixed-flow case
with α > 0, β ∈ R is henceforth referred to as the dissipative case.

In this context, including both a pinning potential and an applied current, we aim to understand
the dynamics of the vortices in the asymptotic regime ε ↓ 0. For a fixed number N of vortices,
this asymptotic regime of equation (8.2) was well-understood in the physics community since the
1990s [340, 153, 361, 110], and shortly after various rigorous studies became available in the parabolic
case [302, 301, 262, 264, 380], in the conservative case [123, 303, 261, 279], as well as in the mixed-flow
case [410, 397]. As seen there, vortices are subjected to three forces:

— their mutual repulsive Coulomb (logarithmic) interaction;
— the Lorentz-like force F due to the applied current of intensity Jex;
— the pinning force, equal to −∇h in terms of the so-called pinning potential h := log a defined

by the pinning weight a.
Neglecting boundary effects, and assuming that all vortices have the same degree +1, the effective
vortex dynamics is then given by a system of ODEs of the form

(α+ Jβ)∂txi = −N−1∇xiWN (x1, . . . , xN )−∇h(xi) + F (xi), 1 ≤ i ≤ N, (8.3)

h := log a, WN (x1, . . . , xN ) := −
N∑
i 6=j

log |xi − xj |,
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where the xi’s are the macroscopic vortex trajectories, and where J denotes the rotation of vectors
by angle π/2 in the plane. The pinning and applied force intensities are parameters which can be
tuned, leading to regimes in which one or two forces dominate over the others, or all are of the same
order. In [410] no pinning force is considered, and the treated regimes lead to the applied force being
of the same order as the interaction. In [397] the pinning and applied forces are chosen to be of the
same order, and both dominate the interaction. Finally in [279], in the conservative case, the critical
scaling is considered, that is, with all forces being of the same order.

In the sequel we consider the situation when the number Nε of vortices is not fixed but depends on
ε and blows up as ε ↓ 0, which is a physically more realistic situation in many regimes of applied fields
and currents. We then wish to describe the evolution of the density of the corresponding vortex liquid.
At least when the number Nε of vortices does not blow up too quickly, the correct limiting equation
is naturally expected to coincide with the formal mean-field limit of the discrete dynamics (8.3) (as
already discussed in Chapter 6), that is, the following nonlinear nonlocal transport equation for the
mean-field vorticity m,

∂tm = div
(
(α− Jβ)(∇h− F −∇4−1m) m

)
, (8.4)

or alternatively, in terms of the mean-field supercurrent density v (related to m via m = curl v),

∂tv = (α− βJ)(∇⊥h− F⊥ − v)curl v, div v = 0. (8.5)

In the case without pinning and applied current (a = 1, Jex = 0), such a mean-field dynamics has
been rigorously established in a number of settings in the conservative and parabolic cases:

— for the Gross-Pitaevskii equation (α = 0, β ∈ R), Jerrard and Spirn [263] have shown in
the regime 1 � Nε . (log |log ε|)1/2 that the vorticity of solutions converges to the solution
of (8.4), which in that case coincide with the incompressible Euler equation in vorticity form,
while Serfaty [395] has shown in the regime |log ε| � Nε � ε−1 that the supercurrent of
solutions converges to the solution of the incompressible Euler equation (8.5);

— for the Ginzburg-Landau equation (α > 0, β = 0), the convergence of the vorticity of solutions
to the solution of (8.4), first formally derived by Chapman, Rubinstein, Schatzman, and E [111,
173], has been rigorously established by Kurzke and Spirn [281] in the regime 1 � Nε ≤
(log log |log ε|)1/4, while Serfaty [395] has shown that in the whole regime 1 � Nε � |log ε|
the supercurrent further converges to the solution of (8.5) but that in the regime Nε ' |log ε|
it converges to a different compressible mean-field model.

All these results assume that the initial data is suitably “well-prepared”. Note that the delicate
boundary issues are neglected in [263] and [395], where the Gross-Pitaevskii and Ginzburg-Landau
equations are set for simplicity on the whole plane, while in [281] Dirichlet boundary conditions
on a bounded domain Ω are further considered. The results of [281] and [263] rely on a direct
method and a careful study of the vortex trajectories, while the results of Serfaty [395] are based on
a “modulated energy approach” and rely on the assumed regularity of the solutions of the limiting
equations. The situation in all the remaining regimes is still an open question, to the exception of the
regime |log ε| � Nε � |log ε| log |log ε| for the Ginzburg-Landau equation, which is further treated in
the present chapter and leads to yet another mean-field equation.

The main goal of this chapter is to adapt the modulated energy approach of Serfaty [395] to the
setting with pinning and applied current, thus extending the results of [410, 397, 279] to the case
with Nε � 1 vortices — in the whole plane for simplicity. The derivation bears several complications
compared to the situation of Serfaty [395], in particular due to the lack of sufficient decay at infinity
of the various quantities, and also to the fact that the self-interaction energy of each vortex now
varies with its location due to the pinning weight. In addition to the parabolic and conservative
cases, we also consider the mixed-flow case α > 0, β 6= 0. We establish the convergence to suitable
limiting fluid-type evolution equations, which in the simplest case take the form of nonlinear nonlocal
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transport equations (8.4)–(8.5) but are different in some regimes, and for which global well-posedness
has already been discussed in detail in Chapter 7. As described above, different regimes for the
intensity of the pinning and applied current lead to different limiting equations: in particular, the
mean-field equation (8.4) is reduced to a simple linear transport equation with only the pinning and
applied forces remaining when these are scaled to be much stronger than the interaction.

Although we perform this derivation for a pinning force which varies at the macroscopic scale, the
most interesting situation from the modeling viewpoint is to let the pinning weight oscillate quickly
at some mesoscopic scale ηε, which also tends to 0 as ε ↓ 0. In real-life materials, the way in which the
impurities are inserted typically leads them to be uniformly and randomly scattered in the sample.
This is well modeled by the ηε-rescaling of a typical realization of a random stationary pinning weight
a(x) = a0(x/ηε). For simplicity, we may focus on the periodic case. One is thus led to the question
of combining the mean-field limit for the Ginzburg-Landau or Gross-Pitaevskii evolution equations
with a homogenization limit. In other words, can one perform the derivation of the limiting equation
as ε ↓ 0, Nε ↑ ∞, and ηε ↓ 0, and in which regimes does it hold?

While the homogenization of the (static) Ginzburg-Landau energy functional with pinning weight
has been studied in some settings [5, 23, 154], we believe that these homogenization questions in
the dynamical case are particularly challenging. They are in fact already very hard for just a finite
number of vortices: studying the limit as η ↓ 0 of the discrete dynamics (8.3) with pinning potential
of the form h(x) = ĥ0(x/η) with ĥ0 periodic or stationary, is a question of homogenization of a system
of nonlinear coupled ODEs and is notoriously difficult. This difficulty is due to the complexity of the
collective effects of the interacting vortices, in relation to the possible “glassy” properties predicted
by physicists for such systems (see e.g. [195]). In contrast, the case with no interaction term and
with F constant is much simpler to analyze, and seems to be known as a “washboard” in the physics
literature. When F = 0, a vortex is simply attracted towards the local wells of the pinning potential
h. Otherwise, the constant applied force F 6= 0 can be absorbed into the term −∇h by adding to the
potential h an affine function, which effectively tilts the potential landscape into a washboard-shaped
graph. As will be seen, beyond some positive value of the intensity |F | the tilted potential has no local
minimum, leading the particle to fall downwards. In the setting of a superconductor with pinning
and applied current, this corresponds to the critical “depinning current” above which the vortices are
depinned from their pinning locations. Note that when the applied force F is non-constant and varies
at the macroscopic scale (still without interaction term) the situation is already much more subtle
and only partial results are obtained in [319].

Since our modulated energy method to establish the mean-field limit results does not seem well-
adapted to include homogenization effects, we will not say much about commuting the limits ε ↓ 0,
N ↑ ∞, and η ↓ 0, but instead we formulate a few partial results in the direction of homogenizing the
derived mean-field equations of the type (8.4)–(8.5), and we formulate many open questions which we
believe to be interesting both from an applied and a theoretical point of view. This topic is indeed
very delicate on its own, with the same kind of difficulties as for the homogenization of the discrete
system of coupled ODEs (8.3), but in the case without interaction and with F constant the problem is
considerably simpler and leads to well-defined limiting stick-slip equations. Finally, in order to model
thermal effects, one may replace the mean-field transport equations of the type (8.4)–(8.5) by their
viscous versions, and we will give a few heuristics on the corresponding homogenization questions.

8.1.2 Mean-field limit results

Precise setting

Since the presence of the boundary creates mathematical difficulties which we do not know how to
overcome (due to the possible entrance and exit of vortices), we modify the mesoscopic model (8.2) and
consider a suitable version on the whole plane with boundary conditions “at infinity”. As in [410, 397],
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the boundary conditions can be changed into a bulk force term by a suitable change of phase in the
unknown function. Dividing also the unknown function by the expected density

√
a, we arrive at the

equation{
λε(α+ i|log ε|β)∂tuε = 4uε + a

ε2
uε(1− |uε|2) +∇h · ∇uε + i|log ε|F⊥ · ∇uε + fuε,

uε|t=0 = u◦ε,
(8.6)

with h := log a, f : R2 → R, and F : R2 → R2, where F is an effective applied force corresponding
to the Lorentz-like force generated by the applied current. The parameter λε is an appropriate time
rescaling to obtain a nontrivial limiting dynamics. Within the derivation of (8.6) from (8.2), the
zeroth-order term f takes the following explicit form (but this is largely unimportant, and the scaling
in the corresponding bounds (8.43)–(8.44) below may also be substantially relaxed),

f :=
4
√
a√
a
− 1

4
|log ε|2|F |2. (8.7)

The discussion of the derivation of (8.6) from (8.2), as well as that of the boundary conditions and
the assumptions at infinity, is postponed to Section 8.2.1, while the global well-posedness of (8.6) is
discussed in Section 8.2.2. For simplicity we assume that the pinning weight satisfies

1

C
≤ a(x) ≤ 1, for all x, (8.8)

which avoids degenerate situations: physically one would like to consider a pinning weight a that may
vanish, representing true normal inclusions [109], but this is much more delicate mathematically (see
e.g. [23]). Setting F ≡ 0, a ≡ 1, h ≡ 0, and f ≡ 0, we naturally retrieve the equation studied e.g.
in [281, 263, 395], and our results will thus indeed be a generalization of those in [281, 395].

Given solutions of the mesoscopic model (8.6), we wish to establish the convergence of their
supercurrent, defined by

jε := 〈∇uε, iuε〉,

where 〈·, ·〉 stands for the scalar product in C as identified with R2, that is, 〈x, y〉 = <(xȳ) for all
x, y ∈ C. The vorticity µε is derived from the supercurrent via µε := curl jε. Note that this indeed
corresponds to the density of vortices, defined as zeros of uε weighted by their degrees, in the sense
that

µε ∼ 2π
∑
i

diδxi , as ε ↓ 0, (8.9)

with {xi}i the vortex locations and {di}i their degrees (this is made rigorous by the so-called Jacobian
estimates, a notion to which we will come back in Section 8.5). In this setting, we wish to show that
the rescaled supercurrent N−1

ε jε converges as ε ↓ 0 to a velocity field v solving a limiting PDE, which
as in [395] is assumed to be regular enough. The limiting equations are fluid-like equations of the
form (8.5), where however the incompressibility condition can be lost when the density of vortices
becomes too large. Such equations are studied in detail in Chapter 7, where solutions are shown in
most cases to be global and indeed regular enough if the initial data is. A formal derivation of this
mean-field limit result is included in Section 1.2.3.

In order to establish this convergence, we will adapt the modulated energy technique used by
Serfaty [395], of which we have already given some account in Chapter 6 (see Section 6.1.3). In the
present situation, the method consists in defining a modulated energy, which without pinning takes
the form

1

2

ˆ
R2

(
|∇uε − iuεNεv|2 +

1

2ε2
(1− |uε|2)2

)
, (8.10)
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where v denotes the solution of the (postulated) limiting equation. This modulated energy thus
somehow measures the distance between the supercurrent jε = 〈∇uε, iuε〉 and the postulated limit
Nεv, in a way that is well adapted to the energy structure. Under some regularity assumptions on v, it
is then proved in [395] that, thanks to the suitable limiting equation satisfied by v, this quantity (8.10)
satisfies a Grönwall relation, so that if it is initially small, more precisely o(N2

ε ), it remains so, yielding
the desired convergence N−1

ε jε → v. However, in the regimes where Nε . |log ε|, the modulated
energy cannot be of order o(N2

ε ), because each vortex of degree d carries a self-interaction energy
π|d||log ε|. For that reason (and assuming that all vortices have positive degrees initially), we need
to subtract the fixed quantity πNε|log ε| from (8.10). Note that, while the Ginzburg-Landau energy
(that is, (8.10) with v = 0) diverges for configurations uε with nonzero degree at infinity,

0 6= deg(uε) := lim
R↑∞

ˆ
∂BR

〈∇uε, iuε〉 · n⊥,

the modulated energy may indeed converge (and does if v has the correct circulation at infinity).
In the present context with pinning weight a, the modulated energy (8.10) should naturally be

changed into a weighted one,

1

2

ˆ
R2

a
(
|∇uε − iuεNεv |2 +

a

2ε2
(1− |uε|2)2

)
. (8.11)

This leads to several additional difficulties:
— This energy does usually not remain finite along the flow because ∇h, F , and f in (8.6) are

only assumed to be bounded (in order to include at least the case of a fixed applied current
circulating through the sample). This leads us to consider a truncated version of (8.11). In the
Gross-Pitaevskii case, we must actually assume that ∇h, F , and f decay sufficiently at infinity
in order to guarantee the well-posedness of the mesoscopic model (8.6), and hence a truncation
of (8.11) is no longer needed. However, in that case, due to the presence of pinning, the pressure
p in the limiting equation for v is no longer square-integrable, and another truncation argument
then becomes needed in order to deal with this lack of integrability.

— In some regimes, it is crucial to replace in the modulated energy (8.11) the solution v of the
limiting equation by some suitable ε-dependent map vε : R+ × R2 → R2, which is separately
shown to converge to v. This amounts to including lower-order terms in the modulated energy.
Note that in this way the difficulty is split into two parts: first we prove that N−1

ε jε is close
to vε by means of a Grönwall argument on the modulated energy, which requires some careful
vortex analysis, and then we check that vε indeed converges to v, which is a softer consequence
of the stability of the limiting equation.

— In the present weighted setting, a vortex of degree d at a point x carries a self-interaction
energy π|d|a(x)|log ε|, so that what needs to be subtracted from the modulated energy (8.11)
is no longer πNε|log ε| but rather, in view of (8.9),

π
∑
i

dia(xi)|log ε| ∼ |log ε|
2

ˆ
R2

aµε.

The presence of this pinning weight leads to various complications and requires a particularly
careful vortex analysis (cf. Section 8.5).

We thus consider the following truncated version of the modulated energy (8.11),

Eε,R :=

ˆ
R2

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
, (8.12)
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as well as the following truncated modulated energy excess,

Dε,R := Eε,R −
|log ε|

2

ˆ
R2

aχRµε

=

ˆ
R2

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
, (8.13)

where for all r > 0 we set χr := χ(·/r) for some fixed cut-off function χ ∈ C∞c (R2; [0, 1]) with
χ|B1 = 1 and χ|R2\B2

= 0. In the sequel, all energy integrals are thus truncated as above with the
cut-off function χR, for some scale R � 1 to be later suitably chosen as a function of ε. We write
Eε := Eε,∞ for the corresponding quantity without the cut-off χR in the definition (formally R =∞),
and also Dε := supR≥1Dε,R. Rather than the L2-norm restricted to the ball BR centered at the origin,
our methods further allow to consider the uniform L2

loc-norm at the scale R: setting χzR := χR(· − z)
for all z ∈ R2, we define

E∗ε,R := sup
z
Ezε,R , Ezε,R :=

ˆ
R2

aχzR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
, (8.14)

D∗ε,R := sup
z
Dzε,R , Dzε,R := Ezε,R −

|log ε|
2

ˆ
R2

aχzRµε, (8.15)

where the suprema run over all lattice points z ∈ RZ2.

Assumptions

For the essential part of the proof, in the dissipative case (α > 0), it suffices to assume h ∈
W 2,∞(R2) and F ∈W 1,∞(R2)2 (hence f ∈ L∞(R2) in view of (8.7)). In the Gross-Pitaevskii case, as
already explained, we need to restrict to a decaying setting in order to ensure the well-posedness of
the mesoscopic model (8.6), that is, we need to further assume ∇h, F ∈ W 1,p(R2)2 for some p <∞,
f ∈ L2(R2), and additionally div F = 0. Nevertheless, in both cases, in order to ensure strong enough
regularity properties of the solution v of the limiting equation, stronger assumptions on the data are
needed and are listed below. Note that we do not try to optimize these regularity assumptions on
the data.

Assumption 8.1.1. Let α ≥ 0, β ∈ R, α2 + β2 = 1, h : R2 → R, a := eh, F : R2 → R2, f : R2 → R,
u◦ε : R2 → C, and v◦ε, v

◦ : R2 → R2 for all ε > 0. Assume that (8.7) and (8.8) hold, and that the
initial data (u◦ε, v

◦
ε, v
◦) are well-prepared as ε ↓ 0, in the sense

D∗,◦ε := sup
R≥1

sup
z∈R2

ˆ
R2

aχzR
2

(
|∇u◦ε − iu◦εNεv

◦
ε|2 +

a

2ε2
(1− |u◦ε|2)2 − |log ε|curl 〈∇u◦ε, iu◦ε〉

)
� N2

ε ,

(8.16)

with v◦ε → v◦ in L2
uloc(R2)2, and with curl v◦ε, curl v◦ ∈ P(R2). Assume that v◦ε and v◦ are bounded

in W 1,q(R2)2 for all q > 2. In addition,
(a) Dissipative case (α > 0), general non-decaying setting:

For some s > 0, assume that u◦ε ∈ H1
uloc(R2;C), that h ∈W s+3,∞(R2), F ∈W s+2,∞(R2)2 (hence

f ∈ W 1,∞(R2) in view of (8.7)), that v◦ε, v◦ are bounded in W s+2,∞(R2)2, and that curl v◦ε,
curl v◦, div (av◦ε) are bounded in Hs+1 ∩W s+1,∞(R2).

(b) Gross-Pitaevskii case (α = 0), decaying setting:
Assume that u◦ε ∈ U +H2(R2;C) for some reference map U ∈ L∞(R2;C) with ∇2U ∈ H1(R2;C),
∇|U | ∈ L2(R2), 1 − |U |2 ∈ L2(R2), and ∇U ∈ Lp(R2;C) for all p > 2 (typically we may choose
U smooth and equal to eiNεθ in polar coordinates outside a ball at the origin). Assume that
h ∈ W 3,∞(R2), ∇h ∈ H2(R2)2, F ∈ H3 ∩W 3,∞(R2)2, f ∈ H2 ∩W 2,∞(R2), and that we have
div F = 0 pointwise, and a(x) → 1 uniformly as |x| ↑ ∞. Assume that v◦ε, v◦ are bounded in
W 2,∞(R2)2, and that curl v◦ε, curl v◦ are bounded in H1(R2). ♦
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Considered regimes

We distinguish between the following four main (critically scaled) regimes, in which the relative
strengths of the pinning, the applied forces, and the interaction emerge.

(GL1) Weighted dissipative case, small number of vortices:
α > 0, Nε � |log ε|, λε = Nε

|log ε| , F = λεF̂ , h = λεĥ (hence a = âλε);

(GL2) Weighted dissipative case, critical number of vortices:
α > 0, Nε ' |log ε|, Nε

|log ε| → λ ∈ (0,∞), λε = 1, F = F̂ , h = ĥ (hence a = â);

(GL3) Weighted dissipative case, large number of vortices:
α > 0, |log ε| � Nε � ε−1, λε = Nε

|log ε| , F = λεF̂ , h = ĥ (hence a = â);

(GP) Weighted Gross-Pitaevskii case, large number of vortices:
α = 0, β = 1, |log ε| � Nε � ε−1, λε = Nε

|log ε| , F = λεF̂ , h = ĥ (hence a = â);

where ĥ and F̂ are independent of ε, and ĥ ≤ 0 is bounded below. The critical threshold for the
number Nε of vortices at the order |log ε| is easily understood since in this regime the vortex energy
O(Nε|log ε|) precisely becomes of the same order as the phase energy O(N2

ε ). As we will see, in
the dissipative case, these regimes lead to drastically different mean-field behaviors. Another critical
threshold is expected to occur when the number Nε of vortices becomes of the order ε−1, due to the
overlap of the vortex cores. Note that just as in [395] the modulated energy approach does not allow us
to treat the Gross-Pitaevskii case with fewer (but still unboundedly many) vortices 1� Nε . |log ε|,
although in that case the same mean-field behavior is expected as in the case |log ε| � Nε � ε−1.

Let us intuitively justify the choice of the above scalings for the pinning and the applied force.
From energy considerations, we expect the pinning, the applied force, and the interaction to be of
order Nε|log ε||∇h|, Nε|log ε||F |, and N2

ε , respectively. The critical scaling (such that pinning, applied
force and interactions are all of the same order) should thus amount to choosing both ∇h and F of
order Nε/|log ε|. However, the non-degeneracy condition (8.8) for the pinning weight a = eh imposes
for the pinning potential h ≤ 0 to remain uniformly bounded in ε, hence the particular non-critical
choice in (GL3) and in (GP) (with h of order 1 rather than λε � 1).

In the dissipative case, we may also consider sub- or supercritical scalings, for which the pinning
either dominates, or is dominated by the interaction. In these cases, the limiting equations are
considerably simplified.

(GL′1) (GL1) with subcritically scaled oscillating pinning, very weak interaction:
α > 0, Nε � |log ε|, λε = 1, F = F̂ , h = ĥ (hence a = â);

(GL′2) (GL1) with subcritically scaled oscillating pinning, weak interaction:
α > 0, Nε � |log ε|, Nε

|log ε| � λε � 1, F = λεF̂ , h = λεĥ (hence a = âλε);

(GL′3) (GL1) with supercritically scaled oscillating pinning, strong interaction:
α > 0, Nε � |log ε|, λε = Nε

|log ε| , F = λεF̂ , h = λ′εĥ (hence a = âλ
′
ε), λ′ε � λε;

(GL′4) (GL2) with supercritically scaled oscillating pinning, strong interaction:
α > 0, Nε ' |log ε|, Nε

|log ε| → λ ∈ (0,∞), λε = 1, F = F̂ , h = λ′εĥ, λ′ε � 1;

where again ĥ and F̂ are independent of ε, with ĥ ≤ 0 bounded below. Since in the present work we
are mostly interested in pinning effects, we focus on the subcritical regimes (GL′1) and (GL′2), while
for the two supercritical regimes the pinning effects vanish in the limiting equation and the situation
is thus much easier and closer to [395]. For simplicity, subscripts “ε” are systematically dropped from
the data a, h, F, f , the precise dependence being always implicitly chosen as above.
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Statement of main results

We are now in position to state our main mean-field results. We start with the dissipative case, and
first consider the critical regimes (GL1) and (GL2), as well as the subcritical regimes (GL′1) and (GL′2).
Note that the results are slightly finer in the parabolic case. Although all the proofs in this chapter
are quantitative, we only give qualitative statements to simplify the exposition. The following result
generalizes those in [281, 395] to the case with pinning and forcing. Note that the limiting mean-field
equations are fluid-like of the form (8.5), except that the incompressibility condition is lost in some
regimes, as first evidenced by Serfaty [395]. In the regimes (GL1) and (GL′2), the weight a naturally
disappears from the incompressibility condition div v = 0 due to the assumption a = âλε → 1 as
ε ↓ 0.

Theorem 8.1.2 (Dissipative case). Let Assumption 8.1.1(a) hold, with the initial data (u◦ε, v
◦
ε, v
◦)

satisfying the well-preparedness condition (8.16). For all ε > 0, let uε ∈ L∞loc(R+;H1
uloc(R2;C)) denote

the unique global solution of (8.6) on R+ ×R2. Then, the following hold for the supercurrent density
jε := 〈∇uε, iuε〉.
(i) Regime (GL1) with log |log ε| � Nε � |log ε|, and div (av◦ε) = div v◦ = 0:

We have N−1
ε jε → v in L∞loc(R+; L1

uloc(R2)2) as ε ↓ 0, where v is the unique global (smooth)
solution of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v)curl v, div v = 0, v|t=0 = v◦ . (8.17)

In the parabolic case β = 0, the same conclusion also holds for 1� Nε . log |log ε|.
(ii) Regime (GL2) with Nε/|log ε| → λ ∈ (0,∞), and v◦ε = v◦:

For some T > 0, we have N−1
ε jε → v in L∞loc([0, T ); L1

uloc(R2)2) as ε ↓ 0, where v is the unique
local (smooth) solution of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)curl v, v|t=0 = v◦, (8.18)

on [0, T ) × R2. In the parabolic case β = 0, this solution v can be extended globally, and the
above holds with T =∞.

(iii) Regime (GL′1) with log |log ε| � Nε � |log ε|, and v◦ε = v◦:
We have N−1

ε jε → v in L∞loc(R+; L1
uloc(R2)2) as ε ↓ 0, where v is the unique global (smooth)

solution of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥)curl v, v|t=0 = v◦ . (8.19)

(iv) Regime (GL′2) with log |log ε| � Nε � |log ε|, and div (av◦ε) = div v◦ = 0:
We have N−1

ε jε → v in L∞loc(R+; L1
uloc(R2)2) as ε ↓ 0, where v is the unique global (smooth)

solution of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥)curl v, div v = 0, v|t=0 = v◦ . (8.20)

In the parabolic case β = 0 with Nε/|log ε| � λε . eo(Nε)/|log ε|, the same conclusion also holds
for 1� Nε . log |log ε|. ♦

We now turn to the superdense regime (GL3). The following result is only proven to hold in
the parabolic case in the moderate regime |log ε| � Nε � |log ε| log |log ε|, and gives rise to a new
degenerate limiting equation, which is studied in detail in Chapter 7. This is new even in the case
without pinning and forcing. The situation for the mixed-flow dissipative case or for a larger number
of vortices remains an open question. In particular, in the mixed-flow dissipative case, even the correct
limiting equation is unclear since the local well-posedness of the mixed-flow version of the degenerate
equation (8.22) below remains unresolved (cf. Section 7.1.5).
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Theorem 8.1.3 (Superdense parabolic case). Let Assumption 8.1.1(a) hold with v◦ε = v◦, and with
the initial data (u◦ε, v

◦
ε, v
◦) satisfying the following stronger well-preparedness condition, for some

δ > 0,

D∗,◦ε := sup
R≥1

sup
z∈R2

ˆ
aχzR

2

(
|∇u◦ε − iu◦εNεv

◦|2 +
a

2ε2
(1− |u◦ε|2)2 − |log ε|curl 〈∇u◦ε, iu◦ε〉

)
. N2−δ

ε .

(8.21)

For some s > 3, assume in addition that h ∈ W s+2,∞(R2), F ∈ W s+1,∞(R2)2, and that v◦ ∈
W s+1,∞(R2)2 with m◦ := curl v◦ ∈ P ∩ Hs(R2) and d◦ := div (av◦) ∈ Hs−1(R2). For all ε > 0,
let uε ∈ L∞loc(R+;H1

uloc(R2;C)) denote the unique global solution of (8.6) on R+ × R2. Then, in the
regime (GL3) with |log ε| � Nε � |log ε| log |log ε| and with α = 1, β = 0, the supercurrent density
jε := 〈∇uε, iuε〉 satisfies N−1

ε jε → v in L∞loc(R+; L1
uloc(R2)2) as ε ↓ 0, where v is the unique global

(smooth) solution of

∂tv = −(F̂⊥ + 2v) curl v, v|t=0 = v◦ . (8.22)

♦

We finally turn to the Gross-Pitaevskii case in the regime (GP). Note that in the regime Nε �
|log ε| the well-preparedness condition (8.16) is naturally simplified, as the vortex self-interaction
energy is no longer dominant. Note that the pinning force −∇ĥ is absent from the limiting equation
since in the regime (GP) the interaction and the applied force dominate, but the weight a = â
nevertheless remains in the incompressibility condition div (âv) = 0. The following result generalizes
those in [395] to the case with pinning and forcing.

Theorem 8.1.4 (Gross-Pitaevskii case). Let Assumption 8.1.1(b) hold with v◦ε = v◦, and with the
initial data (u◦ε, v

◦
ε, v
◦) satisfying the following simplified well-preparedness condition,

E◦ε :=

ˆ
R2

a

2

(
|∇u◦ε − iu◦εNεv

◦|2 +
a

2ε2
(1− |u◦ε|2)2

)
� N2

ε .

For all ε > 0, let uε ∈ L∞loc(R+;U+H2(R2;C)) denote the unique global solution of (8.6) on R+×R2.
Then, in the regime (GP) with |log ε| � Nε � ε−1, we have N−1

ε jε → v in L∞loc(R+; (L1 + L2)(R2)2)
as ε ↓ 0, where v is the unique global (smooth) solution of

∂tv = ∇p−(F̂ − 2v⊥) curl v, div (âv) = 0, vt|t=0 = v◦ . (8.23)

♦

The same mean-field limit result is actually expected to hold for 1� Nε � ε−1 (see indeed [263]
for the other extreme regime 1 � Nε . (log |log ε|)1/2). The restriction Nε � |log ε| in the above
is thus purely technical: as in [395], it is caused by the difficulty in controlling the velocity of the
individual vortices because of the lack of control on

´
R2 |∂tuε|2, which is however crucially needed

within the modulated energy approach. As the Gross-Pitaevskii vortex dynamics formally behaves
like the conservative flow for Coulomb particles, this difficulty is strongly related to the lack of a
modulated energy proof for the mean-field limit of such a discrete particle system (cf. Section 6.1.5;
the only known proof is by compactness [390]).

On the other hand, the restriction Nε � ε−1 is quite natural, since for a larger number of vortices
the modulus |uε| of the order parameter should further enter the limiting equation, leading to different
compressible fluid-like equations [57, 58, 56, 101].
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The structure of the mean-field equations (8.17), (8.18), (8.19), (8.20), (8.22), and (8.23) is more
transparent when expressed in terms of the mean-field vorticity m := curl v. In the case of (8.17)
(and similarly for (8.20) and (8.23)), the vorticity m satisfies a nonlinear nonlocal transport equation,{

∂tm = div
(
(α− Jβ)(∇ĥ− F̂ + 2v⊥) m

)
,

curl v = m, div v = 0.
(8.24)

In the case of (8.18) (and similarly for (8.19)) the vorticity m satisfies a similar equation coupled with
a transport-diffusion equation for the divergence d := div (âv),

∂tm = div
(
(α− Jβ)(∇ĥ− F̂ + 2λv⊥) m

)
,

∂td−α−14d +α−1 div (d∇ĥ) = div
(
(α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)âm

)
,

curl v = m, div (âv) = d,

(8.25)

while the transport-diffusion equation becomes degenerate in the case of (8.22), in terms of e.g.
θ := div v, 

∂tm = div
(
(−F̂ + 2λv⊥) m

)
,

∂tθ = div
(
(−F̂⊥ − 2λv) m

)
,

curl v = m, div v = θ.

(8.26)

A detailed study of these equations is provided in Chapter 7, including global existence results for
rough initial data. While the limiting vorticity m satisfies strictly different equations in the critical
regimes (GL1) and (GL2), we observe that it satisfies just the same equation in both subcritical
regimes (GL′1) and (GL′2), that is, a simple linear transport equation.

The proofs of Theorems 8.1.2, 8.1.3, and 8.1.4 follow the outline of [395], and rely on all the tools
for vortex analysis developed over the years: lower bounds via the Jerrard-Sandier ball construction,
“Jacobian estimate”, “product estimate”. In addition to the problems at infinity created by the non-
decay of the forcing F that we wish to allow, the presence of the pinning weight introduces additional
technical difficulties, as always in the analysis of Ginzburg-Landau. The fact that the energy of a
vortex depends on its location makes it more difficult to a priori control the total number of vortices,
and requires localized estimates, in particular localized ball constructions. Adapting the required
tools and analysis to this setting is done in Section 8.5.

8.1.3 Homogenization results and open questions

As explained, the most interesting situation from the modeling viewpoint is to let the pinning
potential h vary quickly at some mesoscale ηε � 1, thus coupling the mean-field limit for the vortex
density with a homogenization limit. More precisely, we set

ĥ(x) := ηεĥ
0(x, x/ηε), (8.27)

for some ĥ0 independent of ε, and we will refer to ηε as the “pin separation”. For simplicity, we assume
that ĥ0 is periodic in its second variable. Since in the superdense parabolic case and in the Gross-
Pitaevskii case we are anyway limited to the less interesting supercritical regimes (GL3) and (GP)
(for which the pinning force −∇ĥ is indeed absent from the limiting equations (8.22) and (8.23)), we
focus attention on the dissipative regimes (GL1), (GL2), (GL′1), and (GL′2).
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Small pin separation limit and stick-slip models

As explained in Section 8.9.3, our modulated energy methods only allow to treat a diagonal regime,
that is, when the pin separation ηε tends very slowly to 0, in which case the homogenization limit
can simply be performed after the mean-field limit. The other regimes are left as an open question.

Corollary 8.1.5. Let the same assumptions hold as in Theorem 8.1.2. In the regime (GL2), we
further restrict to the parabolic case β = 0. Then there exists a sequence ηε,0 ↓ 0 (depending on
all the data of the problem) such that for all ηε,0 � ηε � 1, choosing the fast oscillating pinning
potential (8.27), the same conclusions hold as in Theorem 8.1.2 in the form N−1

ε jε − v̄ε → 0, where
v̄ε is now the unique global (smooth) solution of the corresponding equations (8.17)–(8.20) with ∇ĥ(x)
replaced by ∇2ĥ

0(x, x/ηε). ♦

In a diagonal regime, the above result thus reduces the understanding of the limiting behavior
of the rescaled supercurrent N−1

ε jε to that of the solution v̄ε of the mean-field equations (8.17)–
(8.20) with fast oscillating pinning, that is, a (periodic) homogenization problem for the mean-field
equations. In more general regimes, only two minor rigorous results are obtained:
(a) For very small forcing ‖F‖L∞ � ‖∇h‖L∞ , in the subcritical regimes (GL′1) and (GL′2), the

vorticity is shown to remain “stuck” in the limit, that is, to converge at all times to its initial
data (cf. Proposition 8.9.13). This is a very particular case of the pinning phenomenon evidenced
below in the diagonal regime.

(b) In a short timescale of order O(ηε), the vorticity is shown to concentrate in each (mesoscopic)
periodicity cell onto the invariant measure associated with the initial vector field (cf. Proposi-
tion 8.9.2). This mesoscopic initial-boundary layer result is in clear agreement with the description
of the dynamics on larger timescales obtained below in the diagonal regime, where the transport
is indeed shown to take place “along” the invariant measures.

Subcritical regimes. In the subcritical regimes (GL′1) and (GL′2), the nonlinear interaction term
vanishes in the mean-field equations (8.19)–(8.20): in terms of the vorticity m̄ε := curl v̄ε we are
thus left with a (periodic) homogenization problem for a simple linear transport equation, but with
a compressible velocity field. Such questions were first investigated in the 2D periodic case by
Menon [319], and are still partially open. The situation is however much simpler if the pinning
potential ĥ0(x, x/ηε) := h̃0(x/ηε) is independent of the macroscopic variable and if the forcing is a
constant vector F̂ := F0 ∈ R2, that is, the so-called “washboard model”. The homogenization result
is then a particular case of the nonlinear setting considered in [137] (see also [172, 254] for the in-
compressible case, and [188, 136] for the linear Hamiltonian case), but in the present framework a
more precise characterization of the asymptotic behavior of m̄ε is possible (cf. Theorem 8.9.8). In the
simplest situation, the result is summarized as follows.

Proposition 8.1.6 (Subcritical regimes). Let v̄ε denote the unique global (smooth) solution of (8.19)
or (8.20) with ∇ĥ(x) replaced by ∇h̃0(x/ηε), for h̃0 ∈ C2

per(Q) (independent of ε) and ηε � 1, and
with F̂ := F0 ∈ R2 a constant vector. Consider the periodic vector field

ΓF0 := (α− Jβ)(∇h̃0 − F0) : Q→ R2,

and assume that the dynamics on the 2-torus Q associated with the vector field −ΓF0 has a unique
stable invariant measure µF0 ∈ Pper(Q). Define the averaged vector

ΓF0
hom :=

ˆ
Q

ΓF0dµF0 .

Then we have m̄ε := curl v̄ε
∗−⇀ m̄ in L∞loc(R+;P(R2)), where m̄ is the unique solution of the constant-

coefficient transport equation

∂tm̄ = div (ΓF0
homm̄), m̄|t=0 = curl v◦ . ♦
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κc,e κ

|V κe|

Figure 8.1 – Typical forcing-velocity characteristics exhibiting a stick-slip velocity law.

This result describes a so-called stick-slip velocity law: On the one hand, for F0 close enough
to 0, any stable invariant measure µF0 is concentrated at fixed points, that is, at minima of h̃0,
hence the corresponding velocity field is V F0 := −ΓF0

hom = 0, meaning that the vorticity gets stuck,
as the vortices are trapped in local wells of the pinning potential. On the other hand, for F0 large
enough, the measure µF0 becomes non-trivial, hence we have V F0 6= 0, meaning that the vorticity is
transported, but at a reduced speed due to the attraction by the local wells of the pinning potential.
We further show that the velocity law F0 7→ V F0 := −ΓF0

hom is not smooth at the depinning threshold,
but typically has a square-root behavior (cf. Proposition 8.9.11), denoting κ := |F0|,

|V κe| = C(1 + o(1))(κ− κc,e)1/2, as 0 < κ− κc,e � 1, (8.28)

where e ∈ S1 is some direction and where κc,ee (κc,e ≥ 0) is the critical depinning threshold in the
direction e. However, no general such result is obtained (cf. open question in Remark 8.9.12(a)). For
very large |F0| � 1, we naturally find V F0 ∼ (α− Jβ)F0, that is, the system flows as if there were no
disorder. The typical response of the system in this stick-slip velocity law is plotted in Figure 8.1. For
more detail, we refer to Section 8.9.5. Note that a similar frictional stick-slip dynamics is observed
for very different physical processes (see e.g. the Barkhausen effect for the magnetization of a domain
under an applied field [222]).

Critical regimes. In the critical regimes (GL1) and (GL2), the nonlinear interaction term can no
longer be neglected in the mean-field equations (8.17)–(8.18). A purely formal 2-scale expansion
yields the following heuristics for the asymptotic behavior of v̄ε. Note that a rigorous justification
of this homogenization limit seems particularly challenging due to the nonlinear nonlocal character
of the mean-field equations and to their instability as ηε ↓ 0, and moreover the well-posedness of the
formal limiting equations (8.29)–(8.30) below is unclear (since the vector field Γhom[v̄] is in general
not Lipschitz continuous even for smooth v̄, cf. (8.28)). Making good sense of the formal limiting
equations and justifying the limit are thus both left as open questions. We refer to Section 8.9.4 and
Remark 8.9.5 for detail.

Heuristics 8.1.7 (Critical regimes — formal asymptotic). For all w : R2 → R2 and x ∈ R2, consider
the periodic vector field

Γx[w] := (α− Jβ)
(
∇2ĥ

0(x, ·)− F̂ (x) + 2w⊥(x)
)

: Q→ R2,

and assume that the dynamics on the 2-torus Q associated with the vector field −Γx[w] has a unique
stable invariant measure µx[w] ∈ Pper(Q). We then define the averaged vector field

Γhom[w](x) :=

ˆ
Q

Γx[w](y) dµx[w](y).
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(i) Regime (GL1) with fast oscillating pinning (8.27):
Let v̄ε denote the unique global (smooth) solution of (8.17) with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε),
ηε � 1, and with ĥ0 independent of ε. Then we expect curl v̄ε

∗−⇀ m̄ in L∞loc(R+;P(R2)), where
m̄ satisfies

∂tm̄ = div
(
Ξhom[m̄] m̄

)
, m̄|t=0 = curl v◦, (8.29)

where the homogenized velocity is given by the following formula,

Ξhom[m̄](x) := Γhom[∇⊥4−1m̄](x).

Similarly, v̄ε
∗−⇀ v̄ := ∇⊥4−1m̄ in L∞loc(R+; L2

loc(R2)), where v̄ thus satisfies

∂tv̄ = ∇p̄ + Γhom[v̄]⊥curl v̄, div v̄ = 0, v̄|t=0 = v◦ .

More precisely, we expect for all t > 0,
ˆ t

0

(
curl v̄τε(x)− m̄τ (x)µx[∇⊥4−1m̄τ ](x/ηε)

)
dτ → 0,

in the strong sense of measures.
(ii) Regime (GL2) in the parabolic case β = 0, with fast oscillating pinning (8.27):

Let β = 0, and let v̄ε denote the unique global (smooth) solution of (8.18) with ∇ĥ(x) replaced
by ∇2ĥ

0(x, x/ηε), ηε � 1, and with ĥ0 independent of ε. Then we expect curl v̄ε
∗−⇀ m̄ in

L∞loc(R+;P(R2)) and div (âv̄ε) −⇀ d̄ in L2
loc(R+ × R2), where m̄ and d̄ satisfy

∂tm̄ = div
(
Ξhom[m̄, d̄] m̄

)
, m̄|t=0 = curl v◦, (8.30)

∂td̄ = α−14d̄ + div
(
Ξhom[m̄, d̄]⊥ m̄

)
, d̄|t=0 = div v◦,

where the homogenized velocity is given by the following formula,

Ξhom[m̄, d̄](x) := Γhom[∇⊥4−1m̄ +∇4−1d̄](x).

Similarly, v̄ε
∗−⇀ v̄ := ∇⊥4−1m̄ +∇4−1d̄ in L∞loc(R+; L2

loc(R2)), where v̄ thus satisfies

∂tv̄ = α−1∇ div v̄ + Γhom[v̄]⊥curl v̄, v̄|t=0 = v◦ .

More precisely, we expect for all t > 0,
ˆ t

0

(
curl v̄τε(x)− m̄τ (x)µx[∇⊥4−1m̄τ +∇4−1d̄

τ
](x/ηε)

)
dτ → 0,

in the strong sense of measures. ♦

Due to the competition between the pinning potential and the vortex interaction, the dynamical
properties of the limiting v̄ are expected to change dramatically with respect to the subcritical regimes:
the interacting vortices are now expected to move as a coherent elastic object in a heterogeneous
medium, yielding very particular glassy properties [195, 369]. To describe the dynamics, we again
consider the forcing-velocity curve. Assume that the forcing F̂ := F0 ∈ R2 is a constant vector, let
v̄F0 := v̄ denote as above the corresponding limit of v̄ε as ε ↓ 0, and set m̄F0 := curl v̄F0 . Formally,
the mean velocity is then defined as

V F0 := lim
t↑∞

1

t

ˆ
x dm̄F0,t(x). (8.31)
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Intuitively, for F0 close enough to 0, the above heuristics predicts that the vorticity m̄F0 should spread
due to the vortex repulsion, until the interaction force v̄F0 becomes small enough that the invariant
measure µF0

x [v̄F0 ] remains concentrated at a fixed point of the dynamics generated by −ΓF0
x [v̄F0 ], in

which case there holds ΓF0
hom[v̄F0 ] = 0. Therefore, just as in the subcritical regimes, we expect to find

V F0 = 0 for all F0 close enough to 0, V F0 6= 0 for F0 large enough, and V F0 ∼ (α − Jβ)F0 for very
large |F0| � 1 (cf. Figure 8.1). Nevertheless, the precise picture is expected to be very different at
the depinning threshold: the velocity law F0 7→ V F0 should still be non-smooth at this threshold, of
the form

|V κe| = C(1 + o(1))(κ− κc,e)ζ , as 0 < κ− κc,e � 1, (8.32)

in some direction e ∈ S1, but the value of the depinning threshold κc,e > 0 and of the depinning
exponent ζ ∈ (0, 1) are expected to differ completely from the case without interaction (8.28) and to
be related to the glassy properties of the system, as predicted in the physics literature [336, 339, 115]
(see also [195, Section 5]). A rigorous justification of this whole description is left as an open question.

Since the vortices are elastically coupled by the interaction, the problem is formally analogous
to that of understanding the motion of general elastic systems in disordered media, which is the
framework considered in the above-cited physics papers. In this spirit, a considerable attention
has been devoted in the physics community to the simpler Quenched Edwards-Wilkinson model
for elastic interface motion in disordered media [268, 83]. Note that for this interface model some
rigorous mathematical understanding is available: the pinning of the interface at low forcing is proved
in [146] in dimension d ≥ 2, while the (ballistic) motion of the interface at large forcing is obtained
in [128, 151] in dimension d = 2, and more recently in [69, 150] for various related discrete models in
any dimension d ≥ 2. These questions are also related (although again for different models) to the
recent rigorous homogenization results for the forced mean curvature equation and for more general
geometric Hamilton-Jacobi equations [28].

System with thermal noise

Different stochastic variants of the Ginzburg-Landau equation have been introduced in the physics
literature in order to model the effect of thermal noise in type-II superconductors [387, 243, 140, 141]
(see also [401, 189, 190, 407] for corresponding stochastic versions of the mixed-flow Gross-Pitaevskii
equation to model thermal and quantum noise in Bose-Einstein condensates). Although we do not
study here the mean-field limit problem for such models, for a finite number N of vortices, in the
limit ε ↓ 0, we expect the thermal noise to act on the vortices as N independent Brownian motions:
more precisely, in the regime (GL1), the limiting trajectories (xi)

N
i=1 of the N vortices are expected

to satisfy the following system of coupled SDEs (see e.g. [173, Section III.B]),

dxi = (α− Jβ)
(
N−1∇xiWN (x1, . . . , xN )−∇ĥ(xi) + F̂ (xi)

)
dt+

√
2TdBt

i , 1 ≤ i ≤ N, (8.33)

WN (x1, . . . , xN ) := −π
N∑
i 6=j

log |xi − xj |,

where B1, . . . , BN are N independent 2D Brownian motions. Such macroscopic phenomenological
models, where the thermal noise acts via random Langevin kicks, are abundantly used by physi-
cists [65, 195, 369].

In the case of a diverging number of vortices Nε � 1, in the regime (GL1), it is then natural to
postulate that a good phenomenological model for the limiting supercurrent v := limεN

−1
ε jε is given

by the (deterministic) mean-field limit of the particle system (8.33), that is, the following version
of (8.17) with viscosity,

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v)curl v +T4v, div v = 0, v|t=0 = v◦, (8.34)
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while in the regime (GL2) a natural model for the limit v is rather given by the following version
of (8.18) with viscosity,

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)curl v +T4v, v|t=0 = v◦ . (8.35)

In the regimes (GL′1) and (GL′2), these equations should be replaced by their versions without in-
teraction term. Note that in [186, 187] the mean-field limit of the particle system (8.33) has indeed
been rigorously proved to coincide with (8.34) (although the modulated energy method seems to fail
in that case, as explained in Section 6.1.5).

In this viscous context, we may now consider the homogenization limit of the phenomenological
thermal mean-field models (8.34)–(8.35) with fast oscillating pinning (8.27), or equivalently, with
∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε). We denote by v̄ε the unique (smooth) solution of the corresponding
equation. We naturally restrict attention to the critical scaling for the temperature, that is, T := ηεT0

for some fixed T0 > 0.

Remark 8.1.8. On the one hand, for temperatures T � ηε, the viscous term in equations (8.34)–
(8.35) is expected to have no effect in the limit, yielding the same asymptotic behavior as for T = 0. On
the other hand, for T � ηε, the viscous term is so strong that the energy barriers are instantaneously
overcome by the dynamics: for T = κεT0 with ηε � κε � 1, the limit v̄ of the solution v̄ε of (8.34)
or (8.35) with oscillating pinning is expected to satisfy respectively (as suggested by a formal multiscale
expansion)

∂tv̄ = ∇p̄− (α− Jβ)(F̂⊥ + 2v̄) curl v̄, div v̄ = 0, v̄|t=0 = v◦,

or ∂tv̄ = α−1∇(div v̄)− (α− Jβ)(F̂⊥ + 2λv̄) curl v̄, v̄|t=0 = v◦,

while for T = T0 of order 1 the limit v̄ should satisfy respectively

∂tv̄ = ∇p̄− (α− Jβ)(F̂⊥ + 2v̄) curl v̄ + T04v̄, div v̄ = 0, v̄|t=0 = v◦,

or ∂tv̄ = α−1∇(div v̄)− (α− Jβ)(F̂⊥ + 2λv̄) curl v̄ + T04v̄, v̄|t=0 = v◦ .

It is thus natural to restrict attention to the less trivial case of the critically scaled temperature. ♦

Subcritical regimes. In the subcritical regimes (GL′1) and (GL′2), the thermal mean-field models
take the form (8.34)–(8.35) without interaction term. In terms of the vorticity m̄ε := curl v̄ε, with
oscillating pinning, and with critically scaled temperature T = ηεT0, T0 > 0, these equations become

∂tm̄ε = div
(
(α− Jβ)(∇2ĥ

0(·, ·/ηε)− F̂ ) m̄ε

)
+ ηεT04m̄ε, m̄ε|t=0 = curl v◦ . (8.36)

The limit ηε ↓ 0 of this equation is a particular case of homogenization of a parabolic equation with
vanishing viscosity, as studied by Dalibard [135]. Alternatively, using Nguetseng’s 2-scale compactness
theorem (in the form of Lemma 8.9.10, as e.g. in the proof of Theorem 8.9.8), we easily obtain the
following.

Proposition 8.1.9 (Subcritical regimes with temperature). Let m̄ε be as above, and assume that
ĥ0 ∈ C1

b (R2;C1
per(Q)) and F̂ ∈ C1

b (R2). Let µ̃T0 ∈ W 1,∞(R2; L∞ ∩Pper(Q)) denote the unique weak
solution of the following cell problem,

T04yµ̃
T0(x, y) + divy

(
(α− Jβ)(∇2ĥ

0(x, y)− F̂ (x))µ̃T0(x, y)
)

= 0, (8.37)

and define the following averaged vector field,

ΓT0
hom(x) :=

ˆ
Q

(α− Jβ)(∇2ĥ
0(x, y)− F̂ (x))µ̃T0(x, y)dy. (8.38)

Then we have m̄ε
∗−⇀ m̄ in L∞loc(R+;P(R2)), where m̄ is the unique solution of the transport equation

∂tm̄ = div (ΓT0
homm̄), m̄|t=0 = curl v◦ . ♦
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κc,e κ

|V κe|

(a) Subcritical regimes: (linear) ohmic ve-
locity law in the low-forcing limit.

κc,e κ

|V κe|

(b) Critical regimes: (nonlinear) creep ve-
locity law in the low-forcing limit.

Figure 8.2 – Typical forcing-velocity characteristics in the presence of (low) temperature.

Note that this result is very similar to that of Proposition 8.1.6, except that here the invariant
measure is replaced by its viscous version (8.37). In order to describe the dynamical properties of this
limiting model, we again investigate the behavior of the typical forcing-velocity curve: we consider a
constant forcing vector F̂ := F0 ∈ R2, we assume that ĥ0(x, x/ηε) := h̃0(x/ηε) is independent of the
macroscopic variable, we denote by ΓF0,T0

hom ∈ R2 the corresponding averaged vector field (8.38), and
we investigate the behavior of the velocity law F0 7→ V F0,T0 := −ΓF0,T0

hom . For large |F0|, the picture is
essentially the same as in the case without temperature T0 = 0. However, since the viscous invariant
measure µ̃F0,T0 ∈ P(Q) does not vanish anywhere in the cell Q, we find V F0,T0 6= 0 for all F0 6= 0, that
is, in the presence of temperature T0 > 0 the mass is always transported (at a reduced speed) and
cannot get stuck forever in the local wells of the pinning potential. The precise behavior of V F0,T0 for
F0 close to 0 is then of particular interest. Heuristically, the forcing F0 6= 0 tilts the energy landscape,
and the energy barriers of size osc h̃0 := max h̃0 − min h̃0 are then overcome by thermal activation
even for small F0 6= 0. The velocity law for this so-called thermally assisted flux flow is then expected
to satisfy the classical Arrhenius law from statistical thermodynamics (see e.g. [195, Section 5.1]),

V F0,T0 = C(1 + o(1)) exp
(
− C

T0
osc h̃0

)
F0, as |F0| � T0 � 1, (8.39)

that is, the response should be linear, but exponentially small as a function of T0. This asymptotic law
is related to the Eyring-Kramers formula, which has been rigorously established in any dimension [74,
237, 53]. Note that for the corresponding problem in dimension 1 (in the parabolic case β = 0) the
averaged vector V F0,T0 can be explicitly computed, and the above law (8.39) is easily checked by
hand. The typical forcing-velocity characteristics are plotted in Figure 8.2(a).

Critical regimes. In the critical regimes (GL1) and (GL2), the nonlinear interaction term can
no longer be neglected, and we need to consider the homogenization limit of the complete thermal
mean-field models (8.34)–(8.35), with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε), and with critically scaled
temperature T := ηεT0, T0 > 0. In spite of the vanishing viscosity term, the rigorous justification
of this homogenization limit remains very challenging due to the nonlinear nonlocal character of the
mean-field models and to their instability as ηε ↓ 0. A purely formal 2-scale expansion yields the
following heuristics for the asymptotic behavior of v̄ε. Note that this coincides with Heuristics 8.1.7
except that here the invariant measures are replaced by viscous versions. Justifying the limit is again
left as an open question. We refer to Section 8.9.4 and Remark 8.9.6 for detail.
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Heuristics 8.1.10 (Critical regimes with temperature — formal asymptotics). For all w : R2 → R2

and x ∈ R2, consider the periodic vector field

Γx[w] := (α− Jβ)(∇2ĥ
0(x, ·)− F̂ (x) + 2w⊥(x)) : Q→ R2,

denote by µ̃T0
x [w] ∈ L∞ ∩Pper(Q) the unique solution of the following equation on the 2-torus Q,

T04µ̃T0
x [w] + div (Γx[w]µ̃T0

x [w]) = 0,

and define the averaged vector field

ΓT0
hom[w](x) :=

ˆ
Q

Γx[w](y)dµ̃T0
x [w](y).

Let v̄ε denote the unique global (smooth) solution of (8.34) or (8.35) with the vector field ∇ĥ(x)
replaced by ∇2ĥ

0(x, x/ηε), and with T := ηεT0, ηε � 1, with ĥ0 and T0 > 0 independent of ε.
Then the same asymptotic results should hold as in Heuristics 8.1.7, but with Γhom[·] replaced by its
better-behaved viscous version ΓT0

hom[·]. ♦

Noting that the viscous invariant measures µ̃T0
x [w] depend smoothly on w — unlike the situation

without temperature —, the well-posedness of the limiting equations for v̄ is now easily obtained.
Again we are interested in the mean velocity law F0 7→ V F0,T0 (defined as in (8.31)). The overall
picture is essentially the same as in the subcritical regimes. However, as in the case without temper-
ature, due to the competition between the pinning potential and the vortex interaction, the precise
dynamical properties of v̄ are expected to change dramatically: the interacting vortices now move
as a coherent whole, satisfying glassy properties [195]. The main manifestation of this difference is
visible in the low-forcing low-temperature limit (|F | � T0 � 1), where the linear Arrhenius law (8.39)
is now expected to break down, being replaced by the following so-called creep law, with stretched
exponential dependence in the imposed forcing,

V F0,T0 = C(1 + o(1)) exp
(
− C

T0|F0|µ
)
, as |F0| � T0 � 1, (8.40)

for some creep exponent µ > 0. This was first predicted by physicists for related elastic interface
motion models [337, 251] and then adapted to vortex systems [180, 338, 196, 114, 115] (see also [195,
Section 5] and references therein). The typical forcing-velocity curves are plotted in Figure 8.2(b).
This particular glassy dynamical behavior is more generally expected to hold for any elastic object
(here, a system of interacting vortices) that fluctuates in a heterogeneous medium, but even for simpler
models no rigorous derivation is available. For an attempt at a mathematical approach to creep laws,
we refer to [6]. Note that the crucial influence of the interactions on the dynamics is interestingly
already exemplified in a simplified 1D model in [173, Section IV].

Infinite mobility limit and Bean’s model

A further asymptotic limit may be considered in order to reduce the above limiting equations
to simpler laws: let us assume that the forcing F̂ is time-dependent, but varies on a much larger
timescale than the vortex motion. More precisely, let us consider the following rescaling of the
mean-field equations (8.34)–(8.35) for v̄ε with oscillating pinning potential and with critically scaled
temperature T := ηεT0: in the regime (GL1),

ηε∂tv̄ε = ∇p̄ε + (α− Jβ)(∇⊥2 ĥ0(·, ·/ηε)− F̂⊥ − 2v̄ε)curl v̄ε + ηεT04v̄ε, div v̄ε = 0, v̄ε|t=0 = v◦,

and in the regime (GL2),

ηε∂tv̄ε = α−1∇(â−1 div (âv̄ε)) + (α− Jβ)(∇⊥2 ĥ0(·, ·/ηε)− F̂⊥ − 2v̄ε)curl v̄ε + ηεT04v̄ε, v̄ε|t=0 = v◦,
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Figure 8.3 – In the Bean and Kim-Anderson models, the exact velocity law typically given by
Figure 8.1 is replaced by this simplified law.

while in the subcritical regimes (GL′1)–(GL′2) we consider the corresponding equations without inter-
action term. In the case without temperature (T0 = 0), in the timescale of variation of the forcing
F̂ , as ηε ↓ 0, we may heuristically replace the velocity law plotted in Figure 8.1 by the simplified law
pictured in Figure 8.3, meaning that the vortices have infinite mobility beyond the depinning thresh-
old, hence rearrange themselves instantaneously. Such rate-independent limiting models are known
as the Bean or the Kim-Anderson models; we refer to [108, Sections 6.3–6.4] and [388] for more detail.
In the subcritical regimes (GL′1)–(GL′2), for the model without interaction and without temperature
(T0 = 0), the convergence to a suitable rate-independent process is proved in any dimension in [404],
while an approach to the corresponding case with temperature T0 > 0 is proposed in [405]. Rigorously
treating the critical regimes with interaction is much more delicate, and is not pursued here.

8.1.4 Perspectives and open questions

As explained, the modulated energy method does not make it possible to establish the mean-
field limit result in the Gross-Pitaevskii case in the regime 1 � Nε . |log ε|, nor in the parabolic
Ginzburg-Landau case in the regime Nε & |log ε| log |log ε|. In the first case, it seems related to the
lack of a modulated energy proof for the mean-field limit of the corresponding conservative system
of discrete Coulomb particles (cf. Section 6.1.5), and is left here as an open problem. In the second
case, it is related to the failure of the usual weak-strong stability principle for the degenerate limiting
equation (8.22) in the modulated energy metric. Another weak-strong principle is available for (8.22)
in a stronger metric (cf. Proposition 7.5.1(ii)), but the possibility of using it for the desired mean-field
limit result remains an open problem.

Let us now turn to open questions related to the homogenization limit. All the non-diagonal
regimes beyond the scope of Corollary 8.1.5 remain open. In Proposition 8.9.13, we establish the
pinning phenomenon by energy methods in the subcritical regimes with pinning force dominating the
forcing; extending this to critical regimes would be quite interesting.

Another interesting question concerns the subcritical regimes and the possibility of devising a
general homogenization theory for the washboard model of Proposition 8.1.6 (see also (8.257) and
Theorem 8.9.8) in the ergodic stationary random setting — while here we restricted to the periodic
case. For explicit Poisson-like pinning potentials, this model can actually be completely understood,
and in particular the square-root power law (8.28) can be established at the depinning threshold under
a simple non-degeneracy condition. We believe that the same should hold for more general ergodic
stationary random pinning potentials. The simplification compared to the periodic case would result
from the fact that the invariant measure is expected to be unique in the depinned regime. However,
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no developed theory seems to be available for invariant measures in this stationary setting, and we
postpone these questions to a future investigation.

In the critical regimes, the vortex interaction can no longer be neglected, and we are left with
a particularly subtle nonlinear homogenization question. The corresponding viscous setting (8.34)–
(8.35) has the advantage of formally leading to a limiting PDE that is clearly well-posed (cf. Heuris-
tics 8.1.10). However, two-scale compactness methods do not allow to solve this homogenization
question even in the viscous case (cf. Remark 8.9.5(a)), and instability issues prevent any quantita-
tive approach from succeeding.

Note that the homogenization problem is much simplified in the corresponding conservative case,
that is, starting from (8.34) with α = 0. Indeed, as explained in Remark 8.9.7, the vorticity m̄ε is
then bounded, which leads to strong compactness of v̄ε in L∞loc(R+×R2)2 and allows to directly pass
to the two-scale limit in the equation, thus proving Heuristics 8.1.10 in that case. In this simpler
conservative setting, it would be interesting to consider the case without viscosity as well: the same
two-scale argument can then be repeated, but the well-posedness for the obtained limiting equation
(that is, (8.29) with α = 0) remains open.

Beyond the derivation of the nonlinear homogenized equations (8.29)–(8.30), the next step would
be to deduce the peculiar glassy properties (8.32)–(8.40) that they are expected to imply. This
independent problem is expected to be very delicate on its own and is completely left open here.

In Section 8.1.3, following the use in physics (see e.g. [173, Section III.B]), we have proposed to
phenomenologically incorporate thermal noise in the mean-field equations (8.17)–(8.20) as a viscosity
effect. A natural question then consists in deriving this macroscopic viscosity from a suitable thermal
variant of the mesoscopic Ginzburg-Landau model. Both in type-II superconductors [387, 243, 140,
141] and in Bose-Einstein condensates [401, 189, 190, 407], the effect of thermal and quantum noise
in the Ginzburg-Landau or Gross-Pitaevskii equation are often modeled as a coupling to a heat bath,
leading to the following (mixed-flow) stochastic Ginzburg-Landau equation (without pinning and
forcing, for simplicity),

λε(α+ i|log ε|β)∂tuε = ∆uε + ε−2uε(1− |uε|2) + Ξ + iξuε + Λuε, (8.41)

where Ξ and ξ are respectively complex and real space-time white noises. More precisely, the solution
uε of this equation is to be understood as the limit δ ↓ 0 of the solution uε,δ of a suitably renormalized
equation,

λε(α+ i|log ε|β)∂tuε,δ = ∆uε,δ + ε−2uε,δ(1− |uε,δ|2) + Ξδ + iξδuε,δ + Λε,δuε,δ, (8.42)

where Ξδ and ξδ are regularizations of Ξ and ξ at the scale δ > 0, and where Λε,δ is a renormalization
constant that suitably blows up as δ ↓ 0. Well-posedness for such models has recently been discussed
in [245, 244] (see also [330]). On the other hand, in the context of Bose-Einstein condensates, a
more accurate description of thermal noise is given by the so-called Zaremba-Nikuni-Griffin (ZNG)
theory: thermal effects make the condensate not to be completely condensed, so that the condensate
actually interacts with a non-condensed thermal cloud. The ZNG model thus consists in coupling
the Gross-Pitaevskii equation for the condensate with a Boltzmann kinetic equation describing the
thermal cloud (see e.g. [218, Section 3] or [257, Section II.A]). Formal derivations of the stochastic
Ginzburg-Landau model (8.41) from the more accurate ZNG theory are available in the physics
literature [401, 189, 190, 407].

An interesting question then concerns the understanding of the macroscopic diffusion of vortices
starting from these mesoscopic thermal models. Formal derivations are given in [385, 170, 257, 372,
191], but a rigorous analysis is missing. In order to have enough regularity at our disposal to repeat
modulated energy arguments, it is natural to first take the limit ε ↓ 0 in (8.42) before passing to
the limit in the white-noise regularization δ ↓ 0, thus considering regimes with ε � δ. Nevertheless,
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it seems that in this regime the noise term does not lead to a classical brownian diffusion. For the
original regime δ � ε, regularity is missing, and clarifying these questions is left as an open question.
There is also interest in directly starting from the ZNG model.

Finally, although we focus in this chapter on the vortex dynamics, we wish to briefly mention some
interesting open questions in the stationary setting as well. The mean-field limit or leading-order be-
havior of (quasi)minimizers of the Ginzburg-Landau energy with a pinning weight (8.11) is examined
in [5, 155, 154] in various settings, but we would rather like to comment on the next-order behavior,
that is, on the vortex point configurations (almost) minimizing the renormalized Ginzburg-Landau
energy [394], when the pin separation is of the same order as the vortex spacing. Without pinning
weight, the celebrated 2D crystallization conjecture states that (quasi)minimizers should be given by
Abrikosov’s triangular lattice [64]. In the presence of a random pinning weight, on the other hand,
the periodic lattice structure competes with the randomness of the pinning, but formal arguments
by Giamarchi and Ledoussal [196] indicate that for small pinning intensity the positional crystalline
order should not be lost, leading to the notion of Bragg glass (see e.g. [195, Sections 3–4] for an intro-
duction). More recently, another observation was made by Le Thien, McDermott, Reichhardt, and
Reichhardt [289]: for moderately small pinning intensity, whatever the distribution of pinning sites,
simulations suggest that (almost) minimizing vortex positions always have hyperuniform statistics
in the sense of Torquato and Stillinger [414, 429], that is, the variance of the number of points in
a ball of size R > 0 is of order o(|BR|) = o(R2) (or equivalently, the structure factor of the point
configuration vanishes at 0). In other words, under the effect of random pinning, the positional crys-
talline order of the triangular lattice is destroyed beyond some critical value of the pinning intensity,
while hyperuniformity is destroyed only beyond some higher critical value. Similarly as Bragg glasses,
disordered hyperuniform matter shares both liquid-like and crystalline-like properties. Incidentally,
this strong hyperuniform structure of vortex positions entails that for hyperuniform pinning sites the
fraction of unoccupied sites is smaller, hence the critical current is higher, which is of great practical
interest to design optimal pinning site geometries [289]. On the other hand, in the case without
pinning, this discussion leads us to formulate the following much weaker version of the crystallization
conjecture: stationary point processes (almost) minimizing the renormalized energy should at least
be hyperuniform. Nevertheless, even this simpler version seems very difficult to establish (compare
with [290, Lemma 3.10]).

8.2 Discussion of the mesoscopic model

For future reference, note that in each of the considered regimes (GL1), (GL2), (GL3), (GL′1),
(GL′2), and (GP), due to the explicit choice (8.7) of the zeroth-order term f , the following scalings
hold, in the case ηε = 1,
(a) Dissipative case, general non-decaying setting:

‖∇h‖W 1,∞ . 1 ∧ λε, ‖F‖W 1,∞ . λε, ‖f‖W 1,∞ . 1 ∧ λε + λ2
ε|log ε|2 . λ2

ε|log ε|2; (8.43)

(b) Gross-Pitaevskii case, decaying setting:

‖∇h‖H1∩W 1,∞ . 1, ‖F‖H1∩W 1,∞ . λε, ‖f‖H1∩W 1,∞ . 1 + λ2
ε|log ε|2 . N2

ε . (8.44)

8.2.1 Derivation of the modified mesoscopic model

In this section we justify the modified model (8.6) based on the 2D mixed-flow Ginzburg-Landau
model (8.2) without gauge. For that purpose, as in [410, 397], we transform the rescaled order
parameter wε/

√
a in order to turn the Neumann boundary condition into a homogeneous one, which

makes the applied electric current Jex appear directly in the equation. For that purpose, we assume
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that a = 1 holds on the boundary ∂Ω, and that the total incoming current equals the total outgoing
current, that is,

´
∂Ω n · Jex = 0. We then have

´
∂Ω an · Jex = 0, so that there exists a unique solution

ψ ∈ H1(Ω) of {
div (a∇ψ) = 0, in Ω,

n · ∇ψ = n · Jex, on ∂Ω.

A straightforward computation shows that the transformed order parameter uε := e−i|log ε|ψwε/
√
a

satisfies 
λε(α+ i|log ε|β)∂tuε = 4uε + auε

ε2
(1− |uε|2)

+∇h · ∇uε + i|log ε|F⊥ · ∇uε + fuε, in R+ × Ω,
n · ∇(uε

√
a) = 0, on R+ × ∂Ω,

uε|t=0 = u◦ε,

(8.45)

where we have set

h := log a, F := −2∇⊥ψ, and f :=
4
√
a√
a
− 1

4
|log ε|2|F |2. (8.46)

Note that the vector field F satisfies div F = curl (aF ) = 0. In order to avoid delicate boundary is-
sues, 1 a natural approach consists in sending the boundary ∂Ω to infinity and study the corresponding
problem on the whole of R2. The assumption a|∂Ω = 1 is then replaced by

a(x)→ 1 (that is, h(x)→ 0), and ∇h(x)→ 0, uniformly as |x| ↑ ∞,

while F, f are simply assumed to be bounded. Noting that 2∇
√
a =
√
a∇h→ 0 holds by assumption

at infinity, the Neumann boundary condition in (8.45) formally translates into x
|x| · ∇uε → 0 at

infinity. Further imposing the natural condition |uε| → 1 at infinity, we look for a global solution
uε : R+ × R2 → C of the corresponding equation (8.45) with fixed total degree Dε ∈ Z, and with

|uε| → 1,
x

|x|
· ∇uε → 0, as |x| ↑ ∞, and deg uε = Dε.

In the dissipative case α > 0, global existence and uniqueness of a solution uε ∈ L∞loc(R+;H1
uloc(R2;C))

is established in Appendix 8.A, as well as additional regularity, but, due to the possibly complicated
advection structure at infinity caused by the non-decaying fields F, f , it is unclear whether the above
properties at infinity are satisfied. In particular, it is not even clear whether the total degree of the
constructed solution uε is well-defined. This difficulty originates in the possibility of instantaneous
creation of many vortex dipoles at infinity for fixed ε > 0 due to forcing and pinning effects, although
these dipoles are shown to necessarily disappear at infinity in the limit ε ↓ 0 e.g. as a consequence
of our mean-field results. Anyway, since a more precise description of uε at infinity is irrelevant for
our purposes, it is not pursued here. Note that the global existence and uniqueness for uε in the
uniformly locally integrable class is proved even without any decay assumption on h.

For simplicity, we may further choose to truncate the forcing F, f at infinity, thus focusing on the
local behavior of the solution near the origin. In the Gross-Pitaevskii case, our results are limited
to this decaying setting. Note that then at least one of the conditions div F = curl (aF ) = 0 must
be relaxed: we may for instance rather truncate ψ and define F via formula (8.46), so that only the

1. Another way to avoid boundary issues consists in rather considering the equation on the 2-torus. Nevertheless,
the total degree of the map uε then necessarily vanishes, and hence, in order to describe a non-trivial vorticity with
distinguished sign, we would have no other choice than working with the complete Ginzburg-Landau model with gauge.
Working with the gauge actually does not change anything deep, but makes all computations even heavier, which we
wanted to avoid for clarity.
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condition div F = 0 is preserved. Since there is no advection at infinity in this setting, we prove
existence and uniqueness of a solution uε in an affine space L∞loc(R+;Uε +H1(R2;C)), for some fixed
smooth non-decaying “reference map” Uε : R2 → C satisfying |Uε| → 1 and x

|x| · ∇Uε → 0 as |x| ↑ ∞.
Given Dε ∈ Z, we typically choose Uε := UDε smooth and equal to eiDεθ (in polar coordinates) outside
a neighborhood of the origin, which imposes for uε a fixed total degree equal to Dε.

Remark 8.2.1. Rather than normalizing the original order parameter wε by the expected density
√
a,

another natural choice was proposed by Lassoued and Mironescu [285], and consists in normalizing
wε by a minimizer γε of the weighted Ginzburg-Landau energy, that is, a nonvanishing solution of{

−4γε = γε
ε2

(a− |γε|2), in Ω,
n · ∇γε = 0, on ∂Ω,

and setting ũε := e−i|log ε|ψwε/γε with ψ as before. This new order parameter ũε satisfies

λε(α+ i|log ε|β)∂tũε = 4ũε +
γ2
ε ũε
ε2

(1− |ũε|2) +∇h̃ · ∇ũε + i|log ε|F̃⊥ · ∇ũε + f̃ ũε,

in terms of h̃ := log γ2
ε , F̃ := −2∇⊥ψ, and f̃ := −1

4 |F |
2. We are thus again reduced to a similar

framework as the one above, and the results are easily adapted. ♦

8.2.2 Well-posedness of the modified mesoscopic model

In this section, we address global well-posedness of equation (8.6), both in the dissipative and in the
Gross-Pitaevskii cases. In the dissipative case (α > 0), a well-posedness result for (8.6) is established
in the space L∞loc(R+;H1

uloc(R2;C)) for general non-decaying data, but no precise description of the
solution at infinity is obtained, due to a possibly subtle advection structure at infinity. In particular,
it is not even clear to us whether the total degree of the constructed solution is well-defined. In
contrast, in the case of decaying data, no advection is allowed at infinity. As is classical since the
work of Bethuel and Smets [59] (see also [323]), we then consider the existence of a solution uε of (8.6)
in the space L∞loc(R+;Uε +H1(R2;C)) for some “reference map” Uε, which is typically chosen smooth
and equal (in polar coordinates) to eiDεθ outside a ball at the origin, for some given Dε ∈ Z. Such
a choice Uε = UDε imposes a fixed total degree Dε at infinity. More generally, we may consider the
following set of “admissible” reference maps,

E1(R2) := {U ∈ L∞(R2;C) : ∇2U ∈ H1(R2;C),∇|U | ∈ L2(R2), 1− |U |2 ∈ L2(R2),

∇U ∈ Lp(R2;C) ∀p > 2}.

Our global well-posedness results are summarized in the following; finer results and detailed proofs
are given in Appendix 8.A, including additional regularity statements.

Proposition 8.2.2 (Well-posedness for (8.6)).
(i) Dissipative case (α > 0, β ∈ R), general non-decaying setting:

Let h ∈ W 1,∞(R2), a := eh, F ∈ L∞(R2)2, f ∈ L∞(R2), and u◦ε ∈ H1
uloc(R2;C). Then there

exists a unique global solution uε ∈ L∞loc(R+;H1
uloc(R2;C)) of (8.6) on R+×R2 with initial data

u◦ε, and this solution satisfies ∂tuε ∈ L∞loc(R+; L2
uloc(R2;C)).

(ii) Gross-Pitaevskii case (α = 0, β 6= 0), decaying setting:
Let h ∈ W 3,∞(R2), ∇h ∈ H2(R2)2, a := eh, F ∈ H3 ∩ W 3,∞(R2)2 with div F = 0, f ∈
H2 ∩W 2,∞(R2), and u◦ε ∈ U + H2(R2;C) for some U ∈ E1(R2). Then there exists a unique
global solution uε ∈ L∞loc(R+;U +H2(R2;C)) of (8.6) on R+ ×R2 with initial data u◦ε, and this
solution satisfies ∂tuε ∈ L∞loc(R+; L2(R2;C)). ♦
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Proof. Item (i) follows from Proposition 8.A.2. We turn to item (ii). By Proposition 8.A.1(ii), the
assumptions in the above statement ensure the existence of a unique global solution uε ∈ L∞loc(R+;U+
H2(R2;C)). This directly implies that4uε, ∇h·∇uε, F⊥·∇uε, and fuε belong to L∞loc(R+; L2(R2;C)).
Using the Sobolev embedding of H1(R2) into L4 ∩L6(R2), and decomposing uε(1 − |uε|2) in terms
of uε = U + ûε with ûε ∈ L∞loc(R+;H2(R2;C)), we further deduce that uε(1 − |uε|2) belongs to
L∞loc(R+; L2(R2;C)). Inserting this into equation (8.6) yields the claimed integrability of ∂tuε.

Although a detailed proof of this well-posedness statement is included in Appendix 8.A, we include
here a brief description of the strategy. In the dissipative case with decaying h, F, f , the arguments
in [59, 323] are easily adapted to the present context with both pinning and forcing. The Gross-
Pitaevskii regime is however more delicate, and we then use the structure of the equation to make
a change of variables that usefully transforms the first-order terms into zeroth-order ones. The
additional regularity assumptions in item (ii) above are precisely needed for this transformation to be
well-behaved. Finally, the general result stated in item (i) for the dissipative case with non-decaying
h, F, f , is deduced from the corresponding result with decaying h, F, f by a careful approximation
argument in the space H1

uloc(R2;C).

8.2.3 Case with gauge

In the dissipative case α > 0, it is interesting to make the computations also in the case with
gauge, which is the true physical model for superconductors as first derived by Schmid [386] and by
Gor’kov and Eliashberg [216]. The evolution equation (8.2) is then replaced by the following, here
written in the mixed-flow case, with strong (critically scaled) imposed current |log ε|Jex : ∂Ω → R2

and imposed magnetic field |log ε|Hex : ∂Ω → R at the boundary, and with a non-uniform pinning
weight a : R2 → [0, 1],

λε(α+ i|log ε|β)(∂twε − iwεΨε) = ∇2
Bε
wε + wε

ε2
(a− |wε|2), in R+ × Ω,

σ(∂tBε −∇Ψε) = ∇⊥curlBε + 〈iwε,∇Bεwε〉, in R+ × Ω,
curlBε = |log ε|Hex, on R+ × ∂Ω,
n · ∇Bεwε = iwε|log ε|n · Jex, on R+ × ∂Ω,
wε|t=0 = w◦ε ,

where Bε : R+ × R2 → R2 now represents the gauge of the magnetic field curlBε, where Ψε :
R+ × R2 → R is the gauge of the electric field −∂tBε + ∇Ψε, where ∇Bε := ∇ − iBε is the usual
covariant derivative, and where the real parameter σ ≥ 0 characterizes the relaxation time of the
magnetic field. We refer to [410] for a detailed discussion of the form of the boundary data. We
are then interested in the asymptotic behavior of the supercurrent density 〈∇Bε(wε/

√
a), i(wε/

√
a)〉,

naturally obtained after rescaling the order parameter wε by the pinning weight. As in [410, 397],
it is useful to further modify the rescaled order parameter wε/

√
a in order to turn the boundary

conditions into homogeneous ones, which then makes the imposed current and magnetic field Jex and
Hex appear directly in the equation. Further, for simplicity, in order to avoid boundary issues, under
similar assumptions on a as in Section 8.2.1, we may formally send the boundary ∂Ω to infinity and
study the corresponding problem on the whole of R2. Without explicitly describing the transformation
(which includes a choice of the gauge Ψε; we refer to [397, Section 2] for detail), the transformed couple
(uε, Aε) replacing the triplet (wε, Bε,Ψε) then satisfies the following equation,

λε(α+ i|log ε|β)∂tuε = ∇2
Aε
uε + auε

ε2
(1− |uε|2)

+∇h · ∇Aεuε + i|log ε|F⊥ · ∇Aεuε + fuε, in R+ × Ω,
σ∂tAε = ∇⊥curlAε + a〈iuε,∇Aεuε〉 − 1

2 |log ε|aF⊥(1− |uε|2), in R+ × Ω,
uε|t=0 = u◦ε,
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where h := log a, and where F and f are given explicitly in terms of a, Jex andHex. Natural quantities
associated with this transformed model are the gauge-invariant supercurrent and vorticity,

jε := 〈∇Aεuε, iuε〉, µε := curl (jε +Aε),

and the electric field
Eε := −∂tAε.

We believe that the derivation of mean-field limit results from this gauged version of the model (8.6)
does not cause any major difficulty, and can be achieved following the kind of computations per-
formed in [395, Appendix C]. Formally, the corresponding results to Theorems 8.1.2 and 8.1.3 are the
convergences

jε
Nε
→ v,

µε
Nε
→ m := curl v + H,

curlAε
Nε

→ H,
Eε
Nε
→ E,

where the limiting triplet (v, H,E) satisfies, in the regime (GL1),
∂tv−E = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) m,

div v = 0,

−σE = v +∇⊥H,

∂tH = −curl E,

(8.47)

or in the regime (GL2),
∂tv−E = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv) m,

−σE = v +∇⊥H,

∂tH = −curl E,

(8.48)

or in the regime (GL3) with α = 1, β = 0,
∂tv−E = −(F̂⊥ + 2λv) m,

−σE = v +∇⊥H,

∂tH = −curl E,

(8.49)

while in the subcritical regimes (GL′1)–(GL′2) the mean-field equations are obtained from (8.47)–(8.48)
by removing the nonlinear interaction terms vm. The structure of these equations is maybe more
transparent at the level of the vorticity m := curl v + H: the system (8.47) takes the form

∂tm = div
(
(α− Jβ)(∇ĥ− F̂ + 2v⊥) m

)
,

σ∂tH−4H + H = m,

div v = 0, curl v = m−H

while the system (8.48) becomes for σ > 0, setting in addition d := div (âv),
∂tm = div

(
(α− Jβ)(∇ĥ− F̂ + 2v⊥) m

)
,

∂td−α−14d +α−1 div (d∇ĥ) + 1
σ d = − 1

σ â∇ĥ · ∇
⊥H + div

(
(α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)âm

)
,

σ∂tH−4H + H = m,

div (âv) = d, curl v = m−H,
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that is a transport equation for m, coupled with a linear heat equation for H, and in the case (8.48)
further coupled with a transport-diffusion equation for the divergence d := div (âv). In the case (8.49),
the transport-diffusion equation becomes degenerate: in terms of θ := div v,

∂tm = div
(
(−F̂ + 2v⊥) m

)
,

∂tθ + 1
σθ = −div

(
(F̂⊥ + 2λv)âm

)
,

σ∂tH−4H + H = m,

div v = θ, curl v = m−H,

In the rest of this chapter, we focus for simplicity on the model without gauge (8.6).

8.3 Preliminaries on the limiting equations

As already explained, it is convenient to first compare the rescaled supercurrent density jε/Nε with
an intermediate ε-dependent map vε : R+ × R2 → R2, which is better adapted to the ε-dependence
of the pinning potential and will in a second step be shown to converge to the correct limit v. In all
considered regimes, we derive equations for vε of the form

∂tvε = ∇pε +Γε curl vε, vε|t=0 = v◦ε, (8.50)

for some smooth pressure pε : R2 → R, and some smooth vector field Γε : R2 → R2. The pressure will
either be proportional to a−1 div (avε), or be the Lagrange multiplier associated with the constraint
div (avε) = 0. Before Section 8.6, we only manipulate these quantities vε, pε,Γε formally, while the
suitable choices will be exploited later. In order to ensure that all our computations are licit, we need
to work under the following integrability and smoothness assumptions.

Assumption 8.3.1.

(a) Dissipative case (α > 0, β ∈ R):
There exists some T > 0 such that for all ε > 0, all t ∈ [0, T ), and all q > 2,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1, ‖div (avtε)‖L2 ∩L∞ .t 1,

‖ptε‖L2 ∩L∞ .t λ
−1/2
ε ∧ λ−1

ε , ‖∇pε‖L2
t L2 .t 1 ∧ λ−1

ε ,

‖∂tvtε‖L2 ∩L∞ .t 1 + λ−1/2
ε , ‖∂tvε‖L2

t L2 .t 1, ‖∂tptε‖L2
t L2 .t λ

−1
ε ,

‖Γtε‖W 1,∞ .t 1, ‖∂tΓε‖L2
t L2 .t 1.

(b) Gross-Pitaevskii case (α = 0, β 6= 0):
There exists some T > 0 such that for all ε > 0, all t ∈ [0, T ), and all 2 < q <∞,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1

‖ptε‖Lq ∩L∞ .t,q 1, ‖∇ptε‖L2 ∩L∞ .t 1, ‖∂tvtε‖L2 .t 1, ‖∂tptε‖Lq .t,q 1,

‖Γtε‖W 1,∞ .t 1, ‖∂tΓtε‖L2 .t 1. ♦

In the dissipative case of Theorem 8.1.2 the rescaled supercurrent density N−1
ε jε is shown in

Section 8.6 to remain close to the solution vε of the following equation,

∂tvε = ∇pε +Γεcurl vε, vε|t=0 = v◦ε, (8.51)

Γε := λ−1
ε (α− Jβ)

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
, pε := (λεαa)−1 div (avε),
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while in the superdense parabolic case of Theorem 8.1.3 the rescaled supercurrent density N−1
ε jε is

shown in Section 8.8 to remain close to the solution vε of the following equation,

∂tvε = ∇pε +Γεcurl vε, vε|t=0 = v◦, (8.52)

Γε := λ−1
ε

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
, pε := (λεa)−1 div (avε),

and while in the Gross-Pitaevskii case of Theorem 8.1.4 the rescaled supercurrent density N−1
ε jε is

shown in Section 8.7 to remain close to the solution vε of the following equation,

∂tvε = ∇pε +Γεcurl vε, div (avε) = 0, vε|t=0 = v◦ε, (8.53)

Γε := −λ−1
ε

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)⊥
.

In the present section, we show that the solutions vε of the above equations (8.51), (8.52), and (8.53)
exist and satisfy all the properties of Assumption 8.3.1. Using the choice of the scalings for λε, h, F
in each regime, we further show how to pass to the limit ε ↓ 0 in these equations, which is needed to
conclude the proofs of Theorems 8.1.2, 8.1.3, and 8.1.4. Note that in the regimes (GL1) and (GL′2), as
a consequence of the choice λε ↓ 0, we expect the solution vε of (8.51) to converge to the solution v of
some incompressible equation with the constraint div v = 0. We thus naturally refer to (GL1), (GL′2)
and (GP) as the incompressible regimes, and to (GL2) and (GL′1) as the compressible regimes. In
contrast, the choice of λε ↑ ∞ in the superdense parabolic regime (GL3) leads to a degenerate
equation, so that we refer to (GL3) as the degenerate parabolic regime, while the other dissipative
regimes are called non-degenerate. (In particular, we establish in the present section for regular initial
data the continuity of the solutions of the mean-field models (7.2) with respect to the parameter λ
on (0,∞] in the dissipative case, and on [0,∞] in the parabolic case.)

8.3.1 Non-degenerate dissipative case

It is instructive to examine the vorticity formulation of the equation (8.51) for vε. In terms of
mε := curl vε and dε := div (avε), equation (8.51) may be rewritten as a nonlinear nonlocal transport
equation for the vorticity mε, coupled with a transport-diffusion equation for the divergence dε,

∂tmε = −div (Γ⊥ε mε), mε|t=0 = curl v◦ε,

∂tdε−(αλε)
−14dε +(αλε)

−1 div (dε∇h) = div (aΓεmε), dε|t=0 = div (av◦ε),

curl vε = mε, div (avε) = dε .

(8.54)

A detailed study of this kind of equations is performed in Chapter 7, including global existence
results for vortex-sheet initial data. The following proposition in particular states that a solution
vε always exists and satisfies the various properties of Assumption 8.3.1(a) under suitable regularity
assumptions on the initial data v◦ε. Compared with Chapter 7, this result however requires some more
work in the incompressible cases λε ↓ 0, since it is then needed to make clear the link with the limiting
incompressible equations, in particular in order to establish global existence in the mixed-flow case.

Proposition 8.3.2. Let α > 0, β ∈ R, h : R2 → R, a := eh, F : R2 → R2, and let v◦ε : R2 → R2

be bounded in W 1,q(R2)2 for all q > 2, and satisfy curl v◦ε ∈ P(R2). For some s > 0, assume
that h ∈ W s+3,∞(R2), F ∈ W s+2,∞(R2)2, that v◦ε is bounded in W s+2,∞(R2)2, and that curl v◦ε and
div (av◦ε) are bounded in Hs+1(R2).

(i) Non-degenerate compressible regimes λε ' 1 (that is, (GL2)–(GL′1)):
There exist T > 0 (independent of ε) and a unique (local) solution vε ∈ L∞loc([0, T ); v◦ε +H2 ∩
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W 2,∞(R2)2) of (8.51) on [0, T ) × R2. Moreover, all the properties of Assumption 8.3.1(a) are
satisfied, that is, for all t ∈ [0, T ) and all q > 2,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1, ‖div (avtε)‖L2 ∩L∞ .t 1,

‖ptε‖L2 ∩L∞ .t 1, ‖∇ptε‖L2 .t 1, ‖∂tvtε‖L2 ∩L∞ .t 1, ‖∂tptε‖L2
t L2 .t 1.

In the parabolic case β = 0, the solution vε can be extended globally, i.e. T = ∞. In the
small-interaction regime (GL′1), in the mixed-flow case β 6= 0, the existence time T can be taken
arbitrarily large for ε > 0 small enough.

(ii) Incompressible regimes λε � 1 (that is, (GL1)–(GL′2)):
Further assume div (av◦ε) = 0. There exist T > 0 (independent of ε) and a unique (local) solution
vε ∈ L∞loc([0, T ); v◦ε +H2 ∩W 2,∞(R2)2) of (8.51) on R+ × R2. Moreover, all the properties of
Assumption 8.3.1(a) are satisfied, that is, for all t ∈ [0, T ) and all q > 2,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1, ‖ div (avtε)‖L2 ∩L∞ .t 1,

‖ptε‖L2 ∩L∞ .t λ
−1/2
ε , ‖∇pε‖L2

t L2 .t 1, ‖∂tptε‖L2
t L2 .t λ

−1
ε ,

‖∂tvtε‖L2 ∩L∞ .t λ
−1/2
ε , ‖∂tvε‖L2

t L2 .t 1.

In the parabolic case β = 0, the solution vε can be extended globally, i.e. T =∞. In the mixed-
flow case β 6= 0, the existence time T can be taken arbitrarily large for ε > 0 small enough. ♦

Proof. Item (i) is proved in Step 1 below, while the proof of (ii) is split into three further steps. The
proof of the global existence for the regime (GL′1), also stated in (i), is postponed to the last step.

Step 1. Non-degenerate compressible regimes.
Let s > 0 be non-integer. The assumption ‖ĥ‖W s+3,∞ , ‖F̂‖W s+2,∞ . 1 yields ‖λ−1

ε (∇⊥h −
F⊥)‖W s+2,∞ . 1 in the considered regimes, and also λ−1

ε Nε/|log ε| . 1 and λε ' 1. Further using the
assumptions on the initial data v◦ε, Theorems 7.1.4 and 7.1.5 in Chapter 7 imply that in each of the
compressible regimes (GL2)–(GL′1) there exists a unique (local) solution vε ∈ L∞loc([0, T ); v◦ε +H2 ∩
W 2,∞(R2)2) of (8.51) on [0, T ) × R2 with initial data v◦ε, for some T & 1. Moreover, it is shown in
Chapter 7 that this solution satisfies for all t ∈ [0, T ),

‖vtε− v◦ε‖H2∩W 2,∞ .t 1, ‖(mt
ε,d

t
ε)‖H1∩W 1,∞ .t 1,

ˆ
R2

mt
ε = 1, mt

ε ≥ 0. (8.55)

Note that in the parabolic case (α = 1, β = 0) Theorem 7.1.3 actually gives a global solution, i.e.
T =∞. We claim that all the desired properties of vε follow from (8.55). Combining (8.55) with the
assumption that v◦ε is bounded in W 1,q(R2)2 for all q > 2, we find

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1.

The choice pε = (λεαa)−1 dε with λε ' 1 leads to

‖ptε‖H1∩W 1,∞ . ‖dtε‖H1∩W 1,∞ .t 1.

Inserting this information into equation (8.51), we deduce

‖∂tvtε‖L2 ∩L∞ . ‖∇ptε‖L2 ∩L∞ + ‖Γtεmt
ε‖L2 ∩L∞ .t 1.

Testing the transport-diffusion equation ∂tdε−(λεα)−1(4dε−div (dε∇h)) = div (aΓεmε) against
∂tdε yieldsˆ

R2

|∂tdε|2 +
1

2
(λεα)−1∂t

ˆ
R2

|∇dε|2 = −
ˆ
R2

∂tdε div
(
(λεα)−1dε∇h− aΓεmε

)
,
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and hence, integrating in time, with λε ' 1,

‖∂tdε‖2L2
t L2 +

1

2
(λεα)−1‖∇dε‖2L2 . ‖∇d◦ε‖2L2 + ‖∂tdε‖L2

t L2(‖dε‖L2
t H

1 + ‖aΓε‖L∞t W 1,∞‖mε‖L2
t H

1)

.t 1 + ‖∂tdε‖L2
t L2 .

Absorbing the last right-hand side term, we conclude

‖∂tpε‖L2
t L2 . ‖∂tdε‖L2

t L2 .t 1. (8.56)

All the stated estimates follow.

Step 2. Estimates for transport-diffusion equations with large diffusivity.
In the incompressible regimes (GL1) and (GL′2), the conclusion does not follow as in Step 1,

because the corresponding choice pε = (λεαa)−1 div (avε) contains the large prefactor (λεα)−1 � 1.
In particular, equation (8.54) for the divergence dε := div (avε) now takes the form

∂tdε−(λεα)−14dε +α−1 div (dε∇ĥ) = div (aΓεmε), (8.57)

with a large prefactor (λεα)−1 � 1 in front of the Laplacian, and with initial data d◦ε := div (av◦ε) = 0.
In this step, we consider the model transport-diffusion equation

∂tw − ν4w + div (w∇ĥ) = div g, w|t=0 = 0,

with large diffusivity ν � 1. Using that the initial condition is chosen to be zero, a direct adaptation
of Lemma 7.2.3 gives the following bounds: for all ν & 1,

(a) for all s ≥ 0, t ≥ 0, for some constant C depending only on an upper bound on s and ‖∇ĥ‖W s,∞ ,

‖wt‖Hs + ν1/2‖∇w‖L2
t H

s ≤ C(t/ν)1/2eCt/ν‖g‖L∞t Hs ≤ Ct1/2eCt‖g‖L∞t Hs ;

(b) for some constant C depending only on an upper bound on ‖∇ĥ‖L∞ ,

‖wt‖Ḣ−1 ≤ CeCt‖g‖L2
t L2 ;

(c) for all 1 ≤ p, q ≤ ∞, t ≥ 0, for some constant C depending only on an upper bound on ‖∇ĥ‖L∞ ,

‖w‖Lpt Lq ≤ C(t/ν)1/2eC(t/ν)2‖g‖Lpt Lq ≤ Ct1/2eCt
2‖g‖Lpt Lq .

In particular, the same bounds as in Lemma 7.2.3 hold uniformly with respect to the large diffusivity
ν � 1. Further adapting the proof of (8.56) in Step 1 above, we easily find

(d) for some constant C depending only on an upper bound on ‖∇ĥ‖W 1,∞ ,

‖∂tw‖L2
t L2 ≤ ‖∇g‖L2

t L2 + C(t/ν)1/2eCt/ν‖g‖L∞t L2 ≤ Ct1/2eCt‖g‖L∞t H1 .

Step 3. Incompressible regimes.
In the vorticity formulation (8.54), the large prefactor (λεα)−1 � 1 does not affect the equation

for the vorticity mε, but only the equation for the divergence dε, which now takes the form (8.57).
However, for the choice d◦ε = 0, the result of Step 2 ensures that the estimates for dε used in Chapter 7
hold uniformly with respect to the large prefactor. Hence, as in Step 1, using the assumptions on the
initial data, the proof of Theorems 7.1.4 and 7.1.5 imply that in the incompressible regimes (GL1)
and (GL′2) there exists a unique (local) solution vε ∈ L∞loc([0, T ); v◦+H2 ∩W 2,∞(R2)2) of (8.51) on
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[0, T )×R2 with initial data v◦, for some T & 1. Moreover, it is shown in Chapter 7 that this solution
satisfies for all t ∈ [0, T ),

‖vtε− v◦ε‖H2∩W 2,∞ .t 1, ‖(mt
ε, d

t
ε)‖H1∩W 1,∞ .t 1,

ˆ
R2

mt
ε = 1, mt

ε ≥ 0. (8.58)

Note that in the parabolic case (α = 1, β = 0) Theorem 7.1.3 actually gives a global solution, i.e.
T = ∞. We claim that all the desired properties of vε follow from (8.58). By definition (8.51), we
find ‖Γtε‖W 1,∞ .t 1. Combining (8.58) with the assumption that v◦ε is bounded in W 1,q(R2)2 for all
q > 2, we obtain

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1.

Using (8.51) in the form pε = (λεαa)−1 dε, and applying items (a)–(c) of Step 2, we find

‖ptε‖H1∩W 1,∞ . λ−1
ε ‖dtε‖H1∩W 1,∞ .t λ

−1/2
ε ‖aΓεmε‖L∞t (H1∩W 1,∞) .t λ

−1/2
ε ,

where the last bound follows from (8.58). Similarly, using the choice h = λεĥ in the form

∇pε = (λεα)−1∇(a−1dε) = (αa)−1(λ−1
ε ∇dε− dε∇ĥ),

item (a) of Step 2 yields

‖∇pε‖L2
t L2 .t λ

−1
ε ‖∇dε‖L2

t L2 + ‖dε‖L∞t L2 .t ‖aΓεmε‖L∞t L2 .t 1.

Inserting this information into equation (8.51), we deduce

‖∂tvtε‖L2 ∩L∞ . ‖∇ptε‖L2 ∩L∞ + ‖Γtε‖L∞‖mt
ε‖L2 ∩L∞ .t λ

−1/2
ε ,

and similarly
‖∂tvε‖L2

t L2 . ‖∇pε‖L2
t L2 + ‖Γε‖L∞t L∞‖mε‖L2

t L2 .t 1.

Finally, item (d) of Step 2 yields

‖∂tpε‖L2
t L2 . λ−1

ε ‖∂tdε‖L2
t L2 .t λ

−1
ε ‖aΓεmε‖L∞t H1 .t λ

−1
ε .

All the stated estimates follow.

Step 4. Global existence in the (mixed-flow) incompressible regimes.
The energy estimates of Lemma 7.4.1(iii) yield

‖vtε− v◦ε‖L2 .t 1.

Using this estimate as well as
´
R2 |mt

ε| = 1 for all t, and arguing as in Step 1 of the proof of
Lemma 7.4.5, we find

‖vtε‖L∞ .t 1 + ‖mt
ε‖

1/2
L∞ log1/2(2 + ‖mt

ε‖L∞)

+ ‖div (vtε− v◦ε)‖L2 log1/2(2 + ‖div (vtε− v◦ε)‖L2 ∩L∞). (8.59)

On the other hand, item (a) of Step 2 above yields

‖dtε‖L2 .t λ
1/2
ε ‖aΓεmε‖L∞t L2 .t λ

1/2
ε ‖vε− v◦‖L∞t L2‖mε‖L∞t L∞ + λ1/2

ε ‖mε‖L∞t L2

.t λ
1/2
ε ‖mε‖L∞t L∞ + λ1/2

ε ‖mε‖1/2L∞t L∞ ,
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and hence, in terms of div (vε− v◦ε) = a−1dε−λε∇ĥ · (vε− v◦ε),

‖div (vtε− v◦ε)‖L2 .t λ
1/2
ε (1 + ‖mε‖L∞t L∞).

Inserting this into (8.59), we find

‖vtε‖L∞ .t (1 + ‖mε‖L∞t L∞) log1/2(2 + ‖mε‖L∞t L∞ + ‖div vtε‖L∞). (8.60)

Item (c) of Step 2 yields

‖dtε‖L∞ .t λ1/2
ε ‖aΓεmε‖L∞t L∞ . λ

1/2
ε (1 + ‖vε‖L∞t L∞)‖mε‖L∞t L∞ ,

or alternatively, in terms of div vε = a−1dε−λε∇ĥ · vε,

‖div vtε‖L∞ .t λ1/2
ε (1 + ‖vε‖L∞t L∞)(1 + ‖mε‖L∞t L∞).

Combining this with (8.60) leads to

‖div vtε‖L∞ .t λ1/2
ε (1 + ‖mε‖2L∞t L∞) log1/2(2 + ‖mε‖L∞t L∞ + ‖div vtε‖L∞),

and hence, using λε � 1 and the inequality a log b ≤ b+ a log a for all a, b ≥ 0, in order to absorb the
term ‖div vtε‖L∞ appearing in the right-hand side,

‖div vtε‖L∞ .t λ1/2
ε (1 + ‖mε‖2L∞t L∞) log(2 + ‖mε‖L∞t L∞),

so that (8.60) finally takes the form

‖vtε‖L∞ .t (1 + ‖mε‖L∞t L∞) log1/2(2 + ‖mε‖L∞t L∞).

In particular, we have proved the following estimates,

‖vtε‖L∞ .t (1 + ‖mε‖2L∞t L∞), and ‖dtε‖L∞ .t λ1/2
ε (1 + ‖mε‖3L∞t L∞).

The result in Lemma 7.4.3(i) then gives the following bound on the vorticity mε,

‖mt
ε‖L∞ . exp

(
Ct
(
1 + ‖dε‖L∞t L∞ + λε‖vε‖L∞t L∞

))
.t exp

(
Ctλ1/2

ε (1 + ‖mε‖3L∞t L∞)
)
.

As λε � 1, this bound easily implies that for all T > 0 there exists some ε0(T ) such that for all
0 < ε < ε0(T ) the vorticity mt

ε (if it exists) remains bounded in L∞(R2) for all t ∈ [0, T ]. Then
repeating the arguments in Sections 7.4.2–7.4.3, this a priori bound on the vorticity allows to deduce
existence and uniqueness of a solution on the whole time interval [0, T ].

Step 5. Global existence in the (mixed-flow) compressible regime (GL′1).
Just as in (8.59) above, we find the bounds ‖vtε− v◦ε‖L2 .t 1 and

‖vtε‖L∞ .t 1 + ‖mt
ε‖

1/2
L∞ log1/2(2 + ‖mt

ε‖L∞)

+ ‖div (vtε− v◦ε)‖L2 log1/2(2 + ‖div (vtε− v◦ε)‖L2 ∩L∞). (8.61)

On the other hand, considering the equation (8.54) satisfied by dε, the a priori estimates in Lemma 7.2.3
yield

‖dtε‖L2 .t 1 + ‖aΓεmε‖L∞t L2 .t 1 + ‖mε‖L∞t L2 + ‖mε‖L∞t L∞‖vε− v◦ε‖L∞t L2 .t 1 + ‖mε‖L∞t L∞ ,
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and also

‖dtε‖L∞ .t 1 + ‖aΓεmε‖L∞t L∞ .t 1 + ‖mε‖L∞t L∞(1 + ‖vε‖L∞t L∞).

As by definition div (vtε− v◦ε) = a−1(dtε−d◦ε)−∇h · (vtε− v◦ε), the above estimates take the following
form,

‖div (vtε− v◦ε)‖L2 .t 1 + ‖mε‖L∞t L∞ , (8.62)
‖div vtε‖L∞ .t (1 + ‖mε‖L∞t L∞)(1 + ‖vε‖L∞t L∞).

Combining these estimates with (8.61) yields

‖vtε‖L∞ .t 1 + ‖mt
ε‖

1/2
L∞ log1/2(2 + ‖mt

ε‖L∞)

+ (1 + ‖mε‖L∞t L∞) log1/2
(
(1 + ‖mε‖L∞t L∞)(1 + ‖vε‖L∞t L∞)

)
,

and hence, using the inequality a log b ≤ b + a log a for all a, b ≥ 0, in order to absorb the term
‖vε‖L∞t L∞ appearing in the right-hand side,

‖vε‖L∞t L∞ .t (1 + ‖mε‖L∞t L∞) log(1 + ‖mε‖L∞t L∞),

so that (8.62) finally takes the form,

‖div vε‖L∞t L∞ .t (1 + ‖mε‖L∞t L∞)2 log(1 + ‖mε‖L∞t L∞).

The result in Lemma 7.4.3(i) then gives the following bound on the vorticity mε, in the considered
regime (GL′1),

‖mt
ε‖L∞ . exp

(
Ct
(

1 +
Nε

|log ε|
‖(vε,div vε)‖L∞t L∞

))
.t exp

(
CtNε

|log ε|
‖mε‖3L∞t L∞

)
.

As Nε � |log ε|, this bound easily implies that for all T > 0 there exists some ε0(T ) such that for
all 0 < ε < ε0(T ) the vorticity mt

ε (if it exists) remains bounded in L∞(R2) for all t ∈ [0, T ]. Then
repeating the arguments in Sections 7.4.2–7.4.3, existence and uniqueness of a solution on the whole
time interval [0, T ] follows from this a priori bound.

We now show how to pass to the limit in equation (8.51) as ε ↓ 0, which is easily achieved e.g. by
a Grönwall argument on the L2-distance between vε and the solution v of the limiting equation.

Lemma 8.3.3. Let the same assumptions hold as in Proposition 8.3.2, and let vε : [0, T )×R2 → R2

be the corresponding local solution of (8.51), for some T > 0 (independent of ε). Assume that v◦ε → v◦

in L2
uloc(R2)2 as ε ↓ 0. Then the following hold.

(i) Regime (GL1):
We have vε → v in L∞loc([0, T ); L2

uloc(R2)2) as ε ↓ 0, where v ∈ L∞loc(R+; v◦+ L2(R2)2) is the
unique global (smooth) solution of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v)curl v, div v = 0, v|t=0 = v◦; (8.63)

(ii) Regime (GL2) with Nε/|log ε| → λ ∈ (0,∞) and v◦ε = v◦:
We have vε → v in L∞loc([0, T ); L2(R2)2) as ε ↓ 0, where v ∈ L∞loc([0, T ); v◦+ L2(R2)2) is the
unique local (smooth) solution of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)curl v, v|t=0 = v◦; (8.64)
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(iii) Regime (GL′1) with v◦ε = v◦:
We have vε → v in L∞loc([0, T ); L2(R2)2) as ε ↓ 0, where v ∈ L∞loc(R+; v◦+ L2(R2)2) is the unique
global (smooth) solution of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥)curl v, v|t=0 = v◦; (8.65)

(iv) Regime (GL′2):
We have vε → v in L∞loc([0, T ); L2

uloc(R2)2) as ε ↓ 0, where v ∈ L∞loc(R+; v◦+ L2(R2)2) is the
unique global (smooth) solution of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥)curl v, div v = 0, v|t=0 = v◦ . (8.66)

♦

Proof. We treat each of the four regimes separately. We denote by ξzR(x) := e−|x−z|/R the exponential
cut-off at the scale R ≥ 1 centered at z ∈ RZ2.

Step 1. Regime (GL1).
Using the choice of the scalings for λε, h, F in the regime (GL1), with λε = Nε/|log ε| � 1, and

setting aε := a = âλε , equation (8.51) takes on the following guise,

∂tvε = ∇pε +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2vε) curl vε, pε := (λεαaε)
−1 div (aεvε),

with initial data vε|t=0 = v◦ε → v◦ in L2
uloc(R2)2. As λε → 0, it is then formally clear from the

vorticity formulation of this equation that vε should converge to the solution v of (8.63).
The existence and uniqueness of a global smooth solution v ∈ L∞loc(R+; v◦+ L2(R2)2) of (8.63) are

established in Theorems 7.1.3 and 7.1.5 in Chapter 7. Moreover, the following estimates hold for all
t ≥ 0 and all R, θ > 0,

‖vt‖W 1,∞ .t 1, ‖(vt, pt)‖L2(BR) .t,θ R
θ, ‖curl vt‖L1 = 1. (8.67)

The bounds on v are indeed direct consequences of the results in Chapter 7 together with the regularity
assumptions on the data (in particular v◦ ∈ Lq(R2)2 for all q > 2). It remains to check the bound
on the pressure p. Taking the divergence of both sides of equation (8.63), we obtain the following
equation for the pressure pt, for all t ≥ 0,

−4pt = div
(
(α− Jβ)(∇⊥ĥ− F̂⊥ − 2vt)curl vt

)
.

By Riesz potential theory, we deduce for all 2 < q <∞,

‖pt‖Lq .q (1 + ‖vt‖L∞)‖curl vt‖L2q/(2+q) . (1 + ‖vt‖L∞)(‖curl vt‖L1 + ‖∇vt‖L∞) .t 1,

and the bound on the pressure p in (8.67) follows.
Now we turn to the Grönwall argument to prove the convergence vε → v in L∞loc([0, T ); L2

uloc(R2)2).
Using the equations for vε, v, we find

∂t

ˆ
R2

aεξ
z
R|vε− v|2 = 2

ˆ
R2

aεξ
z
R(vε− v) · ∇(pε−p)− 4α

ˆ
R2

aεξ
z
R|vε− v|2curl vε

+ 2

ˆ
R2

aεξ
z
R(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v

)
· (vε− v) curl (vε− v). (8.68)

Integrating by parts in the first term, decomposing

div (aεξ
z
R(vε− v)) = aε∇ξzR · (vε− v) + λεαaεξ

z
Rpε−λεaεξzR∇ĥ · v,
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noting that the second right-hand side term in (8.68) is nonpositive, and using the following weighted
Delort-type identity (as abundantly used in Chapter 7),

(vε− v) curl (vε− v)

= a−1
ε (vε− v)⊥ div (aε(vε− v))− 1

2
a−1
ε |vε− v|2∇⊥aε − a−1

ε (div (aεSvε− v))⊥ (8.69)

= λεαpε(vε− v)⊥ − λε(∇ĥ · v)(vε− v)⊥ − λε
2
|vε− v|2∇⊥ĥ− a−1

ε (div (aεSvε− v))⊥,

in terms of the stress-energy tensor Sw := w ⊗ w − 1
2 |w|

2 Id, we deduce

∂t

ˆ
R2

aεξ
z
R|vε− v|2 ≤ −2

ˆ
R2

aε(pε−p)∇ξzR · (vε− v)− 2λεα

ˆ
R2

aεξ
z
R pε(pε−p)

+ 2λε

ˆ
R2

aεξ
z
R(pε−p) v ·∇ĥ+ 2λεα

ˆ
R2

aεξ
z
Rpε(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) · (vε− v)⊥

− 2λε

ˆ
R2

aεξ
z
R(∇ĥ · v)(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) · (vε− v)⊥

− λε
ˆ
R2

aεξ
z
R|vε− v|2(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) · ∇⊥ĥ

− 2

ˆ
R2

aεSvε− v : ∇
(
ξzR(αJ + β)(∇⊥ĥ− F̂⊥ − 2v)

)
,

and hence, using (8.67) in the form ‖vt‖W 1,∞ . 1, the assumption ‖(∇ĥ, F̂ )‖W 1,∞ . 1, the property
|∇ξzR| . R−1ξzR of the exponential cut-off, and the pointwise estimate |Sw| . |w|2, we obtain

∂t

ˆ
R2

aεξ
z
R|vε− v|2 ≤ (R−2 − λεα)

ˆ
R2

aεξ
z
R|pε|2

+ Ct(R
−2 + λε)

ˆ
R2

aεξ
z
R(|p|2 + |v|2) + Ct

ˆ
R2

aεξ
z
R|vε− v|2.

Choosing R = λ−nε for some n ≥ 1, we obtain R−2 � λε, and hence, for ε small enough, using (8.67)
to estimate the second term, we obtain

∂t

ˆ
R2

aεξ
z
R|vε− v|2 .t,θ R2θ(R−2 + λε) +

ˆ
R2

aεξ
z
R|vε− v|2 . λ1−2nθ

ε +

ˆ
R2

aεξ
z
R|vε− v|2.

For θ > 0 small enough, the conclusion follows from the Grönwall inequality.

Step 2. Regime (GL2).
Using the choice of the scalings for λε, h, F in the regime (GL2), equation (8.51) takes on the

following guise,

∂tvε = α−1∇(â−1 div (âvε)) +

(
(α− Jβ)

(
∇⊥ĥ− F̂⊥ − 2Nε

|log ε|
vε

))
curl vε,

with initial data vε|t=0 = v◦. As Nε/|log ε| → λ ∈ (0,∞), it is formally clear that vε should converge
to the solution v of equation (8.64). Note that the existence and uniqueness of the (local) solution
v are established in Theorems 7.1.4 and 7.1.5 in Chapter 7, and we have in addition the following
bounds for all t ∈ [0, T ),

‖(vt, vtε)‖W 1,∞ .t 1, ‖curl vt‖L1 = 1. (8.70)
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Using the equations for vε, v, we find

∂t

ˆ
R2

âξzR|vε− v|2 = 2α−1

ˆ
R2

âξzR(vε− v) · ∇(â−1 div (â(vε− v)))− 4αNε

|log ε|

ˆ
R2

âξzR|vε− v|2curl vε

+ 2

ˆ
R2

âξzR

(
(α− Jβ)

(
∇⊥ĥ− F̂⊥ − 2Nε

|log ε|
v
))
· (vε− v)(curl vε−curl v)

− 4
( Nε

|log ε|
− λ

)ˆ
R2

âξzR(vε− v) · (α− Jβ) v curl v .

Integrating by parts, using the weighted Delort-type identity (8.69) in the form

(vε− v) curl (vε− v) = â−1(vε− v)⊥ div (â(vε− v))− 1

2
|vε− v|2∇⊥ĥ− â−1(div (âSvε− v))⊥,

using the properties (8.70) of v, vε, the assumption ‖(∇ĥ, F̂ )‖W 1,∞ . 1, and simplifying the terms as
in Step 1, we easily obtain

∂t

ˆ
R2

âξzR|vε− v|2 ≤ −2α−1

ˆ
R2

â−1ξzR| div (â(vε− v))|2

+ Ct

ˆ
R2

ξzR|vε− v||div (â(vε− v))|+ Ct

ˆ
R2

âξzR|vε− v|2 + Ct

∣∣∣ Nε

|log ε|
− λ

∣∣∣,
hence ∂t

´
R2 âξ

z
R|vε− v|2 . Ct

´
R2 âξ

z
R|vε− v|2 +ot(1), and the conclusion now follows from the Grön-

wall inequality, letting R ↑ ∞.

Step 3. Regime (GL′1).
Using the choice of the scalings for λε, h, F in the regime (GL′1), equation (8.51) takes on the

following guise,

∂tvε = α−1∇(â−1 div (âvε)) + (α− Jβ)
(
∇⊥ĥ− F̂⊥ − 2Nε

|log ε|
vε

)
curl vε,

with initial data vε|t=0 = v◦. As by assumption Nε/|log ε| → 0, it is formally clear that vε should
converge to the solution v of equation (8.65) as ε ↓ 0. Existence, uniqueness, and regularity of this
(global) solution v are given by Proposition 8.3.2 just as for vε, and the convergence result follows as
in Step 2 (with λ = 0).

Step 4. Regime (GL′2).
Using the choice of the scalings for λε, h, F in the regime (GL′2), equation (8.51) takes the following

form, with aε := âλε ,

∂tvε = ∇pε +(α− Jβ)
(
∇⊥ĥ− F̂⊥ − 2λ−1

ε Nε

|log ε|
vε

)
curl vε,

pε := (λεαaε)
−1 div (aεvε),

with initial data vε|t=0 = v◦ε → v◦ in L2
uloc(R2)2. As by assumption λ−1

ε Nε/|log ε| → 0, it is formally
clear that vε should converge to the solution v of equation (8.66) as ε ↓ 0. Existence, uniqueness, and
regularity of this (global) solution v are given by Proposition 8.3.2 just as for vε, and the convergence
result follows as in Step 1.
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8.3.2 Gross-Pitaevskii case

Let us first examine the vorticity formulation of equation (8.53) for vε. In terms of mε := curl vε,
equation (8.53) may be rewritten as a nonlinear nonlocal transport equation for the vorticity mε,{

∂tmε = −div (Γ⊥ε mε), mε|t=0 = curl v◦ε,

curl vε = mε, div (avε) = 0.
(8.71)

Given the form of Γε in (8.53), this equation can be seen as an “inhomogeneous” 2D Euler equation
with “forcing”. A detailed study of this kind of equations is performed in Chapter 7. The following
proposition states in particular that a solution vε always exists globally and satisfies the various
properties of Assumption 8.3.1(b), under suitable regularity assumptions on the initial data v◦ε.

Proposition 8.3.4. Let h : R2 → R, a := eh, F : R2 → R2, and let v◦ε : R2 → R2 be bounded
in W 1,q(R2)2 for all q > 2, and satisfy curl v◦ε ∈ P(R2). Assume that h ∈ L∞(R2), ∇h, F ∈
L4 ∩W 2,∞(R2)2, that a(x)→ 1 uniformly as |x| ↑ ∞, that v◦ε is bounded inW 2,∞(R2)2 with div (av◦ε) =
0, and that curl v◦ε is bounded in H1(R2). Let the regime (GP) hold.
Then there exists a unique (global) solution vε ∈ L∞loc(R+; v◦ε +H2∩W 1,∞(R2)2) of (8.53) on R+×R2.
Moreover, all the properties of Assumption 8.3.1(b) are satisfied, that is, for all t ≥ 0 and all
2 < q <∞,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1,

‖ptε‖Lq ∩L∞ .t,q 1, ‖∇ptε‖L2 ∩L∞ .t 1, ‖∂tvtε‖L2 .t 1, ‖∂tptε‖Lq .t,q 1.

Further, for all θ > 0 and % ≥ 1, setting pε,% := χ% pε, we have for all t ≥ 0,

‖∇(ptε,%−ptε)‖L2 .θ,t %
θ−2 +

ˆ
|x|>%

|curl v◦ε|2. (8.72)

♦

Proof. We split the proof into three steps.

Step 1. Preliminary.
In this step, we prove the following Meyers-type elliptic regularity estimate: if b ∈ L∞(R2) satisfies

1/2 ≤ b ≤ 1 pointwise, and b(x)→ 1 uniformly as |x| ↑ ∞, then for all g ∈ L1 ∩L2(R2)2 the decaying
solution v of equation −div (b∇v) = div g satisfies for all 2 < q <∞,

‖v‖Lq .q ‖g‖L2q/(q+2) ∩L2 . ‖g‖L1 ∩L2 .

Let b ∈ L∞(R2) be fixed with 1/2 ≤ b ≤ 1 pointwise and b(x) → 1 uniformly as |x| ↑ ∞. Set
br := χr + b(1− χr), and decompose the equation for v as follows,

−div (br∇v) = div
(
g + (b− br)∇v

)
.

Let 1 < p < 2. Meyers’ perturbative argument [322] gives a value κp > 0 such that, if b̃ ∈ L∞(R2)
satisfies κp ≤ b̃ ≤ 1, then for all k ∈ L1 ∩L2(R2)2 the decaying solution w of equation −div (b̃∇w) =
div k satisfies ‖∇w‖Lp .p ‖k‖Lp . By definition, for r large enough, the truncated coefficient br
satisfies κp ≤ br ≤ 1, hence

‖∇v‖Lp .p ‖g + (b− br)∇v‖Lp .

Using the elementary energy estimate ‖∇v‖L2 . ‖g‖L2 , and noting that br = b on R2 \ B2r, we find
by the Hölder inequality,

‖∇v‖Lp .p ‖g‖Lp + ‖∇v‖Lp(B2r) . ‖g‖Lp + r
2( 1
p
− 1

2
)‖∇v‖L2 . ‖g‖Lp + r

2( 1
p
− 1

2
)‖g‖L2 .
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On the other hand, rather decomposing the equation for v as follows,

−4v = div (g + (b− 1)∇v),

we deduce from Riesz potential theory, with 2 < q := 2p/(2− p) <∞,

‖v‖Lq .q ‖g‖Lp + ‖∇v‖Lp .

Combining this with the above, the conclusion follows.

Step 2. Proof of Assumption 8.3.1(b).
The assumptions ‖ĥ‖W 3,∞ , ‖(∇ĥ, F̂ )‖L4 ∩W 2,∞ . 1 yield ‖λ−1

ε (∇⊥h − F⊥)‖L4 ∩W 2,∞ . 1 in the
considered regime, and also note that λ−1

ε Nε/|log ε| = 1 and λ−1
ε . 1. Further using the assumptions

on the initial data v◦, Theorems 7.1.3 and 7.1.5 in Chapter 7 imply that there exists a unique (global)
solution vε ∈ L∞loc(R+; v◦ε +H2 ∩W 1,∞(R2)2) of (8.53) on R+ × R2 with initial data v◦ε. Moreover, it
is shown in [159] that this solution satisfies in particular, for all t ≥ 0,

‖vtε− v◦ε‖H2∩W 1,∞ .t 1, ‖mt
ε‖H1∩L∞ .t 1,

ˆ
R2

mt
ε = 1, mt

ε ≥ 0. (8.73)

(As such, in order to ensure vε ∈ L∞loc(R+; v◦ε +H2(R2)2), the results in Chapter 7 would actually
further require ∇h, F, v◦ ∈ W s+2,∞(R2)2 for some s > 0, due to the use of the Sobolev embedding
for Hs+1(R2) into W s,∞(R2) in the proof of [159, Lemma 4.6]. However, this use of the Sobolev
embedding is easily replaced by an a priori estimate for vε in W s+1,∞(R2)2, for which it is already
enough to assume ∇h, F, v◦ ∈W 2,∞(R2)2 as we do here.)

We claim that all the desired properties of vε follow from the bounds (8.73). Combining (8.73)
with the assumption that v◦ε is bounded in W 1,q(R2)2 for all q > 2, we obtain

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1.

Applying the operator div (â ·) to both sides of equation (8.53), we find the following equation for the
pressure, in the considered regime (GP),

−div (â∇ptε) = div (âΓtεm
t
ε) = −div

(
âmt

ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2vtε)

⊥). (8.74)

An energy estimate directly yields

‖∇ptε‖L2 . ‖âmt
ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2vtε)

⊥‖L2 .t 1, (8.75)

and similarly, first differentiating both sides of equation (8.74),

‖∇2ptε‖L2 . ‖∇ptε‖L2 +
∥∥∇(âmt

ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2vtε)

⊥)∥∥
L2 .t 1. (8.76)

Inserting (8.75) into equation (8.53) yields

‖∂tvtε‖L2 ≤ ‖∇ptε‖L2 + ‖Γtεmt
ε‖L2 .t 1.

Applying to equation (8.74) the Meyers-type result of Step 1, we find for all 2 < q <∞,

‖ptε‖Lq .q ‖âmt
ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2vtε)

⊥‖L1 ∩L2 .t 1.

Combining this with (8.76), we deduce from the Sobolev embedding ‖ptε‖Lq ∩L∞ .q,t 1 for all q > 2.
First differentiating both sides of equation (8.74) with respect to the time variable, the Meyers-type
result of Step 1 further yields for all 2 < q <∞,

‖∂tptε‖Lq .q
∥∥â∂t(mt

ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2vtε)

⊥)∥∥
L1 ∩L2

. ‖mt
ε‖L2 ∩L∞‖∂tv

t
ε‖L2 + ‖Γtε∂tmt

ε ‖L1 ∩L2

.t 1 + ‖Γtε∂tmt
ε ‖L1 ∩L2 .
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Using equation (8.71) to estimate the time derivative of the vorticity, and using that ‖λ−1
ε ∇ĥ −

F̂‖L4 ∩W 1,∞ . 1, we find

‖Γtε∂tmt
ε‖L1 ∩L2 . ‖Γtε‖2L4 ∩L∞‖∇mt

ε‖L2 + ‖Γtε‖2W 1,∞‖mt
ε‖L1 ∩L2

.t ‖Γtε‖2L4 ∩W 1,∞ . 1 + ‖vtε‖2L4 ∩W 1,∞ .t 1,

and hence ‖∂tptε‖Lq .t,q 1. All the stated estimates follow.

Step 3. Proof of (8.72).
For all t ≥ 0, testing equation (8.74) against (1 − χ%) ptε, and using |∇χ%| . %−1(1 − χ%)1/2 and

the inequality 2xy ≤ x2 + y2, we find
ˆ
R2

â(1− χ%)|∇ptε|2 =

ˆ
R2

âptε∇χ% · ∇ptε−
ˆ
R2

â(1− χ%)∇ptε ·Γtε mt
ε +

ˆ
R2

âptε∇χ% · Γtε mt
ε

≤ 1

2

ˆ
R2

â(1− χ%)|∇ptε|2 + C%−2

ˆ
%≤|x|≤2%

|ptε|2 + C

ˆ
R2

(1− χ%)|Γtε|2|mt
ε|2.

Absorbing the first right-hand side term, and recalling that Step 2 gives ‖Γtε‖L∞ , ‖mt
ε‖L2 .t 1, and

‖ptε‖Lp .p,t 1 for all 2 < p <∞, we obtain with the Hölder inequality,
ˆ
R2

(1− χ%)|∇ptε|2 .t %−2

ˆ
%≤|x|≤2%

|ptε|2 +

ˆ
R2

(1− χ%)|mt
ε|2 .p,t %−4/p +

ˆ
R2

(1− χ%)|mt
ε|2,

and thus for all 2 < p <∞,

‖∇(ptε,%−ptε)‖2L2 .
ˆ
R2

(1− χ%)|∇ptε|2 + %−2

ˆ
%≤|x|≤2%

|ptε|2 .p,t %−4/p +

ˆ
R2

(1− χ%)|mt
ε|2.

It remains to estimate the last right-hand side term. For all t ≥ 0, using again the bounds of Step 2
and the estimate |∇χ%| . %−1(1− χ%)1/2, we deduce from equation (8.71),

∂t

ˆ
R2

(1− χ%)|mt
ε|2 = 2

ˆ
R2

(1− χ%) mt
ε curl (Γtεm

t
ε)

= 2

ˆ
R2

|mt
ε|2Γtε · ∇⊥χ% −

ˆ
R2

(1− χ%)Γtε · ∇⊥|mt
ε|2

= 2

ˆ
R2

|mt
ε|2Γtε · ∇⊥χ% +

ˆ
R2

|mt
ε|2curl

(
(1− χ%)Γtε

)
.t %−1

ˆ
R2

(1− χ%)1/2|mt
ε|2 +

ˆ
R2

(1− χ%)|mt
ε|2

.t %−2 +

ˆ
R2

(1− χ%)|mt
ε|2,

hence by the Grönwall inequality,
ˆ
R2

(1− χ%)|mt
ε|2 .t %−2 +

ˆ
R2

(1− χ%)|curl v◦ε|2,

and the result (8.72) follows.

We now show how to pass to the limit in equation (8.53) as ε ↓ 0, which is easily achieved by a
Grönwall argument on the L2-distance between vε and the solution v of the limiting equation. Note
that in the limit pinning effects remain only in the constraint.
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Lemma 8.3.5. Let the same assumptions hold as in Proposition 8.3.4, and let vε : R+×R2 → R2 be
the corresponding global solution of (8.53). Then, in the regime (GP) with v◦ε = v◦, we have vε → v
in L∞loc(R+; L2(R2)2) as ε ↓ 0, where v is the unique global (smooth) solution of

∂tv = ∇p +(−F̂ + 2v⊥)curl v, div (âv) = 0, v|t=0 = v◦ . (8.77)

♦

Proof. Using the choice of the scalings for λε, h, F in the regime (GP), equation (8.53) takes on the
following guise,

∂tvε = ∇pε +
(
λ−1
ε ∇ĥ− F̂ + 2v⊥ε

)
curl vε, div (âvε) = 0, vε|t=0 = v◦ .

As λ−1
ε → 0, it is formally clear that vε should converge to the solution v of equation (8.77) as ε ↓ 0.

Note that the existence, uniqueness, and regularity of this solution v are given by Proposition 8.3.4
just as for vε, and we have in particular the following bounds for all t ≥ 0,

‖(vt, vtε)‖W 1,∞ .t 1, ‖curl vtε ‖L1 = 1, ‖(pt,ptε)‖L∞ .t 1, (8.78)

and for all θ > 0,

‖(vt, vtε)‖L2(BR) .t,θ R
θ, ‖(pt,ptε)‖L2(BR) .t,θ R

θ. (8.79)

We denote by ξzR(x) := e−|x−z|/R the exponential cut-off at the scale R ≥ 1 centered at z ∈ RZ2.
Using the equations for vε, v, we find

∂t

ˆ
âξzR|vε− v|2 = 2

ˆ
âξzR(vε− v) · ∇(pε−p) + 2

ˆ
âξzR(−F̂ + 2v⊥) · (vε− v)(curl vε−curl v)

+ 2λ−1
ε

ˆ
âξzR∇ĥ · (vε− v)curl vε .

Integrating by parts in the first right-hand side term with div (âξzR(vε− v)) = â∇ξzR · (vε− v), and
using the weighted Delort-type identity (8.69) in the form

(vε− v)curl (vε− v) = −1

2
|vε− v|2∇⊥ĥ− â−1(div (âSvε− v))⊥,

we deduce

∂t

ˆ
âξzR|vε− v|2 = −2

ˆ
â∇ξzR · (vε− v)(pε−p)−

ˆ
âξzR∇⊥ĥ · (−F̂ + 2v⊥)|vε− v|2

+ 2

ˆ
âSvε− v : ∇(ξzR(F̂⊥ + 2v)) + 2λ−1

ε

ˆ
âξzR∇ĥ · (vε− v)curl vε,

and hence, using (8.78)–(8.79), the assumption ‖(∇ĥ, F̂ )‖W 1,∞ . 1, the property |∇ξzR| . R−1ξzR of
the exponential cut-off, and the pointwise estimate |Sw| . |w|2,

∂t

ˆ
âξzR|vε− v|2 .t,θ R−2(1−θ) + λ−2

ε +

ˆ
âξzR|vε− v|2.

Choosing θ = 1/2, the Grönwall inequality yields supz
´
aεξ

z
R|vε− v|2 .t R−1 + λ−2

ε , and the conclu-
sion follows, letting R ↑ ∞.

431



8.3.3 Degenerate parabolic case

Let us examine the vorticity formulation of equation (8.52) for vε. In terms of mε := curl vε and
dε := div (avε), equation (8.52) may be rewritten as a nonlinear nonlocal transport equation for the
vorticity mε, coupled with a transport-diffusion equation for the divergence dε,

∂tmε = −div (Γ⊥ε mε), mε|t=0 = curl v◦,

∂tdε−λ−1
ε 4dε +λ−1

ε div (dε∇h) = div (aΓεmε), dε|t=0 = div (av◦),

curl vε = mε, div (avε) = dε .

A detailed study of this kind of equations is performed in Chapter 7, including global existence results
for vortex-sheet initial data. In the present situation with λε ↑ ∞, the diffusion tends to be degenerate,
and more work is thus needed to ensure the validity of uniform a priori estimates. The key consists
in suitably exploiting the well-posedness of the corresponding degenerate limiting equation studied in
Chapter 7. As an immediate corollary of such estimates, we also deduce that vε converges as ε ↓ 0 to
the solution v of this degenerate limiting equation.

Proposition 8.3.6. Let h : R2 → R, a := eh, F : R2 → R2, and let v◦ε : R2 → R2 be bounded in
W 1,q(R2)2 for all q > 2, and satisfy curl v◦ε ∈ P(R2). For some s > 0, assume that h ∈W s+6,∞(R2),
F ∈W s+5,∞(R2)2, that v◦ε is bounded in W s+5,∞(R2)2, that curl v◦ε is bounded in Hs+4(R2), and that
div (av◦ε) is bounded in Hs+3(R2).
Then in the regime (GL3) with v◦ε = v◦, there exists a unique solution vε ∈ L∞loc(R+; v◦+Hs+4(R2)2)
of (8.52) on R+ × R2. Moreover, all the properties of Assumption 8.3.1(a) are satisfied, that is, for
all t ≥ 0 and all q > 2, we have for all ε > 0 small enough (only depending on an upper bound on s,
s−1, ‖ĥ‖W s+6,∞, ‖(F̂ , v◦)‖W s+5,∞, ‖v◦‖W 1,q , ‖m◦‖Hs+4 , and ‖d◦‖Hs+3),

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖mt
ε‖L1 ∩L∞ .t 1, ‖∂tvtε‖L2 ∩L∞ .t 1, (8.80)

‖dtε‖L2 ∩L∞ .t 1, ‖∇dtε‖L2 ∩L∞ .t 1, ‖∂tdtε‖L2 .t 1.

In addition, there holds vε → v in L∞loc(R+; v◦+Hs+3(R2)2) as ε ↓ 0, where v ∈ L∞loc(R+; v◦+Hs+4 ∩
W s+4,∞(R2)2) is the unique global solution of

∂tv = −(F̂⊥ + 2v) curl v, v|t=0 = v◦ . (8.81)

♦

Proof. Direct estimates on vε as in Chapter 7 are not uniform with respect to λε � 1. As we show,
however, exploiting strong a priori estimates on the limiting solution v allows to deduce the desired
uniform estimates on vε. We split the proof into two steps.

Step 1. A priori estimates.
Let s > 0, and assume that ĥ ∈ W s+3,∞(R2), F̂ ∈ W s+2,∞(R2)2, and that there exists a unique

global solution v of equation (8.81) with v ∈ L∞loc(R+; v◦+ L2(R2)2) ∩ L∞loc(R+;W s+2,∞(R2)2) and
m, d ∈ L∞loc(R+;Hs+2(R2)). Also assume that there exists a unique global solution vε of (8.52) in
L∞loc(R+; v◦+Hs+2(R2)). In this step, we consider the regime λε � 1, and we show that for any fixed
t ≥ 0 we have for all ε > 0 small enough (that is, for all λε large enough),

‖vε− v‖L∞t Hs+1 + ‖mε−m‖L∞t Hs+1 + ‖dε−d‖L∞t Hs ≤ Ctλ−1
ε , (8.82)

‖dε−d‖L∞t Hs+1 ≤ Ctλ−1/2
ε ,

hence in particular,

‖vε− v◦‖L∞t Hs+2 + ‖mε‖L∞t Hs+1 + ‖dε‖L∞t Hs+1 ≤ Ct, (8.83)
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where the constant Ct only depends on an upper bound on λ−1
ε , s, s−1, ‖ĥ‖W s+3,∞ , ‖F̂‖W s+2,∞ ,

‖v‖L∞t W s+2,∞ , ‖(m, d)‖L∞t Hs+2 , ‖v− v◦‖L∞t L2 , and on time t. We split the proof into six further
substeps. In this proof, we use the notation .t for ≤ up to a constant Ct > 0 as above, and we use
the notation . for ≤ up to a constant that depends only on an upper bound on λ−1

ε , ‖ĥ‖W s+3,∞ , and
on ‖F̂‖W s+2,∞ .

Substep 1.1. Notation.
Define δvε := λε(vε− v), δmε := curl δvε = λε(mε−m), and δdε := div (âδvε) = λε(dε−d).

Given the choice of the scalings, equation (8.52) for vε takes on the following guise,

∂tvε = λ−1
ε ∇(â−1dε) +

(
λ−1
ε ∇⊥ĥ− F̂⊥ − 2vε

)
mε, (8.84)

and hence decomposing vε = v +λ−1
ε δvε leads to

∂tv +λ−1
ε ∂tδvε = −(F̂⊥ + 2v) m +λ−1

ε

(
∇(â−1d) + m∇⊥ĥ− F̂⊥δmε−2vδmε−2mδvε

)
+ λ−2

ε

(
∇(â−1δdε) + δmε∇⊥ĥ− 2δvεδmε

)
.

Injecting equation (8.81) for v and multiplying both sides by λε, we obtain the following equation for
δvε,

∂tδvε = λ−1
ε ∇(â−1δdε) + (Wε − 2λ−1

ε δvε)δmε−2mδvε +G, (8.85)

with initial data δvε|t=0 = 0, where we have set

G := ∇(â−1d) + m∇⊥ĥ, Wε := λ−1
ε ∇⊥ĥ− F̂⊥ − 2v .

Taking the curl of equation (8.85) leads to

∂tδmε = −div ((W⊥ε − 2λ−1
ε δv⊥ε )δmε) + 2δv⊥ε ·∇m−2m δmε +curlG, (8.86)

while applying the operator div (â ·) yields

∂tδdε = λ−1
ε 4δdε−λ−1

ε div (δdε∇ĥ) + div (â(Wε − 2λ−1
ε δvε)δmε)− 2 div (âmδvε) + div (âG),

(8.87)

with initial data δmε|t=0 = 0 and δdε|t=0 = 0. Proving the result (8.82) thus amounts to establishing
uniform a priori estimates for the solutions δvε, δmε, and δdε of the above equations.

Substep 1.2. L2-estimate on δvε and δmε.
In this step, we show that

‖δvε‖L∞t L2 + ‖δmε‖L∞t (Ḣ−1∩L2) + ‖δdε‖L∞t Ḣ−1 .t 1. (8.88)

On the one hand, from equation (8.85), noting that −2λ−1
ε δvε δmε−2mδvε = −2mεδvε, we find by

integration by parts,

∂t

ˆ
R2

â|δvε|2 = −2λ−1
ε

ˆ
R2

â−1|δdε|2 + 2

ˆ
R2

âδvε ·
(
Wεδmε−2mεδvε +G

)
≤ 2

ˆ
R2

âδvε ·
(
Wεδmε +G

)
,

and hence, using the Cauchy-Schwarz inequality and injecting the definition of G and Wε,

∂t

(ˆ
R2

â|δvtε|2
)1/2

≤ ‖W t
ε‖L∞

( ˆ
R2

â|δmt
ε|2
)1/2

+
(ˆ

R2

â|Gt|2
)1/2

. ‖(∇ĥ, F̂ , vt)‖L∞‖δmt
ε‖L2 + ‖ div (âvt)‖H1 + ‖mt‖L2

.t 1 + ‖δmt
ε‖L2 ,

433



that is,

‖δvε‖L∞t L2 .t ‖δmε‖L∞t L2 + 1. (8.89)

On the other hand, equation (8.86) yields by integration by parts,

∂t

ˆ
R2

|δmε|2 =

ˆ
R2

|δmε|2 div (−W⊥ε + 2λ−1
ε δv⊥ε )− 4

ˆ
R2

|δmε|2m +2

ˆ
R2

δmε

(
2δv⊥ε ·∇m +curlG

)
,

and hence, decomposing div (λ−1
ε δv⊥ε ) = −λ−1

ε δmε = m−mε ≤ m,

∂t

ˆ
R2

|δmε|2 ≤
ˆ
R2

|δmε|2curlWε + 2

ˆ
R2

δmε

(
2δv⊥ε ·∇m +curlG

)
≤ ‖∇Wε‖L∞‖δmε‖2L2 + 4‖∇m‖L∞‖δvε‖L2‖δmε‖L2 + 2‖curlG‖L2‖δmε‖L2 .

Injecting the definition of G and Wε with λ−1
ε . 1, and using (8.89) to estimate the L2-norm of δvε

in the right-hand side, we deduce

∂t‖δmt
ε‖L2 .t ‖δmt

ε‖L2 + ‖δvtε‖L2 + 1 .t ‖δmε‖L∞t L2 + 1.

Combining this with (8.89) and with the obvious estimate ‖(δmε, δdε)‖Ḣ−1 . ‖δvε‖L2 , the conclu-
sion (8.88) follows from the Grönwall inequality.

Substep 1.3. Hs+1-estimate on δmε.
In this step, we show that

∂t‖δmε‖Hs+1 .t 1 + ‖δmε‖Hs+1 + ‖δdε‖Hs + λ−1
ε

(
‖δmε‖2Hs+1 + ‖δmε‖Hs+1‖δdε‖Hs+1

)
. (8.90)

Arguing as in the proof of Lemma 7.2.2 in Chapter 7, we may compute as follows the time derivative
of the Hs-norm of the vorticity δmε, with s > 0,

∂t‖δmε‖Hs+1 ≤
1

2
‖div (W⊥ε − 2λ−1

ε δv⊥ε )‖L∞‖δmε‖Hs+1 + ‖[〈∇〉s+1 div ,W⊥ε ]δmε‖L2

+ 2λ−1
ε ‖[〈∇〉s+1 div , δv⊥ε ]δmε‖L2 + 2‖δv⊥ε ·∇m‖Hs+1 + 2‖m δmε‖Hs+1 + ‖curlG‖Hs+1

. (‖Wε‖W s+2,∞ + ‖m‖W s+1,∞)‖δmε‖Hs+1 + ‖m‖Hs+2‖δvε‖Hs+1

+ λ−1
ε

(
‖δvε‖W 1,∞‖δmε‖Hs+1 + ‖δmε‖L∞‖δvε‖Hs+2

)
+ ‖curlG‖Hs+1 .

Injecting the definition of G and Wε with λ−1
ε . 1, and using the Sobolev embedding with s > 0, we

find

∂t‖δmε‖Hs+1 .t ‖δmε‖Hs+1 + ‖δvε‖Hs+1 + λ−1
ε ‖δvε‖Hs+2‖δmε‖Hs+1 + 1. (8.91)

Decomposing δvε = â−1∇⊥(div â−1∇)−1δmε +∇(div â∇)−1δdε, we may apply Lemma 7.2.6 in the
form

‖δvε‖Hr+1 . ‖δmε‖Ḣ−1∩Hr + ‖δdε‖Ḣ−1∩Hr , (8.92)

with r = s and r = s+ 1. Injecting this into (8.91), and using the result (8.88) of Substep 1.2 in the
form ‖(δmε, δdε)‖Ḣ−1 .t 1, the conclusion (8.90) follows.

Substep 1.4. Hs+1-estimate on δdε without loss of derivative.
In this step we show that

λ−1/2
ε ‖δdε‖L∞t Hs+1 .t 1 + ‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs + λ−1

ε ‖δmε‖2L∞t Hs+1 . (8.93)
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Equation (8.87) for the divergence δdε takes the form ∂tδdε = λ−1
ε 4δdε + divHε, where we have set

Hε := −λ−1
ε δdε∇ĥ+ a(Wε − 2λ−1

ε δvε)δmε−2amδvε +aG.

Arguing as in the proof of Lemma 7.2.3(i) in Chapter 7, testing this equation with (−4)−1〈∇〉2(s+1)∂tδdε,
we find

λ−1
ε ‖δdε‖2L∞t Hs+1 ≤

ˆ t

0
‖Hu

ε ‖2Hs+1du,

and hence, injecting the definitions of Hε, G, and Wε, with s > 0,

λ−1
ε ‖δdε‖2L∞t Hs+1 .t λ

−2
ε

ˆ t

0
‖δduε‖2Hs+1du+ λ−2

ε ‖δvε‖2L∞t Hs+1‖δmε‖2L∞t Hs+1

+ ‖δmε‖2L∞t Hs+1 + ‖δvε‖2L∞t Hs+1 + 1.

The Grönwall inequality with λ−1
ε . 1 then yields

λ−1
ε ‖δdε‖2L∞t Hs+1 .t 1 + ‖δmε‖2L∞t Hs+1 + ‖δvε‖2L∞t Hs+1 + λ−2

ε ‖δvε‖2L∞t Hs+1‖δmε‖2L∞t Hs+1 .

The result (8.93) follows from this together with the bound (8.92) and with the result (8.88) of
Substep 1.2 in the form ‖(δmε, δdε)‖Ḣ−1 .t 1.

Substep 1.5. Hs-estimate on δdε with loss of derivative.
In this step, we show that

∂t‖δdε‖Hs .t 1 + ‖δdε‖Hs + ‖δmε‖Hs+1 + λ−1
ε

(
‖δmε‖2Hs+1 + ‖δdε‖Hs‖δmε‖Hs+1

)
. (8.94)

Equation (8.87) for the divergence δdε yields after integration by parts,

∂t‖δdε‖2Hs ≤ −2λ−1
ε

ˆ
R2

|∇〈∇〉sδdε|2 + 2λ−1
ε

ˆ
R2

〈∇〉s(δdε∇ĥ) · ∇〈∇〉sδdε

+ 2

ˆ
R2

(
〈∇〉sδdε

)
div 〈∇〉s

(
a(Wε − 2λ−1

ε δvε)δmε−2amδvε +aG
)

≤ λ−1
ε ‖δdε∇ĥ‖2Hs + 2‖δdε‖Hs

(
‖a(Wε − 2λ−1

ε δvε)δmε +aG‖Hs+1 + 2‖mδdε‖Hs + 2‖aδvε·∇m‖Hs

)
,

and hence, injecting the definition of G and Wε,

∂t‖δdε‖Hs .t 1 + ‖δdε‖Hs + ‖δmε‖Hs+1 + ‖δvε‖Hs + λ−1
ε ‖δvε‖Hs+1‖δmε‖Hs+1 .

The result (8.94) follows from this together with the bound (8.92) and with the result (8.88) of
Substep 1.2 in the form ‖(δmε, δdε)‖Ḣ−1 .t 1.

Substep 1.6. Proof of (8.82) and (8.83).
Injecting (8.93) into (8.90) with λ−1

ε . 1, we find

∂t‖δmε‖L∞t Hs+1 .t 1 + ‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs

+ λ−1/2
ε

(
‖δmε‖2L∞t Hs+1 + ‖δdε‖2L∞t Hs

)
+ λ−3/2

ε ‖δmε‖3L∞t Hs+1 .

Together with (8.94), this yields

∂t
(
‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs

)
.t 1 + ‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs + λ−1/2

ε

(
‖δmε‖2L∞t Hs+1 + ‖δdε‖2L∞t Hs

)
+ λ−3/2

ε ‖δmε‖3L∞t Hs+1

.t 1 + ‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs + λ−3/4
ε (‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs)3.
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We then deduce by integration,

‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs ≤ Ct
(

1 + λ−3/4
ε

(
‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs

)2)1/2

≤ Ct + Ctλ
−3/8
ε

(
‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs

)
.

For any time t ≥ 0, choosing ε > 0 small enough such that 2Ctλ
−3/8
ε ≤ 1, we obtain

‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs .t 1.

Combining this with the bound (8.92) and with the result (8.88) of Substep 1.2 in the form of
‖(δmε, δdε)‖Ḣ−1 .t 1, we actually have

‖δvε‖L∞t Hs+1 + ‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs .t 1.

Injecting this into the result (8.93) of Substep 1.4, we find

‖δdε‖L∞t Hs+1 .t λ
1/2
ε ,

and the result (8.82) follows. Further decomposing vε = v +λ−1
ε δvε, these results yield

‖mε‖L∞t Hs+1 + ‖dε‖L∞t Hs+1 .t 1.

Again combining this with the bound (8.92), we obtain

‖vε− v◦‖L∞t Hs+2 . ‖mε−m◦‖L∞t Hs+1 + ‖dε−d◦‖L∞t Hs+1 + ‖vε− v◦‖L∞t L2

.t 1 + λ−1
ε

(
‖δmε‖L∞t Hs+1 + ‖δdε‖L∞t Hs+1 + ‖δvε‖L∞t L2

)
.t 1,

and the result (8.83) follows.

Step 2. Conclusion.
Let s > 1, and assume that ĥ ∈ W s+5,∞(R2), F̂ ∈ W s+4,∞(R2)2, v◦ ∈ W s+3,∞(R2)2, curl v◦ ∈

Hs+3 ∩W s+3,∞(R2), and div (av◦) ∈ Hs+2(R2). In the sequel, we use the notation . for ≤ up to a
constant that depends only on an upper bound on the norms of these data and on s and (s − 1)−1,
and we write .t to indicate the further dependence on an upper bound on time t.

Under these assumptions we know from Theorem 7.1.6 in Chapter 7 that equation (8.81) admits
a unique global solution v with v− v◦ ∈ L∞loc(R+;Hs+3 ∩W s+3,∞(R2)2), which implies in particular

‖v− v◦‖L∞t Hs+3 + ‖v‖L∞t W s+3,∞ + ‖(m,d)‖L∞t Hs+2 .t 1.

In addition, we know from Theorem 7.1.3(i) that equation (8.52) also admits a unique global solution
vε ∈ L∞loc(R+; v◦+Hs+3(R2)). We may thus apply the result of Step 1, which for any t ≥ 0 yields for
all ε > 0 small enough,

‖vε− v◦‖L∞t Hs+2 + ‖mε‖L∞t Hs+1 + ‖dε‖L∞t Hs+1 .t 1.

As s > 1, this implies by the Sobolev embedding,

‖vε− v◦‖L∞t (H3∩W 2,∞) + ‖mε‖L∞t (H2∩W 1,∞) + ‖dε‖L∞t (H2∩W 1,∞) .t 1,

and hence, using these bounds in equation (8.84),

‖∂tvε‖L∞t (H1∩L∞) + ‖∂tdε‖L∞t L2 .t 1.

The desired estimates (8.80) follow. Finally, the convergence vε → v in L∞loc(R+; v◦+Hs+2(R2)2) as
ε ↓ 0 is a direct consequence of the result (8.82) of Step 1 with λε � 1.
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8.4 Computations on the modulated energy

In this section, we adapt to the weighted case with pinning and forcing the computations of
Serfaty [395]: we compute the time derivative of the modulated energy excess (8.15) and express it
with only quadratic terms in the error instead of terms which initially appear as linear and would
thus make a Grönwall argument impossible. These computations are based on purely algebraic
manipulations using all the equations and appropriate quantities that we will now describe.

For simplicity, in the estimates in this section, we focus on the non-oscillating case ηε = 1, and
we consider each of the regimes (GL1), (GL2), (GL3), (GP), (GL′1), and (GL′2).

8.4.1 Modulated energy

We first recall the definitions of modulated energy and energy excess in (8.12)–(8.15). In order
to prove that the rescaled supercurrent density N−1

ε jε := N−1
ε 〈∇uε, iuε〉 is close to vε, we follow

the strategy of Serfaty [395], considering the following modulated energy, which is modeled on the
weighted Ginzburg-Landau energy, plays the role of an adapted measure of the distance between
N−1
ε jε and vε, and is localized by means of the cut-off function χR at some scale R� 1 (to be later

optimized as a function of ε),

Eε,R :=

ˆ
R2

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.

As usual, this modulated energy Eε,R further needs to be renormalized by subtracting the expected
self-interaction energy of the vortices (compare with Lemma 8.5.1 below), which then yields the
following modulated energy excess,

Dε,R := Eε,R −
|log ε|

2

ˆ
R2

aχRµε =

ˆ
R2

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
.

As explained in the introduction, the cut-off χR is not needed in the Gross-Pitaevskii case, where
we only treat the case when h and F decay at infinity. We write Eε := Eε,∞ for the corresponding
quantity without the cut-off χR in the definition (formally R =∞), and also Dε := supR≥1Dε,R.

On the one hand, rather than the L2-norm restricted to the ball BR centered at the origin, our
methods further allow to consider the uniform L2

loc-norm at the scale R: setting χzR := χR(· − z), we
define

E∗ε,R := sup
z
Ezε,R, Ezε,R :=

ˆ
R2

aχzR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
,

where henceforth the supremum always implicitly runs over all lattice points z ∈ RZ2, and similarly

D∗ε,R := sup
z
Dzε,R, Dzε,R := Ezε,R −

|log ε|
2

ˆ
R2

aχzRµε.

Note that by definition we have for all x ∈ R2 and all L > 0,

‖∇uε − iuεNεvε‖L2(BL(x)) + ε−1‖1− |uε|2‖L2(BL(x)) .
(

1 +
L

R

)d
E∗ε,R. (8.95)

On the other hand, in order to simplify computations, we need as in [395] to add some suitable
lower-order term, and rather consider, for some other scale % � 1 (to be also later optimized as a
function of ε),

Êε,%,R :=

ˆ
R2

a

2

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
,
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and similarly for the modulated energy excess,

D̂ε,%,R := Êε,%,R −
|log ε|

2

ˆ
R2

aχRµε

=

ˆ
R2

a

2

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2ψε,%,R + fχR)− |log ε|χRµε
)
,

(8.96)

where the function ψε,%,R : R2 → R is precisely chosen as follows,

ψε,%,R := −χR|vε|2 +
|log ε|
Nε

χR vε· (∇⊥h− F⊥) +
λεβ|log ε|

Nε
χR pε,%−

|log ε|
Nε
∇χR · v⊥ε , (8.97)

in terms of the truncated pressure pε,% := χ% pε. This choice is motivated by the fact that it yields
some crucial cancellations in the proof of Lemma 8.4.4 below. Again, replacing χR and pε,% by
χzR and pzε,% = χz% pε, we further define Êzε,%,R and D̂zε,%,R for z ∈ R2, and we then set Ê∗ε,%,R :=

supz Êzε,%,R and D̂∗ε,%,R := supz D̂zε,%,R (where again the suprema implicitly run over all lattice points
z ∈ RZ2). The truncation scale ρ � 1 is introduced here to cure the lack of integrability of the
pressure pε in the Gross-Pitaevskii case: indeed, the pressure pε does in general not belong to L2(R2)
(cf. Assumption 8.3.1(b) above, which is indeed optimal in that respect), while it does always in the
case without pinning and forcing (cf. [395]). In the dissipative case this truncation is not needed, so
that we may set pε,∞ := pε with % := ∞, and we then drop for simplicity the subscript % from the
notation, writing ψε,R := ψε,∞,R, Êε,R := Êε,∞,R, etc.

In the dissipative case, as a consequence of (8.43) and of Assumption 8.3.1(a), ψε,R is bounded
uniformly with respect to R in Lp(R2) for all 2 < p ≤ ∞ (but not in L2(R2)), and using the
bound (8.43) we have in the considered regimes, for all t ∈ [0, T ) and θ > 0,

‖ψtε,R‖L2 .t,θ 1 +
|log ε|
Nε

(λεR
θ + 1 ∧ λ1/2

ε +R−1+θ), ‖∂tψε,R‖L2
t L2 .t,θ 1 +

|log ε|
Nε

. (8.98)

In the Gross-Pitaevskii case, in the considered regime (GP), the bound (8.44) and Assumption 8.3.1(b)
rather yield, for all t ∈ [0, T ) and θ > 0,

‖ψtε,%,R‖L2 + ‖∂tψtε,%,R‖L2 .t,θ 1 +
|log ε|
Nε

λε%
θ . %θ. (8.99)

Based on these estimates, the following lemma states that the additional terms in Êε,%,R are indeed
of lower order, so that Êε,%,R itself controls the same quantities as the modulated energy Eε,R.

Lemma 8.4.1 (Neglecting lower-order terms). Let h : R2 → R, a := eh, F : R2 → R2 satisfy (8.43)
or (8.44), let uε : [0, T )×R2 → C, and let vε : [0, T )×R2 → R2 be as in Assumption 8.3.1, for some
T > 0. Further assume that 0 < ε� 1 and %,R� 1 satisfy for some θ > 0, in the dissipative case,

ε
(
N2
ε +Nε|log ε|(λεRθ + 1 ∧ λ1/2

ε +R−1+θ) +Rλ2
ε|log ε|2

)
� Nε

(
1 ∧ Nε

|log ε|

)1/2
, (8.100)

or in the Gross-Pitaevskii case,

εN2
ε (%θ +R)� Nε

(
1 ∧ Nε

|log ε|

)1/2
. (8.101)

Then for all z ∈ R2 we have

|Êz,tε,%,R − E
z,t
ε,R| = |D̂

z,t
ε,%,R −D

z,t
ε,R| .t o(Nε)

(
1 ∧ Nε

|log ε|

)1/2
(Ez,tε,R)1/2. ♦
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Proof. We focus on the dissipative case, the other case is similar. The Cauchy-Schwarz inequality
yields

|Êzε,R − Ezε,R| .
ˆ
R2

|1− |uε|2|(N2
ε |ψzε,R|+ |f |χzR)

≤
( ˆ

R2

χzR(1− |uε|2)2
)1/2(

N2
ε ‖ψzε,R/(χzR)1/2‖L2 + ‖f‖L2(B2R(z))

)
. ε(Ezε,R)1/2

(
N2
ε ‖ψzε,R/(χzR)1/2‖L2 +R‖f‖L∞

)
.

Arguing just as in (8.98), using (8.43), Assumption 8.3.1(a), and the fact that |∇χR(x)/χ
1/2
R (x)| .

R−11|x|≤2R, the choice (8.97) of ψε,R yields, for all θ > 0,

‖ψε,R/χ1/2
R ‖L2 .t,θ 1 +

|log ε|
Nε

(λεR
θ + 1 ∧ λ1/2

ε +R−1+θ).

Combined with (8.43) and with assumption (8.100), this proves the result.

8.4.2 Physical quantities and identities

Next to the supercurrent density jε := 〈∇uε, iuε〉 and the vorticity µε := curl jε, we define the
vortex velocity Vε := 2〈∇uε, i∂tuε〉. The following identities are easily checked from these definitions:

∂tjε = Vε +∇〈∂tuε, iuε〉, ∂tµε = curlVε, (8.102)

and also, using equation (8.6) for uε,

div jε = 〈4uε, iuε〉 = λεα〈∂tuε, iuε〉 − jε · ∇h−
λεβ|log ε|

2
∂t(1− |uε|2) +

|log ε|
2

F⊥ · ∇(1− |uε|2).

(8.103)

We then consider the weighted energy density

eε :=
a

2

(
|∇uε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)f

)
.

In the same vein as when introducing the modulated energy and energy excess, we define the following
modulated vorticity and modulated velocity,

µ̃ε := curl (Nεvε +〈∇uε − iuεNεvε, iuε〉) = µε + curl (Nεvε(1− |uε|2)), (8.104)

Ṽε,% := 2〈∇uε − iuεNεvε, i(∂tuε − iuεNεpε,%)〉 = Vε −Nεvε∂t|uε|2 +Nεpε,%∇|uε|2. (8.105)

For the computations, we will also need the 2× 2 stress-energy tensor Sε,

Sklε := a〈∂kuε, ∂luε〉 −
a

2
Id
(
|∇uε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)f

)
, (8.106)

and its modulated version S̃ε,

S̃klε := a
(
〈∂kuε − iuεNεvε,k, ∂luε − iuεNεvε,l〉+N2

ε (1− |uε|2) vε,kvε,l

)
− a

2
Id
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)
. (8.107)

We close this section with the following pointwise estimates.
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Lemma 8.4.2. We have

|jε −Nεvε| ≤ |∇uε − iuεNεvε|+ |∇uε − iuεNεvε||1− |uε|2|+Nε|vε||1− |uε|2|,
|µε| ≤ 2|∇uε|2 ≤ 4|∇uε − iuεNεvε|2 + 4N2

ε |vε|2 + 4N2
ε |1− |uε|2||vε|2,

|Vε| ≤ 2
(
|∇uε − iuεNεvε||∂tuε|+Nε|vε||∂tuε|+Nε|1− |uε|2||vε||∂tuε|

)
,

|Ṽε,%| ≤ 2|∂tuε||∇uε − iuεNεvε|+ 2Nε|pε,%||∇uε − iuεNεvε|+ 2Nε|pε,%||1− |uε|2||∇uε − iuεNεvε|,
|∂t|uε|| ≤ |∂tuε − iuεNεpε|,
|∇|uε|| ≤ |∇uε − iuεNεvε|. ♦

Proof. The first estimate is obtained as follows,

|jε −Nεvε| ≤ |〈∇uε − iuεNεvε, iuε〉|+Nε|1− |uε|2||vε|
≤ |∇uε − iuεNεvε|+ |∇uε − iuεNεvε||1− |uε|2|+Nε|vε||1− |uε|2|,

while the estimates on Vε and Ṽε,% similarly follow the definitions. The estimate on µε is a direct
consequence of the representation µε = curl 〈∇uε, iuε〉 = 2〈∇2uε, i∇1uε〉. Finally noting that

|∂tuε − iuεNεpε |2 = |∂t|uε||2 + |uε|2
∣∣∣∂t uε|uε| − i uε|uε|Nεpε

∣∣∣2,
the result on ∂t|uε| follows, and the result on ∇|uε| is obtained similarly.

8.4.3 Divergence of the modulated stress-energy tensor

In the following lemma we explicitly compute the divergence of the modulated stress-energy tensor:
as already mentioned, it will be crucial in the sequel in order to replace some linear terms in the error
by quadratic ones (cf. Step 3 of the proof of Lemma 8.4.4 below).

Lemma 8.4.3. Let uε : [0, T ) × R2 → C be a solution of (8.6) as in Proposition 8.2.2, and let
vε : [0, T ) × R2 → R2 be as in Assumption 8.3.1. Then, defining by (div S̃ε)k :=

∑
l ∂l(S̃ε)kl the

divergence of the 2-tensor S̃ε, where (S̃ε)kl denotes the (k, l)-component of S̃ε, we have

div S̃ε = aλεα
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
− aµε(Nεv

⊥
ε −|log ε|F/2) + aNε(Nεvε−jε)⊥curl vε

+
aλεβ

2
|log ε|Ṽε,% + aNε(Nεvε−jε)(div vε +∇h ·vε−λεα pε,%)−

a

2
(1− |uε|2)∇f

− a

2
∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)

+ aλεαN
2
ε vεpε,%(1− |uε|2)− aλεβ

2
Nε|log ε|pε,%∇|uε|2 +

a

2
Nε|log ε|(F⊥ · ∇|uε|2) vε . ♦

Proof. A direct computation yields, for the stress-energy tensor,

div Sε = a
〈
∇uε,4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε + fuε

〉
− a

2
∇h
(
|∇uε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)f

)
− a

2
(1− |uε|2)∇f. (8.108)

On the other hand, the modulated stress-energy tensor may be decomposed as

S̃ε = Sε − aNεvε⊗jε − aNεjε ⊗ vε +aN2
ε vε⊗ vε−

aNε

2
Id
(
Nε|vε|2 − 2vε· jε

)
,
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which, combined with (8.108), yields

div S̃ε = a
〈
∇uε,4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε + fuε

〉
− a

2
∇h
(
|∇uε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)f

)
− a

2
(1− |uε|2)∇f

− aNε

(
jε∇h ·vε + vε∇h · jε −Nεvε∇h ·vε +

1

2
Nε|vε|2∇h− vε· jε∇h

)
− aNεjε div vε−aNε(vε· ∇)jε − aNεvεdiv jε − aNε(jε · ∇) vε +aN2

ε vεdiv vε +aN2
ε (vε· ∇) vε

− aN2
ε

∑
l

vε,l∇vε,l +aNε

∑
l

vε,l∇jε,l + aNε

∑
l

jε,l∇vε,l,

where we denote by vε,l and jε,l the l-th component of the vector fields vε and jε, respectively. Noting
that (F · ∇)G−

∑
l Fl∇Gl = F⊥curlG, and using equation (8.6) for uε, this becomes

div S̃ε = aλε 〈(α+ iβ|log ε|)∂tuε,∇uε〉 − a|log ε|〈∇uε, iF⊥ · ∇uε〉

− a

2
∇h
(
|∇uε|2 +N2

ε |vε|2 − 2Nεvε· jε +
a

ε2
(1− |uε|2)2 + (1− |uε|2)f

)
− a

2
(1− |uε|2)∇f − aNε

(
jε∇h ·vε + vε∇h · jε −Nεvε∇h ·vε

)
+ aNε

(
− v⊥ε µε + (Nεvε−jε)⊥curl vε− vεdiv jε + (Nεvε−jε) div vε

)
. (8.109)

Using identity (8.103), the first right-hand side term above may be rewritten as

λε 〈(α+ iβ|log ε|)∂tuε,∇uε〉
= λεα

〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+Nελεαvε〈∂tuε, iuε〉

+Nελεα pε,% jε −N2
ε λεα|uε|2 pε,%vε +

λεβ

2
|log ε|Vε

= λεα
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+Nεvε(div jε + jε · ∇h) +

1

2
Nε|log ε|(F⊥ · ∇|uε|2) vε

+
λεβ

2
Nε|log ε|vε∂t(1− |uε|2) +Nελεα pε,% jε −N2

ε λεα|uε|2pε,%vε +
λεβ

2
|log ε|Vε.

Inserting this into (8.109), recombining |∇uε|2 + N2
ε |vε|2 − 2Nεvε· jε = |∇uε − iuεNεvε|2 + N2

ε (1 −
|uε|2)|vε|2, noting that 〈∇uε, iF⊥ · ∇uε〉 = −Fµε/2, and using (8.105) to transform Vε into Ṽε,%, we
obtain

div S̃ε = aλεα
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+ aNεvε(div jε + jε · ∇h) +

a

2
Nε|log ε|(F⊥ · ∇|uε|2) vε

+ λεαaNε pε,% jε − aN2
ε λεα|uε|2 pε,%vε +

aλεβ

2
|log ε|Ṽε,% −

aλεβ

2
Nε|log ε|pε,%∇|uε|2

− aµε(Nεv
⊥
ε −|log ε|F/2)− a

2
∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)

− a

2
(1− |uε|2)∇f − aNε

(
jε∇h ·vε + vε∇h · jε −Nεvε∇h ·vε

)
+ aNε

(
(Nεvε−jε)⊥curl vε− vεdiv jε + (Nεvε−jε) div vε

)
,

and the result follows after straightforward simplifications.
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8.4.4 Time derivative of the modulated energy excess

In the present section, we prove the following decomposition of the time derivative of the mod-
ulated energy excess D̂ε,%,R. As will be seen in Sections 8.6–8.8, mean-field limit results are then
essentially reduced to the estimation of the different terms in this decomposition. To simplify nota-
tion, it is stated here using truncations centered at z = 0, but the translated result of course also
holds for all z ∈ R2.

Lemma 8.4.4. Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R
satisfy (8.43) or (8.44). Let uε : [0, T ) × R2 → C and vε : [0, T ) × R2 → R2 be solutions of (8.6)
and (8.50) as in Proposition 8.2.2 and as in Assumption 8.3.1, respectively. Let 0 < ε� 1, %,R� 1,
and let Γ̄ε : [0, T )× R2 → R2 be a given vector field with ‖Γ̄tε‖W 1,∞ .t 1. Then, we have

∂tD̂ε,%,R = ISε,%,R + IVε,%,R + IEε,%,R + IDε,%,R + IHε,%,R + Idε,%,R + Igε,%,R + Inε,%,R + I ′ε,%,R,

where we have set

ISε,%,R := −
ˆ
R2

χR∇Γ̄⊥ε : S̃ε,

IVε,%,R :=

ˆ
R2

aχR|log ε|
2

Ṽε,% ·
(
− λεβΓ⊥ε +∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
,

IEε,%,R := −
ˆ
R2

aχR|log ε|
2

Γε ·
(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
µε,

IDε,%,R := −
ˆ
R2

λεαaχR|∂tuε − iuεNεpε,%|2 −
ˆ
R2

λεαaχRΓ⊥ε ·
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
,

IHε,%,R :=

ˆ
R2

aχR
2

Γ⊥ε · ∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 − |log ε|µε

)
,

and also

Idε,%,R :=

ˆ
R2

aχRNε

(
Γ̄⊥ε · (jε −Nεvε) + 〈∂tuε − iuεNεpε,%, iuε〉

)
(div vε + vε · ∇h− λεα pε,%),

Igε,%,R :=

ˆ
R2

aχRNε(Nεvε−jε) · (Γε − Γ̄ε)curl vε +

ˆ
R2

aχR
2
λεβ|log ε|Ṽε,% · (Γε − Γ̄ε)

⊥

+

ˆ
R2

λεαaχR(Γε − Γ̄ε)
⊥ ·
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+

ˆ
R2

aχR
2

(Γ̄ε − Γε)
⊥ · ∇h

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+

ˆ
R2

aχR(Γ̄ε − Γε) · (Nεvε +|log ε|F⊥/2)µε +

ˆ
R2

aχRλεβNε|log ε|(Γ̄ε − Γε)
⊥ ·vε ∂t|uε|2,

Inε,%,R := −
ˆ
R2

∇χR · S̃ε · Γ̄⊥ε −
ˆ
R2

a∇χR ·
(
〈∂tuε − iuεNεpε,%,∇uε − iuεNεvε〉+

|log ε|
2

Ṽ ⊥ε,%

)
,

and where the error I ′ε,%,R is estimated as follows, in the dissipative case, in the considered regimes,

ˆ t

0
|I ′ε,%,R| .t εR(N2

ε + |log ε|2)(E∗ε,R)1/2, (8.110)

or in the Gross-Pitaevskii case (GP), for all θ > 0,

|I ′ε,%,R| .t,θ εNεE∗ε,R +Nε(E∗ε,R)1/2‖∇(pε−pε,%)‖L2 + εN2
ε %

θ(E∗ε,R)1/2. (8.111)

♦
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Proof. We split the proof into three steps, first computing the time derivative ∂tÊε,%,R, then deducing
an expression for ∂tD̂ε,%,R, and finally introducing the modulated stress-energy tensor to replace the
linear terms by quadratic ones, which are better suited for a Grönwall argument.

Step 1. Time derivative of the modulated energy.
In this step, we prove the following identity,

∂tÊε,%,R = −
ˆ
R2

a∇χR · 〈∂tuε,∇uε − iuεNεvε〉+

ˆ
R2

aN2
ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
+

ˆ
R2

NεaχR〈∂tuε, iuε〉(div vε + vε· ∇h)

+

ˆ
R2

aχR

(
Nε(Nεvε−jε) · ∂tvε−λεα|∂tuε|2 −Nεvε·Vε −

|log ε|
2

F⊥ · Vε
)
. (8.112)

For that purpose, let us first compute the time derivative of the modulated energy density

1

2
∂t

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
= χR〈∇uε − iuεNεvε,∇∂tuε − iuεNε∂tvε−i∂tuεNεvε〉 − χR〈∂tuε,

auε
ε2

(1− |uε|2)〉

+
1

2
∂t
(
(1− |uε|2)(N2

εψε,%,R + fχR)
)
. (8.113)

Note that the first term in the right-hand side may be rewritten as

〈∇uε − iuεNεvε,∇∂tuε − iuεNε∂tvε−i∂tuεNεvε〉
= 〈∇uε,∇∂tuε〉 −Nε∂tvε· jε −Nεvε· 〈∇uε, i∂tuε〉 −Nεvε· 〈iuε,∇∂tuε〉

+
N2
ε

2
|uε|2∂t|vε|2 +

N2
ε

2
|vε|2∂t|uε|2

= div 〈∇uε, ∂tuε〉 − 〈∂tuε,4uε〉 −Nε∂tvε· jε −Nεvε· 〈∇uε, i∂tuε〉

−Nεvε· (∂tjε − 〈i∂tuε,∇uε〉) +
N2
ε

2
∂t(|uε|2|vε|2)

= div 〈∇uε, ∂tuε〉 − 〈∂tuε,4uε〉 −Nεvε· ∂tjε −Nεjε · ∂tvε +
N2
ε

2
∂t(|uε|2|vε|2), (8.114)

where

div 〈∇uε, ∂tuε〉 = div 〈∂tuε,∇uε − iuεNεvε〉+ div (Nεvε〈∂tuε, iuε〉)
= div 〈∂tuε,∇uε − iuεNεvε〉+Nε〈∂tuε, iuε〉 div vε +Nεvε· (∂tjε − Vε). (8.115)

Combining (8.113), (8.114) and (8.115), the time derivative of the energy density takes on the following
guise, after straightforward simplifications,

1

2
∂t

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
= χR div 〈∂tuε,∇uε − iuεNεvε〉+NεχR〈∂tuε, iuε〉div vε−NεχRvε·Vε +NεχR(Nεvε−jε) · ∂tvε

− χR
〈
∂tuε,4uε +

auε
ε2

(1− |uε|2)
〉

+
1

2
∂t
(
(1− |uε|2)(N2

εψε,%,R −N2
εχR|vε|2 + fχR)

)
.
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Integrating this identity in space yields

∂t

ˆ
R2

a

2

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
=

ˆ
R2

aχR

(
Nε〈∂tuε, iuε〉div vε−Nεvε·Vε +Nε(Nεvε−jε) · ∂tvε−

〈
∂tuε,4uε +

auε
ε2

(1− |uε|2)
〉)

+

ˆ
R2

a

2
∂t
(
(1− |uε|2)(N2

εψε,%,R −N2
εχR|vε|2 + fχR)

)
−
ˆ
R2

∇(aχR) · 〈∂tuε,∇uε − iuεNεvε〉.

Decomposing ∇(aχR) = aχR∇h+ a∇χR, and using the equation (8.6) satisfied by uε in the form〈
∂tuε,4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε
〉

=
〈
∂tuε, λε(α+ iβ|log ε|)∂tuε − i|log ε|F⊥ · ∇uε − fuε

〉
= λεα|∂tuε|2 +

|log ε|
2

F⊥ · Vε −
1

2
f∂t|uε|2,

the result (8.112) follows after straightforward simplifications.

Step 2. Time derivative of the modulated energy excess.
In this step, we prove the following identity,

∂tD̂ε,%,R =

ˆ
R2

aχR
2
Ṽε,% · (|log ε|(∇⊥h− F⊥)− 2Nεvε) +

ˆ
R2

aχRNε(Nεvε−jε) · Γεcurl vε

−
ˆ
R2

λεαaχR|∂tuε − iuεNεpε,%|2 +

ˆ
R2

aχRNε〈∂tuε − iuεNεpε,%, iuε〉(div vε + vε· ∇h− λεα pε,%)

+

ˆ
R2

aχRNε(Nεvε−jε) · ∇(pε−pε,%)−
ˆ
R2

a∇χR ·
(
〈∂tuε− iuεNεpε,%,∇uε− iuεNεvε〉+

|log ε|
2

Ṽ ⊥ε,%

)
−
ˆ
R2

aN2
ε pε,%(1− |uε|2)

(
vε· ∇χR + χR(div vε + vε· ∇h)

)
+

ˆ
R2

aN2
ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
+

ˆ
R2

aNε|log ε|
2

∂t(1− |uε|2)

(
v⊥ε ·∇χR − λεβχRpε,%−χRvε·

(
∇⊥h− F⊥ − 2

Nε

|log ε|
vε

))
+

ˆ
R2

aNε|log ε|
2

pε,%∇(1− |uε|2) ·
(
∇⊥χR + χR

(
∇⊥h− 2F⊥ − 2

Nε

|log ε|
vε

))
. (8.116)

Noting that by identity (8.102) we have

|log ε|
ˆ
R2

aχR∂tµε = |log ε|
ˆ
R2

aχRcurlVε = −|log ε|
ˆ
R2

aχRVε · ∇⊥h− |log ε|
ˆ
R2

aVε · ∇⊥χR,

it is immediate to deduce from (8.112) the following identity for the time derivative of the modulated
energy excess,

∂tD̂ε,%,R =

ˆ
R2

aχR
2
Vε · (|log ε|(∇⊥h− F⊥)− 2Nεvε) +

ˆ
R2

aNεχR〈∂tuε, iuε〉(div vε + vε· ∇h)

+

ˆ
R2

aχRNε(Nεvε−jε) · ∂tvε−
ˆ
R2

λεαaχR|∂tuε|2 +

ˆ
R2

aN2
ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
−
ˆ
R2

a∇χR ·
(
〈∂tuε,∇uε − iuεNεvε〉+

|log ε|
2

V ⊥ε

)
. (8.117)
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Now using equation (8.50) for the time evolution of vε and an integration by parts, we find
ˆ
R2

aχRNε(Nεvε−jε) · ∂tvε

=

ˆ
R2

aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
R2

aχRNε(Nεvε−jε) · ∇pε

=

ˆ
R2

aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
R2

aχRNε(Nεvε−jε) · ∇(pε−pε,%)

−
ˆ
R2

aχRNεpε,%(Nε div vε−div jε)−
ˆ
R2

aχRNεpε,%∇h · (Nεvε−jε)

−
ˆ
R2

aNεpε,%∇χR · (Nεvε−jε).

Combining this with identity (8.103) yields
ˆ
R2

aχRNε(Nεvε−jε) · ∂tvε

=

ˆ
R2

aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
R2

aχRNε(Nεvε−jε) · ∇(pε−pε,%)

−
ˆ
R2

aχRNεpε,%∇h · (Nεvε−jε)−
ˆ
R2

aNεpε,%∇χR · (Nεvε−jε)

−
ˆ
R2

aχRNεpε,%

(
Nε div vε +jε · ∇h− λεα〈∂tuε, iuε〉+

|log ε|
2

F⊥ · ∇|uε|2 −
λεβ|log ε|

2
∂t|uε|2

)
=

ˆ
R2

aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
R2

aχRNε(Nεvε−jε) · ∇(pε−pε,%)

−
ˆ
R2

aχRN
2
ε pε,%(div vε + vε· ∇h)−

ˆ
R2

aNεpε,%∇χR · (Nεvε−jε)

+

ˆ
R2

aχRNεpε,%

(
λεα〈∂tuε, iuε〉 −

|log ε|
2

F⊥ · ∇|uε|2 +
λεβ|log ε|

2
∂t|uε|2

)
.

Inserting this into (8.117), we then find

∂tD̂ε,%,R =

ˆ
R2

aχR
2
Vε ·

(
|log ε|(∇⊥h− F⊥)− 2Nεvε

)
+

ˆ
R2

aχRNε〈∂tuε, iuε〉(div vε + vε· ∇h+ λεα pε,%)−
ˆ
R2

aχRN
2
ε pε,%(div vε + vε· ∇h)

+

ˆ
R2

aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
R2

aχRNε(Nεvε−jε) · ∇(pε−pε,%)

+

ˆ
R2

aN2
ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
+

ˆ
R2

aχR
2
Nε|log ε|pε,%

(
λεβ∂t|uε|2 − F⊥ · ∇|uε|2

)
−
ˆ
R2

λεαaχR|∂tuε|2 −
ˆ
R2

a∇χR ·
(
〈∂tuε,∇uε − iuεNεvε〉+

|log ε|
2

V ⊥ε +Nεpε,%(Nεvε−jε)
)
.

(8.118)

Using identity (8.105) to transform Vε into Ṽε,%, the first right-hand side term may be rewritten as
ˆ
R2

aχR
2
Vε · (|log ε|(∇⊥h− F⊥)− 2Nεvε)

=

ˆ
R2

aχR
2

(
Ṽε,% −Nεvε∂t(1− |uε|2)−Nεpε,%∇|uε|2

)
·
(
|log ε|(∇⊥h− F⊥)− 2Nεvε

)
,
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while the last right-hand side term of (8.118) becomes
ˆ
R2

a∇χR ·
(
〈∂tuε,∇uε − iuεNεvε〉+

|log ε|
2

V ⊥ε +Nεpε,%(Nεvε−jε)
)

=

ˆ
R2

a∇χR ·
(
〈∂tuε − iuεNεpε,%,∇uε − iuεNεvε〉+N2

ε pε,%vε(1− |uε|2)

+
|log ε|

2
Ṽ ⊥ε,% −

Nε|log ε|
2

v⊥ε ∂t(1− |uε|2)− Nε|log ε|
2

pε,%∇⊥|uε|2
)
.

Further decomposing

|∂tuε|2 = |∂tuε − iuεNεpε,%|2 + 2Nεpε,%〈∂tuε − iuεNεpε,%, iuε〉+N2
ε |pε,%|2 − (1− |uε|2)N2

ε |pε,%|2,
〈∂tuε, iuε〉 = 〈∂tuε − iuεNεpε,%, iuε〉+ |uε|2Nεpε,%,

the result (8.116) easily follows after straightforward simplifications.

Step 3. Conclusion.
In the right-hand side of (8.116), the term

´
R2 aχRNε(Nεvε−jε) · Γεcurl vε is linear in Nεvε−jε,

preventing a direct Grönwall argument. As already explained, just as in [395], the idea is to replace
this bad term by others involving the modulated stress-energy tensor S̃ε, which is indeed a nicer
quadratic quantity. For that purpose, let us integrate the result of Lemma 8.4.3 in space against
χRΓ̄⊥ε , where Γ̄ε : [0, T )→W 1,∞(R2)2 is a given vector field (we would like to simply choose Γ̄ε = Γε,
but as we will see a suitable perturbation of it is needed), and obtain
ˆ
R2

χRΓ̄⊥ε · div S̃ε =

ˆ
R2

λεαaχRΓ̄⊥ε ·
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
−
ˆ
R2

aχRΓ̄ε · (Nεvε +|log ε|F⊥/2)µε +

ˆ
R2

aχRNε(Nεvε−jε) · Γ̄εcurl vε

+

ˆ
R2

λεβ
aχR

2
|log ε|Γ̄⊥ε · Ṽε,% −

ˆ
R2

λεβ
aχR

2
Nε|log ε| pε,% Γ̄⊥ε · ∇|uε|2

+

ˆ
R2

aχRNεΓ̄
⊥
ε · (Nεvε−jε)(div vε +∇h ·vε−λεα pε,%)−

ˆ
R2

aχR
2

(1− |uε|2)Γ̄⊥ε · ∇f

−
ˆ
R2

aχR
2

Γ̄⊥ε · ∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)

+

ˆ
R2

λεαaχRN
2
ε pε,%(1− |uε|2)(Γ̄⊥ε ·vε) +

ˆ
R2

aχR
2
Nε|log ε|(F⊥ · ∇|uε|2)(Γ̄⊥ε ·vε).

In this last right-hand side, the term
´
R2 aχRNε(Nεvε−jε) · Γ̄εcurl vε exactly corresponds to the bad

term in the right-hand side of (8.116). Replacing it by this new expression involving the modulated
stress-energy tensor, and treating as errors all the terms involving the difference Γ̄ε − Γε, we find

∂tD̂ε,%,R =

3∑
j=0

T jε,R + Igε,%,R + Inε,%,R −
ˆ
R2

χR∇Γ̄⊥ε : S̃ε

−
ˆ
R2

λεαaχRΓ⊥ε ·
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+

ˆ
R2

aχR
2

Γ⊥ε · ∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
−
ˆ
R2

λεαaχR|∂tuε − iuεNεpε,%|2

+

ˆ
R2

aχRΓε · (Nεvε +|log ε|F⊥/2)µε +

ˆ
R2

aχR
2
Ṽε,% · (−λεβ|log ε|Γ⊥ε + |log ε|(∇⊥h− F⊥)− 2Nεvε)

+

ˆ
R2

aχRNε

(
〈∂tuε − iuεNεpε,%, iuε〉+ Γ̄⊥ε · (jε −Nεvε)

)
(div vε + vε· ∇h− λεα pε,%),
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where Igε,%,R and Inε,%,R are given as in the statement, and where we have set

T 0
ε,%,R :=

ˆ
R2

aχRNε(Nεvε−jε) · ∇(pε−pε,%),

T 1
ε,%,R :=

ˆ
R2

aχR
2

(1− |uε|2)(N2
ε |vε|2 + f)Γ̄⊥ε · ∇h

−
ˆ
R2

aN2
ε pε,%(1− |uε|2)

(
vε· ∇χR + χR(div vε + vε· ∇h)

)
+

ˆ
R2

aχR
2

(1− |uε|2)Γ̄⊥ε · ∇f −
ˆ
R2

λεαaχRN
2
ε pε,%(1− |uε|2)Γ̄⊥ε ·vε,

T 2
ε,%,R :=

ˆ
R2

aNε|log ε|
2

pε,%∇(1− |uε|2) ·
(
∇⊥χR + χR

(
∇⊥h− 2F⊥ − λεβΓ̄⊥ε − 2

Nε

|log ε|
vε

))
+

ˆ
R2

aχR
2
Nε|log ε|

(
F⊥ · ∇(1− |uε|2)

)
Γ̄⊥ε ·vε,

T 3
ε,%,R :=

ˆ
R2

aNε|log ε|
2

∂t(1− |uε|2)

(
v⊥ε ·∇χR − λεβχRpε,%−χRvε·

(
∇⊥h− F⊥ − 2

Nε

|log ε|
vε

))
+

ˆ
R2

aN2
ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
.

It remains to estimate these four error terms T iε,%,R, 0 ≤ i ≤ 3. First consider the term T 0
ε,%,R. In the

dissipative case we take % = ∞, hence T 0
ε,%,R = 0. In the Gross-Pitaevskii case, using the pointwise

estimate of Lemma 8.4.2 for jε −Nεvε, and using Assumption 8.3.1(b), with in particular

‖∇(ptε−ptε,%)‖L2 ∩L∞ . ‖∇ptε‖L2 ∩L∞ + %−1‖ptε,%‖L2 ∩L∞ .t 1,

we find

|T 0
ε,%,R| .t Nε‖∇uε − iuεNεvε‖L2(B2R)(‖∇(pε−pε,%)‖L2 + ‖1− |uε|2‖L2(B2R))

+N2
ε ‖1− |uε|2‖L2(B2R)‖∇(pε−pε,%)‖L2

.t εNεE∗ε,R + (1 + εNε)Nε(E∗ε,R)1/2‖∇(pε−pε,%)‖L2 .

Second, using (8.43) or (8.44), Assumption 8.3.1, and the assumption ‖Γ̄ε‖L∞ .t 1, we obtain in the
considered regimes, in the dissipative case,

|T 1
ε,%,R| .t ε

(
λ−1/2
ε N2

ε +Rλ2
ε|log ε|2

)
(E∗ε,R)1/2,

or in the Gross-Pitaevskii case,

|T 1
ε,%,R| .t ε(N2

ε + λ2
ε|log ε|2)(E∗ε,R)1/2 . εN2

ε (E∗ε,R)1/2.

Integrating by parts, T 2
ε,%,R takes the form

T 2
ε,%,R = −

ˆ
R2

Nε|log ε|
2

(1− |uε|2)

× div

(
apε,%∇⊥χR + aχRF

⊥(Γ̄⊥ε ·vε) + apε,%χR

(
∇⊥h− 2F⊥ − λεβΓ̄⊥ε − 2

Nε

|log ε|
vε

))
,

and hence, again using (8.43) or (8.44), Assumption 8.3.1, and the bound ‖Γ̄ε‖W 1,∞ . 1, we obtain,
for all θ > 0, in the considered regimes, in the dissipative case,

|T 2
ε,%,R| .t,θ εNε|log ε|

(
1 +R−1λ−1/2

ε + λεR
θ
)
(E∗ε,R)1/2,
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or in the Gross-Pitaevskii case,

|T 2
ε,%,R| .t,θ εNε|log ε|(1 + λε%

θ)(E∗ε,R)1/2 . εN2
ε %

θ(E∗ε,R)1/2.

Finally, we observe that the choice (8.97) of ψε,%,R exactly yields

T 3
ε,%,R =

ˆ
R2

aN2
ε

2
(1− |uε|2)∂t(ψε,%,R − χR|vε|2) =

ˆ
R2

aN2
ε

2
(1− |uε|2)(∂tψε,%,R − 2χR vε· ∂tvε),

and hence, using (8.98) or (8.99), and Assumption 8.3.1, in the considered regimes, we find in the
dissipative case,

‖T 3
ε,%,R‖L1

t
. εN2

ε

(
1 +
|log ε|
Nε

)
(E∗ε,R)1/2 . ε(N2

ε +Nε|log ε|)(E∗ε,R)1/2,

or in the Gross-Pitaevskii case,

|T 3
ε,%,R| . εN2

ε %
θ(E∗ε,R)1/2.

The estimates (8.110) and (8.111) now follow from the above with I ′ε,%,R := T 0
ε,%,R + T 1

ε,%,R + T 2
ε,%,R +

T 3
ε,%,R.

8.5 Vortex analysis

In this section, we first recall and revisit some standard tools for vortex analysis, which are needed
in order to control the various terms appearing in the decomposition in Lemma 8.4.4. These tools will
only be used in the dissipative case, and we restrict in this section to the case Nε . |log ε|. (Suitable
adaptations to the case Nε � |log ε| are discussed in Section 8.8.1.)

8.5.1 Ball construction lower bounds

We need a version of the ball construction lower bounds à la Jerrard-Sandier [379, 260] which is
localizable in order to be adapted both to the weighted case and to the setting of the infinite plane
with no finite energy control (hence no a priori finiteness assumption on the number of vortices),
and which further yields very small errors (we need an error of order o(N2

ε ), which gets very small
when Nε diverges slowly). For that purpose we use the version developed in [383], which in particular
allows to cover the plane with balls centered at the points of the lattice RZ2, make the standard ball
construction in each ball of the covering, assemble all the constructed balls, and then discard some
balls from the collection so as to make it disjoint again. The error in the lower bounds given by this
ball construction is essentially Nε| log r|, where r is the total radius of the balls, so that we need to
take r large enough (almost as large as O(1) when Nε diverges slowly), but here the pinning weight
adds again a difficulty since it may vary significantly over the size of the balls of this construction,
thus perturbing the lower bound itself.

The following preliminary result describes the precise contribution of the vortices to the energy,
and in particular defines the vortex “locations”.

Lemma 8.5.1 (Localized lower bound). Let h : R2 → R, a := eh, with 1 . a ≤ 1, let uε : R2 → C,
vε : R2 → R2, with ‖curl vε‖L2 ∩L∞ . 1. Let 0 < ε� 1, Nε, R ≥ 1, and assume that log E∗ε,R � |log ε|.
Then, for some r̄ ' 1, for all ε > 0 small enough, and all r ∈ (ε1/2, r̄), there exists a locally finite
union of disjoint closed balls Brε,R, monotone in r and covering the set {x : |uε(x)| < 1/2}, such that
for all z ∈ RZ2 the sum of the radii of the balls of the collection Brε,R centered at points of BR(z) is
bounded by r, and such that, letting Brε,R =

⊎
j B

j, Bj := B̄(yj , rj), dj := deg(uε, ∂B
j), and defining

the point-vortex measure νrε,R := 2π
∑

j djδyj , the following properties hold,
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(i) Localized lower bound: for all φ ∈W 1,∞(R2) with φ ≥ 0, we have for all j,

1

2

ˆ
Bj
φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ πφ(yj)|dj | log(r/ε)−O(rjE∗ε,R)‖∇φ‖L∞

−O
(
r2
jN

2
ε + |dj | log

(
2 +

E∗ε,R
|log ε|

))
‖φ‖L∞ , (8.119)

and similarly, for all φ ∈W 1,∞(R2) supported in a ball of radius R,

1

2

ˆ
Brε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/ε)

2

ˆ
R2

φ|νrε,R| −O(rE∗ε,R)‖∇φ‖L∞

−O
(
r2N2

ε +
N2
ε + E∗ε,R
|log ε|

log
(

2 +
E∗ε,R
|log ε|

))
‖φ‖L∞ ; (8.120)

(ii) Number of vortices:

sup
z

ˆ
BR(z)

|νrε,R| .
N2
ε + E∗ε,R
|log ε|

; (8.121)

(iii) Jacobian estimate: for all γ ∈ [0, 1],

sup
z
‖νrε,R − µ̃ε‖(Cγc (BR(z)))∗ . r

γ
N2
ε + E∗ε,R
|log ε|

+ εγ/2(E∗ε,R + ε2N2
ε ). ♦

Proof. We split the proof into two steps.

Step 1. Proof of (i)–(ii).
We use the notation Ẽ∗ε,R := supz

´
BR(z) ẽε, with

ẽε :=
1

2

(
|∇uε − iuεNεvε|2 +

amin

2ε2
(1− |uε|2)2

)
, amin := inf

x
a(x) & 1.

Note that by assumption we have in particular Ẽ∗ε,R . E∗ε,R . ε−1/5. We may apply [383, Propo-
sition 2.1] with Ωε = R2, Aε = Nεvε, with ε replaced by ε/

√
amin, and with open cover (Uα)α =

(BR(z))z∈RZ2 (note that the argument in [383] indeed works identically on the whole space, and that
the energy bound is only needed uniformly on all elements of the open cover). For some ε0, C0, r̄ ' 1,
for all ε < ε0 and all r ∈ (ε1/2, r̄), we obtain a locally finite collection Brε,R of disjoint closed balls
covering the set {x : |uε(x)| < 1/2}, such that for all B ∈ Brε,R we have

ˆ
B

(
ẽε +

N2
ε

2
|curl vε|2

)
≥ π|dB|

(
log

r

εC̄B
− C0

)
,

where we have set dB := deg(uε, ∂B), and where C̄B is defined as in [383, equation (2.4)]. Moreover,
the construction in [383] ensures that the collection Brε,R is monotone in r, and that BR(z)∩Brε,R has
total radius bounded by r for all z ∈ RZ2. By [383, Lemma 2.1], we have C̄B ≤ 16|log ε|−1Ẽ∗ε,R .
|log ε|−1E∗ε,R, so that the above becomes, for all B ∈ Brε,R,

ˆ
B

(
ẽε +

N2
ε

2
|curl vε|2

)
≥ π|dB| log(r/ε)− |dB|O

(
log
(

2 +
E∗ε,R
|log ε|

))
. (8.122)
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Let r ∈ (ε1/2, r̄) be fixed, and set Brε,R =
⊎
j B

j , Bj := B̄(yj , rj), with corresponding degrees dj :=
dBj . Noting that by assumption we haveˆ

Bj
|curl vε|2 . |Bj | . r2

j ,

the result (8.122) takes the following form, for all j,
ˆ
Bj
ẽε ≥ π|dj | log(r/ε)− |dj |O

(
log
(

2 +
E∗ε,R
|log ε|

))
−O(r2

jN
2
ε ). (8.123)

Using the assumption log E∗ε,R � |log ε| and the choice r > ε1/2, the above right-hand side is bounded
from below by π

2 |dj ||log ε|(1−o(1))−O(r2
jN

2
ε ), and hence, summing over Bj ∈ Brε,R with yj ∈ BR(z),

we find for all ε > 0 small enough,

π

3
|log ε|

∑
j:yj∈BR(z)

|dj | ≤
ˆ
BR+1(z)∩Brε,R

ẽε +O(N2
ε )

∑
j:yj∈BR(z)

r2
j . E∗ε,R + r2N2

ε ,

and hence, with the choice r . 1, ∑
j:yj∈BR(z)

|dj | .
N2
ε + E∗ε,R
|log ε|

, (8.124)

that is, item (ii). Let us now prove item (i). Let φ ∈ W 1,∞(R2), φ ≥ 0. For all Bj ∈ Brε,R, we have
from (8.123)ˆ
Bj
φẽε ≥ φ(yj)

ˆ
Bj
ẽε − rj‖∇φ‖L∞

ˆ
Bj
ẽε

≥ πφ(yj)|dj | log(r/ε)− φ(yj)|dj |O
(

log
(

2 +
E∗ε,R
|log ε|

))
− φ(yj)O(r2

jN
2
ε )− rj‖∇φ‖L∞

ˆ
Bj
ẽε,

henceˆ
Bj
φẽε ≥ πφ(yj)|dj | log(r/ε)−O

(
r2
jN

2
ε + |dj | log

(
2 +

E∗ε,R
|log ε|

))
‖φ‖L∞ −O(rjE∗ε,R)‖∇φ‖L∞ .

Further assuming that φ is supported in BR(z) for some z ∈ RZ2, summing the above with respect
to j with yj ∈ BR, setting νrε,R := 2π

∑
j djδyj , and using (8.124), we find

ˆ
Brε,R

φẽε ≥
log(r/ε)

2

ˆ
R2

φ|νrε,R| −O
(
r2N2

ε +
N2
ε + E∗ε,R
|log ε|

log
(

2 +
E∗ε,R
|log ε|

))
‖φ‖L∞ −O(rE∗ε,R)‖∇φ‖L∞ .

Item (i) then follows by definition of ẽε with amin ≤ a.
Step 2. Proof of (iii).

Using item (i) and arguing just as in [395, item (5) of Proposition 4.4], for γ ∈ [0, 1], we obtain
for all r ∈ (ε1/2, r̄) and all φ ∈ Cγc (R2) supported in BR(z) for some z ∈ RZ2,∣∣∣∣ˆ φ(νrε,R − µ̃ε)

∣∣∣∣ . rγ‖φ‖Cγ ∑
j:yj∈BR(z)

|dj |

+ εγ/2‖φ‖Cγ
ˆ
BR

(
|∇uε − iuεNεvε|2 +

(1− |uε|2)2

2ε2
+Nε|1− |uε|2||curl vε|

)
. rγ

N2
ε + E∗ε,R
|log ε|

|φ|Cγ +

(
εγ/2E∗ε,R + ε2+γ/2N2

ε

ˆ
BR

|curl vε|2
)
‖φ‖Cγ , (8.125)

and the result follows from the assumption ‖curl vε‖L2 . 1.
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In Section 8.6 below, strong estimates are proved on the time derivative of the modulated energy
excess D∗ε,R, but these estimates involve the modulated energy E∗ε,R. In order to buckle the argument,
it is thus crucial to independently find an optimal control on E∗ε,R, or equivalently on the number of
vortices, in terms of D∗ε,R. Note that in the case without pinning and forcing no cut-off is needed and
this difficulty is absent (the excess is then indeed simply defined by Dε = Eε − πNε|log ε|, cf. [395]).
This control of E∗ε,R is the main content of the following result, and allows to further refine the
conclusions of Lemma 8.5.1 above. Particular attention is needed in the regime Nε . log |log ε| to
ensure an error as small as o(N2

ε ) in the energy lower bound. Various useful corollaries are further
included. In particular, item (vi) gives an optimal control of the energy inside the small balls, measured
in Lp for any p < 2; since this result in Lp is already enough for our purposes, it is not necessary here
to adapt the more precise Lorentz estimates of [396, Corollary 1.2] to the present weighted context,
and we instead use a more direct argument adapted from [403].

Proposition 8.5.2 (Refined lower bound). Let h : R2 → R, a := eh, with 1 . a ≤ 1 and ‖∇h‖L∞ . 1,
let uε : R2 → C, vε : R2 → R2, with ‖curl vε‖L1 ∩L∞ , ‖vε‖L∞ . 1. Let 0 < ε � 1, 1 � Nε . |log ε|,
and R ≥ 1 with |log ε| . R . |log ε|n for some n ≥ 1, and assume that D∗ε,R . N2

ε . Then E∗ε,R .
Nε|log ε| holds for all ε > 0 small enough. Moreover, for some r̄ ' 1, for all ε > 0 small enough and
all r ∈ (ε1/2, r̄), there exists a locally finite union of disjoint closed balls Brε,R, monotone in r and
covering the set {x : |uε(x)| < 1/2}, and for all r0 ∈ (ε1/2, r̄) and r ≥ r0 there exists a locally finite
union of disjoint closed balls B̃r0,rε,R , monotone in r and covering the set {x : ||uε(x)| − 1| ≥ |log ε|−1},
such that Br0ε,R ⊂ B̃

r0,r0
ε,R , such that for all z ∈ RZ2 the sum of the radii of the balls of the collection Brε,R

centered at points of BR(z) is bounded by r and the sum of the radii of the balls of the collection B̃r0,rε,R

centered at points of BR(z) is bounded by Cr, and such that, letting Brε,R =
⊎
j B

j, Bj := B̄(yj , rj),
dj := deg(uε, ∂B

j), and defining the point-vortex measure νrε,R := 2π
∑

j djδyj , the following properties
hold,

(i) Lower bound: in the regime Nε � log |log ε|, we have for all e−o(Nε) ≤ r � Nε|log ε|−1 and all
z ∈ R2,

1

2

ˆ
Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχzR|νrε,R| − o(N2
ε ), (8.126)

while in the regime 1 � Nε . log |log ε| we have for all e−o(Nε) ≤ r � 1 and all r0 ≤ r with
ε1/2 < r0 � Nε|log ε|−1, for all z ∈ R2,

1

2

ˆ
B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχzRν
r0
ε,R − o(N

2
ε ); (8.127)

(ii) Number of vortices: for ε1/2 < r � 1,

sup
z

ˆ
BR(z)

|νrε,R| . Nε, (8.128)

and moreover in the regime 1 � Nε � |log ε|1/2 the measure νrε,R is nonnegative for all

e−o(1)N−1
ε |log ε| ≤ r < r̄;

(iii) Jacobian estimate: for ε1/2 < r � 1, for all γ ∈ [0, 1],

sup
z
‖νrε,R − µ̃ε‖(Cγc (BR(z)))∗ . r

γNε + εγ/2Nε|log ε|, (8.129)

sup
z
‖µε − µ̃ε‖(Cγc (BR(z)))∗ . ε

γNε|log ε|n+1, (8.130)
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hence in particular, for all γ ∈ (0, 1],

sup
z
‖µ̃ε‖(Cγc (BR(z)))∗ 'γ Nε, sup

z
‖µε‖(Cγc (BR(z)))∗ 'γ Nε; (8.131)

(iv) Excess energy estimate: for all φ ∈W 1,∞(R2) supported in a ball of radius R,
ˆ
R2

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
. (D∗ε,R + o(N2

ε ))‖φ‖W 1,∞ ; (8.132)

(v) Energy outside small balls: in the regime Nε � log |log ε|, we have for all e−o(Nε) ≤ r < r̄ and
all z ∈ R2,

ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ Dzε,R + o(N2

ε ), (8.133)

while in the regime 1 � Nε . log |log ε| we have for all r ≥ e−o(Nε) and all r0 ≤ r with
ε1/2 < r0 � Nε|log ε|−1, for all z ∈ R2,

ˆ
R2\B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ Dzε,R + o(N2

ε ); (8.134)

(vi) Lp-estimate inside small balls: in the regime Nε � log |log ε|, we have for all ε1/2 < r < r̄ and
all 1 ≤ p < 2,

sup
z

ˆ
Brε,R

χzR|∇uε − iuεNεvε|p .p o(Np
ε ), (8.135)

while in the regime 1� Nε . log |log ε| we have for all r > ε1/2 and all r0 ≤ r with ε1/2 < r0 �
Nε|log ε|−1, for all 1 ≤ p < 2,

sup
z

ˆ
B̃r0,rε,R

χzR|∇uε − iuεNεvε|p .p o(Np
ε ). (8.136)

♦

Proof. We split the proof into eight steps. The main work consists in checking that the assumptions
imply the optimal bound on the energy E∗ε,R . Nε|log ε|. The conclusion is obtained in Step 5 for the
regime log |log ε| . Nε . |log ε|, but only in Step 7 for the complementary regime 1� Nε � log |log ε|.
The various other stated conclusions are then deduced in Step 8.

Step 1. Rough a priori estimate on the energy.
In this step, we prove E∗ε,R . R2|log ε|2, and hence by the choice of R we deduce E∗ε,R . |log ε|m

for some m ≥ 4. Decomposing µε = Nεcurl vε +curl (jε − Nεvε), the assumption D∗ε,R . N2
ε yields

for all z ∈ R2,

Ezε,R ≤ D∗ε,R +
|log ε|

2

ˆ
R2

aχzRµε

. N2
ε +Nε|log ε|

ˆ
R2

aχzR|curl vε|+ |log ε|
ˆ
R2

|∇(aχzR)||jε −Nεvε|. (8.137)

452



Using the pointwise estimate of Lemma 8.4.2 for jε−Nεvε, using |∇(aχzR)| . 1B2R(z), ‖curl vε‖L1 . 1,
and ‖vε‖L∞ . 1, we obtain

Ezε,R . |log ε|2 + |log ε|
( ˆ

B2R(z)
(1− |uε|2)2

)1/2( ˆ
B2R(z)

|∇uε − iuεNεvε|2
)1/2

+R|log ε|
( ˆ

B2R(z)
|∇uε − iuεNεvε|2

)1/2
+RNε|log ε|

(ˆ
B2R(z)

(1− |uε|2)2
)1/2

. |log ε|2 + ε|log ε|E∗ε,R +R|log ε|(E∗ε,R)1/2.

Taking the supremum over z, and absorbing E∗ε,R into the left-hand side, the result follows.

Step 2. Applying Lemma 8.5.1.
The result of Step 1 yields in particular log E∗ε,R � |log ε|, which allows to apply Lemma 8.5.1. For

fixed r ∈ (ε1/2, r̄), let Brε,R =
⊎
j B

j denote the union of disjoint closed balls given by Lemma 8.5.1,
and let νrε,R denote the associated point-vortex measure. Using Lemma 8.5.1(ii) in the form

ˆ
BR(z)

|νrε,R| =
∑

j:yj∈BR(z)

|dj | . Nε +
E∗ε,R
|log ε|

, (8.138)

Lemma 8.5.1(i) gives, for all φ ∈W 1,∞(R2) with φ ≥ 0, if φ is supported in a ball of radius R,

1

2

ˆ
Brε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

φ|νrε,R| −O(rE∗ε,R)‖∇φ‖L∞

−O
(
r2N2

ε + |log r|
(
Nε +

E∗ε,R
|log ε|

)
+
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
‖φ‖L∞ . (8.139)

We now prove the following consequence of these bounds,
ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ Dzε,R +O

(
rE∗ε,R + (|log r|+ r|log ε|)

(
Nε +

E∗ε,R
|log ε|

)
+
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
. (8.140)

First, the lower bound (8.139) applied to φ = aχzR is rewritten as follows,

1

2

ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ T r,zε,R +O

(
rE∗ε,R + r2N2

ε + |log r|
(
Nε +

E∗ε,R
|log ε|

)
+
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
,

where we have set

T r,zε,R :=
1

2

ˆ
R2

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
.

If νrε,R was replaced by µε in this last expression, we would recognize the definition of the excess Dzε,R,
and the result (8.140) would follow. Hence, in order to deduce (8.140), it only remains to check that
for all φ ∈W 1,∞(R2) supported in a ball of radius R,∣∣∣ ˆ

R2

φ(µε − νrε,R)
∣∣∣ . r(Nε +

E∗ε,R
|log ε|

)
‖φ‖W 1,∞ + ε1/3‖φ‖W 1,∞ . (8.141)
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Using the result of Step 1 in the form ε1/6E∗ε,R . 1, Lemma 8.5.1(iii) with γ = 1 yields∣∣∣ ˆ
R2

φ(µ̃ε − νrε,R)
∣∣∣ . r(Nε +

E∗ε,R
|log ε|

)
‖φ‖W 1,∞ + ε1/3‖φ‖W 1,∞ .

It remains to replace µ̃ε by µε in this estimate. By definition (8.104), with ‖vε‖L∞ . 1 and |∇φ| ≤
1BR(z)‖φ‖W 1,∞ , and using the result of Step 1 in the form ε2/3RNε(E∗ε,R)1/2 . 1, we find∣∣∣ ˆ

R2

φ(µ̃ε − µε)
∣∣∣ ≤ Nε

ˆ
BR(z)

|∇φ||vε||1− |uε|2|

. RNε‖φ‖W 1,∞

(ˆ
BR(z)

(1− |uε|2)2
)1/2

. εRNε(E∗ε,R)1/2‖φ‖W 1,∞ . ε1/3‖φ‖W 1,∞ , (8.142)

and the result (8.141) follows.

Step 3. Energy and number of vortices.
In this step, we show that (8.138) is essentially an equality, in the sense that for all ε1/2 < r � 1,

sup
z

ˆ
R2

χzR|νrε,R| . Nε +
E∗ε,R
|log ε|

. Nε + sup
z

ˆ
R2

χzR|νrε,R|. (8.143)

The lower bound already follows from (8.138). We now turn to the upper bound. Since the energy
excess satisfies Dzε,R . N2

ε , we deduce from (8.141),

Ezε,R ≤ Dzε,R +
|log ε|

2

ˆ
R2

aχzRµε ≤
|log ε|

2

ˆ
R2

aχzRν
r
ε,R +O

(
N2
ε + r|log ε|

(
Nε +

E∗ε,R
|log ε|

))
. (8.144)

Taking the supremum in z, and absorbing E∗ε,R in the left-hand side with r � 1, the upper bound
in (8.143) follows.

Step 4. Estimate on the total variation of the vorticity.
In this step, we prove that for all e−o(|log ε|) < r � 1,

sup
z

ˆ
R2

χzR|νrε,R| ≤ (1 + o(1)) sup
z

ˆ
R2

χzRν
r
ε,R +O(Nε). (8.145)

This result is used in Step 5 below in order to replace
´
aχzRν

r
ε,R (resp.

´
aχzRµε) by

´
χzRν

r
ε,R (resp.´

χzRµε), which happens to be crucial if we want to avoid integrability assumptions on ∇h, as we do
here.

The lower bound (8.139) of Step 2 with φ = aχyR yields for all y ∈ R2, using the upper bound
in (8.143) to replace the energy E∗ε,R in the error terms,

Eyε,R ≥
1

2

ˆ
Brε,R

aχyR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχyR|ν
r
ε,R|

−O
(

(|log r|+ r|log ε|)
(
Nε + sup

z

ˆ
R2

χzR|νrε,R|
)

+
(
Nε + sup

z

ˆ
R2

χzR|νrε,R|
)

log
(

2 +
E∗ε,R
|log ε|

))
.

For e−o(|log ε|) < r � 1, using the result of Step 1 in the form log E∗ε,R � |log ε|, we obtain for all
y ∈ R2,

Eyε,R ≥
|log ε|

2

ˆ
R2

aχyR|ν
r
ε,R| − o(|log ε|) sup

z

ˆ
R2

χzR|νrε,R| − o(Nε|log ε|). (8.146)
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On the other hand, the upper bound (8.144) yields

Eyε,R ≤
|log ε|

2

ˆ
R2

aχyRν
r
ε,R +O(Nε|log ε|) + o(1)E∗ε,R, (8.147)

and thus, taking the supremum over y and absorbing E∗ε,R in the left-hand side,

E∗ε,R ≤
|log ε|

2
(1 + o(1)) sup

z

ˆ
R2

aχzR|νrε,R|+O(Nε|log ε|),

so that (8.147) takes the form, for all y ∈ R2,

Eyε,R ≤
|log ε|

2

ˆ
R2

aχyRν
r
ε,R +O(Nε|log ε|) + o(|log ε|) sup

z

ˆ
R2

χzR|νrε,R|.

Combining this with (8.146), dividing both sides by 1
2 |log ε|, and taking the supremum over y, we

find

sup
z

ˆ
R2

χzR(νrε,R)− . sup
z

ˆ
R2

aχzR(|νrε,R| − νrε,R) ≤ O(Nε) + o(1) sup
z

ˆ
χzR|νrε,R|.

This implies

sup
z

ˆ
R2

χzR|νrε,R| = sup
z

ˆ
R2

χzR(νrε,R + 2(νrε,R)−) ≤ sup
z

ˆ
R2

χzRν
r
ε,R +O(Nε) + o(1) sup

z

ˆ
R2

aχzR|νrε,R|,

and the result (8.145) follows after absorbing the last term in the left-hand side.

Step 5. Refined bound on the energy.
In this step, we prove E∗ε,R . (Nε + log |log ε|)|log ε|. By (8.138) this implies in particular

supz
´
R2 χ

z
R|νrε,R| . Nε + log |log ε|. In the regime Nε & log |log ε|, these bounds are already the

optimal ones. The regime with a “small” number of vortices 1 � Nε � log |log ε| is treated in
Steps 6–7 below.

Let e−o(|log ε|) < r � 1 to be suitably chosen later. Using (8.141), the bound on the energy excess
D∗ε,R . N2

ε yields for all z ∈ RZ2,

Ezε,R ≤ Dzε,R +
|log ε|

2

ˆ
R2

aχzRµε . N
2
ε + |log ε|

ˆ
R2

χzR|νrε,R|+ r(Nε|log ε|+ E∗ε,R),

and hence, using the result (8.145) of Step 4,

E∗ε,R . Nε|log ε|+ |log ε| sup
z

ˆ
R2

χzRν
r
ε,R + rE∗ε,R.

Using (8.141) again, and absorbing E∗ε,R in the left-hand side with r � 1, this takes the form

E∗ε,R . Nε|log ε|+ |log ε| sup
z

ˆ
R2

χzRµε. (8.148)

It remains to estimate
´
R2 χ

z
Rµε. Decomposing µε = Nεcurl vε +curl (jε −Nεvε), using the pointwise

estimate of Lemma 8.4.2 for jε − Nεvε, using |∇χzR| . R−11B2R(z), ‖∇χzR‖L2 . 1, ‖curl vε‖L1 . 1,
‖vε‖L∞ . 1, and using the result of Step 1 in the form εE∗ε,R . 1, we find

ˆ
R2

χzRµε = Nε

ˆ
R2

χzRcurl vε−
ˆ
R2

∇⊥χzR · (jε −Nεvε) . Nε +

ˆ
R2

|∇χzR||∇uε − iuεNεvε|.
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Regarding the last integral, we distinguish between the contributions inside and outside the balls
Brε,R, with |∇χzR| . R−11B2R(z) ≤ R−1χz2R, ‖∇χzR‖L2 . 1, and |B2R(z) ∩ Brε,R| . r2,

ˆ
R2

χzRµε . Nε +

ˆ
R2\Brε,R

|∇χzR||∇uε − iuεNεvε|+R−1

ˆ
B2R(z)∩Brε,R

|∇uε − iuεNεvε|

. Nε +
( ˆ

R2\Brε,R
χz2R|∇uε − iuεNεvε|2

)1/2
+ rR−1

(ˆ
B2R(z)

|∇uε − iuεNεvε|2
)1/2

. (8.149)

Estimating the last right-hand side term by rR−1(E∗ε,R)1/2, using (8.140) to estimate the first, using
the bound on the energy excess D∗ε,R . N2

ε , and noting that k1/2 log1/2(2 + k)� k holds for k � 1,
we obtainˆ

R2

χzRµε . Nε + (D∗ε,R)1/2 + rR−1(E∗ε,R)1/2 + r1/2(Nε|log ε|+ E∗ε,R)1/2

+
(
Nε +

E∗ε,R
|log ε|

)1/2
(
|log r|+ log

(
2 +

E∗ε,R
|log ε|

))1/2

. Nε + r1/2(Nε|log ε|)1/2 + r1/2(E∗ε,R)1/2 + o(1)
E∗ε,R
|log ε|

+ |log r|1/2
(
Nε +

E∗ε,R
|log ε|

)1/2
.

Combining this with (8.148) yields

E∗ε,R
|log ε|

. Nε + r1/2(Nε|log ε|)1/2 + r1/2(E∗ε,R)1/2 + o(1)
E∗ε,R
|log ε|

+ |log r|1/2
(
Nε +

E∗ε,R
|log ε|

)1/2
,

and hence,

E∗ε,R
|log ε|

. Nε + |log r|+ r1/2|log ε|.

The result then follows from the choice r = |log ε|−2.

Step 6. Refined lower bound in the regime with a “small” number of vortices.
In this step, we study the regime 1� Nε . log |log ε|, for which the result of Step 5 is not optimal.

More precisely, we consider the whole regime 1 � Nε . |log ε| and we show the following: for all
r0 ∈ (ε1/2, r̄) and r ≥ r0, there exists a locally finite union of disjoint closed balls B̃r0,rε,R , monotone
in r, covering the set {x : ||uε(x)| − 1| ≥ |log ε|−1}, such that for all z the sum of the radii of the
balls intersecting BR(z) is bounded by Cr, and such that for all ε > 0 small enough, and all r0 ≤ r
satisfying

ε1/2 < r0 � N2
ε |log ε|−1(Nε + log |log ε|)−1, e−o(Nε) ≤ r � 1, (8.150)

we have for all z ∈ R2,

1

2

ˆ
B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχzRν
r0
ε,R − o(1)

( E∗ε,R
|log ε|

)2
− o(N2

ε ). (8.151)

We split the proof into three further substeps.

Substep 6.1. Enlarged balls: in this step, given some fixed r0 ∈ (ε1/2, r̄), we construct the enlarged
collections of balls B̃r0,rε,R for r ≥ r0.
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According to [382, Proposition 4.8], and using the energy estimate of Step 5, we have

H1({x ∈ BR(z), ||uε(x)| − 1| ≥ |log ε|−1}) ≤ Cε|log ε|2E∗ε,R ≤ Cε|log ε|4,

where H1 denotes the 1-dimensional Haussdorff measure. From [382, Section 4.4.1] and [383, Sec-
tion 2.2], it follows that we may cover the set {x : ||uε(x)| − 1| ≥ |log ε|−1} by a locally finite union of
disjoint closed balls such that for all z the sum of the radii of the balls intersecting BR(z) is bounded
by Cε|log ε|4. We then combine this collection of balls with the collection Br0ε,R. Inductively merging as
in [382, Lemma 4.1] any two such balls that intersect into a ball with the same total radius, we obtain
a new collection B̃r0ε,R of disjoint closed balls that cover the set {x : ||uε(x)|− 1| ≥ |log ε|−1}, and such
that for all z the sum of the radii of the balls intersecting BR(z) is bounded by r0 +Cε|log ε|6 ≤ Cr0.

Let us now grow the balls of this new collection B̃r0ε,R following Sandier’s ball construction, as
described e.g. in [382, Theorem 4.2]. This consists in growing simultaneously all the balls keeping
their centers fixed and multiplying their radius by the same factor t. If some balls touch at some point
during the growth, the corresponding balls are merged into one larger ball containing the previous
ones and of same total radius. This construction ensures that the balls always remain disjoint.
Stopping the growth process at some value of the factor t, and setting r = tr0, we denote by B̃r0,rε,R

the corresponding locally finite collection of disjoint closed balls. By construction, for all z, the sum
of the radii of the balls that intersect BR(z) is bounded by Ct(r0 + Cε|log ε|6) ≤ Cr. Note that by
construction Br0ε,R ⊂ B̃

r0
ε,R = B̃r0,r0ε,R , but for r > r0 the collection B̃r0,rε,R has a priori no clear relation

with the collection Brε,R.

Substep 6.2. Preliminary estimate.
According to [396, Lemma 3.2] (applied with c = d and λ = 1), we have, for any S1-valued map

v with degree d on a generic ball B of radius r, and for any vector field A : ∂B → R2,

1

2

ˆ
∂B
|∇v − ivA|2 +

1

2

ˆ
B
|curlA|2 ≥ πd2

r
− πd2

2
+

1

2

ˆ
∂B

∣∣∣∇v − ivA− ivdτ
r

∣∣∣2 ,
where τ denotes the unit tangent to the circle ∂B. Applying it to v = uε

|uε| and A = Nεvε, and noting
that |∇uε − iuεF |2 = |uε|2|∇ uε

|uε| − i
uε
|uε|F |

2 + |∇|uε||2 holds for any real-valued vector field F , we
obtain the following improved lower bound on annuli: if ||uε| − 1| ≤ |log ε|−1 holds on ∂B, then we
have

(1 +O(|log ε|−1))
1

2

ˆ
∂B
|∇uε − iuεNεvε|2 +

1

2
N2
ε

ˆ
B
|curl vε|2

≥ πd2

r
− πd2

2
+

1

2
(1−O(|log ε|−1))

ˆ
∂B

∣∣∣∇uε − iuεNεvε−iuεd
τ

r

∣∣∣2. (8.152)

Substep 6.3. Proof of (8.151).
Let r0 > 0 be chosen as in (8.150). We start from Lemma 8.5.1(i) with φ = aχzR, combined with

the refined energy estimate of Step 5 and the choice of r0, which yields

1

2

ˆ
Br0ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r0/ε)

2

ˆ
aχzR|ν

r0
ε,R| − o(N

2
ε )− C

(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

)
. (8.153)

We next need to show that this lower bound for the energy is essentially maintained during the ball
growth and merging process, hence holds as well for the collections B̃r0,rε,R with r > r0.
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Assume that some ball B = B̄(y, s) gets grown into B′ = B̄(y, ts) without merging, for some
t ≥ 1, and assume that B′ \ B does not intersect B̃r0ε,R, so that ||uε| − 1| ≤ |log ε|−1 holds on B′ \ B.
Let d denote the degree of B (hence of B′). Since by assumption we have

|a(x)χzR(x)− a(y)χzR(y)| ≤ χzR(y)|a(x)− a(y)|+ a(x)|χzR(x)− χzR(y)|
≤ C

(
R−1 + χzR(y)

)
|x− y|, (8.154)

we may write

1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥
a(y)χzR(y)

2

ˆ
B′\B

|∇uε − iuεNεvε|2

− CR−1

ˆ
B′\B

| · −y||∇uε − iuεNεvε|2 − CχzR(y)

ˆ
B′\B

| · −y||∇uε − iuεNεvε|2.

Using that |uε| ≤ 1 + |log ε|−1 holds on B′ \ B, the last right-hand side term above is estimated as
follows,
ˆ
B′\B

| · −y||∇uε − iuεNεvε|2

≤ 2

ˆ
B′\B

| · −y| |uε|2
∣∣∣ τd

| · −y|

∣∣∣2 + 2

ˆ
B′\B

| · −y|
∣∣∣∇uε − iuεNεvε−iuε

τd

| · −y|

∣∣∣2
≤ Cd2ts+ 2ts

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε
τd

| · −y|

∣∣∣2, (8.155)

where τ(x) = (x−y)⊥/|x−y| is the unit tangent to the circle centered at y, and we may then deduce

1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥
a(y)χzR(y)

2

ˆ
B′\B

|∇uε − iuεNεvε|2

− CtsR−1

ˆ
B′\B

|∇uε − iuεNεvε|2 − Cd2tsχzR(y)

− CtsχzR(y)

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε
τd

| · −y|

∣∣∣2. (8.156)

Again using that ||uε| − 1| ≤ |log ε|−1 holds on B′ \B, the estimate (8.152) on the ball B(y, ρ) for ρ
integrated between s and ts takes the form

(1 + C|log ε|−1)
1

2

ˆ
B′\B

|∇uε − iuεNεvε|2 ≥ πd2 log t− π

2
d2ts− 1

2
N2
ε ts

ˆ
B′
|curl vε|2

+ (1− C|log ε|−1)
1

2

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε
τd

| · −y|

∣∣∣2.
Combining this with (8.156), we are then led to

(1 + C|log ε|−1)
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ a(y)χzR(y)πd2 log t− Cd2ts− 1

2
N2
ε ts

ˆ
B′
|curl vε|2 − CtsR−1

ˆ
B′\B

|∇uε − iuεNεvε|2

+
(a(y)

2
(1− C|log ε|−1)− Cts

)
χzR(y)

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε
τd

| · −y|

∣∣∣2. (8.157)
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For ε small enough and ts ≤ min{1, 1
4C inf a} =: r̃ (note that by assumption r̃ ' 1), the last right-hand

side term is nonnegative, so that we conclude

(1 + C|log ε|−1)
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ a(y)χzR(y)πd2 log t− Cd2ts− 1

2
N2
ε ts

ˆ
B′
|curl vε|2 − CtsR−1

ˆ
B′\B

|∇uε − iuεNεvε|2

≥ a(y)χzR(y)πd2 log t− Cts(d2 +N2
ε )− CtsR−1E∗ε,R. (8.158)

If the ball B = B̄(y, s) belongs to the collection B̃r0,rε,R for some r ≥ r0, only a finite number of
balls of the collection Br0ε,R are included in the ball B. Denote them by Bj = B̄(yj , sj), j = 1, . . . , k.
By definition, the degree d of B is then equal to d =

∑
j dj , where dj denotes the degree of Bj . We

may then write

a(y)χzR(y)d2 ≥ a(y)χzR(y)
∑
j

dj ≥
∑
j

a(yj)χ
z
R(yj)dj − C

∑
j

|dj ||y − yj |1B2R(z)(yj)

≥
∑
j

a(yj)χ
z
R(yj)dj − Cs

∑
j

|dj |1B2R(z)(yj),

and hence, in terms of the point-vortex measure νr0ε,R,

a(y)χzR(y)d2 ≥ 1

2π

ˆ
B
aχzRν

r0
ε,R − Cs

ˆ
B2R(z)

|νr0ε,R|. (8.159)

Therefore, if the ball B = B̄(y, s) belongs to the collection B̃r0,rε,R for some r ≥ r0 and gets grown
without merging into a ball B′ = B̄(y, ts) for some t ≥ 1 with ts ≤ r̃, then combining (8.158)
and (8.159) yields

(1 + C|log ε|−1)
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log t

2

ˆ
B
aχzRν

r0
ε,R − Cs log t

ˆ
B2R(z)

|νr0ε,R| − Cts
(
Nε +

ˆ
B2R(z)

|νr0ε,R|
)2
− CtsR−1E∗ε,R,

and hence, using Lemma 8.5.1(ii), the inequality |log t| ≤ t for t ≥ 1, and the choice R & |log ε|,

1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log t

2

ˆ
B
aχzRν

r0
ε,R − Cts

(
Nε +

E∗ε,R
|log ε|

)2
.

By construction of the ball growth and merging process, this easily implies the following: if a ball
B = B̄(yB, sB) belongs to the collection B̃r0,rε,R for some r0 ≤ r ≤ r̃, then we have

1

2

ˆ
B\B̃r0ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/r0)

2

ˆ
B
aχzRν

r0
ε,R − CsB

(
Nε +

E∗ε,R
|log ε|

)2
.

Summing this estimate over all the balls B of the collection B̃r0,rε,R that intersect B2R(z), and recalling
that the sum of the radii of these balls is by construction bounded by Cr, we deduce for any r0 ≤ r ≤ r̃,

1

2

ˆ
B̃r0,rε,R \B̃

r0
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/r0)

2

ˆ
R2

aχzRν
r0
ε,R − Cr

(
Nε +

E∗ε,R
|log ε|

)2
.
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Combining this with (8.153), and recalling that by definition Br0ε,R ⊂ B̃
r0
ε,R, we deduce

1

2

ˆ
B̃
r0,r
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/ε)

2

ˆ
R2

aχzRν
r0
ε,R − Cr

(
Nε +

E∗ε,R
|log ε|

)2
− o(N2

ε )− C
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

)
, (8.160)

and hence, using Lemma 8.5.1(ii) and the choice (8.150) of r,

1

2

ˆ
B̃
r0,r
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχzRν
r0
ε,R−C|log r|

(
Nε+

E∗ε,R
|log ε|

)
−Cr

( E∗ε,R
|log ε|

)2
−o(N2

ε )−C
(
Nε+

E∗ε,R
|log ε|

)
log
(

2+
E∗ε,R
|log ε|

)
≥ |log ε|

2

ˆ
R2

aχzRν
r0
ε,R − o(1)

( E∗ε,R
|log ε|

)2
− o(N2

ε ),

that is, (8.151).

Step 7. Optimal bound on the energy.
In this step, we prove E∗ε,R . Nε|log ε|, thus completing the result of Step 5 in all regimes 1 �

Nε . |log ε|. Note that by Step 3 this also implies supz
´
R2 χ

z
R|νrε,R| . Nε.

By Step 5, it only remains to consider the regime with a “small” number of vortices 1 � Nε .
log |log ε|. Let r0 ≤ r � 1 be fixed as in (8.150). On the one hand, using the estimate (8.141), we
deduce from the result (8.151) of Step 6,

1

2

ˆ
R2\B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ Dzε,R +O

(
r0|log ε|

(
Nε +

E∗ε,R
|log ε|

))
+ o(1)

( E∗ε,R
|log ε|

)2
+ o(N2

ε )

and hence, using the assumption D∗ε,R . N2
ε , the suboptimal energy bound of Step 5, and the

choice (8.150) of r0,

1

2

ˆ
R2\B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
. N2

ε + o(1)
( E∗ε,R
|log ε|

)2
. (8.161)

On the other hand, combining the estimates (8.148) and (8.149) (with Brε,R replaced by B̃r0,rε,R ) of
Step 5, we find

E∗ε,R . Nε|log ε|+ |log ε|
(

sup
z

ˆ
R2\B̃r0,rε,R

χzR|∇uε − iuεNεvε|2
)1/2

+ r|log ε|R−1(E∗ε,R)1/2.

Now inserting (8.161) yields

E∗ε,R . Nε|log ε|+ o(1)E∗ε,R + |log ε|R−1(E∗ε,R)1/2,

and thus, recalling the choice R & |log ε|, and absorbing E∗ε,R in the left-hand side, the result E∗ε,R .
Nε|log ε| follows.

Step 8. Conclusion.
The optimal energy bound E∗ε,R . Nε|log ε| is now proved. In the present step, we check that the

rest of the statements follow from this bound. We split the proof into seven further substeps.
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Substep 8.1. Proof of (i).
The result (8.126) follows from (8.139) in Step 2 with φ = aχzR, combined with the optimal

energy bound. Repeating the argument of Step 6 with the optimal energy bound rather than with
the suboptimal bound of Step 5, the choice (8.150) can be replaced by ε1/2 < r0 � Nε|log ε|−1. For
such a choice of r0, and for r ≥ r0 as in (8.150), the result (8.151) together with the optimal energy
bound directly implies the result (8.127) for a “small” number of vortices 1� Nε . log |log ε|.

Substep 8.2. Proof of (ii).
The bound (8.128) on the number of vortices follows from the result (8.143) of Step 3 together

with the optimal energy bound. It remains to prove that in the regime 1 � Nε � |log ε|1/2 for
e−o(1)N−1

ε |log ε| ≤ r < r̄ each ball of the collection Brε,R has a nonnegative degree. This is a refinement
of the result of Step 4. The lower bound (8.139) of Step 2 with φ = aχzR can be rewritten as follows,
using the optimal energy bound, for all z ∈ R2,

|log ε|
ˆ
R2

aχzR(νrε,R)− =
|log ε|

2

ˆ
R2

aχzR(|νrε,R| − νrε,R)

≤ Ezε,R −
|log ε|

2

ˆ
R2

aχzRν
r
ε,R +O

(
rNε|log ε|+ r2N2

ε +Nε|log r|
)

+ o(N2
ε ),

and hence, using (8.141) to replace νrε,R by µε in the right-hand side, and using the assumption
Dzε,R . N2

ε , we find

|log ε|
ˆ
R2

χzR(νrε,R)− . N2
ε + rNε|log ε|+Nε| log r|. (8.162)

Dividing both sides by |log ε|, we deduce in the regimeNε � |log ε|1/2 with e−o(1)N−1
ε |log ε| ≤ r � N−1

ε ,

sup
z

ˆ
R2

χzR(νrε,R)− � 1,

which means that for ε small enough there exists no single ball Bj ∈ Brε,R with negative degree dj < 0.
This proves the result for r � N−1

ε . Now for N−1
ε . r < r̄ the same property must hold, since, by

monotonicity of the collection Brε,R with respect to r, for any r > r′ the degree of a ball B ∈ Brε,R
equals the sum of the degrees of all the balls B′ ∈ Bε(r′) with B′ ⊂ B.

Substep 8.3. Proof of (v).
In the regimeNε � log |log ε|, for e−o(Nε) ≤ r � Nε|log ε|−1, the result (8.133) follows from (8.140)

together with the optimal energy bound. Monotonicity of Brε,R with respect to r then implies (8.133)
for all r ≥ e−o(Nε) in the regimeNε � log |log ε|. In the regime 1� Nε . log |log ε|, it suffices to argue
as for (8.140) in Step 2, but with the lower bound (8.139) replaced by its refined version (8.151): for
r0 ≤ r with ε1/2 < r0 � Nε|log ε|−1 and e−o(Nε) ≤ r � 1, the estimate (8.151) together with (8.141)
indeed yields

1

2

ˆ
R2\B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ 1

2

ˆ
R2

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− |log ε|

2

ˆ
R2

aχzRν
r0
ε,R + o(N2

ε )

≤ Dzε,R + r0Nε|log ε|+ o(N2
ε ) = Dzε,R + o(N2

ε ),

and the result (8.134) follows by monotonicity of B̃r0,rε,R with respect to r.
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Substep 8.4. Proof of (iii).
The Jacobian estimate (8.129) follows from Lemma 8.5.1(iii) together with the optimal energy

bound, and the estimate (8.130) with γ = 1 similarly follows from (8.142). The result (8.130) for all
γ ∈ [0, 1] is then obtained by interpolation (as e.g. in [262]) provided we also manage to prove, for all
φ ∈ L∞(R2) supported in a ball BR(z),∣∣∣ˆ

R2

φ(µ̃ε − µε)
∣∣∣ . RNε|log ε|‖φ‖L∞ . (8.163)

Let φ ∈ L∞(R2) be supported in BR(z), for some z ∈ R2. By definition (8.104), we find

ˆ
R2

φ(µ̃ε − µε) = Nε

ˆ
R2

φ
(
(1− |uε|2)curl vε +2〈∇uε − iuεNεvε, uε〉 · v⊥ε

)
≤ Nε‖φ‖L∞

ˆ
BR(z)

(
|1− |uε|2||curl vε|+ 2|vε||1− |uε|2||∇uε − iuεNεvε |+ 2|vε||∇uε − iuεNεvε |

)
,

and hence we obtain with the optimal energy bound, with ‖vε‖L∞ , ‖curl vε‖L2 . 1,
ˆ
R2

φ(µ̃ε − µε) .
(
εN2

ε |log ε|+RNε|log ε|)‖φ‖L∞ ,

that is, (8.163).

Substep 8.5. Proof of (iv) in the regime Nε � log |log ε|.
We focus on the regime Nε � log |log ε|. Let ε1/2 < r � 1 to be later optimized as a function of

ε. We write as before Brε,R =
⊎
j B

j , Bj = B̄(yj , rj), we denote by dj the degree of Bj , and we set
νrε,R = 2π

∑
j djδyj . Given φ ∈W 1,∞(R2) supported in the ball BR(z), we decompose

ˆ
R2

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
≤

ˆ
R2\Brε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+
∑
j

∣∣∣∣ˆ
Bj
φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πφ(yj)dj |log ε|

∣∣∣∣
≤ ‖a−1φ‖L∞

ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+ ‖a−1φ‖L∞

∑
j

χzR(yj)

∣∣∣∣ ˆ
Bj
a
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πa(yj)dj |log ε|

∣∣∣∣
+ r‖a−1φ‖W 1,∞

ˆ
B2R(z)∩Brε,R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
. (8.164)

Combined with the optimal energy bound, the localized lower bound (8.119) in Lemma 8.5.1(i) with
φ = a yields for all j,

1

2

ˆ
Bj
a
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ πa(yj)|dj ||log ε| −O

(
rjNε|log ε|+ |dj ||log r|+ |dj | logNε

)
,
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and hence∣∣∣∣ ˆ
Bj
a
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πa(yj)|dj ||log ε|

∣∣∣∣
≤
ˆ
Bj
a
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πa(yj)|dj ||log ε|

+O
(
rjNε|log ε|+ |dj ||log r|+ |dj | logNε

)
.

Noting that χzR(yj) ≤ χzR(y) +O(R−1rj)χ
z
2R(yj) holds for y ∈ Bj , we obtain

χzR(yj)

∣∣∣∣ ˆ
Bj
a
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πa(yj)|dj ||log ε|

∣∣∣∣
≤
ˆ
Bj
aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πa(yj)χ

z
R(yj)|dj ||log ε|

+ χz2R(yj)O
(
rjNε|log ε|+ |dj ||log r|+ |dj | logNε

)
.

Inserting this into (8.164), and using the bound of item (ii) on the number of vortices, we find

ˆ
R2

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
≤ ‖a−1φ‖L∞

ˆ
R2

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
+ r‖a−1φ‖W 1,∞

ˆ
B2R(z)∩Brε,R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+O

(
rNε|log ε|+Nε|log r|+Nε logNε

)
‖φ‖L∞ ,

where the second right-hand side term is estimated by rE∗ε,R‖a−1φ‖W 1,∞ . rNε|log ε|‖a−1φ‖W 1,∞ ,
and where (8.141) can be used to replace νrε,R by µε in both sides up to an error of order (rNε|log ε|+
1)‖φ‖L∞ . In the present regime Nε � log |log ε|, we may choose e−o(Nε) ≤ r � Nε|log ε|−1, and the
conclusion (8.132) follows for that choice.

Substep 8.6. Proof of (iv) in the regime 1� Nε . log |log ε|.
We turn to the regime 1 � Nε . log |log ε|, in which case the proof of (iv) needs to be adapted

in the spirit of the computations in Step 6. Let φ ∈ W 1,∞(R2) be supported in the ball BR(z), and
let e−o(1)|log ε|/Nε ≤ r0 � Nε/|log ε|. First arguing as in Substep 8.5 with this choice of r0, we obtain

ˆ
Br0ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − log(r0/ε)ν

r0
ε,R

)
≤ ‖a−1φ‖L∞

ˆ
Br0ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − log(r0/ε)ν

r0
ε,R

)
+ o(N2

ε )‖φ‖W 1,∞ .

(8.165)

Now we consider the modified ball collection B̃r0,rε,R with r ≥ r0, as constructed in Step 6.1. Assume
that some ball B = B̄(y, s) gets grown into B′ = B̄(y, ts) without merging, for some t ≥ 1, and assume
that B′ \B does not intersect B̃r0ε,R, so that by construction ||uε| − 1| ≤ |log ε|−1 holds on B′ \B. Let
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d denote the degree of B (hence of B′). We may then decompose∣∣∣∣12
ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ ‖a−1φ‖L∞

∣∣∣∣12
ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πa(y)χzR(y)d log t

∣∣∣∣
+ ‖a−1φ‖W 1,∞

1

2

ˆ
B′\B

χzR| · −y|
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
,

and hence, for ts ≤ 1, decomposing χzR(x) ≤ χzR(y) + O(R−1) for all x ∈ B′ \ B, using the optimal
energy bound and the choice R & |log ε|,∣∣∣∣12

ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ ‖a−1φ‖L∞

∣∣∣∣12
ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πa(y)χzR(y)d log t

∣∣∣∣
+ ‖a−1φ‖W 1,∞

χzR(y)

2

ˆ
B′\B

| · −y|
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+ CtsNε‖φ‖W 1,∞ .

Arguing as in (8.155) yields∣∣∣∣12
ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ ‖a−1φ‖L∞

∣∣∣∣12
ˆ
B′\B

aχzR

(
|∇uε− iuεNεvε|2 +

a

2ε2
(1−|uε|2)2

)
−πa(y)χzR(y)d log t

∣∣∣∣+CtsNε‖φ‖W 1,∞

+ tsχzR(y)‖a−1φ‖W 1,∞

(
Cd2 +

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε
dτ

| · −y|

∣∣∣2 +

ˆ
B′\B

a

4ε2
(1− |uε|2)2

)
.

(8.166)

Let us estimate the last right-hand side term of (8.166). Applying the lower bound (8.151) with
ε replaced by 2ε (with ε < 1/2), together with the optimal energy bound, we obtain, for r ≥ r0 with
e−o(Nε) ≤ r � 1,

|log ε|
2

ˆ
R2

aχzR|ν
r0
ε,R| −

log 2

2

ˆ
R2

aχzR|ν
r0
ε,R| − o(N

2
ε ) =

|log(2ε)|
2

ˆ
R2

aχzR|ν
r0
ε,R| − o(N

2
ε )

≤ 1

2

ˆ
B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2(2ε)2
(1− |uε|2)2

)
≤ D∗ε,R +

|log ε|
2

ˆ
R2

aχzRµε −
3

16ε2

ˆ
B̃r0,rε,R

a2χzR(1− |uε|2)2.

Using (8.141), the bound of item (ii) on the number of vortices, and the choice of r0, we then find

3

16ε2

ˆ
B̃r0,rε,R

a2χzR(1− |uε|2)2 ≤ D∗ε,R +
|log ε|

2

ˆ
R2

aχzR(µε − νr0ε,R) +
log 2

2

ˆ
R2

aχzR|ν
r0
ε,R|+ o(N2

ε )

≤ D∗ε,R + o(N2
ε ) . N2

ε .

Combining this with the result (8.134) of item (v), we deduce the (suboptimal) estimate

sup
z

ˆ
R2

χzR
ε2

(1− |uε|2)2 . N2
ε . (8.167)
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Injecting this result into (8.166), together with the bound of item (ii) on the number of vortices, we
find∣∣∣∣12

ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ ‖a−1φ‖L∞

∣∣∣∣12
ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πa(y)χzR(y)d log t

∣∣∣∣
+ CtsN2

ε ‖φ‖W 1,∞ + tsχzR(y)‖a−1φ‖W 1,∞

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε
dτ

| · −y|

∣∣∣2. (8.168)

Recalling the improved lower bound (8.157), and combining it with the bound of item (ii) on the
number of vortices, with the assumption ‖curl vε‖L∞ . 1, with the optimal energy bound, and with
the choice R & |log ε|, we find for ts ≤ 1,

(1 +O(|log ε|−1))
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ πa(y)χzR(y)d log t− CtsN2

ε

+ (1−O(|log ε|−1 + ts))
a(y)χzR(y)

2

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε
dτ

| · −y|

∣∣∣2.
Injecting this estimate into (8.168) yields for ts� 1,∣∣∣∣12

ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ C‖φ‖W 1,∞

(
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πa(y)χzR(y)d log t

)
+ CtsN2

ε ‖φ‖W 1,∞ + C|log ε|−1‖φ‖W 1,∞

ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.

Using the bound of item (ii) on the number of vortices, we find∣∣∣2πφ(y)d log t− log t

ˆ
B
φνr0ε,R

∣∣∣ ≤ ‖∇φ‖L∞s log t

ˆ
B
|νr0ε,R| ≤ C‖∇φ‖L∞tsNε,

so that the above becomes∣∣∣∣12
ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log t

2

ˆ
B′
φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

(
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log t

2

ˆ
B′
aχzRν

r0
ε,R

)
+ CtsN2

ε ‖φ‖W 1,∞ + C|log ε|−1‖φ‖W 1,∞

ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.

By construction of the ball growth and merging process, this easily implies the following: if a ball
B = B̄(yB, sB) belongs to the collection B̃r0,rε,R for some r0 ≤ r � 1, then we have∣∣∣∣12

ˆ
B\B̃r0ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

2

ˆ
B
φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

( ˆ
B\B̃r0ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

ˆ
B
aχzRν

r0
ε,R

)
+ CsBN

2
ε ‖φ‖W 1,∞ + C|log ε|−1‖φ‖W 1,∞

ˆ
B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.
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Summing this estimate over all balls B of the collection B̃r0,rε,R that intersect BR(z), recalling that the
sum of the radii of these balls is by construction bounded by Cr, and using the optimal energy bound
and the bound of item (ii) on the number of vortices, we deduce for r0 ≤ r � 1,∣∣∣∣12

ˆ
B̃r0,rε,R \B̃

r0
ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

2

ˆ
R2

φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

( ˆ
B̃r0,rε,R \B̃

r0
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

ˆ
R2

aχzRν
r0
ε,R

)
+ CrN2

ε ‖φ‖W 1,∞ + C|log ε|−1Ezε,2R‖φ‖W 1,∞

≤ C‖φ‖W 1,∞

( ˆ
B̃r0,rε,R \B̃

r0
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

ˆ
R2

aχzRν
r0
ε,R + o(N2

ε )

)
.

Combining this with (8.165), and recalling that by definition Br0ε,R ⊂ B̃
r0
ε,R, we deduce∣∣∣∣12

ˆ
B̃r0,rε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/ε)

2

ˆ
R2

φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

(ˆ
B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/ε)

ˆ
R2

aχzRν
r0
ε,R + o(N2

ε )

)
.

Using (8.141) to replace νr0ε,R by µε in both sides up to an error of order (r0Nε|log ε|+ 1)‖φ‖W 1,∞ �
N2
ε ‖φ‖W 1,∞ , the result (8.132) follows.

Substep 8.7. Proof of (vi).
We adapt an argument by Struwe [403] (see also [384, Proof of Lemma 4.7]). Recalling that

|B2R(z) ∩ Brε,R| . r2, a direct application of the Hölder inequality yields
ˆ
Brε,R

χzR|∇uε − iuεNεvε|p . r2−p
(ˆ
Brε,R

χzR|∇uε − iuεNεvε|2
)p/2

. r2−p(Nε|log ε|)p/2,

which only implies the result if we are allowed to choose the total radius r small enough. Otherwise,
it is useful to rather work on dyadic “annuli”. For each integer 0 ≤ k ≤ Kε := blog2(r/ε1/2)c, define
the “annulus” Ek := Br2−kε,R \Br2

−k−1

ε,R . We set for simplicity sk := r2−k. Applying the Hölder inequality
separately on each annulus yields
ˆ
Brε,R

χzR|∇uε − iuεNεvε|p ≤
( ˆ
B
√
ε

ε,R

χzR|∇uε − iuεNεvε|2
)p/2
|B2R(z) ∩ B

√
ε

ε,R|
1−p/2

+

Kε∑
k=0

(ˆ
Ek

χzR|∇uε − iuεNεvε|2
)p/2
|B2R(z) ∩ Ek|1−p/2.

Using that |B2R(z) ∩ B
√
ε

ε,R| . ε, that |B2R(z) ∩ Ek| . s2
k, and that the integral over B

√
ε

ε,R in the
right-hand side is bounded by Ezε,R . Nε|log ε|, we deduce

ˆ
Brε,R

χzR|∇uε − iuεNεvε|p . ε1−p/2(Nε|log ε|)p/2 +

Kε∑
k=0

s2−p
k

(ˆ
R2\B

sk+1
ε,R

χzR|∇uε − iuεNεvε|2
)p/2

.

(8.169)
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It remains to estimate the last integrals. Using Lemma 8.5.1(i)–(ii) in the forms (8.120) and (8.121),
together with the optimal energy bound, we obtain

1

2

ˆ
B
sk+1
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχzRν
sk+1

ε,R −O
(
Nε|log sk+1|+ sk+1Nε|log ε|

)
− o(N2

ε ),

and hence, using (8.141) to replace νsk+1

ε,R by µε,

1

2

ˆ
R2\B

sk+1
ε,R

aχzR|∇uε − iuεNεvε|2 ≤ Dzε,R +O(Nε|log sk+1|+ sk+1Nε|log ε|) + o(N2
ε ).

If r � Nε|log ε|−1, then sk ≤ r � Nε|log ε|−1 for all k, so that we find

1

2

ˆ
R2\B

sk+1
ε,R

χzR|∇uε − iuεNεvε|2 . N2
ε +Nε(|log r|+ k). (8.170)

Inserting this into (8.169) yields for all p < 2, with r � Nε|log ε|−1,

ˆ
Brε,R

χzR|∇uε − iuεNεvε|p . ε1−p/2(Nε|log ε|)p/2 +

Kε∑
k=0

(r2−k)2−p
(
Np
ε +Np/2

ε |log r|p/2 +Np/2
ε kp/2

)
.p ε

1−p/2(Nε|log ε|)p/2 + r2−pNp
ε + r2−pNp/2

ε |log r|p/2.

In the regime Nε � log |log ε|, we may choose e−o(Nε) ≤ r � Nε|log ε|−1, and the above yields for
that choice ˆ

Brε,R
χzR|∇uε − iuεNεvε|p �p N

p
ε , (8.171)

that is, (8.135).
We now consider the regime 1 � Nε . log |log ε|. In that case, we need to prove (8.171) for

larger values of the radius r ≥ e−o(Nε), and the above argument no longer holds. Given ε1/2 < r0 �
Nε|log ε|−1, we replace the initial total radius ε1/2 by r0, and for r0 ≤ r � 1 we consider the modified
dyadic “annuli” Ẽk := B̃r0,r2

−k

ε,R \ B̃r0,r2
−k−1∨r0

ε,R , with 0 ≤ k ≤ K := blog2(r/r0)c. We set for simplicity
s̃k := (r2−k) ∨ r0. The decomposition (8.169) is then replaced by

ˆ
B̃r0,rε,R

χzR|∇uε − iuεNεvε|p . r2−p
0 (Nε|log ε|)p/2 +

K∑
k=0

s2−p
k

(ˆ
R2\B̃

r0,s̃k+1
ε,R

χzR|∇uε − iuεNεvε|2
)p/2

,

(8.172)

where it remains to adapt the estimate (8.170) for the last integrals. The lower bound (8.160) of
Step 6 together with the optimal energy bound and with the bound of item (ii) on the number of
vortices yields

1

2

ˆ
B̃
r0,s̃k+1
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(s̃k+1/ε)

2

ˆ
R2

aχzRν
r0
ε,R − o(N

2
ε )

≥ |log ε|
2

ˆ
R2

aχzRν
r0
ε,R −O(Nε|log sk+1|)− o(N2

ε ),
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and hence, using (8.141) to replace νr0ε,R by µε,

1

2

ˆ
R2\B̃

r0,s̃k+1
ε,R

aχzR|∇uε − iuεNεvε|2 ≤ Dzε,R +O(Nε|log sk+1|+ r0Nε|log ε|) + o(N2
ε ).

The choice r0 � Nε|log ε|−1 then yields

1

2

ˆ
R2\B̃

r0,s̃k+1
ε,R

aχzR|∇uε − iuεNεvε|2 . N2
ε +Nε(|log r|+ k).

Inserting this into (8.172), the result (8.136) follows.

Based on the above vortex-balls construction, we have the following approximation result, which is
obtained as in [382, Proposition 9.6] (see also Step 2 of the proof of Proposition 6.2.11 in Chapter 6).

Lemma 8.5.3. Let ε1/2 < r0 ≤ r < r̄, and let Brε,R and B̃r0,rε,R denote the collections of the balls
constructed in Proposition 8.5.2. Then, given Γε ∈ W 2,∞(R2)2, there exist approximate vector fields
Γ̄ε, Γ̃ε ∈ W 2,∞(R2)2 such that Γ̄ε is constant in each ball of the collection Brε,R and Γ̃ε is constant in
each ball of the collection B̃r0,rε,R , such that ‖Γ̄ε‖L∞ ≤ ‖Γε‖L∞ and ‖Γ̃ε‖L∞ ≤ ‖Γε‖L∞, such that for all
0 ≤ γ ≤ 1,

‖Γ̄ε − Γε‖Cγ + ‖Γ̃ε − Γε‖Cγ . r1−γ‖∇Γε‖L∞ ,

and such that for all R ≥ 1,

sup
z
‖∇(Γ̄ε − Γε)‖L1(BR(z)) + sup

z
‖∇(Γ̃ε − Γε)‖L1(BR(z)) . rR

2‖∇Γε‖W 1,∞ . ♦

8.5.2 Additional results

In order to control the velocity of the vortices, the following quantitative version of the “product
estimate” of [381] is needed; the proof is omitted, as it is a direct adaptation of [395, Appendix A]
(further deforming the metric in a non-constant way in the time direction; see also [381, Section III]).

Lemma 8.5.4 (Product estimate). Denote by Mε any quantity such that for all q > 0,

lim
ε↓0

εqMε = lim
ε↓0
|log ε|M−qε = lim

ε↓0
|log ε|−1 logMε = 0.

Let uε : [0, T ]×R2 → C, vε : [0, T ]×R2 → R2, and pε : [0, T ]×R2 → R. Assume that E∗,tε,R . |log ε|2

for all t, and that Ē∗,Tε,R ≤Mε, where we have set

Ē∗,Tε,R := sup
z

ˆ T

0

(
Ez,tε,R +

ˆ
R2

χzR|∂tutε − iutεNεp
t
ε|2
)
dt.

Then, for all X ∈W 1,∞([0, T ]× R2)2 and Y ∈W 1,∞([0, T ]× R2), we have for all z ∈ R2,∣∣∣∣ ˆ T

0

ˆ
R2

χzRṼε ·XY
∣∣∣∣

≤
1 + C logMε

|log ε|

|log ε|

( ˆ T

0

ˆ
R2

χzR|(∂tuε − iuεNεpε)Y |2 +

ˆ T

0

ˆ
R2

χzR|(∇uε − iuεNεvε) ·X|2
)

+ C
(
1 + ‖(X,Y )‖5W 1,∞([0,T ]×R2)

)(
M−1/8
ε + εNε

)(
Ē∗,Tε,R + sup

0≤τ≤T
E∗,τε,R +N2

ε

)
. ♦
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We now turn to some useful a priori estimates on the solution uε of equation (8.6). We start with
the following (very suboptimal) a priori bound on the velocity of the vortices, adapted from [395,
Lemma 4.1].

Lemma 8.5.5 (A priori bound on velocity). Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh,
F : R2 → R2, f : R2 → R satisfy (8.43). Let uε : R+ × R2 → C and vε : [0, T ) × R2 → R2 be the
solutions of (8.6) and (8.51) as in Proposition 8.2.2(i) and in Assumption 8.3.1(a), respectively, for
some T > 0. Let 0 < ε � 1, 1 ≤ Nε . ε−1, and R ≥ 1 with εRθ � 1 for some θ > 0, and assume
that E∗,tε,R .t Nε|log ε| for all t. Then, in each of the considered regimes (GL1), (GL2), (GL3), (GL′1),
and (GL′2), we have for all θ > 0 and all t ∈ [0, T ),

α2 sup
z

ˆ t

0

ˆ
R2

aχzR|∂tuε|2 .t,θ Nε|log ε|3 +RθN2
ε |log ε|2 . RθNε(Nε + |log ε|)|log ε|2. ♦

Proof. Integrating identity (8.112) in time, reorganizing the terms, and settingDz,t
ε,R :=

´ t
0

´
R2 aχ

z
R|∂tuε|2,

we obtain

λεαD
z,t
ε,R = Êz,◦ε,R − Ê

z,t
ε,R −

ˆ t

0

ˆ
R2

a∇χzR · 〈∂tuε,∇uε − iuεNεvε〉+

ˆ t

0

ˆ
R2

Nεχ
z
R〈∂tuε, iuε〉 div (avε)

+

ˆ
R2

aN2
ε

2
(1− |utε|2)(ψz,tε,R − χ

z
R|vtε|2)−

ˆ
R2

aN2
ε

2
(1− |u◦ε|2)(ψz,◦ε,R − χ

z
R|v◦ε|2)

+

ˆ t

0

ˆ
R2

aχzR

(
Nε(Nεvε−jε) · ∂tvε−Nεvε·Vε −

|log ε|
2

F⊥ · Vε
)
. (8.173)

Noting that |∇χzR| . R−1(χzR)1/2, using the pointwise estimates of Lemma 8.4.2 for Vε and jε−Nεvε,
and using assumptions (8.43), the properties of vε in Assumption 8.3.1(a), the bound (8.98) on ψzε,R,
and Lemma 8.4.1 in the form Êz,tε,R . E

∗,t
ε,R + o(N2

ε ) .t Nε|log ε|, we find for θ > 0 small enough, in the
considered regimes,

λεαD
z,t
ε,R .t,θ Nε|log ε|+R−1(Nε|log ε|)1/2(Dz,t

ε,R)1/2 +Nε(1 + ε(Nε|log ε|)1/2)(Dz,t
ε,R)1/2

+εN2
ε (Nε|log ε|)1/2

(
1 +
|log ε|
Nε

(λεR
θ + 1 ∧ λ1/2

ε +R−1+θ)
)

+Nε(Nε|log ε|)1/2(1 + εNε) + ελ−1/2
ε N2

ε |log ε|
+(Nε + λε|log ε|)

(
(1 + εNε)(Nε|log ε|)1/2 +NεR

θ
)
(Dz,t

ε,R)1/2

.θ |log ε|(Nε + |log ε|) +
(
Nε|log ε|Rθ + |log ε|(Nε|log ε|)1/2

)
(Dz,t

ε,R)1/2 + o(1).

Absorbing (Dz,t
ε,R)1/2 in the left-hand side, the result follows.

The following optimal a priori estimate is also crucially needed in our analysis in the presence of
pinning, due to the absence of a factor 1

2 in front of the quantity a
ε2

(1−|uε|2)2 as it appears in the term
IHε,%,R in Lemma 8.4.4. A simple computation based on the energy lower bound of Proposition 8.5.2
yields a similar bound with Nε replaced by N2

ε (see indeed (8.167)), but the optimal result below is
much more subtle. It is proved as a combination of the Pohozaev vortex-balls construction of [382,
Section 5], together with some careful cut-off techniques inspired by [382, Proof of Proposition 13.4].

Lemma 8.5.6. Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R
satisfy (8.43). Let uε : R+ × R2 → C and vε : [0, T )× R2 → R2 be the solutions of (8.6) and (8.51)
as in Proposition 8.2.2(i) and in Assumption 8.3.1(a), respectively, for some T > 0. Let 0 < ε� 1,
1 ≤ Nε . |log ε|, and R ≥ 1 with εR|log ε|3 . 1, and assume that E∗,tε,R .t Nε|log ε| for all t. Then, in
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the nondegenerate dissipative case, in each of the considered regimes (GL1), (GL2), (GL′1), and (GL′2),
we have for all t ∈ [0, T ),

α2 sup
z

ˆ t

0

ˆ
R2

χzR
ε2

(1− |uε|2)2 .t Nε. (8.174)

♦

Proof. To simplify notation, we focus on the case z = 0, but the result of course holds uniformly with
respect to the translation z ∈ RZ2. We split the proof into three steps.

Step 1. Pohozaev estimate on balls.
In this step, we prove the following Pohozaev type estimate, adapted from [382, Theorem 5.1]: for

any ball Br(x0) with r ≤ 1, we have

α2

ˆ t

0

ˆ
Br(x0)

a2χR
2ε2

(1− |uε|2)2 .t rλεNε|log ε|3

+ r

ˆ t

0

ˆ
∂Br(x0)

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)
. (8.175)

For any smooth vector field X and any bounded open set U ⊂ R2, we have by integration by parts

−
ˆ
U
χR∇X : S̃ε =

ˆ
U
χR div S̃ε ·X +

ˆ
U
X · S̃ε · ∇χR −

ˆ
∂U
χRX · S̃ε · n,

and hence, for U = Br(x0), r > 0, and X = x− x0,

−
ˆ
Br(x0)

χR Tr S̃ε =

ˆ
Br(x0)

χR div S̃ε · (x− x0) +

ˆ
Br(x0)

(x− x0) · S̃ε · ∇χR − r
ˆ
∂Br(x0)

χR S̃ε : n⊗ n.

By definition (8.107) of the modulated stress-energy tensor S̃ε, this means
ˆ
Br(x0)

aχR

( a

2ε2
(1−|uε|2)2 +(1−|uε|2)f

)
=

ˆ
Br(x0)

χR div S̃ε · (x−x0)+

ˆ
Br(x0)

(x−x0) · S̃ε ·∇χR

+ r

ˆ
∂Br(x0)

aχR
2

(
|n⊥ · (∇uε − iuεNεvε)|2 − |n · (∇uε − iuεNεvε)|2

+
a

2ε2
(1− |uε|2)2 + (1− |uε|2)

(
N2
ε (|n⊥ ·vε|2 − |n ·vε|2) + f

))
,

so that we may simply estimate
ˆ
Br(x0)

a2χR
2ε2

(1− |uε|2)2 ≤ r
ˆ
Br(x0)

|div S̃ε|+ r

ˆ
Br(x0)

|∇χR||S̃ε|+
ˆ
Br(x0)

a|1− |uε|2||f |

+ r

ˆ
∂Br(x0)

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)
. (8.176)

It remains to estimate the first three right-hand side terms. Using the pointwise estimates of
Lemma 8.4.2, and using assumption (8.43) and the boundedness properties of vε, pε in Assump-
tion 8.3.1(a), Lemma 8.4.3 directly yields in the considered regimes,

|div S̃ε| . λε|log ε||∂tuε||∇uε − iuεNεvε|+Nε(1 + λ1/2
ε |log ε|)(1 + |1− |uε|2|)|∇uε − iuεNεvε|

+ λεNε|log ε||∂tuε|(1 + |1− |uε|2|) + (Nε + λε|log ε|)|∇uε − iuεNεvε|2 + ε−2(1− |uε|2)2

+ |1− |uε|2|
(
N2
ε (Nε + λε|log ε|) + λ2

ε|log ε|2
)

+N2
ε (Nε + λε|log ε|),
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which gives for Nε . |log ε|,

|div S̃ε| . λε|∂tuε|2 + λε|log ε|2|∇uε − iuεNεvε|2 + λεN
2
ε |log ε|2(1 + (1− |uε|2)2) + ε−2(1− |uε|2)2.

By Lemma 8.5.5 with R = 1, we deduce for all r ≤ 1,

α2

ˆ t

0

ˆ
Br(x0)

|div S̃ε| .t λεNε|log ε|3 + λεN
2
ε |log ε|2(1 + ε2Nε|log ε|) . λεNε|log ε|3.

Inserting this into (8.176), and noting that (8.43) in the form ‖f‖L∞ . |log ε|2 yields
ˆ
Br(x0)

a|1− |uε|2||f | .t εr(Nε|log ε|)1/2‖f‖L∞ . εr|log ε|3,

and
ˆ
Br(x0)

|∇χR||S̃ε| . R−1

ˆ
Br(x0)

(
|∇uε − iuεNεvε|2 +

1

ε2
(1− |uε|2)2 + ε2(N4

ε |vε|4 + |f |2)
)

. R−1
(
Nε|log ε|+ ε2(N4

ε + ‖f‖2L∞)
)
. Nε|log ε|,

the result (8.175) follows.

Step 2. Estimate inside small balls.
In this step, we prove the desired estimate (8.174) for the integral restricted to suitable small balls

centered at the vortex locations. More precisely, since we have by assumption E∗ε,R . Nε|log ε| .
|log ε|2, we may apply [382, Proposition 4.8] with M = εκ−1 and δ = εκ/4 for any κ ∈ (0, 1). This
yields a finite union B̂ε,0 of disjoint closed balls with total radius r(B̂ε,0) = εκ/2, covering the set
{x ∈ B2R : ||uε(x)| − 1| ≥ εκ/4}. We then prove that

α2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 .t Nε. (8.177)

For that purpose, we let the initial collection of balls B̂ε,0 grow, and we use the Pohozaev estimate
of Step 1 as in [382, Proof of Theorem 5.1]. By [382, Theorem 4.2], there exists a monotone family
(B̂sε)s≥0 of unions of disjoint closed balls, such that B̂0

ε = B̂ε,0, B̂sε has total radius r(B̂sε) = esr(B̂ε,0)
for all s ≥ 0, and B̂sε = es−rB̂rε for all 0 ≤ r ≤ s with [r, s] ⊂ R+ \ Tε, for some finite set Tε ⊂ R+

(corresponding to the merging times in the growth process). For all s ≥ 0 with r(B̂sε) ≤ 1, the
result (8.175) of Step 1 gives the following estimate, for all θ > 0,

α2

ˆ t

0

ˆ
B̂sε

a2χR
2ε2

(1− |uε|2)2 .t r(B̂sε)Nε|log ε|3

+
∑

Br(x)∈B̂sε

r

ˆ t

0

ˆ
∂Br(x)

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + f)
)
.

Integrating this estimate over s and applying [382, Proposition 4.1], we find, for all s ≥ 0 with
r(B̂ε(s)) ≤ 1,

sα2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 ≤ α2

ˆ s

0
dv

ˆ t

0

ˆ
B̂vε

a2χR
2ε2

(1− |uε|2)2

.t s r(B̂sε)Nε|log ε|3+

ˆ t

0

ˆ
B̂sε\B̂ε,0

aχR
2

(
|∇uε−iuεNεvε|2+

a

2ε2
(1−|uε|2)2+|1−|uε|2|(N2

ε |vε|2+f)
)
,
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and hence, using assumption (8.43), the boundedness of vε in Assumption 8.3.1(a), and the assumed
energy bound,

sα2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 .t s r(B̂sε)Nε|log ε|3 +Nε|log ε|.

Recalling that r(B̂sε) = esεκ/2, this yields for all s ≥ 1 with r(B̂sε) ≤ 1,

α2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 .t e
sεκ/2Nε|log ε|3 +

Nε|log ε|
s

,

and the result (8.177) now follows for the choice s = |log εκ/4|.

Step 3. Estimate outside small balls.
It remains to show that the desired estimate (8.174) also holds for the integral restricted to the

complement of the small balls B̂ε,0. More precisely, we prove in this step for all θ > 0,

α

ˆ t

0

ˆ
||uε|−1|≤εκ/4

χR

(
|∇|uε||2 +

a(1− |uε|2)2

2ε2

)
.t,θ ε

κ/4Rθ|log ε|2 + εR|log ε|3 (8.178)

The conclusion (8.174) of course follows from this together with (8.177), choosing θ > 0 small enough.
In order to prove (8.178), we adapt the argument of [382, Proof of Proposition 13.4]. For 0 < ε ≤

2−4/κ, we define a cut-off function ζε as follows,

ζε(y) :=



y, if 0 ≤ y ≤ 1/2;
1
2 + y−1/2

1−2εκ/4
, if 1/2 ≤ y ≤ 1− εκ/4;

1, if 1− εκ/4 ≤ y ≤ 1 + εκ/4;

1 + y−1−εκ/4
1−2εκ/4

, if 1 + εκ/4 ≤ y ≤ 3/2;

y, if y ≥ 3/2.

Writing uε := ρεe
iϕε locally, the equation (8.6) for uε yields in particular

αλε∂tρε − βλε|log ε|ρε∂tϕε
= 4ρε − ρε|∇ϕε|2 +

aρε
ε2

(1− ρ2
ε) +∇h · ∇ρε − ρε|log ε|F⊥ · ∇ϕε + fρε. (8.179)

Testing this equation against χR(ζε(ρε)− ρε), and rearranging the terms, we obtain

ˆ
R2

χR(1− ζ ′ε(ρε))|∇ρε|2 +

ˆ
R2

aχR
ε2

ρε(ζε(ρε)− ρε)(1− ρ2
ε) = αλε

ˆ
R2

χR(ζε(ρε)− ρε)∂tρε

− βλε|log ε|
ˆ
R2

χRρε(ζε(ρε)− ρε)∂tϕε +

ˆ
R2

(ζε(ρε)− ρε)∇χR · ∇ρε +

ˆ
R2

χR(ζε(ρε)− ρε)ρε|∇ϕε|2

−
ˆ
R2

χR(ζε(ρε)− ρε)∇h · ∇ρε + |log ε|
ˆ
R2

χRρε(ζε(ρε)− ρε)F⊥ · ∇ϕε −
ˆ
R2

χR(ζε(ρε)− ρε)fρε.

(8.180)

Using that the cut-off function ζε satisfies for all y ≥ 0

|ζε(y)− y| . εκ/41|y−1|≤1/2, |ζε(y)− y| ≤ |1− y| ≤ |1− y2|, (8.181)

|ζ ′ε(y)− 1| . 1|y−1|≤εκ/4 + εκ/41|y−1|≤1/2, (ζε(y)− y)(1− y) ≥ 0, (8.182)
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and noting thatˆ
|ρε−1|≤εκ/4

aχR
5ε2

(1− ρ2
ε)

2 ≤
ˆ
|ρε−1|≤εκ/4

aχR
ε2

ρε(1− ρε)(1− ρ2
ε) ≤

ˆ
R2

aχR
ε2

ρε(ζε(ρε)− ρε)(1− ρ2
ε),

we obtain from (8.43), (8.180) and (8.181),
ˆ
|ρε−1|≤εκ/4

χR

(
|∇ρε|2 +

a

2ε2
(1− ρ2

ε)
2
)
. εκ/4

ˆ
|ρε−1|≤1/2

χR(|∇ρε|2 + ρ2
ε|∇ϕε|2)

+ λε|log ε|
ˆ
|ρε−1|≤1/2

χR|1− ρ2
ε|(|∂tρε|+ ρε|∂tϕε|)

+ (1 + λε|log ε|)
ˆ
|ρε−1|≤1/2

χR|1− ρ2
ε|(|∇ρε|+ ρε|∇ϕε|)

+

ˆ
|ρε−1|≤1/2

χR|f ||1− ρ2
ε|+

ˆ
|ρε−1|≤1/2

|∇χR||1− ρ2
ε||∇ρε|.

Since |∇uε|2 = |∇ρε|2 +ρ2
ε|∇ϕε|2, and |∂tuε|2 = |∂tρε|2 +ρ2

ε|∂tϕε|2, we obtain with assumption (8.43),
ˆ
|ρε−1|≤εκ/4

χR

(
|∇|uε||2 +

a

2ε2
(1− |uε|2)2

)
. εκ/4‖∇uε‖2L2(B2R)

+ λε|log ε|‖1− |uε|2‖L2(B2R)‖∂tuε‖L2(B2R)

+ (1 + λε|log ε|)‖1− |uε|2‖L2(B2R)‖∇uε‖L2(B2R) +R(1 + λ2
ε|log ε|2)‖1− |uε|2‖L2(B2R).

By the integrability properties of vε in Assumption 8.3.1(a), we have for all θ > 0,

‖∇uε‖L2(B2R) .θ ‖∇uε − iuεNεvε‖L2(B2R) +Nε(R
θ + ‖1− |uε|2‖L2(B2R)),

hence, by Lemma 8.5.5,

α

ˆ t

0

ˆ
|ρε−1|≤εκ/4

χR

(
|∇|uε||2 +

a

2ε2
(1− |uε|2)2

)
.t,θ ε

κ/4Rθ|log ε|2 + εR|log ε|3,

and the result (8.178) follows.

8.6 Mean-field limit in the dissipative case

In this section we prove Theorem 8.1.2, that is, the mean-field limit result in the dissipative
case (α > 0) in both critical regimes (GL1) and (GL2) as well as in the subcritical regimes (GL′1)
and (GL′2). More precisely, the following result states that the rescaled supercurrent density N−1

ε jε
remains close to the solution vε of equation (8.51). Combining this with the results of Section 8.3.1
(in particular, with Lemma 8.3.3), the result of Theorem 8.1.2 follows. The proof consists in making
use of the various estimates and technical tools for vortex analysis developed in Section 8.5 in order
to estimate the terms in the decomposition of the time derivative of the modulated energy excess
given by Lemma 8.4.4, and then deduce the smallness of the modulated energy excess by a Grönwall
argument. (In this section, as we assume α > 0, all multiplicative constants are implicitly allowed to
additionally depend on an upper bound on α−1.)

Proposition 8.6.1. Let α > 0, β ∈ R, α2 + β2 = 1, and let h : R2 → R, a := eh, F : R2 → R2,
f : R2 → R satisfy (8.43). Let uε : [0, T ) × R2 → C and vε : [0, T ) × R2 → R2 be solutions of (8.6)
and (8.51) as in Proposition 8.2.2(i) and in Proposition 8.3.2, respectively, for some T > 0. Let
0 < ε� 1, 1� Nε . |log ε|, R ≥ 1, |log ε|/Nε � R . |log ε|n, for some n ≥ 1, and assume that the
initial modulated energy excess satisfies D∗,◦ε,R � N2

ε . Then,
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(i) if log |log ε| � Nε . |log ε|, in each of the regimes (GL1), (GL2), (GL′1), and (GL′2), we have
D∗,tε,R �t N

2
ε for all t ∈ [0, T );

(ii) if 1� Nε . log |log ε|, in the parabolic case α = 1, β = 0, either in the regime (GL1), or in the
regime (GL′2) with λε . eo(Nε)/|log ε|, the same conclusion D∗,tε,R �t N

2
ε holds for all t ∈ [0, T ).

In particular, in both cases, we deduce N−1
ε jε − vε → 0 in L∞loc([0, T ); L1

uloc(R2)2) as ε ↓ 0. If we
further assume D∗,◦ε,∞ � N2

ε , then for any ` ≥ 1 we obtain more precisely for all t ∈ [0, T ) and L ≥ 1,

sup
z
‖N−1

ε jε − vε‖(L1 + L2)(BL(z)) �t,`

(
1 +

L

|log ε|`
)2
. (8.183)

♦

Remark 8.6.2. If we further assume ‖utε‖L∞ .t 1 for all t, then the proof shows that the convergence
N−1
ε jε − vε → 0 actually holds in L∞loc([0, T ); Lpuloc(R

2)2) for all p < 2. In the parabolic case β = 0
without forcing F = f = 0, a maximum principle type argument gives that ‖u◦ε‖L∞ ≤ 1 implies
‖utε‖L∞ ≤ 1 for all t ≥ 0 (see e.g. [117, Proposition 4.4]). 2 However, the same argument fails in the
presence of forcing F, f 6= 0. Moreover, such a uniform L∞-bound on uε is expected to fail in the
Gross-Pitaevskii case α = 0 due to the time reversibility of the equation in that case, and similarly it
is expected to fail as well in the mixed-flow case α > 0, β 6= 0. We therefore systematically avoid the
use of such L∞-estimates here. ♦

Proof. We choose R � |log ε|/Nε with Rθ0 . |log ε| for some θ0 > 0. Given the assumption D∗,◦ε,R �
N2
ε on the initial data, for all ε > 0 we define Tε > 0 as the maximum time ≤ T such that D∗,tε,R ≤ N2

ε

holds for all t ≤ Tε. By Lemma 8.4.1 and Proposition 8.5.2, we deduce D̂∗,◦ε,R � N2
ε and for all t ≤ Tε,

E∗,tε,R .t Nε|log ε|, Ê∗,tε,R .t Nε|log ε|, D̂∗,tε,R .t N
2
ε , D∗,tε,R . D̂

∗,t
ε,R + ot(N

2
ε ). (8.184)

The strategy of the proof consists in showing that for all t ≤ Tε,

D̂∗,tε,R .t o(N
2
ε ) +

ˆ t

0
D̂∗ε,R. (8.185)

By the Grönwall inequality, this implies D̂∗,tε,R �t N
2
ε , hence D

∗,t
ε,R �t N

2
ε for all t ≤ Tε. This gives in

particular Tε = T for all ε > 0 small enough, and the main conclusion follows.
To simplify notation, we focus on (8.185) with the left-hand side D̂tε,R centered at z = 0, but the

result of course holds uniformly with respect to the translation. We start with the general mixed-flow
case in the regime log |log ε| � Nε . |log ε|. The proof of (8.185) in that case is split into three

2. The usual maximum principle type argument is indeed as follows: Denoting by ξz(x) := e−|x−z| the exponential
cut-off centered at z ∈ Z2, writing uε := ρεe

iϕε locally, and testing equation (8.179) for ρε (in the parabolic case β = 0)
with the positive part ξz(ρε − 1)+, we find

λε
2
∂t

ˆ
R2

ξz(ρε−1)2
+ = −

ˆ
ρε>1

ξz|∇ρε|2−
ˆ
R2

(ρε−1)+∇ξz ·∇ρε−
ˆ
R2

ξzρε(ρε−1)+|∇ϕε|2+

ˆ
R2

aξz

2
ρε(ρε−1)+(1−ρ2

ε)

+
1

2

ˆ
R2

ξz∇h · ∇(ρε − 1)2
+ − |log ε|

ˆ
R2

ξzρε(ρε − 1)+F
⊥ · ∇ϕε +

ˆ
R2

fξzρε(ρε − 1)+,

and hence, using the estimate |∇ξz| . ξz, and the inequality 2xy ≤ x2 + y2,

λε
2
∂t

ˆ
R2

ξz(ρε − 1)2
+ . (1 + ‖∇h‖W1,∞)

ˆ
R2

ξz(ρε − 1)2
+ + (|log ε|2‖F‖2L∞ + ‖f‖L∞)

ˆ
R2

ξzρε(ρε − 1)+.

Therefore, in the case F = f = 0 (which implies ∇h = 0 by the choice (8.7)), if the initial data satisfies |u◦ε | ≤ 1, the
Grönwall inequality implies |utε| ≤ 1 for all t ≥ 0.
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steps, while the additional stated consequences are deduced in Step 4. Finally, Step 5 describes the
modifications needed to treat the parabolic case in the regime 1� Nε . log |log ε|.

Let us first introduce some notation. In the regime log |log ε| � Nε . |log ε|, for all t ≤ Tε, as
we are in the framework of Proposition 8.5.2 with utε, vtε, we let Btε := Btε,R denote the constructed
collection of disjoint closed balls Brεε,R(utε, v

t
ε) with total radius rε := |log ε|−4e−

√
Nε , hence e−o(Nε) ≤

rε � Nε|log ε|−1. Let then Γ̄tε denote the corresponding approximation of Γtε given by Lemma 8.5.3.
We decompose Γε := αΓε,0 − βΓ⊥ε,0 with

Γε,0 := λ−1
ε

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
.

Step 1. Time derivative of the modulated energy excess.
Lemma 8.4.4 yields the following decomposition,

∂tD̂ε,R = ISε,R + IVε,R + IEε,R + IDε,R + IHε,R + Idε,R + Igε,R + Inε,R + I ′ε,R, (8.186)

where the eight first terms are as in the statement of Lemma 8.4.4, and where the error I ′ε,R is
estimated as follows (cf. (8.110)) in the considered regimes,

ˆ t

0
|I ′ε,R| .t εR(Nε|log ε|)1/2|log ε|2 = o(N2

ε ).

Step 2. Estimating the error terms.
In this step, we consider the regime log |log ε| � Nε . |log ε|, we study the three error terms Idε,R,

Igε,R, and I
n
ε,R, and we prove for all t ≤ Tε,
ˆ t

0
(Idε,R + Igε,R + Inε,R) .t o(N

2
ε ) + o

( Nε

|log ε|

)ˆ t

0

ˆ
R2

χR|∂tuε − iuεNεpε|2. (8.187)

We start with the estimation of Inε,R. Using (8.184), Lemma 8.5.5, and the boundedness properties
of pε (cf. Proposition 8.3.2), the quantity Ē∗ε,R defined in Lemma 8.5.4 is estimated as follows in the
considered regimes, for all θ > 0,

Ē∗,tε,R . sup
z

ˆ t

0
Ezε,R + sup

z

ˆ t

0

ˆ
R2

χzR
(
|∂tuε|2 +N2

ε |pε|2 +N2
ε |1− |uε|2||pε|2

)
.t,θ R

θNε|log ε|3 + λ−1
ε N2

ε . R
θ|log ε|4,

hence, for θ > 0 small enough, Ē∗,tε,R .t |log ε|5. Using the obvious estimate |∇χR| . R−1χ
1/2
R ,

Lemma 8.5.4 then yields∣∣∣∣ ˆ t

0

ˆ
R2

aṼε · ∇⊥χR
∣∣∣∣ .t |log ε|−1

+R−1|log ε|−1
(ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε|2 +

ˆ t

0

ˆ
B2R

|∇uε − iuεNεvε|2
)
,

and hence,∣∣∣ ˆ t

0
Inε,R

∣∣∣ .t 1 +R−1

ˆ t

0

ˆ
B2R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)

+R−1

ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε|2.

475



Using (8.184), (8.43), and the integrability properties of vε (cf. Proposition 8.3.2), with the choice
R� |log ε|/Nε, we conclude∣∣∣ ˆ t

0
Inε,R

∣∣∣ .t 1 +R−1Nε|log ε|+R−1

ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε |2

. o(N2
ε ) + o

( Nε

|log ε|

)ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε |2. (8.188)

We now turn to the estimation of Igε,R. Using (8.43) and the pointwise estimates of Lemma 8.4.2, we
find

|Igε,R| . ‖Γε − Γ̄ε‖L∞
(
Nε

ˆ
B2R

(|∇uε − iuεNεvε|+Nε|1− |uε|2|)|curl vε|

+Nε

ˆ
B2R

|1− |uε|2||∇uε − iuεNεvε|+ λε

ˆ
R2

χR

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+ λε|log ε|

ˆ
R2

χR|∂tuε − iuεNεpε,%||∇uε − iuεNεvε|

+ (Nε + λε|log ε|)
ˆ
R2

χR(|∇uε − iuεNεvε|2 +N2
ε |1− |uε|2||vε|2)

+N2
ε

ˆ
R2

χR|vε|2(Nε|vε|+ |log ε||F |) + λεNε|log ε||β|
ˆ
R2

χR|∂tuε − iuεNεpε|(|vε|+ |1− |uε|2|)
)
.

By (8.184), by Lemma 8.5.3 in the form ‖Γε− Γ̄ε‖L∞ . rε = |log ε|−4e−
√
Nε , and by the integrability

properties of vε (cf. Proposition 8.3.2), we deduce in the considered regimes for all θ > 0,

|Igε,R| .t,θ
e−
√
Nε

|log ε|4
RθNε|log ε|2

(
1 +

ˆ
R2

χR|∂tuε − iuεNεpε|2
)1/2

, (8.189)

and hence, for θ > 0 small enough such that Rθ . |log ε|, we conclude

|Igε,R| .t o(N
2
ε ) + o

( Nε

|log ε|

)ˆ
R2

χR|∂tuε − iuεNεpε|2. (8.190)

Regarding the last term Idε,R, the definition of the pressure pε in (8.51) simply yields Idε,R = 0, and
the conclusion (8.187) follows.

Step 3. Estimating the dominant terms.
In this step, we consider the regime log |log ε| � Nε . |log ε| and we turn to the estimation of the

five first terms in (8.186), showing more precisely that for all t ≤ Tε,

D̂tε,R .t o(N2
ε ) +

ˆ t

0
D̂ε,R. (8.191)

As this result obviously holds uniformly with respect to translations of the cut-off functions, the
conclusion (8.185) follows.

We start with the estimation of the first term ISε,R. Since for all t the field Γ̄tε is by definition
constant in each ball of the collection Btε and satisfies ‖∇Γ̄tε‖L∞ . ‖∇Γtε‖L∞ , we obtain

|ISε,R| .
ˆ
R2\Bε

χR|S̃ε| .
ˆ
R2\Bε

aχR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+

ˆ
R2

χR|1− |uε|2|(N2
ε |vε|2 + |f |).

476



Since Bε has total radius rε := |log ε|−4e−
√
Nε , and since the choice Nε � log |log ε| ensures rε ≥

e−o(Nε), we may apply Proposition 8.5.2(v), which shows that the first integral in the above right-
hand side is bounded by D∗ε,R + o(N2

ε ). Further using (8.184), (8.43), and the integrability properties
of vε (cf. Proposition 8.3.2), we obtain in the considered regimes,

|ISε,R| . Dε,R + o(N2
ε ) + ε(Nε|log ε|)1/2(N2

ε +Rλ2
ε|log ε|2) . D̂ε,R + o(N2

ε ). (8.192)

We turn to IHε,R. Since ‖(Γε,∇h)‖L∞ .t 1, Lemma 8.5.6 yields
ˆ t

0
IHε,R = Ot(Nε) +

ˆ t

0

ˆ
R2

aχR
2

Γ⊥ε · ∇h
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
,

and hence by Proposition 8.5.2(iv) and by (8.184),
ˆ t

0
IHε,R .t o(N

2
ε ) +

ˆ t

0
Dε,R .t o(N2

ε ) +

ˆ t

0
D̂ε,R. (8.193)

The term IDε,R is simply estimated by

IDε,R ≤ −
λεα

2

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +
λεα

2

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γ⊥ε |2. (8.194)

We finally turn to IVε,R. Using α
2 + β2 = 1, we have by definition

Γε,0 − βΓ⊥ε = Γε,0 − β(αΓ⊥ε,0 + βΓε,0) = α2Γε,0 − αβΓ⊥ε,0 = αΓε,

and hence IVε,R takes on the following guise,

IVε,R = λε|log ε|
ˆ
R2

aχR
2
Ṽε · (Γε,0 − βΓ⊥ε ) = λεα|log ε|

ˆ
R2

aχR
2
Ṽε · Γε. (8.195)

As shown in Step 2, the quantity Ē∗ε,R defined in Lemma 8.5.4 satisfies Ē∗,tε,R .t |log ε|5. In the regime
log |log ε| � Nε . |log ε|, choosing e.g. Mε := exp((Nε log |log ε|)1/2), Lemma 8.5.4 yields for any
Λ ' 1,

∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ ot(1) + λεα
(

1 +
Ct(Nε log |log ε|)1/2

|log ε|

)
×
(

1

Λ

ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +
Λ

4

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2
)
,

and thus, using the optimal energy bound (8.184), we obtain in the considered regimes,∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ ot(N2
ε ) +

(
λε + o

( Nε

|log ε|

))α
Λ

ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2

+
λεαΛ

4

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2. (8.196)

We now distinguish between two cases:

(Case 1)
ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 ≤ 5

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2, (8.197)

(Case 2)
ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 > 5

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2. (8.198)
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In Case 1, choosing Λ = 2 in (8.196) yields

∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ ot(N2
ε ) +

(
λε + o

( Nε

|log ε|

))α
2

ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2

+
λεα

2

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2.

In Case 2, the condition (8.198) can be rewritten as

1

4

ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2

≤
(1

4
+

1

10

)ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +
1

2

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2,

and choosing Λ = 4 in (8.196) then yields, with Nε/|log ε| . λε in the considered regimes,

∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ ot(N2
ε )

+ λεα

((1

4
+

1

10
+ o(1)

)ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +
1

2

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2
)
.

Further noting that in Case 1 the condition (8.197) together with the energy bound (8.184) yields

o
( Nε

|log ε|

)ˆ
R2

aχR|∂tuε − iuεNεpε|2 ≤ o
( Nε

|log ε|

)ˆ t

0

ˆ
R2

aχR|∇uε − iuεNεvε|2 .t o(N2
ε ),

and combining this with (8.187) and (8.194), we observe an exact recombination of the terms, and
obtain in Case 1,

ˆ t

0
(IVε,R + IDε,R + Idε,R + Igε,R + Inε,R + I ′ε,R) ≤ λεα

2

ˆ t

0

ˆ
R2

aχR|∇uε − iuεNεvε |2|Γε|2 + ot(N
2
ε ),

(8.199)

and in Case 2,

ˆ t

0
(IVε,R + IDε,R + Idε,R + Igε,R + Inε,R + I ′ε,R) ≤ −λεα

2

(1

2
− 1

5
− o(1)

) ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε,%|2

+
λεα

2

ˆ t

0

ˆ
R2

aχR|∇uε − iuεNεvε |2|Γε|2 + ot(N
2
ε ),

so that (8.199) holds in both cases for ε > 0 small enough. Using α2 + β2 = 1, we have by definition
Γε · Γε,0 = α|Γε,0|2 = α|Γε|2, and hence the term IEε,R takes on the following guise, in terms of Γε,
Γε,0,

IEε,R = −λε
2
|log ε|

ˆ
R2

aχRΓε · Γε,0 µε = −λεα
2
|log ε|

ˆ
R2

aχR|Γε|2µε.

Together with (8.199), this leads to

ˆ t

0
(IVε,R + IEε,R + IDε,R + Idε,R + Igε,R + Inε,R + I ′ε,R)

≤ λεα

2

ˆ t

0

ˆ
R2

aχR
(
|∇uε − iuεNεvε|2 − |log ε|µε

)
|Γε|2 + ot(N

2
ε ).
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Combining this with (8.186), (8.192), (8.193), and with D̂∗,◦ε,R � N2
ε , we conclude

D̂tε,R ≤ ot(N2
ε ) + Ct

ˆ t

0
D̂ε,R +

λεα

2

ˆ t

0

ˆ
R2

aχR
(
|∇uε − iuεNεvε|2 − |log ε|µε

)
|Γε|2, (8.200)

and the result (8.191) now follows from Proposition 8.5.2(iv).

Step 4. Consequences.
In the previous steps, the results Tε = T and D∗,tε,R �t N

2
ε for all t ∈ [0, T ) are established in

the case (i) of the statement (that is, in the regime log |log ε| � Nε . |log ε|). We now show that it
implies the stated convergence N−1

ε jε − vε → 0.
For all t ∈ [0, T ), since there holds D∗,tε,R �t N

2
ε , Proposition 8.5.2(v)–(vi) implies

sup
z

ˆ
R2\Bε

χzR|∇uε − iuεNεvε|2 �t N
2
ε ,

and for all 1 ≤ p < 2,

sup
z

ˆ
Bε
χzR|∇uε − iuεNεvε|p �t N

p
ε .

Using the pointwise estimates of Lemma 8.4.2, we deduce

sup
z

ˆ
B(z)
|jε −Nεvε| .t sup

z

ˆ
B(z)
|∇uε − iuεNεvε|+ εNε|log ε|

.t sup
z

ˆ
Bε
χzR|∇uε − iuεNεvε|+ sup

z

(ˆ
B(z)\Bε

|∇uε − iuεNεvε|2
)1/2

+ o(Nε)�t Nε,

hence N−1
ε jε − vε → 0 in L∞loc([0, T ); L1

uloc(R2)2). More precisely, we may decompose for all L ≥ 1,

sup
z
‖jε −Nεvε‖(L1 + L2)(BL(z)) .t sup

z

ˆ
Bε
χzR|∇uε − iuεNεvε|+ sup

z
‖∇uε − iuεNεvε‖L2(BL(z)\Bε)

+Nε sup
z
‖1− |uε|2‖L2(BL(z)) + sup

z
‖1− |uε|2‖L2(BL(z))‖∇uε − iuεNεvε‖L2(BL(z)),

hence

sup
z
‖jε −Nεvε‖(L1 + L2)(BL(z))

.t o(Nε)(1 + L/R) + εNε(Nε|log ε|)1/2(1 + L/R) + εNε|log ε|(1 + L/R)2,

and the result (8.183) follows. As mentioned in Remark 8.6.2, under the additional assumption that
‖utε‖L∞ .t 1, the convergence N−1

ε jε − vε → 0 also holds in L∞loc([0, T ); Lploc(R
2)2) for all 1 ≤ p < 2;

this follows from a similar argument as above, replacing the pointwise estimate of Lemma 8.4.2 for
jε −Nεvε by

|jε −Nεvε| ≤ |uε||∇uε − iuεNεvε|+Nε|1− |uε|2||vε|.

Step 5. Refinement in the purely parabolic case.
In this step, we consider the parabolic case (α = 1, β = 0) both in the critical regime (GL1) and

in the subcritical regime (GL′2) with λε ≤ eo(Nε)/|log ε|, and we show that the additional assumption
Nε � log |log ε| can then be dropped. In the proof in Steps 1–4 above, the main limitation comes
from the fact that we need to use balls Bε with a particularly small total radius rε in order to obtain
smallness of the error term Igε,%,R in (8.189), while on the other hand the term ISε,%,R corresponds
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to the energy outside the small balls Bε so that we need to choose rε ≥ e−o(Nε) in order to apply
Proposition 8.5.2(v). As we now show, the worst terms in Igε,%,R vanish in the parabolic case, and the
total radius rε may then be chosen much larger.

Let us thus consider the parabolic case (α = 1, β = 0) in the regime (GL1) and in the subcritical
regime (GL′2) with λε . eo(Nε)/|log ε|, and with a “small” number of vortices 1 � Nε . log |log ε|.
Choose ε1/2 < r̃0

ε � Nε|log ε|−1 and let r̃ε := (λε|log ε|)−2 ≥ e−o(Nε). For all t ≤ Tε, as we are in the
framework of Proposition 8.5.2 with utε, vtε, we let B̃tε := B̃tε,R denote the corresponding collection of

disjoint closed balls B̃r̃
0
ε ,r̃ε
ε,R (utε, v

t
ε). Let then Γ̃tε denote the associated approximation of Γtε given by

Lemma 8.5.3. As in Step 1, Lemma 8.4.4 yields the following decomposition, with the approximate
vector field Γ̄ε replaced by Γ̃ε,

∂tD̂ε,R = ISε,R + IVε,R + IEε,R + IDε,R + IHε,R + Idε,R + Igε,R + Inε,R + I ′ε,R,

where all the terms are estimated just as above, except ISε,R, I
V
ε,R, and Igε,R. We start with the

discussion of Igε,R. For α = 1, β = 0, this term takes on the following simpler form,

Igε,R =

ˆ
R2

aχRNε(Nεvε−jε) · (Γε − Γ̃ε)curl vε

+

ˆ
R2

λεaχR(Γε − Γ̃ε)
⊥ · 〈∂tuε − iuεNεpε,∇uε − iuεNεvε〉

+

ˆ
R2

aχR
2

(Γ̃ε − Γε)
⊥ · ∇h

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+

ˆ
R2

aχR(Γ̃ε − Γε) · (Nεvε +|log ε|F⊥/2)µε. (8.201)

We estimate each of the four right-hand side terms separately. We start with the first term. Using
the pointwise estimates of Lemma 8.4.2 and the integrability properties of vε (cf. Proposition 8.3.2),
we find
ˆ
R2

aχRNε(Nεvε−jε) · (Γε − Γ̃ε)curl vε

. Nε‖Γε − Γ̃ε‖L∞
( ˆ
B̃tε
χR|∇uε − iuεNεvε|+

(ˆ
R2\B̃tε

χR|∇uε − iuεNεvε|2
)1/2

)
+Nε‖Γε − Γ̃ε‖L∞

(ˆ
R2

χR|1− |uε|2||∇uε − iuεNεvε|+Nε

ˆ
R2

χR|1− |uε|2||curl vε|
)
,

and hence, using (8.184) and Proposition 8.5.2(v)–(vi) with p = 1 to estimate the first two integrals
in the right-hand side, and using Lemma 8.5.3 in the form ‖Γtε − Γ̃tε‖L∞ .t r̃ε � 1,

ˆ
R2

aχRNε(Nεvε−jε) · (Γε − Γ̃ε)curl vε . N
2
ε ‖Γε − Γ̃ε‖L∞ �t N

2
ε .

For the second right-hand side term in (8.201), using (8.184) and again Lemma 8.5.3, with r̃ελε �
Nε|log ε|−1, we obtain
ˆ
R2

λεaχR(Γε − Γ̃ε)
⊥ · 〈∂tuε − iuεNεpε,∇uε − iuεNεvε〉

. λε(Nε|log ε|)1/2‖Γε − Γ̃ε‖L∞
(ˆ

R2

χR|∂tuε − iuεNεpε|2
)1/2

. o(N2
ε ) + o

( Nε

|log ε|

)ˆ
R2

χR|∂tuε − iuεNεpε|2.
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For the third term in (8.201), using (8.184), (8.43), and Lemma 8.5.3 in the form ‖(Γ̃ε−Γε)
⊥·∇h‖L∞ .t

r̃ελε � Nε|log ε|−1, we find
ˆ
R2

aχR
2

(Γ̃ε − Γε)
⊥ · ∇h

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
�t N

2
ε .

It remains to estimate the fourth term in (8.201). Using (8.184), Proposition 8.5.2(iii) in the
form (8.131) with γ = 1/2, the regularity properties of vε (cf. Proposition 8.3.2), (8.43) in the
form ‖F‖C1/2 . λε, and Lemma 8.5.3 in the form ‖Γ̃ε − Γε‖C1/2 .t r̃

1/2
ε = (λε|log ε|)−1, we obtain

ˆ
R2

aχR(Γ̃ε − Γε) · (Nεvε +|log ε|F⊥/2)µε . Nε‖aχR(Γ̃ε − Γε) · (Nεvε +|log ε|F⊥/2)‖C1/2

. Nε(Nε + λε|log ε|)‖Γ̃ε − Γε‖C1/2 �t N
2
ε .

Inserting these various estimates into (8.201) leads to

Igε,R .t o(N
2
ε ) + o

( Nε

|log ε|

)ˆ
R2

χR|∂tuε − iuεNεpε|2,

proving that (8.190) again holds in the present setting. We turn to the discussion of ISε,R. Since the
total radius satisfies r̃ε ≥ e−o(Nε), we may apply Proposition 8.5.2(v), so that the same argument as
in Step 3 leads to the estimate (8.192) for ISε,R. It remains to discuss the estimation of the term IVε,R.
In the regime 1� Nε . log |log ε|, the assumption on λε leads to λε . eo(Nε)/|log ε| � Nε/ log |log ε|,
that is, Nε/(λε log |log ε|)� 1. Writing IVε,R as in (8.195), we may thus apply Lemma 8.5.4 with the
choice

Mε := exp

(( Nε

λε log |log ε|

)1/2
log |log ε|

)
,

and hence, for any Λ ' 1, noting that λε logMε

|log ε| = 1
|log ε|(Nελε log |log ε|)1/2 = o( Nε

|log ε|),

∣∣∣ ˆ t

0
IVε,R

∣∣∣ = λεα|log ε|
∣∣∣ˆ t

0

ˆ
R2

aχR
2
Ṽε · Γε

∣∣∣
≤ ot(1)+α

(
λε+o

( Nε

|log ε|

))( 1

Λ

ˆ t

0

ˆ
R2

aχR|∂tuε−iuεNεpε|2+
Λ

4

ˆ t

0

ˆ
R2

aχR|(∇uε−iuεNεvε)·Γε|2
)
.

Further using the optimal energy bound (8.184), the estimate (8.196) follows. With these ingredients
at hand, we may now repeat the argument in Steps 2–3 and again conclude with (8.185). Finally, the
convergence N−1

ε jε − vε → 0 follows as in Step 4, with Bε replaced by B̃ε.

8.7 Mean-field limit in the Gross-Pitaevskii case

In this section, we prove Theorem 8.1.4, that is, the mean-field limit result in the Gross-Pitaevskii
case (α = 0, β = 1) in the regime (GP). More precisely, the rescaled supercurrent density N−1

ε jε
is shown to remain close to the solution vε of equation (8.53). Combining this with the results of
Section 8.3.2 (in particular, with Lemma 8.3.5), the result of Theorem 8.1.4 follows.

8.7.1 Preliminary: vorticity estimate

In the present context, it is not required to adapt the vortex-balls construction and the localized
lower bound of Section 8.5 to the regime Nε � |log ε|: we only need the following elementary estimate
on the number of vortices based on a bound on the modulated energy excess. Since the vector field ∇h
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is assumed here to decay at infinity, the proof is considerably reduced. We deduce in particular that in
the considered regime Nε � |log ε| the modulated energy Eε,R and the excess Dε,R are interchangeable
up to an error of order o(N2

ε ). (Note that in the absence of pinning and forcing no cut-off is needed
and the corresponding property is completely trivial: the excess is then indeed simply defined by
Dε = Eε − πNε|log ε|, cf. [395].)

Lemma 8.7.1. Let h : R2 → R, a := eh, with a ≤ 1 and ‖∇h‖L2 ∩L∞ . 1, let uε : R2 → C,
vε : R2 → R2, with ‖curl vε‖L1 ∩L∞ . 1 and ‖vε‖L∞ . 1. Assume that 0 < ε� 1, |log ε| � Nε . ε−1,
R ≥ 1, and assume that the modulated energy excess satisfies D∗ε,R . N2

ε . Then,

sup
z
‖µε‖(Ḣ1∩W 1,∞(BR(z)))∗ . Nε,

hence in particular
sup
z
|Ezε,R −Dzε,R| . Nε|log ε| � N2

ε . ♦

Proof. Let φ ∈ Ḣ1 ∩W 1,∞(R2) be supported in a ball of radius R. We decompose
ˆ
R2

φµε =

ˆ
R2

φ
(
Nεcurl vε + curl (jε −Nεvε)

)
= Nε

ˆ
R2

φ curl vε−
ˆ
R2

∇⊥φ · (jε −Nεvε),

hence, using the pointwise estimates of Lemma 8.4.2,
ˆ
R2

φµε . Nε‖φ‖L∞ + (E∗ε,R)1/2‖∇φ‖L2 + εE∗ε,R‖∇φ‖L∞ . (8.202)

In particular, using the assumptions D∗ε,R . N2
ε and ‖∇h‖L2 ∩L∞ . 1, we obtain

Ezε,R = Dzε,R + |log ε|
ˆ
R2

aχzRµε . N
2
ε + |log ε|(E∗ε,R)1/2 + εE∗ε,R,

which implies, taking the supremum in z and absorbing E∗ε,R in the left-hand side, for ε > 0 small
enough,

E∗ε,R . N2
ε + (1 + εNε)

2|log ε|2 . N2
ε .

Inserting this into (8.202) yields
´
R2 φµε . Nε‖φ‖Ḣ1∩W 1,∞ , and the result follows.

8.7.2 Modulated energy argument

We now show that the rescaled supercurrent density N−1
ε jε remains close to the solution vε

of equation (8.53). The proof consists in estimating the terms in the decomposition of the time
derivative of the modulated energy excess given by Lemma 8.4.4, and then deducing the smallness
of the modulated energy by a Grönwall argument. Note that in the present regime Nε � |log ε|
the situation is greatly simplified with respect to Section 8.6, since Lemma 8.7.1 above ensures that
the modulated energy Eε,R and the excess Dε,R are now interchangeable up to an error o(N2

ε ): the
different terms appearing in Lemma 8.4.4 thus only need to be estimated by means of the modulated
energy Eε,R without having to take care to substract the correct vortex self-interaction energy. In
particular, the vector field Γε does no longer need to be truncated on small balls around the vortex
locations, and we simply set Γ̄ε = Γε. For this choice, all the terms involving the vortex velocity Ṽε,% in
Lemma 8.4.4 are easily seen to vanish. This simplification is crucial since in the present conservative
case no good a priori control on the vortex velocity is available (apart from rough a priori estimates
of the form ‖∂tuε − iuεNεpε,%‖L2 . ε−2), which indeed prevents us from adapting this modulated
energy argument to the case Nε . |log ε|.
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Proposition 8.7.2. Let α = 0, β = 1, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R
satisfy (8.44). Let uε : [0, T ) × R2 → C and vε : [0, T ) × R2 → R2 be solutions of (8.6) and (8.53)
as in Proposition 8.2.2(ii) and in Proposition 8.3.4, respectively, for some T > 0. Let 0 < ε � 1,
|log ε| � Nε � ε−1, R & ‖∂tuε‖L∞T L2 + |log ε|2, and assume that the initial modulated energy satisfies
E∗,◦ε,R � N2

ε . Then, in the regime (GP), we have E∗,tε,R �t N
2
ε for all t ∈ [0, T ), and in particular

N−1
ε jε − vε → 0 holds in L∞loc([0, T ); L1

uloc(R2)2) as ε ↓ 0. Under the stronger assumption E∗,◦ε � N2
ε ,

the same convergence holds in L∞loc([0, T ); (L1 + L2)(R2)2). ♦

Proof. In the sequel, we choose 1 � % ≤ R with %θ0 � (εNε)
−1 for some θ0 > 0. Regarding the

global truncation at the scale R, it is not really needed in the present context (as a consequence
of the decay assumption on the fields ∇h, F, f), and can be sent to infinity arbitrarily fast; here it
suffices to choose R ≥ supt∈[0,T ) ‖∂tuε‖L2 + |log ε|2 (where the right-hand side is indeed finite by
Proposition 8.2.2(ii)). Given the assumption E∗,◦ε,R � N2

ε on the initial data, for all ε > 0, we define
Tε > 0 as the maximum time ≤ T such that E∗,tε,R ≤ N2

ε holds for all t ≤ Tε. By Lemmas 8.4.1
and 8.7.1, we deduce D̂∗,◦ε,%,R � N2

ε and for all t ≤ Tε,

D∗,tε,R .t N
2
ε , Ê∗,tε,%,R .t N

2
ε , D̂∗,tε,%,R .t N

2
ε , E∗,tε,R . Ê

∗,t
ε,%,R + ot(N

2
ε ), Ê∗,tε,%,R . D̂

∗,t
ε,%,R + ot(N

2
ε ).

(8.203)

The strategy of the proof now consists in showing that for all t ≤ Tε,

Ê∗,tε,%,R .t o(N
2
ε ) +

ˆ t

0
Ê∗ε,%,R. (8.204)

This estimate is proved in Step 1 below. To simplify notation, we focus on (8.204) with the left-hand
side Ê tε,%,R centered at z = 0, but the result of course holds uniformly with respect to the translation.
By the Grönwall inequality, it implies Ê∗,tε,%,R �t N

2
ε , hence E

∗,t
ε,R �t N

2
ε for all t ≤ Tε. This yields in

particular Tε = T for all ε > 0 small enough, and the main conclusion follows, while the additional
stated consequences are deduced in Step 2.

Step 1. Proof of (8.204).
Using the constraint 0 = a−1 div (avε) = div vε + vε· ∇h, and choosing Γ̄ε := Γε, the result of

Lemma 8.4.4 takes the following simpler form,

∂tD̂ε,%,R = ISε,%,R + IVε,%,R + IEε,%,R + IHε,%,R + Inε,%,R + I ′ε,%,R, (8.205)

where we have set

ISε,%,R := −
ˆ
R2

χR∇Γ⊥ε : S̃ε,

IVε,%,R :=

ˆ
R2

aχR|log ε|
2

Ṽε,% ·
(
− λεΓ⊥ε +∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
,

IEε,%,R := −
ˆ
R2

aχR|log ε|
2

Γε ·
(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
µε,

IHε,%,R :=

ˆ
R2

aχR
2

Γ⊥ε · ∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 − |log ε|µε

)
,

Inε,%,R := −
ˆ
R2

∇χR · S̃ε · Γ⊥ε −
ˆ
R2

a∇χR ·
(
〈∂tuε − iuεNεpε,∇uε − iuεNεvε〉+

|log ε|
2

Ṽ ⊥ε,%

)
,

and where the error I ′ε,%,R is estimated as follows (cf. (8.111)),

|I ′ε,%,R| .t,θ εNεE∗ε,R +Nε(E∗ε,R)1/2‖∇(pε−pε,%)‖L2 + εN2
ε %

θ(E∗ε,R)1/2.
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Choosing θ > 0 small enough, and using Proposition 8.3.4 in the form ‖∇(ptε−ptε,%)‖L2 �t 1
(cf. (8.72)), we obtain

|I ′ε,%,R| .t,θ E∗ε,R + o(Nε)(E∗ε,R)1/2. (8.206)

The choice (8.53) for Γε gives IVε,%,R = IEε,%,R = 0, hence

∂tD̂ε,%,R = ISε,%,R + IHε,%,R + Inε,%,R + I ′ε,%,R. (8.207)

It remains to estimate the first three right-hand side terms. By (8.44) in the form ‖f‖L2 . N2
ε , and

by the integrability properties of vε (cf. Proposition 8.3.4), the first right-hand side term ISε,%,R is
estimated as follows, for all t ≤ Tε,

ISε,%,R . ‖∇Γε‖L∞
ˆ
R2

χR

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)

.t Eε,R + εN2
ε (Eε,R)1/2 . Eε,R + o(N2

ε ). (8.208)

We turn to the second right-hand side term in (8.207). Lemma 8.7.1 yields

IHε,%,R ≤ ‖Γ⊥ε · ∇h‖L∞
ˆ
R2

χR

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+ |log ε|

∣∣∣∣ˆ
R2

aχRΓ⊥ε · ∇hµε
∣∣∣∣

. Eε,R‖Γ⊥ε · ∇h‖L∞ +Nε|log ε|‖aχRΓ⊥ε · ∇h‖Ḣ1∩W 1,∞ ,

and hence, using (8.44) and the properties of vε (cf. Proposition 8.3.4),

IHε,%,R .t Eε,R +Nε|log ε| ≤ Eε,R + o(N2
ε ). (8.209)

It remains to estimate the third right-hand side term in (8.207). Arguing as above, we find

Inε,%,R . R
−1‖Γε‖L∞

ˆ
B2R

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)

+R−1|log ε|
ˆ
B2R

|∂tuε − iuεNεpε,%||∇uε − iuεNεvε|

.t E∗ε,R + o(N2
ε ) +R−1|log ε|(E∗ε,R)1/2‖∂tuε − iuεNεpε,%‖L2(B2R).

The properties of pε (cf. Proposition 8.3.4) yield for all θ > 0,

‖∂tuε − iuεNεpε,%‖L2(B2R) . ‖∂tuε‖L2(B2R) +Nε‖pε,%‖L2(B2R) +Nε‖pε,%‖L∞(B2R)‖1− |uε|2|‖L2(B2R)

.t,θ ‖∂tuε‖L2(B2R) +Nε%
θ + εNε(E∗ε,R)1/2,

so that the above takes the form

Inε,%,R .t,θ E∗ε,R +R−2|log ε|2‖∂tuε‖2L2(B2R)
+R−2(1−θ)N2

ε |log ε|2 + o(N2
ε ).

Using the choice R & ‖∂tuε‖L2 + |log ε|2, and choosing θ > 0 small enough, we deduce Inε,%,R .t
E∗ε,R + o(N2

ε ). Combining this with (8.206), (8.207), (8.208), and (8.209), we conclude

∂tD̂ε,%,R .t E∗ε,R + o(N2
ε ).

Integrating this in time with D̂∗,◦ε,%,R � N2
ε , using (8.203), and noting that the same result holds

uniformly with respect to translations of the cut-off functions, the conclusion (8.204) follows.
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Step 2. Conclusion.
As explained, the result of Step 1 implies Tε = T and E∗,tε,R �t N

2
ε for all t ∈ [0, T ). We now show

that it implies the convergence N−1
ε jε − vε → 0. Using the pointwise estimates of Lemma 8.4.2, we

obtain

‖jε−Nεvε‖(L1 + L2)(BR(z)) . ‖∇uε−iuεNεvε‖L2(BR(z))

(
1+‖1−|uε|2‖L2(BR(z))

)
+Nε‖1−|uε|2‖L2(BR(z))

�t Nε(1 + εNε) . Nε,

and the conclusion follows, letting R ↑ ∞.

8.8 Mean-field limit in the superdense parabolic case

In this section, we turn to the dissipative case (α > 0) in the superdense regime (GL3), and we
prove Theorem 8.1.3. More precisely, we make use of the modulated energy strategy and show that the
rescaled supercurrent density N−1

ε jε remains close to the solution vε of equation (8.52). Combining
this with the convergence results of Section 8.3.3, the statement of Theorem 8.1.3 follows.

Regarding the modulated energy argument, note that the proof of Proposition 8.6.1 indicates that
we expect to find in this superdense regime, with the corresponding notation,

D̂tε,R ≤ ot(N2
ε ) + Ct(1 + αλε)

ˆ t

0
D̂ε,R. (8.210)

As λε � 1, the Grönwall inequality does of course not allow us to conclude that D̂tε,R �t N
2
ε for any

t > 0. (Note that in the Gross-Pitaevskii case α = 0 the prefactor λε formally disappears in (8.210),
and this is indeed the situation successfully treated in Section 8.7.) The strategy in the sequel consists
in refining as much as possible the magnitude of the error o(N2

ε ) in (8.210), and showing that it can
be reduced to O(N2−δ

ε ) for some δ > 0. With λε = Nε/|log ε| � 1, the Grönwall inequality then
indeed leads to D̂tε,R �t N

2
ε for all t ≥ 0 in the regime |log ε| � Nε � |log ε| log |log ε|. Since in

Chapter 7 (see also Section 8.3.3) the well-posedness of the degenerate limiting equation (8.52) could
only be established in the parabolic case (α = 1, β = 0), we have to restrict to that case here.

8.8.1 Preliminary results: vortex analysis

We adapt crucial vortex analysis estimates of Section 8.5 to the present situation with a large
number of vortices Nε � |log ε|. We start with establishing the following version of Proposition 8.5.2.

Proposition 8.8.1 (Refined lower bound). Let h : R2 → R, a := eh, with 1 . a ≤ 1 and ‖∇h‖L∞ . 1,
let uε : R2 → C, vε : R2 → R2, with ‖curl vε‖L1 ∩L∞ , ‖vε‖L∞ . 1. Let 0 < ε � 1, Nε & |log ε|, and
R ≥ 1 with logNε � |log ε| and |log ε| . R . |log ε|n for some n ≥ 1, and assume that D∗ε,R . N2

ε .
Then E∗ε,R . N2

ε holds for all ε > 0 small enough. Moreover, for some r̄ ' 1, for all ε > 0 small
enough and all r ∈ (ε1/2, r̄), letting Brε,R and νrε,R denote the locally finite union of disjoint closed balls
and the point-vortex measure constructed in Lemma 8.5.1, the following properties hold,

(i) Lower bound: in the regime Nε � log |log ε|, we have for all ε1/2 < r < r̄ and all z ∈ R2,

1

2

ˆ
Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχzR|νrε,R| −O
(
rN2

ε +
N2
ε

|log ε|
(| log r|+ logNε)

)
; (8.211)
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(ii) Number of vortices: for ε1/2 < r � 1,

sup
z

ˆ
BR(z)

|νrε,R| .
N2
ε

|log ε|
; (8.212)

(iii) Jacobian estimate: for ε1/2 < r � 1, for all γ ∈ [0, 1],

sup
z
‖νrε,R − µ̃ε‖(Cγc (BR(z)))∗ . r

γ N2
ε

|log ε|
+ εγ/2N2

ε , (8.213)

sup
z
‖µε − µ̃ε‖(Cγc (BR(z)))∗ . ε

γN2
ε |log ε|n; (8.214)

(iv) Excess energy estimate: for all φ ∈W 1,∞(R2) supported in a ball of radius R,
ˆ
R2

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
.

(
D∗ε,R +

N2
ε

|log ε|
logNε

)
‖φ‖W 1,∞ ;

(8.215)

(v) Energy outside small balls: for all γ ≥ 1, all N−γε ≤ r < r̄, and all z ∈ R2,
ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ Dzε,R +Oγ

( N2
ε

|log ε|
logNε

)
. (8.216)

♦

Proof. We split the proof into six steps. The main work consists in checking that the assumptions
imply the optimal bound on the energy E∗ε,R . N2

ε . This main conclusion is obtained in Step 5, while
the various other statements are deduced in Step 6.

Step 1. Rough a priori estimate on the energy.
In this step, we prove E∗ε,R . N2

ε + R2|log ε|2, and hence by the choice of R we deduce E∗ε,R .
N2
ε + |log ε|m for some m ≥ 4.
Decomposing µε = Nεcurl vε +curl (jε −Nεvε), the assumption D∗ε,R . N2

ε yields for all z ∈ R2,

Ezε,R ≤ D∗ε,R +
|log ε|

2

ˆ
R2

aχzRµε

. N2
ε +Nε|log ε|

ˆ
R2

aχzR|curl vε|+ |log ε|
ˆ
R2

|∇(aχzR)||jε −Nεvε|. (8.217)

Using the pointwise estimate of Lemma 8.4.2 for jε−Nεvε, using |∇(aχzR)| . 1B2R(z), ‖curl vε‖L1 . 1,
and ‖vε‖L∞ . 1, we obtain

Ezε,R . N2
ε + |log ε|

( ˆ
B2R(z)

(1− |uε|2)2
)1/2(ˆ

B2R(z)
|∇uε − iuεNεvε|2

)1/2

+R|log ε|
( ˆ

B2R(z)
|∇uε − iuεNεvε|2

)1/2
+RNε|log ε|

(ˆ
B2R(z)

(1− |uε|2)2
)1/2

. N2
ε + ε|log ε|E∗ε,R +R|log ε|(E∗ε,R)1/2.

Taking the supremum over z, and absorbing E∗ε,R into the left-hand side, the result follows.

Step 2. Applying Lemma 8.5.1.
By assumption logNε � |log ε|, the result of Step 1 yields in particular log E∗ε,R � |log ε|, which

allows to apply Lemma 8.5.1. For fixed r ∈ (ε1/2, r̄), let Brε,R =
⊎
j B

j denote the union of disjoint
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closed balls given by Lemma 8.5.1, and let νrε,R denote the associated point-vortex measure. Using
Lemma 8.5.1(ii) in the form

ˆ
BR(z)

|νrε,R| =
∑

j:yj∈BR(z)

|dj | .
N2
ε + E∗ε,R
|log ε|

, (8.218)

Lemma 8.5.1(i) gives, for all φ ∈W 1,∞(R2) with φ ≥ 0, if φ is supported in a ball of radius R,

1

2

ˆ
Brε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

φ|νrε,R| −O(rE∗ε,R)‖∇φ‖L∞

−O
(
r2N2

ε + |log r|
N2
ε + E∗ε,R
|log ε|

+
N2
ε + E∗ε,R
|log ε|

log
(

2 +
E∗ε,R
|log ε|

))
‖φ‖L∞ . (8.219)

Arguing as in Step 2 of the proof of Proposition 8.5.2, we then find for all z,
ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ Dzε,R +O

(
1 + (|log r|+ r|log ε|)

N2
ε + E∗ε,R
|log ε|

+
N2
ε + E∗ε,R
|log ε|

log
(

2 +
E∗ε,R
|log ε|

))
, (8.220)

and in addition, ∣∣∣ˆ
R2

φ(µε − νrε,R)
∣∣∣ . (rN2

ε + E∗ε,R
|log ε|

+ ε1/3

)
‖φ‖W 1,∞ , (8.221)∣∣∣ ˆ

R2

φ(µ̃ε − µε)
∣∣∣ . εRNε(E∗ε,R)1/2‖φ‖W 1,∞ . ε1/3‖φ‖W 1,∞ . (8.222)

Step 3. Energy and number of vortices.
In this step, we show that (8.218) is essentially an equality, in the sense that for all ε1/2 < r � 1,

sup
z

ˆ
R2

χzR|νrε,R| .
N2
ε + E∗ε,R
|log ε|

.
N2
ε

|log ε|
+ sup

z

ˆ
R2

χzR|νrε,R|. (8.223)

The lower bound already follows from (8.218). We now turn to the upper bound. Since the energy
excess satisfies Dzε,R . N2

ε , we deduce from (8.221),

Ezε,R ≤ Dzε,R +
|log ε|

2

ˆ
R2

aχzRµε ≤
|log ε|

2

ˆ
R2

aχzRν
r
ε,R +O

(
N2
ε + rE∗ε,R

)
. (8.224)

Taking the supremum in z, and absorbing E∗ε,R in the left-hand side with r � 1, the upper bound
in (8.223) follows.

Step 4. Estimate on the total variation of the vorticity.
In this step, we prove that for all e−o(|log ε|) < r � 1,

sup
z

ˆ
R2

χzR|νrε,R| ≤ (1 + o(1)) sup
z

ˆ
R2

χzRν
r
ε,R +O

( N2
ε

|log ε|

)
. (8.225)

The lower bound (8.219) of Step 2 with φ = aχyR yields for all y ∈ R2, using the upper bound
in (8.223) to replace the energy E∗ε,R in the error terms,

Eyε,R ≥
1

2

ˆ
Brε,R

aχyR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
R2

aχyR|ν
r
ε,R|

−O
( N2

ε

|log ε|
+ sup

z

ˆ
R2

χzR|νrε,R
)(
| log r|+ r|log ε|+ log

(
2 +

N2
ε + E∗ε,R
|log ε|

))
.
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For e−o(|log ε|) < r � 1, using the result of Step 1 in the form log(N2
ε + E∗ε,R)� |log ε|, we obtain for

all y ∈ R2,

Eyε,R ≥
|log ε|

2

ˆ
R2

aχyR|ν
r
ε,R| − o(|log ε|) sup

z

ˆ
R2

χzR|νrε,R| − o(N2
ε ). (8.226)

On the other hand, the upper bound (8.224) yields

Eyε,R ≤
|log ε|

2

ˆ
R2

aχyRν
r
ε,R +O(N2

ε ) + o(1)E∗ε,R, (8.227)

and thus, taking the supremum over y and absorbing E∗ε,R in the left-hand side,

E∗ε,R ≤
|log ε|

2
sup
z

ˆ
R2

aχzR|νrε,R|+O(N2
ε ),

so that (8.227) takes the form, for all y ∈ R2,

Eyε,R ≤
|log ε|

2

ˆ
R2

aχyRν
r
ε,R +O(N2

ε ) + o(|log ε|) sup
z

ˆ
R2

χzR|νrε,R|.

Combining this with (8.226), dividing both sides by 1
2 |log ε|, and taking the supremum over y, we

find

sup
z

ˆ
R2

χzR(νrε,R)− . sup
z

ˆ
R2

aχzR(|νrε,R| − νrε,R) ≤ O
( N2

ε

|log ε|

)
+ o(1) sup

z

ˆ
R2

χzR|νrε,R|,

hence

sup
z

ˆ
R2

χzR|νrε,R| = sup
z

ˆ
R2

χzR(νrε,R + 2(νrε,R)−)

≤ sup
z

ˆ
R2

χzRν
r
ε,R +O

( N2
ε

|log ε|

)
+ o(1) sup

z

ˆ
R2

χzR|νrε,R|,

and the result (8.146) follows after absorbing in the left-hand side the last right-hand side term.

Step 5. Refined bound on the energy.
In this step, we prove the optimal energy bound E∗ε,R . N2

ε . By (8.218) this yields in particular
supz

´
R2 χ

z
R|νrε,R| . N2

ε /|log ε|.
Let e−o(|log ε|) < r � 1 be suitably chosen later. Using (8.221), the bound on the energy excess

D∗ε,R . N2
ε yields for all z ∈ RZ2,

Ezε,R ≤ Dzε,R +
|log ε|

2

ˆ
R2

aχzRµε . N
2
ε + rE∗ε,R + |log ε|

ˆ
R2

χzR|νrε,R|,

and hence, using the result (8.225) of Step 4, and absorbing E∗ε,R in the left-hand side with r � 1,

E∗ε,R . N2
ε + |log ε| sup

z

ˆ
R2

χzRν
r
ε,R . N

2
ε + |log ε| sup

z

ˆ
R2

χzRµε. (8.228)

It remains to estimate
´
R2 χ

z
Rµε. Arguing as in Step 5 of the proof of Proposition 8.5.2, we find

ˆ
R2

χzRµε . Nε +
( ˆ

R2\Brε,R
χz2R|∇uε − iuεNεvε|2

)1/2
+ rR−1

( ˆ
B2R(z)

|∇uε − iuεNεvε|2
)1/2

,

(8.229)
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and then using (8.220) to estimate the first right-hand side term,ˆ
R2

χzRµε . Nε + (D∗ε,R)1/2 + rR−1(E∗ε,R)1/2 + r1/2(N2
ε + E∗ε,R)1/2

+
(N2

ε + E∗ε,R
|log ε|

)1/2
(
|log r|+ log

(
2 +

E∗ε,R
|log ε|

))1/2

. Nε + r1/2(E∗ε,R)1/2 + o(1)
N2
ε + E∗ε,R
|log ε|

+ |log r|1/2
(N2

ε + E∗ε,R
|log ε|

)1/2
.

Combining this with (8.228) leads to

E∗ε,R
|log ε|

.
N2
ε

|log ε|
+ r1/2(E∗ε,R)1/2 + o(1)

E∗ε,R
|log ε|

+ |log r|1/2
(N2

ε + E∗ε,R
|log ε|

)1/2
,

and hence,

E∗ε,R
|log ε|

.
N2
ε

|log ε|
+ |log r|.

The result then follows e.g. from the choice r = |log ε|−1.

Step 6. Conclusion.
The optimal energy bound E∗ε,R . N2

ε is now proved. In the present step, we check that the
remaining statements follow from this estimate. The result (8.211) follows from (8.219) in Step 2 with
φ = aχzR, combined with the optimal energy bound. The bound (8.212) on the number of vortices
follows from the result (8.223) of Step 3 together with the optimal energy bound. For r = N−γε ,
γ ≥ 1, the result (8.216) follows from (8.220) together with the optimal energy bound. Monotonicity
of Brε,R with respect to r then implies (8.216) for all r ≥ N−γε . It remains to establish items (iii)
and (iv). We split the proof into two further substeps.

Substep 6.1. Proof of (iii).
The Jacobian estimate (8.213) follows from Lemma 8.5.1(iii) together with the optimal energy

bound, and the estimate (8.214) with γ = 1 similarly follows from (8.222) and from the bound
R . |log ε|n. As in Substep 8.4 of the proof of Proposition 8.5.2, we further find for all φ ∈ L∞(R2)
supported in a ball BR(z), z ∈ R2,∣∣∣ ˆ

R2

φ(µ̃ε − µε)
∣∣∣

. Nε‖φ‖L∞
ˆ
BR(z)

(
|1− |uε|2||curl vε|+ 2|vε||1− |uε|2||∇uε − iuεNεvε |+ 2|vε||∇uε − iuεNεvε |

)
. RN2

ε ‖φ‖L∞ , (8.230)

and the result (8.214) then follows by interpolation for all γ ∈ [0, 1].

Substep 6.2. Proof of (iv).
Let ε1/2 < r � 1 to be later optimized as a function of ε. Arguing as in Substep 8.5 of the proof

of Proposition 8.5.2, we find for all φ ∈W 1,∞(R2) supported in the ball BR(z),
ˆ
R2

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
≤ ‖a−1φ‖L∞

ˆ
R2

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
+O

( N2
ε

|log ε|
(|log r|+ logNε)

)
‖a−1φ‖L∞ +O(rN2

ε )‖a−1φ‖W 1,∞ .
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Using (8.221) to replace νrε,R by µε in both sides up to an error of order (1 + rN2
ε )‖φ‖W 1,∞ , and

choosing e.g. r = N−1
ε , the conclusion (8.215) follows.

We now establish the following version of the (suboptimal) a priori estimate of Lemma 8.5.5 on
the velocity of the vortices in the case with a large number of vortices Nε � |log ε|.

Lemma 8.8.2 (A priori bound on velocity). Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh,
F : R2 → R2, f : R2 → R satisfy (8.43). Let uε : R+ × R2 → C and vε : R+ × R2 → R2 be
the solutions of (8.6) and (8.52) as in Propositions 8.2.2(i) and 8.3.6, respectively. Let 0 < ε � 1,
|log ε| � Nε . ε−1, and R ≥ 1 with εR . 1, and assume that E∗,tε,R .t N2

ε for all t ≥ 0. Then, in the
regime (GL3), we have for all θ > 0 and all t ≥ 0,

α2 sup
z

ˆ t

0

ˆ
R2

aχzR|∂tuε|2 .t,θ (1 + εRNε)Nε|log ε|+RθN2
ε |log ε|2 . RθN2

ε |log ε|2. ♦

Proof. Set Dz,t
ε,R :=

´ t
0

´
R2 aχ

z
R|∂tuε|2. From identity (8.173), noting that |∇χzR| . R−1(χzR)1/2, using

the pointwise estimates of Lemma 8.4.2 for Vε and jε − Nεvε, and using assumption (8.43), the
bound (8.98) on ψzε,R, and the definition of Êz,tε,R, we find in the considered regime,

λεαD
z,t
ε,R .t,θ N

2
ε

(
1 + ‖vε‖2L∞t L4

)(
1 + ‖∂tvε‖L∞t (L2 ∩L∞(BR))

)
+ εRN3

ε

(
1 + ‖vε‖L∞t L∞

)(
1 + ‖Γε‖L∞t L∞

)
+ εN2

ε |log ε|‖div (avε)‖L∞t L2

+N2
ε

(
1 + ‖vε‖2L∞t (L2 ∩L∞(B2R))

+ ‖div (avε)‖L∞t (L2 ∩L∞)

)
(Dz,t

ε,R)1/2 +R−1Nε(D
z,t
ε,R)1/2,

and hence, using the properties of vε in (8.80), for any θ > 0,

λεαD
z,t
ε,R .t,θ N

2
ε + εRN3

ε +N2
εR

θ(Dz,t
ε,R)1/2.

Absorbing (Dz,t
ε,R)1/2 in the left-hand side, and choosing θ > 0 small enough, the result follows.

We finally turn to the adaptation of the crucial a priori estimate of Lemma 8.5.6 to the case with
a large number of vortices Nε � |log ε|.

Lemma 8.8.3. Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R
satisfy (8.43). Let uε : R+ × R2 → C and vε : R+ × R2 → R2 be the solutions of (8.6) and (8.52) as
in Propositions 8.2.2(i) and 8.3.6, respectively. Let 0 < ε � 1, |log ε| � Nε . ε−1, and R ≥ 1 with
εRN3

ε . 1, and assume that E∗,tε,R .t N2
ε for all t ≥ 0. Then, in the regime (GL3), we have for all

t ≥ 0,

α2 sup
z

ˆ t

0

ˆ
R2

χzR
ε2

(1− |uε|2)2 .t
N2
ε

|log ε|
. ♦

Proof. Using the pointwise estimates of Lemma 8.4.2, assumption (8.43), and the properties of vε
in (8.80), Lemma 8.4.3 directly yields

| div S̃ε| .
(
(λε + βNε)|∇uε − iuεNεvε|+ βN2

ε + βN2
ε |1− |uε|2|

)(
1 + ‖vε‖L∞

)
|∂tuε|

+
(
(λε + βNε)Nε‖pε‖L∞ +Nε‖curl vε‖L∞ +N2

ε ‖vε‖L∞
)
(1 + |1− |uε|2|)|∇uε − iuεNεvε|

+Nε(1 + ‖vε‖L∞)3(|∇uε − iuεNεvε|2 + (1− |uε|2)2 +N2
ε )

+N2
ε |1− |uε|2|

(
1 + ‖vε‖L∞

)(
Nε(1 + ‖vε‖L∞)3 + λε‖pε‖L∞ + ‖curl vε‖L∞

)
.

Using the assumption E∗,tε,R .t N2
ε , Lemma 8.8.2 with R = 1, and the properties of vε in (8.80), we

find for r ≤ 1,
ˆ t

0

ˆ
Br(x0)

|div S̃ε| .t N4
ε |log ε|(1 + β|log ε|) . N4

ε |log ε|2.
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Further noting that assumption (8.43) yields
ˆ
Br(x0)

a|1− |uε|2||f | .t εrNε‖f‖L∞ . εrN3
ε ,

and alsoˆ
Br(x0)

|∇χR||S̃ε| . R−1

ˆ
Br(x0)

(
|∇uε − iuεNεvε|2 +

1

ε2
(1− |uε|2)2 + ε2(N4

ε |vε|4 + |f |2)
)

. R−1
(
N2
ε + ε2(N4

ε ‖vε‖4L∞ + ‖f‖2L∞)
)
.t R

−1N2
ε ,

and arguing as in Step 1 of the proof of Lemma 8.5.6, we deduce the following Pohozaev type estimate,
adapted from [382, Theorem 5.1]: for any ball Br(x0) with r ≤ 1, we have

ˆ t

0

ˆ
Br(x0)

a2χR
2ε2

(1− |uε|2)2 .t rN
4
ε |log ε|2

+ r

ˆ t

0

ˆ
∂Br(x0)

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)
.

The conclusion then follows from a direct adaptation of Steps 2–3 of the proof of Lemma 8.5.6.

8.8.2 Modulated energy argument

With the above vortex analysis estimates at hand, we consider the superdense regime (GL3) with
|log ε| � Nε � |log ε| log |log ε|, and we adapt the modulated energy argument of Section 8.6 to show
that the rescaled supercurrent density N−1

ε jε remains close to the solution vε of equation (8.52).
Although the well-posedness result of Section 8.3.3 for equation (8.52) (hence the final statement of
Theorem 8.1.3) is reduced to the parabolic case (α = 1, β = 0), we show below that the modulated
energy argument formally works in the mixed-flow case as well. (As we assume α > 0, all multiplicative
constants are implicitly allowed to additionally depend on an upper bound on α−1.)

Proposition 8.8.4. Let α > 0, β ∈ R, α2 + β2 = 1, and let h : R2 → R, a := eh, F : R2 → R2,
f : R2 → R satisfy (8.43). Let uε : R+ × R2 → C be the solution of (8.6) as in Proposition 8.2.2(i).
Assume that for some T > 0 for all ε > 0 there exists a solution vε : [0, T )×R2 → R2 of the following
mixed-flow version of (8.52),

∂tvε = ∇pε +Γεcurl vε, vε|t=0 = v◦, (8.231)

Γε := λ−1
ε (α− Jβ)

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
, pε := (λεαa)−1 div (avε),

and assume that vε satisfies the estimates (8.80) on [0, T ). Let 0 < ε � 1, |log ε| . Nε �
|log ε| log |log ε|, and |log ε| . R . |log ε|n for some n ≥ 1. Assume that the initial modulated
energy excess satisfies D∗,◦ε,R . N2−δ

ε for some δ > 0. Then we have D∗,tε,R �t N
2
ε for all t ∈ [0, T ),

hence in particular N−1
ε jε − vε → 0 in L∞loc([0, T ); L1

uloc(R2)2) as ε ↓ 0. ♦

Proof. Let |log ε| . Nε . |log ε|n and |log ε| . R . |log ε|n for some n ≥ 1. Given the assumption
D∗,◦ε,R � N2

ε on the initial data, for all ε > 0 we define Tε > 0 as the maximum time ≤ T such that
D∗,tε,R ≤ N2

ε holds for all t ≤ Tε. By the proof of Lemma 8.4.1 and by Proposition 8.8.1, we deduce for
all t ≤ Tε,

E∗,tε,R .t N
2
ε , Ê∗,tε,R .t N

2
ε , D̂∗,tε,R .t N

2
ε , D∗,tε,R . D̂

∗,t
ε,R + ot(ε

1/2). (8.232)
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The strategy of the proof consists in showing that for all t ≤ Tε,

D̂∗,tε,R .t D̂
∗,◦
ε,R +Nελ

3
ε log |log ε|+ λεNε logNε + λε

ˆ t

0
D̂∗ε,R. (8.233)

Combined with (8.232) and with the Grönwall inequality, this implies

D∗,tε,R .t e
Ctλε

(
D∗,◦ε,R +Nελ

3
ε log |log ε|+ λεNε logNε

)
.

Then choosing |log ε| . Nε � |log ε| log |log ε| and D◦ε,R . N2−δ
ε for some δ > 0, we deduce D∗,tε,R �t

N2
ε for all t ≤ Tε. This gives in particular Tε = T for ε > 0 small enough, and the conclusion follows.
To simplify notation, we focus on (8.233) with the left-hand side D̂tε,R centered at z = 0, but the

result of course holds uniformly with respect to the translation. Using the definition of the pressure
in (8.51), the result of Lemma 8.4.4 yields

∂tD̂ε,R = ISε,R + IVε,R + IEε,R + IDε,R + IHε,R + Idε,R + Igε,R + Inε,R + I ′ε,R, (8.234)

where the eight first terms are as in the statement of Lemma 8.4.4 while the error I ′ε,R is estimated
as follows (cf. (8.110)),

ˆ t

0
|I ′ε,%,R| .t εR(N2

ε + |log ε|2)(E∗ε,R)1/2 .t ε
1/2.

Let us first introduce some notation. For all t ≤ Tε, as we are in the framework of Proposition 8.8.1
with utε, v

t
ε, we let Btε := Btε,R denote the constructed collection of disjoint closed balls Brεε,R(utε, v

t
ε)

with total radius rε := N−4
ε . Let then Γ̄tε denote the corresponding approximation of Γtε given by

Lemma 8.5.3. We decompose Γε := αΓε,0 − βΓ⊥ε,0 with

Γε,0 := λ−1
ε

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
.

Step 1. Estimating the error terms.
In this step, we prove for all t ≤ Tε,ˆ t

0
(Idε,R + Igε,R + Inε,R) .t 1 +R−1N2

ε + (R−1 +N−2
ε )

ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε|2. (8.235)

We start with the estimation of Igε,R. Using assumption (8.43) and the pointwise estimates of
Lemma 8.4.2, we find

|Igε,R| . ‖Γε − Γ̄ε‖L∞(1 + ‖vε‖L∞)

(
Nε

ˆ
R2

χR
(
|∇uε − iuεNεvε|+Nε|1− |uε|2|

)
|curl vε|

+Nε

ˆ
R2

χR

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+N3

ε

ˆ
R2

χR(1 + |1− |uε|2|)|vε|2 + λε

ˆ
R2

χR|∂tuε − iuεNεpε||∇uε − iuεNεvε|

+ βNε

ˆ
R2

χR|∂tuε − iuεNεpε|
(
|∇uε − iuεNεvε|+Nε|1− |uε|2|+Nε|vε|

))
.

By Lemma 8.5.3 in the form ‖Γε − Γ̄ε‖L∞ . rε = N−4
ε , and by the properties of vε in (8.80), we

deduce for θ > 0 small enough such that Rθ . |log ε| . Nε,

|Igε,R| . rεN
3
εR

θ + rε(λεNε +RθN2
ε )
(ˆ

R2

χR|∂tuε − iuεNεpε|2
)1/2

. 1 +N−1
ε

(ˆ
R2

χR|∂tuε − iuεNεpε|2
)1/2

. 1 +N−2
ε

ˆ
R2

χR|∂tuε − iuεNεpε|2. (8.236)
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We now turn to the estimation of Inε,R. Using Lemma 8.8.2 and the properties of vε in (8.80), the
quantity Ē∗ε,R defined in Lemma 8.5.4 is estimated as follows, for θ > 0 small enough,

Ē∗,tε,R . sup
z

ˆ t

0
Ezε,R + sup

z

ˆ t

0

ˆ
R2

χzR
(
|∂tuε|2 +N2

ε |pε|2 +N2
ε |1− |uε|2||pε|2

)
.t,θ N

2
ε + (1 + εRNε)Nε|log ε|+RθN2

ε |log ε|2 +Nε|log ε|‖div (avε)‖2L∞t (L2 ∩L∞)

.t,θ εRN
2
ε |log ε|+RθN2

ε |log ε|2 . N2
ε |log ε|3 . |log ε|n+3.

Using the obvious estimate |∇χR| . R−1χ
1/2
R , and using Lemma 8.5.3 in the form ‖Γ̄ε‖L∞ . ‖Γε‖L∞ .

1, Lemma 8.5.4 then yields∣∣∣∣ ˆ t

0

ˆ
R2

aṼε · ∇⊥χR
∣∣∣∣ .t |log ε|−1

+R−1|log ε|−1

(ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε|2 +

ˆ t

0

ˆ
B2R

|∇uε − iuεNεvε|2
)
,

and hence,

∣∣∣ˆ t

0
Inε,R

∣∣∣ .t 1 +R−1

ˆ t

0

ˆ
B2R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)

+R−1

ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε|2.

Using (8.232), assumption (8.43), and the properties of vε in (8.80), we conclude

∣∣∣ ˆ t

0
Inε,R

∣∣∣ .t 1 +R−1N2
ε + εN3

ε

(
1 + ‖vε‖2L∞t L4

)
+R−1

ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε|2

.t 1 +R−1N2
ε +R−1

ˆ t

0

ˆ
R2

χR|∂tuε − iuεNε pε|2.

Regarding the last term Idε,R, the definition of the pressure in (8.231) simply yields Idε,R = 0, and the
conclusion (8.235) follows.

Step 2. Estimating the dominant terms.
In this step, we turn to the estimation of the five first terms in (8.234), showing more precisely

that for all t ≤ Tε,

D̂tε,R .t D̂◦ε,R +Nελ
3
ε log |log ε|+ λεNε logNε + λε

ˆ t

0
D̂ε,R. (8.237)

As this result obviously holds uniformly with respect to translations of the cut-off functions, the
conclusion (8.233) follows.

We start with the estimation of the first term ISε,R. Since for all t the field Γ̄tε is by definition
constant in each ball of the collection Btε and satisfies ‖∇Γ̄tε‖L∞ . ‖∇Γtε‖L∞ . 1, we obtain

|ISε,R| .
ˆ
R2\Bε

χR|S̃ε|

.
ˆ
R2\Bε

aχR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+

ˆ
R2

χR|1− |uε|2|(N2
ε |vε|2 + |f |).
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Since Bε has total radius rε = N−4
ε , Proposition 8.8.1(v) yields

|ISε,R| . Dε,R + λεNε logNε +

ˆ
R2

χR|1− |uε|2|(N2
ε |vε|2 + |f |).

Further using (8.232), assumption (8.43), and the properties of vε in (8.80), we conclude

|ISε,R| . D̂ε,R + λεNε logNε. (8.238)

We turn to IHε,R. Using the assumption (8.43) and the properties of vε in (8.80), Lemma 8.8.3 yields

ˆ t

0
IHε,R = Ot(λεNε) +

ˆ t

0

ˆ
R2

aχR
2

Γ⊥ε · ∇h
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
,

and hence by Proposition 8.8.1(iv) and by (8.232),
ˆ t

0
IHε,R .t λεNε logNε +

ˆ t

0
Dε,R .t λεNε logNε +

ˆ t

0
D̂ε,R. (8.239)

The term IDε,R is simply estimated by

IDε,R ≤ −
λεα

2

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +
λεα

2

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γ⊥ε |2. (8.240)

We finally turn to IVε,R. Using α2 + β2 = 1, we have by definition Γε,0 − βΓ⊥ε = αΓε, and hence IVε,R
takes on the following guise,

IVε,R = Nε

ˆ
R2

aχR
2
Ṽε · (Γε,0 − βΓ⊥ε ) = αNε

ˆ
R2

aχR
2
Ṽε · Γε.

As shown in Step 1, the quantity Ē∗ε,R defined in Lemma 8.5.4 satisfies Ē∗,tε,R .t |log ε|n+3. Choosing
e.g. Mε := exp((λε log |log ε|) ∧ |log ε|1/2), Lemma 8.5.4 then yields for any Λ ' 1,

∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ ot(1) + λεα

(
1 +Ot

(
|log ε|−1/2 ∧ λε log |log ε|

|log ε|

))
×
(

1

Λ

ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +
Λ

4

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2
)
,

and thus, using the optimal energy bound (8.232),

∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ Ot(Nελ
3
ε log |log ε|

)
+

(
1 +Ot

(
|log ε|−1/2 ∧ λε log |log ε|

|log ε|

))λεα
Λ

ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2

+
λεαΛ

4

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2. (8.241)

We now distinguish between two cases:

(Case 1)
ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 ≤ 5

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2, (8.242)

(Case 2)
ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 > 5

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2. (8.243)
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In Case 1, choosing Λ = 2 in (8.241) yields

∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ Ot(Nελ
3
ε log |log ε|

)
+
λεα

2

(
1 +Ot

(λε log |log ε|
|log ε|

))ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2

+
λεα

2

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2.

In Case 2, the condition (8.243) can be rewritten as

1

4

ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2

≤
(1

4
+

1

10

)ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2 +
1

2

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2,

and choosing Λ = 4 in (8.241) then yields

∣∣∣ ˆ t

0
IVε,R

∣∣∣ ≤ Ot(Nελ
3
ε log |log ε|

)
+ λεα

(1

4
+

1

10
+ ot(1)

)ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2

+
λεα

2

ˆ t

0

ˆ
R2

aχR|(∇uε − iuεNεvε) · Γε|2.

Further noting that in Case 1 the condition (8.242) together with the energy bound (8.232) yields

(
R−1 +N−2

ε +
λ2
ε log |log ε|
|log ε|

)ˆ
R2

aχR|∂tuε − iuεNεpε|2

.
(
R−1 +N−2

ε +
λ2
ε log |log ε|
|log ε|

)ˆ t

0

ˆ
R2

aχR|∇uε − iuεNεvε|2 .t Nελ
3
ε log |log ε|,

and combining this with (8.235) and (8.240), we observe an exact recombination of the terms, and
obtain in Case 1,

ˆ t

0
(IVε,R + IDε,R + Igε,R + Inε,R + I ′ε,R)

≤ λεα

2

ˆ t

0

ˆ
R2

aχR|∇uε − iuεNεvε |2|Γε|2 +Ot(Nελ
3
ε log |log ε|), (8.244)

and in Case 2,

ˆ t

0
(IVε,R + IDε,R + Igε,R + Inε,R + I ′ε,R) ≤ λεα

2

ˆ t

0

ˆ
R2

aχR|∇uε − iuεNεvε |2|Γε|2 +Ot(Nελ
3
ε log |log ε|)

− λεα

2

(1

2
− 1

5
− ot(1)

) ˆ t

0

ˆ
R2

aχR|∂tuε − iuεNεpε|2,

so that (8.244) holds in both cases for ε > 0 small enough. Using α2 + β2 = 1, we have by definition
Γε · Γε,0 = α|Γε,0|2 = α|Γε|2, and hence the term IEε,R takes on the following guise, in terms of Γε,
Γε,0,

IEε,R = −λε
2
|log ε|

ˆ
R2

aχRΓε · Γε,0 µε = −λεα
2
|log ε|

ˆ
R2

aχR|Γε|2µε.
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Together with (8.244), this yields
ˆ t

0
(IVε,R + IEε,R + IDε,R + Igε,R + Inε,R + I ′ε,R)

≤ λεα

2

ˆ t

0

ˆ
R2

aχR
(
|∇uε − iuεNεvε|2 − |log ε|µε

)
|Γε|2 +Ot(Nελ

3
ε log |log ε|).

Combining this with (8.234), (8.238), and (8.239), we obtain

D̂tε,R − D̂◦ε,R .t
ˆ t

0
D̂ε,R +

λεα

2

ˆ t

0

ˆ
R2

aχR
(
|∇uε − iuεNεvε|2 − |log ε|µε

)
|Γε|2

+Nελ
3
ε log |log ε|+ λεNε logNε,

and the result (8.237) now follows from Proposition 8.8.1(iv).

Step 3. Conclusion.
As explained at the beginning of the proof, in the regime |log ε| . Nε � |log ε| log |log ε| with

D◦ε,R . N2−δ
ε for some δ > 0, the estimate (8.233) implies Tε = T and D∗,tε,R �t N

2
ε for all t ∈ [0, T ).

We now show that it implies the convergence N−1
ε jε− vε → 0. For all t ∈ [0, T ), Proposition 8.8.1(v)

gives

sup
z

ˆ
R2\Bε

χzR|∇uε − iuεNεvε|2 �t N
2
ε ,

and for all 1 ≤ p < 2,

sup
z

ˆ
Bε
χzR|∇uε − iuεNεvε|p . |Bε|1−p/2(E∗ε,R)p/2 .t r

2−p
ε Np

ε �p N
p
ε .

Using the pointwise estimates of Lemma 8.4.2, we deduce

sup
z

ˆ
B(z)
|jε −Nεvε| .t sup

z

ˆ
B(z)
|∇uε − iuεNεvε|+ εN2

ε

.t sup
z

ˆ
Bε
χzR|∇uε − iuεNεvε|+ sup

z

(ˆ
B(z)\Bε

|∇uε − iuεNεvε|2
)1/2

+ εN2
ε �t Nε,

hence N−1
ε jε − vε → 0 in L∞loc([0, T ); L1

uloc(R2)2).

8.9 Small pin separation limit

In this section, we aim to combine the mean-field limit with the homogenization limit of a small
pin separation ηε ↓ 0. Only partial results are obtained here for this double limit. We focus on the
dissipative regimes (GL1), (GL2), (GL′1), and (GL′2), and for simplicity we restrict to the periodic
setting, that is, ĥ(x) = ηεĥ

0(x, x/ηε) with ĥ0 periodic in its second variable. (As we assume α > 0,
all multiplicative constants in this section are implicitly allowed to additionally depend on an upper
bound on α−1.)

8.9.1 Modulated energy argument

In this section, we adapt the result of Proposition 8.6.1 to the case with fast oscillating pinning.
Since for simplicity we have not been looking for precise rates of convergence in Proposition 8.6.1
(that is, refinements of the o(N2

ε ) error in (8.185)), we are only in position to treat inexplicit diagonal
regimes ηε,0 ≤ ηε � 1, for some suitable ηε,0 depending on the data of the problem. Further
refinements are left to the interested reader.
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Proposition 8.9.1. We consider the regimes (GL1), (GL2), (GL′1), and (GL′2) with fast oscillating
pinning potential (8.27). The solution vε of the corresponding limiting equation (8.51) exists up to
time ηεT , where T > 0 is as in Proposition 8.3.2. In particular, in the regimes (GL1) and (GL2) with
β = 0 the time T can be chosen infinite, while in the regimes (GL1), (GL′1), and (GL′2) there exists
some sequence ηε,0 � 1 (depending only on ε and Nε) such that for all ηε,0 ≤ ηε � 1 the time ηεT
can be chosen arbitrarily large for ε > 0 small enough.
Moreover, there exists some exponent σ > 0 and some increasing bijection θ : R+ → R+ such that, if
the initial modulated energy satisfies D∗,◦ε,R � N2

ε , we have in the considered regimes, with the same
restrictions as in Proposition 8.6.1, for all 0 ≤ t < ηεT ,

sup
0≤s≤t

Dsε,R ≤ N2
ε =⇒ D̂tε,R ≤ θ(t/ηε)

(
η−σε o(N2

ε ) + η−1
ε

ˆ t

0
D̂ε,R

)
. (8.245)

♦

Proof. We adapt the proof of Proposition 8.6.1 to the present case with fast oscillating pinning. For
that purpose we first need to check how the solution vε of the limiting equations (8.51) depends on the
small parameter ηε, thus adapting the result of Proposition 8.3.2. A scaling argument shows that the
solution vε exists up to time ηεT , where T is as in Proposition 8.3.2. Moreover, an inspection of the
proofs in Chapter 7 together with a scaling argument shows that all the estimates in Proposition 8.3.2
still hold up to multiplicative constants of the form η−σε θ(t/ηε), for all 0 ≤ t < ηεT , for some exponent
σ ≥ 0 and some increasing bijection θ : R+ → R+. (Of course this is but a rough estimate, but it is
enough for our purposes here.) Note that a scaling argument yields more precisely for all 0 ≤ t < ηεT ,

‖Γtε‖L∞ ≤ θ(t/ηε), ‖∇Γtε‖L∞ ≤ η−1
ε θ(t/ηε),

for some increasing bijection θ : R+ → R+. Repeating the proof of Proposition 8.6.1, but now taking
into account this ηε-dependence, the conclusion follows.

8.9.2 Local relaxation for slowed-down dynamics

The result of Proposition 8.9.1 a priori prevents us from applying a Grönwall argument beyond
times of order ηε. As the following shows, in this short timescale, in each (mesoscopic) periodicity
cell, the vorticity gets projected onto the invariant measure for the cell dynamics associated with the
initial vector field Γ◦ε (where Γε is the vector field driving the limiting equation (8.51)). This initial-
boundary layer is captured in the framework of 2-scale convergence. The proof of this short-time
result is very easy since the non-linearity does not play any role in this timescale. In contrast, in the
next sections, we give formal arguments that on larger timescales the effective vector field is given by
the cell vector field projected onto the corresponding invariant measure (which is indeed in agreement
with the present short-time result), but on such large timescales the nonlinearity truly enters into
play and a rigorous justification is still missing.

Proposition 8.9.2. Let Assumption 8.1.1(a) hold, with the initial data (u◦ε, v
◦
ε, v
◦) satisfying the

well-preparedness condition (8.16). We consider the regimes (GL1), (GL2), (GL′1), and (GL′2) with
fast oscillating pinning potential (8.27). Let uε : R+ × R2 → C be the solution of (8.6) as in
Proposition 8.2.2(i). Let T > 0 denote the finite existence time given by Proposition 8.3.2 in the
regime (GL2) in the mixed-flow case β 6= 0, and set T :=∞ otherwise. Let also m̂0 denote the unique
solution of the following transport equation on R+ ×Q, for all x ∈ R2,

∂tm̂0(x, ·) = −divy
(
Γ◦(x, ·)⊥m̂0(x, ·)

)
, m̂0(x, ·)|t=0 = curl v◦(x), (8.246)

Γ◦(x, y) := (α− Jβ)
(
∇⊥2 ĥ0(x, y)− F̂ (x)⊥ − 2κv◦(x)

)
,
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where κ := 1 in the regime (GL1), κ := λ in the regime (GL2), and κ := 0 in the regimes (GL′1)
and (GL′2). Then there exists ηε,0 � 1 (depending on all the data of the problem) such that for all
ηε,0 ≤ ηε � 1 the rescaled vorticity N−1

ε µηεtε 2-scale converges to m̂t
0, that is, for all φ ∈ C∞c ([0, T )×

R2;C∞per(Q)),

lim
ε↓0

¨
R+×R2

φ(t, x, x/ηε)N
−1
ε µηεtε (x)dxdt =

˚
R+×R2×Q

φ(t, x, y)m̂t
0(x, y)dydxdt. ♦

Proof. Let vε : [0, ηεT )×R2 → R2 denote the solution of the limiting equations (8.51) with oscillating
pinning (8.27), as given by Proposition 8.9.1. Now applying Proposition 8.9.1 in the form (8.245),
and choosing a sequence ηε,0 � 1 going sufficiently slowly to 0 so that the error η−σε,0 o(N

2
ε ) in (8.245)

remains of order o(N2
ε ), the Grönwall inequality implies for all ηε,0 ≤ ηε � 1 that D∗,ηεtε,R .t o(N2

ε )
holds for all 0 ≤ t < T . Hence, arguing as in Step 5 of the proof of Proposition 8.6.1, we deduce
N−1
ε jηεtε (x) − vηεtε (x) → 0 in L∞loc(R+; L1

uloc(R2)2) as ε ↓ 0. It remains to determine the asymptotic
behaviour of vηεtε . We split the proof into two steps.

Step 1. 2-scale convergence of curl vηεtε .
Let v̂tε := vηεtε and m̂ε := curl v̂ε. Taking the curl in both sides of (8.51), we deduce

∂tm̂ε = −ηε div (Γ̂⊥ε m̂ε), Γ̂ε := λ−1
ε (α− Jβ)

(
∇⊥h− F⊥ − 2Nε

|log ε|
v̂ε

)
, m̂ε|t=0 = curl v◦ε .

(8.247)

By Lemma 7.4.1(iii) in the dissipative case α > 0, with ‖h‖W 1,∞ , ‖λ−1
ε (∇⊥h − F⊥)‖L∞ , ‖v◦ε‖L∞ ,

‖div (av◦ε)‖L2 . 1, we deduce that
´
R2 |vtε− v◦ε|2 . t for all t ∈ [0, ηεT ). On the other hand,

Lemma 7.4.2 implies by scaling ‖curl vtε‖L∞ .t/ηε 1. After time rescaling, this implies for all t ∈ [0, T ),
ˆ
R2

|v̂tε − v◦ε|2 .t ηε, and ‖m̂t
ε‖L∞ .t 1. (8.248)

Nguetseng’s 2-scale compactness theorem [344, 11] (e.g. in the form of [172, Theorem 3.2]) then states
that there exists m̃0 ∈ L∞loc([0, T ); L∞(R2 × Q)) such that up to a subsequence m̂ε 2-scale converges
to m̃0, in the sense that for all φ ∈ C∞c ([0, T )× R2;C∞per(Q)) we have

lim
ε↓0

ˆ T

0

ˆ
R2

φ(t, x, x/ηε)m̂
t
ε(x)dxdt =

ˆ T

0

¨
R2×Q

φ(t, x, y)m̃t
0(x, y)dydxdt.

Testing equation (8.247) with φ(t, x, x/ηε), we find

−
ˆ
R2

φ(0, x, x/ηε)curl v◦(x)dx−
ˆ T

0

ˆ
R2

∂tφ(t, x, x/ηε)m̂
t
ε(x)dxdt

=

ˆ T

0

ˆ
R2

m̂t
ε(x)(ηε∇1φ(t, x, x/ηε) +∇2φ(t, x, x/ηε)) · Γ̂tε(x)⊥dxdt,

and hence, passing to the limit ε ↓ 0 along the subsequence, and noting that v̂ε → v◦ in L∞loc(R+; L2
uloc(R2))

(cf. (8.248)), we obtain in the considered regimes,

−
¨

R2×Q
φ(0, x, y)curl v◦(x)dydx−

ˆ T

0

¨
R2×Q

∂tφ(t, x, y)m̃t
0(x, y)dydxdt

=

ˆ T

0

¨
R2×Q

m̃t
0(x, y)∇2φ(t, x, y) · Γ◦(x, y)⊥dydxdt.
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This proves that m̃0 satisfies the weak formulation of the linear transport equation (8.246), and
therefore coincides with its unique solution, m̃0 = m̂0.

Step 2. Conclusion.
Let φ ∈ C∞c ([0, T )× R2;C∞per(Q)), with φ(t, x, y) = 0 for |x| > R0. Integration by parts yields∣∣∣∣ ˆ T

0

ˆ
R2

φ(t, x, x/ηε)curl (N−1
ε jηεtε )(x)dxdt−

ˆ T

0

¨
R2×Q

φ(t, x, y)m̂t
0(x, y)dydxdt

∣∣∣∣
≤ η−1

ε ‖∇1,2φ‖L∞
ˆ T

0

ˆ
BR0

|N−1
ε jηεtε − v̂tε|

+

∣∣∣∣ˆ T

0

ˆ
R2

φ(t, x, x/ηε)curl v̂tε(x)dxdt−
ˆ T

0

¨
R2×Q

φ(t, x, y)m̂t
0(x, y)dydxdt

∣∣∣∣. (8.249)

By Step 1, the second right-hand side term goes to 0. It remains to estimate the first term. At the
beginning of the proof, we have shown that

´ T
0

´
BR0
|N−1

ε jηεtε − v̂tε| → 0 holds uniformly with respect
to the choice of ηε,0 ≤ ηε � 1. Now choosing ηε,0 � 1 going sufficiently slowly to 0, we conclude that
for all ηε,0 ≤ ηε � 1 the first right-hand side term in (8.249) also goes to 0.

8.9.3 Homogenization diagonal result

Although the result of Proposition 8.9.1 a priori prevents us from applying a Grönwall argument
beyond times of order ηε, it is possible to find some perturbative diagonal regime where the conclusion
holds for all times. (While this regime is still denoted below by ηε,0 ≤ ηε � 1 for some sequence
ηε,0 � 1 going sufficiently slowly to 0, it should be emphasized that the sequence ηε,0 needs here to
be taken incomparably much larger than in Propositions 8.9.1 and 8.9.2.) In such a diagonal regime,
the homogenization limit may simply be performed after the mean-field limit.

Corollary 8.9.3. We consider the regimes (GL1), (GL2), (GL′1), and (GL′2) with fast oscillating
pinning potential (8.27), and in the regime (GL2) we restrict to the parabolic case β = 0. Then there
exists ηε,0 � 1 (depending on all the data of the problem) such that for all ηε,0 � ηε � 1 the statement
of Proposition 8.6.1 holds in each of the corresponding regimes. ♦

Proof. Since the regime (GL2) is excluded here in the mixed-flow case β 6= 0, Proposition 8.9.1 asserts
that the solution vε of (8.51) with oscillating pinning exists up to time ηεT , and that in addition for
ηε,0 ≤ ηε � 1 with ηε,0 going sufficiently slowly to 0 the time ηεT can be chosen arbitrarily large for
ε > 0 small enough. Now given the assumption D∗,◦ε,R � N2

ε on the initial data, for all ε > 0 we define
Tε > 0 as the maximum time such that Dtε,R ≤ N2

ε holds for all t ≤ Tε, so that Proposition 8.9.1
yields for all 0 ≤ t ≤ Tε,

D̂tε,R ≤ θ(t/ηε)
(
η−σε o(N2

ε ) + η−1
ε

ˆ t

0
D̂ε,R

)
,

for some exponent σ ≥ 0 and some increasing bijection θ : R+ → R+. Hence we find by the Grönwall
inequality for all 0 ≤ t ≤ Tε,

D̂tε,R . θ
( t+ 1

ησε

)
o(N2

ε ),

for some other exponent σ ≥ 1 and some other increasing bijection θ : R+ → R+. Let the sequence
ηε,0 go sufficiently slowly to 0 so that

θ−1
( Nε√

o(N2
ε )

)−1/σ
� ηε,0 � 1.
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Then for all ηε,0 ≤ ηε � 1 we deduce D̂tε,R � N2
ε for all t ≥ 0, and the conclusion follows as in Step 4

of the proof of Proposition 8.6.1.

In this diagonal regime, the problem is thus reduced to the determination of the asymptotic
behavior as ε ↓ 0 of the solution vε of the limiting equation (8.51) with fast oscillating pinning po-
tential (8.27). As the following shows, we may further replace vε by the solution v̄ε of the simpler
corresponding equations in Lemma 8.3.3 with fast oscillating pinning potential. Determining the
asymptotic behavior of v̄ε is then a homogenization problem; this is precisely the content of Corol-
lary 8.1.5 as stated in the introduction. (Note that the correct choice of the diagonal regime ηε,0 � 1
could be made completely explicit here in terms of the rate of convergence of Nε/|log ε| to its limit;
this is however not made precise since we are anyway limited to some unclear diagonal regime when
combining this result with Corollary 8.9.3.)

Corollary 8.9.4. We consider the regimes (GL1), (GL2), (GL′1), and (GL′2) with fast oscillating
pinning potential (8.27), and in the regime (GL2) we restrict to the parabolic case β = 0. Let vε be
the solution of (8.51) with fast oscillating pinning as in Proposition 8.9.1, and let v̄ε be the solution
of the corresponding equation (8.63)–(8.66) in Lemma 8.3.3 with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε).
Then there exists ηε,0 � 1 (depending on all the data of the problem) such that for all ηε,0 ≤ ηε � 1
the solutions vε and v̄ε exist on arbitrarily large time intervals as ε ↓ 0, and the same convergence
results hold as in Lemma 8.3.3 in the form vε−v̄ε → 0. ♦

Proof. This convergence result directly follows from the computations in the proof of Lemma 8.3.3,
now taking into account the ηε-dependence of vε and v̄ε, and applying the Grönwall inequality in a
diagonal regime as in the proof of Corollary 8.9.3.

In the next sections 8.9.4–8.9.5, we examine the homogenization problems arising in the above
result. Although the justification of the homogenization of the nonlinear equation arising in the
critical regimes seems to be out of reach (in the dissipative case), the situation is much simpler in the
subcritical regimes.

8.9.4 Critical regimes: formal asymptotics

In this section, we investigate the asymptotic behavior of the mean-field equations in the critical
regimes (GL1) and (GL2) with fast oscillating pinning (8.27). In order to extract the effective equa-
tions that should rule the system in the limit ηε ↓ 0, we use a formal 2-scale expansion (see e.g. [50]
for a general presentation) and justify Heuristics 8.1.7 as stated in the introduction. However, as
emphasized in Remark 8.9.5 below, due to both the nonlinear nonlocal character of the mean-field
equations and their instability as ηε ↓ 0, the rigorous justification of this homogenization limit seems
to be a very difficult task, and is not pursued here. Regarding the interpretation of the formal limiting
equations as a stick-slip model, we refer to the introduction (see Section 8.1.3).

Formal justification of Heuristics 8.1.7. We focus on the regime (GL1), while the formal justification
is easily adapted to the regime (GL2). The only difference is that in the regime (GL2) it is further
needed to restrict to the parabolic case β = 0 in order to get global existence for the solution v̄ε
of (8.64) with fast oscillating pinning, since otherwise the finite existence time would a priori shrink
to 0 as ηε ↓ 0 (cf. Proposition 8.9.1). Let v̄ε : R+ × R2 → R2 denote the unique (global) smooth
solution of (8.63) with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε),

∂tv̄ε = ∇p̄ε + Γ̄⊥ε curl v̄ε, div v̄ε = 0, v̄ε|t=0 = v◦ε,

Γ̄ε := (α− Jβ)
(
∇2ĥ

0(·, ·/ηε)− F̂ + 2v̄⊥ε
)
,
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with ĥ0 and F̂ independent of ε. Let us recall the more convenient vorticity formulation of this
equation: the vorticity m̄ε := curl v̄ε satisfies

∂tm̄ε = div (Γ̄εm̄ε), v̄ε = ∇⊥ḡε, 4ḡε = m̄ε. (8.250)

As a consequence of Lemmas 7.4.1(iii) and 7.4.2, we find ‖v̄tε−v◦‖L2 .t 1 and by scaling ‖m̄t
ε‖L∞ .t/ηε

1. In order to obtain the effective equations satisfied by vε in the limit ηε ↓ 0, we use a formal 2-scale
expansion: we assume that vε satisfies the following natural 2-scale Ansatz,

v̄tε(x) = v̄0(t, t/ηε, x, x/ηε) + ηεv̄1(t, t/ηε, x, x/ηε) +O(η2
ε), (8.251)

m̄t
ε(x) = m̄0(t, t/ηε, x, x/ηε) + ηεm̄1(t, t/ηε, x, x/ηε) +O(η2

ε),

ḡtε(x) = ḡ0(t, t/ηε, x, x/ηε) + ηεḡ1(t, t/ηε, x, x/ηε) + η2
ε ḡ2(t, t/ηε, x, x/ηε) +O(η3

ε).

We denote by (t, τ, x, y) the coordinates corresponding with (t, t/ηε, x, x/ηε). Injecting the above
ansatz into equation (8.250), and formally identifying the powers of ηε, we derive the following equa-
tions,

∂τ m̄0 = divy(Γ
0[v̄0]m̄0), (8.252)

∂tm̄0 + ∂τ m̄1 = divx(Γ0[v̄0]m̄0) + divy(Γ
0[v̄0]m̄1) + divy(Γ

1[v̄1]m̄0),

v̄0 = ∇⊥x ḡ0 +∇⊥y ḡ1,

∇y ḡ0 = 0, 4y ḡ1 = 0, 4xḡ0 + 2∇x · ∇y ḡ1 +4y ḡ2 = m̄0,

where for any vector field w we have defined for simplicity the following vector fields,

Γ0[w] := (α− Jβ)(∇2ĥ
0 − F̂ + 2w⊥),

Γ1[w] := 2(α− Jβ)w⊥.

The first two equations in the last line of (8.252) imply that both ḡ0 and ḡ1 are independent of the
y-variable. The third equation in (8.252) then ensures that v̄0 = ∇⊥x ḡ0 is also independent of the
y-variable. Averaging both the first and the last equations on the periodicity cell Q, and denoting for
simplicity 〈·〉 :=

´
Q dy the averaging operator, we find

∂τ 〈m̄0〉 = 0, v̄0 = ∇⊥x ḡ0, 4xḡ0 = 〈m̄0〉,

which implies that 〈m̄0〉 is independent of the τ -variable, hence the same holds for ḡ0 and v̄0. The
2-scale Ansatz (8.251) then takes on the following more precise form,

v̄tε(x) = v̄t0(x) + ηεv̄1(t, t/ηε, x, x/ηε) +O(η2
ε),

m̄t
ε(x) = m̄0(t, t/ηε, x, x/ηε) + ηεm̄1(t, t/ηε, x, x/ηε) +O(η2

ε).

Further averaging the second equation in (8.252) on the periodicity cell Q, we obtain

∂τ m̄0 = divy(Γ
0[v̄0]m̄0), (8.253)

∂t〈m̄0〉+ ∂τ 〈m̄1〉 = divx(〈Γ0[v̄0]m̄0〉),
v̄0 = ∇⊥x4−1

x 〈m̄0〉.

Let us now take a closer look at these equations (8.253). For all x ∈ R2 and t ∈ R+, consider the
periodic flow φx,t : R+ ×Q→ Q associated with the periodic vector field −Γ0[v̄t0](x, ·) : Q→ R2,

∂τφ
τ
x,t(y) = −Γ0[v̄t0](x, φτx,t(y)), φτx,t(y)|τ=0 = y.
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The first equation in (8.253) then yields

m̄0(t, τ, x, y) =
(
(φτx,t)∗m̄0(t, 0, x, ·)

)
(y).

Now applying s−1
´ s

0 dτ to both sides of the second equation in (8.253), passing to the limit s ↑ ∞,
and recalling that 〈m̄0〉 is independent of the τ -variable, we formally deduce

∂t〈m̄0〉(t, x) = divx

ˆ
Q

(
lim
s↑∞

s−1

ˆ s

0
Γ0[v̄t0](x, φτx,t(y))dτ

)
m̄0(t, 0, x, y)dy. (8.254)

By assumption, the periodic vector field −Γ0[v̄t0](x, ·) admits a unique stable (normalized) invariant
measure µx[v̄t0] ∈ P(Q). By the ergodic theorem, for any ψ ∈ Cper(Q), we deduce for µx[v̄t0]-almost
all y ∈ Q,

lim
s↑∞

s−1

ˆ s

0
ψ(φτx,t(y))dτ = 〈ψ µx[v̄t0]〉.

In view of the unique stability assumption, it is most natural to admit that the above also holds for
m̄0(t, 0, x, ·)-almost all y ∈ Q, in which case we find

lim
s↑∞

ˆ
Q
ψ(y)

(
s−1

ˆ s

0
m̄0(t, τ, x, y)dτ

)
dy = lim

s↑∞

ˆ
Q

(
s−1

ˆ s

0
ψ(φτx,t(y))dτ

)
m̄0(t, 0, x, y)dy

= 〈m̄0〉(t, x)〈ψ µx[v̄t0]〉,

that is,

lim
s↑∞

s−1

ˆ s

0
m̄0(t, τ, x, y)dτ = 〈m̄0〉(t, x)µx[v̄t0],

in the weak-* sense of measures. In particular, the limit in the right-hand side of (8.254) is explicitly
computed,

∂t〈m̄0〉(t, x) = divx
(
〈Γ0[v̄t0](x, ·)µx[v̄t0]〉〈m̄0〉(t, x)

)
. (8.255)

Combining this with the first and the last equations in (8.253), the heuristics follows.

Remark 8.9.5 (Obstacles to a rigorous justification). As described below, there are essentially three
distinct weaknesses in the above formal justification of Heuristics 8.1.7.

(a) The first part of the justification consists in formally deriving the relations (8.253) for the 2-scale
expansion of v̄ε. This derivation is based on formally inserting the 2-scale Ansatz in the equation
for v̄ε and identifying the powers of ηε. However, due to both the nonlinear nonlocal character of
the equation for v̄ε and its instability as ηε ↓ 0, a rigorous justification seems difficult to obtain,
as we explain here.
In order to justify formal 2-scale expansions, a powerful tool is given by Nguetseng’s 2-scale
weak compactness theorem [344, 11]. Since the equation for vε is nonlinear, this technique
is not well suited for the present situation, and since the nonlinearity is in addition nonlocal,
E’s technique of 2-scale Young measures [172] is also useless here. (If we try to argue by 2-
scale weak compactness, we would deduce that m̄ε, v̄ε, and the product m̄εv̄ε 2-scale converge
weakly-* to some m̄0 ∈ L∞loc(R+;M(R2;Mper(Q))), some v̄0 ∈ L∞loc(R+; L2

loc(R2)), and some
Q̄0 ∈ L∞loc(R+;M(R2;Mper(Q))2), respectively; cf. Lemma 8.9.10. Compensated compactness in
the form of Delort’s weak continuity theorem [143] actually ensures that 〈Q̄0〉 = 〈m̄0〉v̄0, but the
stronger microscopic identification Q̄0 = m̄0v̄0 would further be needed, which seems very unclear
by such a weak compactness approach.)
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Another way to proceed (see e.g. [135, Section 3.1]) consists in approximating the solution v̄ε
with the first terms of its formal 2-scale expansion (8.251): by definition this approximation
satisfies the very same equation as v̄ε up to a small error, and this could be combined with a
quantitative uniqueness principle to ensure that v̄ε remains close to its expansion. However, the
linear part of the equation with fast oscillating forcing and the nonlinear interaction part are
difficult to conciliate, and we do not know of any stability estimate which does not blow up in the
homogenization limit. On the one hand, the L1-contraction principle for the vorticity holds in the
linear case but interacts badly with the nonlinearity. On the other hand, the nonlinear interaction
part calls for energy type estimates (that is, estimates on the L2-distance between supercurrent
densities), but the evolution of such metrics (as well as of the 2-Wasserstein distance) is sensitive
to the blowing Lipschitz norm of the oscillating forcing vector field. This issue is linked with the
particularly strong instability of the equation upon perturbations as ηε ↓ 0.

(b) The last part of the justification consists in checking that the relations (8.253) imply the closed
equation (8.255) for the averaged vorticity 〈m0〉. If the (normalized) invariant measure µx[v̄t] was
truly unique for all x, t, then the given justification would be perfectly rigorous. Unfortunately,
in the periodic setting, due to the gradient structure, this uniqueness (or unique ergodicity) is
impossible, while the uniqueness assumption for a stable invariant measure seems more reasonable.
The flaw in the above justification then lies in the assumption that unstable invariant measures
do not play any role in the limit in (8.254), which is however not obvious and would require some
argument.

(c) Finally, the well-posedness of the limiting equation (8.29) or (8.30) is unclear. The main difficulty
is that the map Rd × Rd → Rd : (x, Z) 7→ Γhom[Z](x) is not even expected to be Lipschitz-
continuous in Z: indeed, as explained in Remark 8.9.9 and Proposition 8.9.11, for fixed x, this
map typically vanishes for Z in some bounded domain (pinning phenomenon), and is expected
to have a power-law behavior with some power < 1 at the boundary of this domain (fractional
depinning rate). ♦

Remark 8.9.6 (Vanishing viscosity). For simplicity, we may consider the corresponding homoge-
nization problems with a vanishing viscosity, that is, adding in the right-hand side of equation (8.63)
or (8.64) for v̄ε a term +Dηε4v̄ε for some fixed constant D > 0. A similar formal 2-scale expansion as
above then yields the following modification of the relations (8.253), in the case of the regime (GL1),

∂τ m̄0 = D4ym̄0 + divy(Γ
0[v̄0]m̄0), (8.256)

∂t〈m̄0〉+ ∂τ 〈m̄1〉 = divx(〈Γ0[v̄0]m̄0〉),
v̄0 = ∇⊥x4−1

x 〈m̄0〉.

From these relations the interpretation is now much easier: the first equation implies the (exponential)
convergence of m̄0(t, τ, x, ·) towards 〈m̄0〉(t, x)µ̃Dx [v̄t0] as τ ↑ ∞, where the viscous invariant measure
µ̃Dx [v̄t0] ∈ Pper(Q) is the unique (smooth) solution of the following equation on the periodicity cell Q,

D4yµ̃
D
x [v̄t0] + divy(Γ

0[v̄t0]µ̃Dx [v̄t0]) = 0.

The formal limiting equation then takes exactly the same form as in Heuristics 8.1.7, but with Γhom[w]
replaced by its better-behaved viscous analogue,

Γ̃Dhom[w](x) :=

ˆ
Q

Γx[w](y)dµ̃Dx [w](y).

In this case, the last two difficulties (b) and (c) pointed out in Remark 8.9.5 above disappear: the
viscous invariant measure is easily checked to be always uniquely defined, and the corresponding
limiting equation for m̄ is well-posed. Nevertheless, the difficulty (a) remains unchanged (that is, the
rigorous derivation of the relations (8.256) for the 2-scale limit), and finding a rigorous proof remains
very challenging. ♦
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Remark 8.9.7 (Conservative case). In this remark, resulting from a discussion with Anne-Laure
Dalibard, we briefly explain that the homogenization problem is much simpler for the corresponding
equation (8.63) in the conservative case (α = 0, β = 1), that is,

∂tv̄ε = ∇p̄ε + Γ̄⊥ε curl v̄ε +Dηε4v̄ε, div v̄ε = 0, v̄ε|t=0 = v◦ε,

Γ̄ε := −
(
∇⊥2 ĥ0(·, ·/ηε)− F̂⊥ − 2v̄ε

)
,

where we have included for simplicity a vanishing viscosity as in Remark 8.9.6 above, and where
D > 0, ĥ0, and F̂ are independent of ε. In vorticity form, in terms of m̄ε := curl v̄ε, this equation
becomes

∂tm̄ε = Dηε4m̄ε + div (Γ̄εm̄ε), Γ̄ε := −
(
∇⊥2 ĥ0(·, ·/ηε)− F̂⊥ − 2∇⊥4−1m̄ε

)
, m̄ε|t=0 = m◦ε .

Since the divergence of the vector field Γ̄ε is given by div Γ̄⊥ε = −(∇1 · ∇⊥2 ĥ0)(·, ·/ηε)− curl F̂ and is
bounded in L∞(R2), assuming that m◦ε is bounded in P ∩L∞(R2), we deduce that the vorticity m̄ε is
bounded in L∞loc(R+;P∩L∞(R2)). Therefore, v̄ε = ∇⊥4−1m̄ε is bounded in L∞loc(R+; L∞ ∩H1

loc(R2)2).
Up to an extraction, and using the Aubin-Simon lemma, we conclude that m̄ε 2-scale converges weakly
to some m̄0 ∈ L∞loc(R+; L2(R2 × Q)), and that v̄ε converges strongly to some v̄0 in L∞loc(R+ × R2)2.
This strong compactness for v̄ε allows to pass to the limit in the product m̄εv̄ε, and we easily deduce
that the limiting vorticity m̄0 satisfies the expected equation. ♦

8.9.5 Subcritical regimes

In the subcritical regimes (GL′1) and (GL′2), the interaction of the vortices vanishes in the limit,
and we are left with a much simpler linear transport equation for the vorticity m̄ε := curl v̄ε with fast
oscillating pinning force (as is obtained by taking the curl of equation (8.65) or (8.66) in the form of
Corollary 8.9.4),

∂tm̄ε = div
(
Γ̄εm̄ε

)
, m̄ε|t=0 = curl v◦ε,

Γ̄ε(x) := Γ̄(x, x/ηε), Γ̄(x, y) := (α− Jβ)(∇2ĥ
0(x, y)− F̂ (x)).

With its fast oscillating gradient part, this linear transport equation is referred to as a washboard or
wiggly system. Obviously the macroscopic dynamics strongly depends on microstructural events, for
instance if some mass gets stuck in local minima: the typical mental picture is that of a particle sliding
down a rough slope (like a washboard), thus taking a jerky path downwards, sometimes getting stuck
along the way. Due to its gradient part, the corresponding vertical flow Γ̄(x, ·) on the periodicity cell
Q cannot be uniquely ergodic, so that the problem of determining the asymptotic behavior of the
solution m̄ε lies outside the classical theory of averaging. This problem was first studied in dimension 1
by [1, 60], and later investigated in dimension 2 by Menon [319].

Menon’s results [319] show that the space R2 splits into three regions associated with different
dynamical properties: (1) an open set where the mass gets stuck (pinning region), (2) a transition
region with a combination of sticking and slipping, and (3) the rest of the plane with only slipping. The
slipping region is actually further split into countably many resonance zones where the limiting vector
field has a constant direction given by the (rational) rotation number of the underlying microscopic
cell flow, and the direction of the vector field varies continuously but not smoothly across the boundary
of the resonance zones: given an initial position far from the pinning region, its path downwards is
typically rough like a Cantor function. The dynamics is indeed particularly rich in dimensions d ≥ 2:
through the forcing F̂ , the macroscopic variable x acts as a bifurcation parameter for the topology
of the underlying microscopic cell flow, and the bifurcations in the topology generate changes in the
macroscopic motion between stick and slip, as well as between (rational) slipping directions. Note
that Menon’s results [319] are only partially justified, and are restricted to dimension d = 2 (due to
some key topological arguments).
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Figure 8.4 – In dimension 2, a typical choice for the pinning potential is e.g. h̃0(x) :=
− cos(πx1)2 cos(πx2)2 for x ∈ Q = [−1

2 ,
1
2)2.

Simplified model

In order to exemplify the complexity of the structure of the limiting motion described above, let us
consider (in general dimension d, say) the easier case of a constant forcing F̂ := F0 ∈ Rd together with
a wiggly potential h̃0 that only depends on the microscopic variable; we thus consider the following
linear transport equation,

∂tm̃ε = div (ΓF0
ε m̃ε), m̃ε|t=0 = m̃◦ε, (8.257)

ΓF0
ε (x) = ΓF0(x/ηε), ΓF0(y) = (α− Jβ)(∇h̃0(y)− F0).

In this context, there is a true separation of scales in the limit ηε ↓ 0, and we may simply study
the bifurcation of the limiting motion with respect to the constant forcing F0. This system is a very
particular case of the general nonlinear systems studied in [137] under additional well-preparedness
conditions, but a more precise result is obtained here (see also [85, 247, 172, 254] for the easier
incompressible case, and [188, 136] for the corresponding Hamiltonian setting).

We first introduce some notation and make some regularity assumptions. The periodic vector
field −ΓF0 on the unit cell Q ⊂ Rd defines a dynamical system on the d-torus Q. Assume that h̃0

is smooth and non-degenerate, in the sense that for F0 6= 0 this dynamical system admits a finite
number of (normalized) ergodic invariant measures (µF0

k )
LF0
k=1 ⊂ P(Q), 1 ≤ LF0 < ∞. For F0 = 0

we only assume that the dynamical system admits a finite number of (normalized) ergodic invariant
measures supported on intQ, while the boundary ∂Q is assumed to be made of unstable fixed points
of the dynamics, thus yielding an infinite family (δp)p∈∂Q of ergodic measures on this boundary. (This
assumption is motivated by the typical choice h̃0 ≤ 0, (h̃0)−1({0}) = ∂Q; cf. the explicit example in
Figure 8.4.) For all 1 ≤ k ≤ LF0 we define the minimal invariant sets AF0

k := suppµF0
k , and we let

BF0
k denote the set of µF0

k -generic points. We order the ergodic measures in such a way that |BF0
k | > 0

holds for all 1 ≤ k ≤ KF0 , and |B
F0
k | = 0 for all KF0 + 1 ≤ k ≤ LF0 , with 1 ≤ KF0 ≤ LF0 . By

construction we have ∣∣∣Q \ KF0⊎
k=1

BF0
k

∣∣∣ = 0.

Note that in dimension d = 2 the dynamical picture is particularly simple, as Denjoy’s version of the
Poincaré-Bendixson theorem on the 2-torus [144] (see also [392]) asserts that minimal invariant sets
are either fixed points, periodic orbits, or the whole torus.
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The limiting behavior of the solution m̃ε of (8.257) is then characterized as follows; note that
the result is much simpler in the case KF = 1, that is, if there exists a unique stable (normalized)
invariant measure.

Theorem 8.9.8. Let the above notation and assumptions hold, and let m̃◦ε ∈ P ∩ L∞(Rd) satisfy

m̃◦ε(x)− ω◦(x, x/ηε)→ 0, (8.258)

strongly in L1(Rd) as ε ↓ 0, for some ω◦ ∈ L1(Rd;Cper(Q)). Let F0 ∈ Rd, and denote by m̃ε ∈
L∞loc(R+;P(Rd)) the unique solution to the transport equation (8.257) with initial data m̃◦ε. Then we
have for all t ≥ 0,

m̃t
ε

∗−⇀ m̃t :=

KF0∑
k=1

m̃t
k,

where for all k we denote by m̃k ∈ L∞loc(R+;P(Rd)) the unique solution of the (constant-coefficient)
transport equation

∂tm̃k = div (ΓF0
k m̃k), ΓF0

k :=

ˆ
Q

ΓF0(y)dµF0
k (y), m̃k|t=0 = m̃◦k :=

ˆ
B
F0
k

ω◦(·, y)dy.

In particular, if the stable invariant sets of the dynamical system generated by the periodic vector field
−ΓF0 are all reduced to a point (that is, if AF0

k is a point for all 1 ≤ k ≤ KF0), then we have for all
t ≥ 0,

m̃t
ε

∗−⇀ m̃◦ :=

ˆ
Q
ω◦(·, y)dy =

KF0∑
k=1

m̃◦k. ♦

Remarks 8.9.9.
(a) Stick-slip motion. In this remark, we consider the behavior of the limiting vorticity m̃ as a function

of the forcing F0, and we argue that the space Rd of values of F0 splits into three regions: (1) an
open bounded set around 0 for which the limiting solution is stuck m̃ = m̃◦ (pinning phenomenon),
(2) a transition region for which a part of the mass is stuck and another part is transported, and
(3) the rest of Rd for which there is only transport (with possibly a superposition of different
effective velocities). The link with Menon’s results [319] is thus clear. A natural question consists
in studying the precise behavior of the effective velocity as a function of F0 beyond the pinning
region. The behavior at the depinning threshold, that is, for forcing F0 just across the boundary
of the pinning region, is shortly addressed in the sequel of this section (see Proposition 8.9.11
below). On the other hand, for very large |F0| � 1, the deviation of the effective velocity due to
the wiggly potential h̃0 naturally tends to 0,

−ΓF0
k = (α− Jβ)F0 − (α− Jβ)

ˆ
Q
∇h̃0dµF0

k = (1 + o(1))(α− Jβ)F0.

We first consider the case F0 = 0, hence −Γ0 = −α∇h̃0 + β∇⊥h̃0. For energy reasons, we note
that the only invariant sets are then necessarily made of unions of fixed points of the dynamics.
The last part of Theorem 8.9.8 then allows to conclude that the limiting solution m̃ is constant in
time. Next, for F0 close enough to 0, the stable invariant sets of −ΓF0 are still made of stable fixed
points, which are simply deformations of the stable fixed points of −Γ0, and we conclude that
the limiting solution m̃ still remains constant. In contrast, for larger values of F0, the topological
nature of the stable invariant sets may change, yielding a possible combination of both stable
fixed points and other types of stable sets, hence by Theorem 8.9.8 a combination of pinning and
transport. Finally, for |F0| > ‖∇h̃0‖L∞ , we note that the map −ΓF0 no longer has any fixed point
(since the condition on F0 implies |ΓF0 |2 = (α2 + β2)|∇h̃0 − F0|2 > 0), so that Theorem 8.9.8
yields pure transport in that case.
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(b) Initial-boundary layer. While the initial data m̃◦ε may have some microscopic heterogeneities,
which are assumed to be given by ω◦(·, ·/ηε), it is instantaneously relaxed to an invariant measure∑KF

k=1 µk(·/ηε)m̃
◦
k in a timescale of order O(ηε). This initial-boundary layer at the microscopic

scale could be described in similar terms as in Proposition 8.9.2. ♦

We now turn to the proof of Theorem 8.9.8. It is obtained by 2-scale convergence methods. More
precisely, we use the following L1-version of Nguetseng’s 2-scale compactness theorem [344, 11]; as it
is not standard in this form, we include a short proof (see also [137, end of Section 2.1]).

Lemma 8.9.10 (à la Nguetseng). Let (gη)η be a bounded sequence in L∞loc(R+; L1(Rd)). Further
assume that it is tight, in the sense that for all T > 0,

lim
L↑∞

lim sup
η↓0

sup
t∈[0,T ]

ˆ
|x|>L

|gtη| = 0. (8.259)

Then, there exists a subsequence, still denoted by (gη)η, and an element g0 ∈ L∞loc(R+;M(Rd;Mper(Q)))
(whereM (resp. Mper) denotes the space of Radon measures (resp. periodic Radon measures)), such
that we have for all T > 0 and all ψ ∈ L1([0, T ];Cb(Rd;Cper(Q))),

lim
η↓0

ˆ T

0

ˆ
Rd
ψt(x, x/η)gtη(x)dxdt =

ˆ T

0

¨
Rd×Q

ψt(x, y)dgt0(x, y)dt. (8.260)

We say that gη two-scale converges weakly-* to g0. Moreover, if there holds ψη → ψ strongly in
L1([0, T ];Cb(Rd;Cper(Q))), then we find

lim
η↓0

ˆ T

0

ˆ
Rd
ψtη(x, x/η)gtη(x)dxdt =

ˆ T

0

¨
Rd×Q

ψt(x, y)dgt0(x, y)dt. ♦

Proof. Let T > 0 be fixed. The boundedness assumption on gη gives supη ‖gη‖L∞([0,T ];L1(Rd)) ≤ CT ,
so that we find for all ψ ∈ L1([0, T ];C0(Rd;Cper(Q))),∣∣∣∣ ˆ T

0

ˆ
Rd
ψt(x, x/η)gtη(x)dxdt

∣∣∣∣ ≤ CT ‖ψ‖L1([0,T ];C0(Rd;Cper(Q))).

The sequence (gη)η may thus be seen as a bounded sequence of elements in the dual of the Banach
space L1([0, T ];C0(Rd;Cper(Q))), that is, a bounded sequence in L∞([0, T ];M(Rd;Mper(Q))) (for
the operator norm). Let this dual space be endowed with the corresponding weak-* topology (also
called vague topology in this context). By the Banach-Alaoglu theorem, we deduce that there is
a subsequence, still denoted by (gη)η, and an element g0 ∈ L∞([0, T ];M(Rd;Mper(Q))) such that
gη converges to g0 in this weak-* (vague) topology, which precisely means that (8.260) holds for all
ψ ∈ L1([0, T ];C0(Rd;Cper(Q))). Combining this with the additional tightness assumption (8.259)
allows to extend this to all test functions ψ ∈ L1([0, T ];Cb(Rd;Cper(Q))).

With this weak compactness result at hand, we now give a proof of Theorem 8.9.8.

Proof of Theorem 8.9.8. Let F0 be fixed, and write for simplicity Ak := AF0
k , Bk := BF0

k , and µk :=

µF0
k . We split the proof into four steps.

Step 1. 2-scale compactness argument.
In this step, we show that up to a subsequence the solution m̃ε of (8.257) 2-scale converges

weakly-* (in the sense of Lemma 8.9.10) to some limit m̃0 ∈ L∞loc(R+;M+(Rd;M+
per(Q))). Moreover,
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denoting for simplicity by 〈·〉 :=
´
Q dy the averaging operator, the limit m̃0 satisfies the following

equations,

−divy(Γ
F m̃0) = 0, (8.261)

∂t〈m̃0〉 = divx〈ΓF m̃0〉, 〈m̃0〉|t=0 = 〈ω◦〉 = m̃◦. (8.262)

Equation (8.261) means that m̃t
0(x, ·) is an invariant measure for the vector field −ΓF on Q for almost

all t, x. For F 6= 0, by assumption, we may then decompose m̃0 as a linear combination

m̃t
0(x, y) =

LF0∑
k=1

ξtk(x)µk(y). (8.263)

For F0 = 0, by assumption, a similar decomposition holds in intQ: there exists some m̂0 in the space
L∞loc(R+;M(Rd;Mper(Q))) such that for all t, x the measure m̂t

0(x, ·) is supported in ∂Q, and such
that

m̃t
0(x, y) = m̂t

0(x, y) +

L0∑
k=1

ξtk(x)µk(y).

Since m̃ε is nonnegative and has constant mass 1, it is bounded in L∞(R+; L1(Rd)). Moreover,
as the velocity field ΓFε is bounded in L∞(Rd)d, the tightness of the initial data (m̃◦ε)ε easily implies
the tightness of the solutions (m̃ε)ε in the sense of (8.259). Therefore, by Lemma 8.9.10, up to a
subsequence, m̃ε 2-scale converges weakly-* to some m̃0 ∈ L∞loc(R+;M+(Rd;M+

per(Q))). We now
prove that this limit satisfies equations (8.261) and (8.262). Testing the equation for m̃ε against a
test function ψt(x, x/ηε) with ψ ∈ C1

c (R+ × Rd;C1
per(Q)), we find

ˆ
R+

ˆ
Rd
∂tψ

t(x, x/ηε)dm̃t
ε(x)dt+

ˆ
Rd
ψ0(x, x/ηε)dm̃◦ε(x)

=

ˆ
R+

ˆ
Rd

(η−1
ε ∇yψt(x, x/ηε) +∇xψt(x, x/ηε)) · ΓF (x/ηε)dm̃t

ε(x)dt.

Choosing ψt(x, y) := ηεφ
t(x, y) with φ ∈ C1

c (R+ × Rd;C1
per(Q)), and letting ε ↓ 0 (along the subse-

quence), we find ˆ
R+

¨
Rd×Q

∇yφt(x, y) · ΓF (y)dm̃t
0(x, y)dt = 0,

that is (8.261). Now choosing ψt(x, y) := φt(x) with φ ∈ C1
c (R+ × Rd), letting ε ↓ 0 (along the

subsequence), and using assumption (8.258), we obtain
ˆ
R+

¨
Rd×Q

∂tφ
t(x)dm̃t

0(x, y)dt+

¨
Rd×Q

φ0(x)dω◦(x, y) =

ˆ
R+

¨
Rd×Q

∇φ(t, x) · ΓF (y)dm̃t
0(x, y)dt,

that is (8.262).

Step 2. Localization.
Let 1 ≤ k ≤ KF0 be fixed. Denote by B′k the 1-periodic extension of Bk ⊂ Q on Rd. In this step,

we show that, if m̃◦ε(Rd \ ηεB′k) = 0 for all ε, then ξtj(x) = 0 holds for all j 6= k for almost all t, x. In
particular, this implies m̃t

0(x, y) = ξtk(x)µk(y) almost everywhere.
Given the smoothness assumptions, viewing Bk as the attraction basin associated with Ak, it

follows that we must have n · ΓF = 0 on the boundary ∂Bk. Note that the method of propagation
along characteristics together with the Liouville-Ostrogradski formula yields the following estimate
for the solution m̃ε of (8.257),

‖m̃t
ε‖L∞ ≤ ‖m̃◦ε‖L∞ exp(t‖div ΓF0

ε ‖L∞) ≤ ‖m̃◦ε‖L∞ exp(αη−1
ε t‖4h̃0‖L∞),
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hence m̃ε ∈ L∞loc(R+; L∞(Rd)) (although of course no uniform bound holds in that space). We may
then deduce by integration by parts, for all t ≥ 0,

∂t

ˆ
ηεB′k

dm̃t
ε =

ˆ
ηε∂B′k

n · ΓFε (x)m̃t
ε(x)dσ(x) = 0,

that is, m̃t
ε(ηεB

′
k) = m̃◦ε(ηεB

′
k) = 1, and the conclusion follows from the decomposition (8.263).

Step 3. Convergence of partitioned initial data.
Decompose m̃◦ε =

∑KF0
k=1 m̃◦ε,k with m̃◦ε,k := m̃◦ε1ηεB′k . In this step, for all k, we show that m̃◦ε,k

converges weakly in L1(R2) to m̃◦k :=
´
Bk
ω◦(·, y)dy.

For any test function φ ∈ L∞(R2), assumption (8.258) yields

lim sup
k↑∞

∣∣∣ ˆ
Rd
φdm̃◦ε,k −

ˆ
ηεB′k

φ(x)ω◦(x, x/ηε)dx
∣∣∣ ≤ lim sup

k↑∞

ˆ
Rd
|φ(x)| |m̃◦ε(x)− ω◦(x, x/ηε)|dx = 0,

while by periodicity we may compute (see e.g. [11, proof of Lemma 5.2])

lim
ε↓0

ˆ
Rd
φ(x)ω◦(x, x/ηε)1x/ηε∈B′kdx =

¨
Rd×Bk

φ(x)ω◦(x, y)dxdy =

ˆ
Rd
φdm̃◦k,

and the result follows.

Step 4. Conclusion.
By linearity, with the choice of the m̃◦ε,k’s in Step 3, we may decompose m̃ε =

∑KF0
k=1 m̃ε,k, where

for all k the function m̃ε,k ∈ L∞(R+;M+(Rd)) is the unique solution of the following equation,

∂tm̃ε,k = div (ΓF0
ε m̃ε,k), m̃ε,k|t=0 = m̃◦ε,k.

Up to a subsequence, for all k, we know by Step 1 that m̃ε,k 2-scale converges weakly-* to some
m̃0,k ∈ L∞loc(R+;M+(R2;M+

per(Q))), which satisfies

−divy(Γ
F0m̃0,k) = 0,

∂t〈m̃0,k〉 = divx〈ΓF0m̃0,k〉, 〈m̃0,k〉|t=0 = m̃◦k,

where the first equation implies for m̃0,k a similar decomposition (8.263) as in Step 1. By Step 2,
since we have by construction m̃◦ε,k(R2 \ ηεB′k) = 0 for all ε, we deduce m̃t

0,k(x, y) = 〈m̃t
0,k(x, ·)〉µk(y).

Inserting this form into the above equations, we find

∂t〈m̃0,k〉 = div (ΓF0
k 〈m̃0,k〉), ΓF0

k := 〈ΓF0µk〉, 〈m̃0,k〉|t=0 = m̃◦k.

This is now a linear transport equation for 〈m̃0,k〉. Uniqueness allows us to get rid of all extractions
of subsequences, and the conclusion follows, since by linearity we necessarily have m̃0 =

∑KF0
k=1 m̃0,k,

where m̃0 is the weak limit extracted in Step 1.

As noticed in Remark 8.9.9(a), the question of determining the depinning rate at the depinning
threshold is of particular interest. While obtaining a complete answer seems difficult due to the
variety of possible dynamical behaviors, we consider the simplest situation when the depinning is due
to the bifurcation of a unique stable fixed point into a stable periodic orbit. A square-root power
law is then obtained under some non-degeneracy condition. An additional assumption is made for
simplicity, which reduces the computation to a 1D setting (being then comparable to some explicit
computations in [1, 60, 250]; see also [147, 149]). This assumption is typically satisfied for β = 0
and for a forcing F0 that is parallel to a coordinate axis when the pinning potential h̃0 has similar
symmetries as in the example of Figure 8.4 (see indeed Figure 8.5). Yet, we believe that the same
result holds in more general situations.
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Figure 8.5 – In dimension d = 2, for the typical example of pinning potential h̃0 given in Figure 8.4,
with α = 1, β = 0, we plot the stream lines of the vector field −Γ(0,κ) for growing values of κ. The
assumptions of Proposition 8.9.11 are clearly seen to be satisfied: for κ < κc = π there is a unique
stable fixed point, while for κ > κc = π the stable fixed point gives way to a periodic orbit with image
O = {0} × [−1/2, 1/2).

Proposition 8.9.11. Let e ∈ Sd−1 be some direction, and consider equation (8.257) with F0 = κe.
Assume that the vector field −Γκe has a unique stable invariant set for all κ ≥ 0, and assume that
there exists a critical value κc > 0 such that this invariant set is a fixed point for 0 ≤ κ < κc, and is
a periodic orbit for κ > κc. Further assume that the image of the periodic orbit O ⊂ Q remains the
same for all κ > κc. Assume that h̃0 is smooth, and is non-degenerate in the following sense: for all
x and all |v| = 1, if v · ∇(α∇− β∇⊥)h̃0(x) = 0 holds, then (v · ∇)2(α∇− β∇⊥)h̃0(x) 6= 0. Then the
effective velocity Γκe1 defined in Theorem 8.9.8 satisfies as κ ↓ κc,

Γκe1 = C(1 + o(1))(κ− κc)1/2e,

for some constant C > 0 depending on the shape of the pinning potential h̃0. ♦

Remarks 8.9.12.

(a) While Proposition 8.9.11 above is proved in the particularly simple situation of the bifurcation
of a fixed point into a periodic orbit, it would be interesting to determine the best general lower
bound on the Hölder regularity of the multivalued map F0 7→ {ΓF0

1 , . . . ,ΓF0
KF0
} at the depinning

threshold, for smooth h̃0. We do not pursue this question here, but note that at least the
continuity of this map essentially follows from the argument in [319, Section 7.2] together with
the result on circle maps in [366, Theorem I.1].

(b) Without the non-degeneracy assumption for the pinning potential h̃0, the behavior can be very
different: if h̃0 is degenerate at order k for some 0 ≤ k ≤ ∞, in the sense that the power 2 in
the expansion (8.265) near the critical point is replaced by a power k + 2, then we indeed rather
obtain Γκe1 ∼ C(κ−κc)1−1/(k+2)e as κ ↓ κc. (Although in this case the effective velocity Γκe1 is still
a Hölder function of κ, and is at least of class C1/2, examples of non-smooth pinning potentials
h̃0 ∈ C0,1(Rd) can be constructed for which the Hölder property fails at κ = κc; see e.g. [250,
Example 1.3].) ♦

Proof of Proposition 8.9.11. Choose an arc-length parametrization (φt)0≤t≤T of the periodic orbit
O, where |∂tφt| = 1 for all t ≥ 0, and where the period T ∈ R+ is the total length of the orbit.
Since O is the image of the (unique stable) periodic orbit of −Γκe for all κ > κc, we find ∂tφ

t =
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−Γκe(φt)/|Γκe(φt)| for all t ≥ 0. We then deduce that for all κ > κc the unique stable ergodic
invariant measure µκ ∈ Pper(Q) has the following form, for all test function f ∈ C∞per(Q),

ˆ
Q
fdµκ =

(ˆ T

0
f(φt)|Γκe(φt)|−1dt

)(ˆ T

0
|Γκe(φt)|−1dt

)−1
,

so that according to Theorem 8.9.8 the effective velocity is given by

Γκe1 =
(ˆ T

0
Γκe(φt)|Γκe(φt)|−1dt

)(ˆ T

0
|Γκe(φt)|−1dt

)−1
= (φ0 − φT )

(ˆ T

0
|Γκe(φt)|−1dt

)−1
.

Now setting ẽ := φT − φ0, we obtain

−Γκe1 =
( ˆ T

0
|Γκe(φt)|−1dt

)−1
ẽ.

Consider the finite collection (tj)
J
j=1 of all points t ∈ [0, T ] such that Γκce(φt) = 0. By smoothness

of h̃0 and by the minimality assumption defining κc, the function f(t) := |Γκce(φt)| is smooth, hence
satisfies for all j,

f ′(tj) = 0, f ′′(tj) ≥ 0, (8.264)

and also
0 = ∂tΓ

κce(φt)|t=tj = ∂tφ
tj · ∇(α∇− β∇⊥)h̃0(φtj ).

A direct computation then yields

f ′′(tj) = |Γκce(φtj )|−1|∂tφtj · ∇(α∇− β∇⊥)h̃0(φtj )|2

− 2|Γκce(φtj )|−1|∂tφtj · ∇(α∇− β∇⊥)h̃0(φtj ) · ∂tφtj |2

+ |Γκce(φtj )|−1∂tφ
tj · ∇(α∇− β∇⊥)h̃0(φtj ) · ∇(α∇− β∇⊥)h̃0(φtj ) · ∂tφtj

+ (∂tφ
tj )⊗3 �∇2(α∇− β∇⊥)h̃0(φtj )

= (∂tφ
tj )⊗3 �∇2(α∇− β∇⊥)h̃0(φtj ),

where � denotes the complete contraction of 3-tensors. The non-degeneracy assumption now implies
f ′′(tj) 6= 0. Combined with (8.264), this yields

2Cj := f ′′(tj) = (∂tφ
tj )⊗3 �∇2(α∇− β∇⊥)h̃0(φtj ) > 0.

A Taylor expansion around tj allows to write for |t− tj | � 1,

|Γκce(φt)| = Cj(t− tj)2 +O((t− tj)3). (8.265)

Let δ > 0 be small enough such that |tj − tj+1| > 2δ is satisfied for all j, and define

Iδ :=

J⊎
j=1

[tj − δ, tj + δ], cδ := inf
t∈[0,T ]\Iδ

|Γκce(φt)| > 0.

For κ > κc sufficiently close to κc, we may then compute
ˆ

[0,T ]\Iδ
|Γκe(φt)|−1dt = (α2 + β2)−1/2

ˆ
[0,T ]\Iδ

|∇h̃0(φt)− κe|−1dt

≤ T (α2 + β2)−1/2(cδ − |κ− κc|)−1,

511



and hence, setting for simplicity eα,β := αe− βe⊥,
ˆ T

0
|Γκe(φt)|−1dt ≤

ˆ
Iδ

|Γκce(φt)− (κ− κc)eα,β|−1dt+ T (α2 + β2)−1/2(cδ − |κ− κc|)−1

≤
J∑
j=1

ˆ tj+δ

tj−δ

(
|Cj(t− tj)2∂tφ

tj − (κ− κc)eα,β| − C|t− tj |3
)−1

dt+ C(cδ − |κ− κc|)−1

= 2

J∑
j=1

ˆ δ

0

((
C2
j t

4 + (κ− κc)2 − 2Cjt
2(κ− κc)∂tφtj · eα,β

)1/2 − Ct3)−1
dt+ C(cδ − |κ− κc|)−1

=
2

C
1/2
j (κ− κc)1/2

J∑
j=1

ˆ δ
(

Cj
κ−κc

)1/2

0

((
t4 − 2t2∂tφ

tj · eα,β + 1
)1/2 − CC−1/2

j (κ− κc)1/2t3
)−1

dt

+C(cδ − |κ− κc|)−1.

Multiplying by (κ− κc)1/2 and letting κ ↓ κc, this yields

lim sup
κ↓κc

(κ− κc)1/2|Γκe1 |−1 ≤ 2

|ẽ|C1/2
j

J∑
j=1

ˆ ∞
0

(t4 − 2t2∂tφ
tj · eα,β + 1)−1/2dt. (8.266)

Symmetrically, we have a similar lower bound
ˆ T

0
|Γκe(φt)|−1dt

≥
J∑
j=1

ˆ tj+δ

tj−δ

(
|Cj(t− tj)2∂tφ

tj − (κ− κc)eα,β|+ C|t− tj |3
)−1

dt− C(cδ − |κ− κc|)−1

=
2

C
1/2
j (κ− κc)1/2

J∑
j=1

ˆ δ
(

Cj
κ−κc

)1/2

0

((
t4 − 2t2∂tφ

tj · eα,β + 1
)1/2

+ CC
−1/2
j (κ− κc)1/2t3

)−1
dt

−C(cδ − |κ− κc|)−1,

so that equality actually holds in (8.266),

lim
κ↓κc

(κ− κc)1/2|Γκe1 |−1 =
2

|ẽ|C1/2
j

J∑
j=1

ˆ ∞
0

(t4 − 2t2∂tφ
tj · eα,β + 1)−1/2dt,

and the result follows.

8.9.6 Small applied force implies macroscopic frozenness

Beyond diagonal regimes, we may at least prove the following intuitive result: in the presence
of a small applied force ‖F‖L∞ � ‖∇h‖L∞ , but with fast oscillating pinning potential, the vortices
are pinned in the limit. Based on energy methods, the proof below is limited to the subcritical
Ginzburg-Landau regimes (GL′1) and (GL′2).

Proposition 8.9.13. Let α > 0, β ∈ R, α2 + β2 = 1, let Assumption 8.1.1(a) hold with the initial
data (u◦ε, v

◦
ε, v
◦) satisfying the well-preparedness condition (8.16), and assume that

1� Nε � |log ε|, Nε

|log ε|
� λε . 1,

ε

λε(Nε|log ε|)1/2
� ηε � 1,

h(x) := λεηεĥ
0(x, x/ηε), ‖F‖W 1,∞ � λε,
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with ĥ0 independent of ε. Let uε : R+ × R2 → C be the solution of (8.6) as in Proposition 8.2.2(i).
We consider the regime (GL′1) with v◦ε = v◦, and the regime (GL′2) with div (av◦ε) = 0. Then for all
γ ∈ (0, 1) there holds N−1

ε µε
∗−⇀ curl v◦ in L∞loc(R+; (C0,γ

c (R2))∗). ♦

Proof. We choose vε := v◦ε in the definition of the modulated energy (8.12), thus setting for all z ∈ R2,

Ezε,R :=

ˆ
R2

aχzR
2

(
|∇uε − iuεNεv

◦
ε|2 +

a

2ε2
(1− |uε|2)2

)
, Dzε,R := Ezε,R −

|log ε|
2

ˆ
R2

aχzRµε,

and E∗ε,R := supz Ezε,R, D∗ε,R := supz Dzε,R (where the suprema implicitly run over z ∈ RZ2). We
further consider the following modification of this modulated energy, including suitable lower-order
terms,

Êzε,R :=

ˆ
R2

aχzR
2

(
|∇uε − iuεNεv

◦
ε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)(f −N2

ε |v◦ε|2 −Nε|log ε| v◦ε ·F⊥)
)
,

and Ê∗ε,R := supz Êzε,R. The lower bound assumption on the pin separation ηε allows to choose the
cut-off length R ≥ 1 in such a way that

λ−1
ε � R� ε−1 (Nε|log ε|)1/2

λε|log ε|2
, R� ηεε

−1(Nε|log ε|)1/2.

By Proposition 8.5.2, the assumption on the initial data implies E∗,◦ε,R ≤ C0Nε|log ε| for some
C0 ' 1. Let T > 0 be fixed, and define Tε > 0 as the maximum time ≤ T such that the bound
E∗,tε,R ≤ (C0 + 1)Nε|log ε| holds for all t ≤ Tε. Note that, using the bound ‖f‖L∞ . λεη−1

ε + λ2
ε|log ε|2

(cf. (8.7)), the choice of ηε and R, and the assumption ‖v◦ε‖L2 ∩L∞(B2R) .θ R
θ for all θ > 0, we deduce

for all t ≤ Tε,

|Êz,tε,R − E
z,t
ε,R| .

ˆ
R2

χzR|1− |utε|2|(|f |+N2
ε |v◦ε|2 +Nε|log ε||v◦ε||F |)

. εR(λεη
−1
ε + λ2

ε|log ε|2)(Ez,tε,R)1/2 + εRθo(λεNε|log ε|)(Ez,tε,R)1/2 � λεNε|log ε|, (8.267)

hence in particular Ê∗,tε,R . Nε|log ε| for all t ≤ Tε. We split the proof into three steps.

Step 1. Evolution of the modulated energy.
In this step, for all ε > 0 small enough, we show that Tε = T , and that for all t ≤ T ,

λεα

4

ˆ t

0

ˆ
R2

aχzR|∂tuε|2 ≤ Ê
z,◦
ε,R − Ê

z,t
ε,R + ot(λεNε|log ε|) .t Nε|log ε|. (8.268)

The time derivative of the modulated energy Êzε,R is computed as follows, by integration by parts,

∂tÊzε,R =

ˆ
R2

aχzR

(
〈∇uε − iuεNεv

◦
ε,∇∂tuε〉 −Nεv

◦
ε· 〈∇uε − iuεNεv

◦
ε, i∂tuε〉

− a

ε2
(1− |uε|2)〈uε, ∂tuε〉 − (f −N2

ε |v◦ε|2 −Nε|log ε| v◦ε ·F⊥)〈uε, ∂tuε〉
)

= −
ˆ
R2

aχzR

〈
4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε + i|log ε|F⊥ · ∇uε + fuε, ∂tuε

〉
+Nε

ˆ
R2

aχzR(v◦ε ·∇h+ div v◦ε)〈∂tuε, iuε〉 −
ˆ
R2

a∇χzR · 〈∇uε − iuεNεv
◦
ε, ∂tuε〉

−
ˆ
R2

aχzR(|log ε|F⊥ + 2Nεv
◦
ε) · 〈∇uε − iuεNεv

◦
ε, i∂tuε〉,
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hence, inserting equation (8.6) in the first right-hand side term,

∂tÊzε,R = −λεα
ˆ
R2

aχzR|∂tuε|2 −
ˆ
R2

aχzR(|log ε|F⊥ + 2Nεv
◦
ε) · 〈∇uε − iuεNεv

◦
ε, i∂tuε〉

+Nε

ˆ
R2

χzR div (av◦ε)〈∂tuε, iuε〉 −
ˆ
R2

a∇χzR · 〈∇uε − iuεNεv
◦
ε, ∂tuε〉.

In particular, using the energy bound E∗,tε,R . Nε|log ε|, we find for all t ≤ Tε,

∂tÊzε,R ≤ −
λεα

2

ˆ
R2

aχzR|∂tuε|2 −
ˆ
R2

aχzR(|log ε|F⊥ + 2Nεv
◦
ε) · 〈∇uε − iuεNεv

◦
ε, i∂tuε〉

+ Ctλ
−1
ε N2

ε

ˆ
R2

χzR|div (av◦ε)|2(1 + |1− |uε|2|) + Ctλ
−1
ε R−2

ˆ
B2R(z)

|∇uε − iuεNεv
◦
ε|2

≤ −λεα
2

ˆ
R2

aχzR|∂tuε|2 −
ˆ
R2

aχzR(|log ε|F⊥ + 2Nεv
◦
ε) · 〈∇uε − iuεNεv

◦
ε, i∂tuε〉

+ Ctλ
−1
ε N2

ε ‖ div (av◦ε)‖2L2 ∩L∞(B2R)
+ Ctλ

−1
ε R−2Nε|log ε|,

so that the assumptions on div (av◦ε) and the choice of the cut-off length R yield

∂tÊzε,R ≤ −
λεα

2

ˆ
R2

aχzR|∂tuε|2 −
ˆ
R2

aχzR(|log ε|F⊥ + 2Nεv
◦
ε) · 〈∇uε − iuεNεv

◦
ε, i∂tuε〉

+ ot(λεNε|log ε|). (8.269)

Again using the Cauchy-Schwarz inequality to estimate the second right-hand side term, with ‖F‖L∞ .
λε and ‖v◦ε‖L∞ . 1, we find the following rough a priori estimate,

∂tÊzε,R ≤ −
λεα

4

ˆ
R2

aχzR|∂tuε|2 + Cλε|log ε|2
ˆ
R2

aχzR|∇uε − iuεNεv
◦
ε|2 + ot(λεNε|log ε|)

≤ −λεα
4

ˆ
R2

aχzR|∂tuε|2 +Ot(λεNε|log ε|3),

and thus, integrating in time with λε . 1, we find for all t ≤ Tε,

λεα

4

ˆ t

0

ˆ
R2

aχzR|∂tuε|2 ≤ Ê
z,◦
ε,R − Ê

z,t
ε,R + ot(|log ε|4) .t |log ε|4.

This rough estimate now allows us to apply the product estimate in Lemma 8.5.4 (with vε = v◦ε and
pε = 0), using |log ε|‖F‖L∞ +Nε � λε|log ε|, to the effect of∣∣∣ˆ t

0

ˆ
R2

aχzR(|log ε|F⊥ + 2Nεv
◦
ε) · 〈∇uε − iuεNεv

◦
ε, i∂tuε〉

∣∣∣
.
|log ε|‖F‖L∞ +Nε

|log ε|

(ˆ t

0

ˆ
R2

aχzR|∂tuε|2 +

ˆ t

0

ˆ
R2

aχzR|∇uε − iuεNεv
◦
ε|2
)

+ ot(1)

. o(λε)

ˆ t

0

ˆ
R2

aχzR|∂tuε|2 + ot(λεNε|log ε|).

Inserting this into (8.269) and integrating in time, we find for all t ≤ Tε,

Êz,tε,R − Ê
z,◦
ε,R ≤ −

(λεα
2
− o(λε)

)ˆ t

0

ˆ
R2

aχzR|∂tuε|2 + ot(λεNε|log ε|),
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and the result (8.268) follows for all t ≤ Tε. In particular, combined with (8.267), this yields for all
t ≤ Tε,

Ez,tε,R ≤ Ê
z,t
ε,R + o(λεNε|log ε|) ≤ Êz,◦ε,R + ot(λεNε|log ε|) ≤ Ez,◦ε,R + ot(λεNε|log ε|) ≤ (C0 + ot(1))Nε|log ε|,

and thus, taking the supremum in z, the conclusion Tε = T follows for ε > 0 small enough.

Step 2. Lower bound on the modulated energy.
In this step, we prove that for all t ≤ T ,

Ez,tε,R ≥
|log ε|

2

ˆ
R2

aχzRµ
t
ε − ot(λεNε|log ε|),

and hence, combined with the well-preparedness assumption Dz,◦ε,R = Ez,◦ε,R −
|log ε|

2

´
R2 aχ

z
Rµ
◦
ε ≤ o(N2

ε ),
and with (8.267),

Êz,◦ε,R − Ê
z,t
ε,R ≤ E

z,◦
ε,R − E

z,t
ε,R + o(λεNε|log ε|) ≤ |log ε|

2

ˆ
R2

aχzR(µ◦ε − µtε) + o(λεNε|log ε|).

As we show, this is a simple consequence of Lemma 8.5.1. (However note that we may not directly
apply Proposition 8.5.2(i)–(iii), since in the present situation the assumption R & |log ε| does not
hold.) Noting that ‖∇(aχzR)‖L∞ . λε + R−1 . λε, we deduce from Lemma 8.5.1(i) with φ = aχzR,
E∗ε,R .t Nε|log ε|, and e−Nε . r � 1,

Ezε,R ≥
log(r/ε)

2

ˆ
R2

aχzR|νrε,R| −Ot(λεrNε|log ε|)−Ot(r2N2
ε )−Ot(Nε logNε)

≥ |log ε|
2

ˆ
R2

aχzR|νrε,R| −O(| log r|)
ˆ
R2

χzR|νrε,R| − ot(λεNε|log ε|),

hence by Lemma 8.5.1(ii), with the choice of the radius r & e−Nε ,

Ezε,R ≥
|log ε|

2

ˆ
R2

aχzR|νrε,R| −Ot(Nε| log r|)− ot(λεNε|log ε|) ≥ |log ε|
2

ˆ
R2

aχzRν
r
ε,R − ot(λεNε|log ε|).

By Lemma 8.5.1(iii) in the form (8.125) with γ = 1, and by (8.142), using again ‖∇(aχzR)‖L∞ . λε,
we may now replace νrε,R by µε in the right-hand side,

Ezε,R ≥
|log ε|

2

ˆ
R2

aχzRµε − λε|log ε|Ot
(
εRNε(Nε|log ε|)1/2 + rNε

)
− |log ε|Ot(ε1/2Nε|log ε|

)
− ot(λεNε|log ε|),

and the result follows from the choice of R� ε−1(Nε|log ε|)−1/2.

Step 3. Estimate on the total vorticity.
In this step we show for all t ≤ T ,∣∣∣ˆ

R2

aχzR(µtε − µ◦ε)
∣∣∣�t λεNε.

We first prove (a weaker version of) the result with the weight a replaced by 1, and the conclusion then
follows by noting that a = exp(λεηεĥ

0) indeed quickly converges to 1 as ε ↓ 0. Using identity (8.102),
we write
ˆ
R2

χzR(µtε − µ◦ε) =

ˆ t

0

ˆ
R2

χzR∂tµ
t
ε =

ˆ t

0

ˆ
R2

χzRcurlV t
ε = −

ˆ t

0

ˆ
R2

∇⊥χzR · V t
ε

= −2

ˆ t

0

ˆ
R2

∇⊥χzR · 〈∇uε − iuεNεv
◦
ε, i∂tuε〉+Nε

ˆ t

0

ˆ
R2

∇⊥χzR · v◦ε ∂t(1− |uε|2).

515



Applying the product estimate of Lemma 8.5.4 as in Step 1, with |∇χR| . R−1χ
1/2
R , we find for all

|log ε|−2 . K . |log ε|2 and for all t ≤ T ,∣∣∣ ˆ
R2

χzR(µtε − µ◦ε)
∣∣∣ . 1

|log ε|

(
K−2

ˆ t

0

ˆ
R2

χzR|∂tuε|2 +K2R−2

ˆ t

0

ˆ
B2R

|∇uε − iuεNεv
◦
ε|2
)

+ ot(|log ε|−1) +Nε

ˆ
R2

|1− |utε|2||∇⊥χzR|+Nε

ˆ
R2

|1− |u◦ε|2||∇⊥χzR|

.t
K−2

|log ε|

ˆ t

0

ˆ
R2

χzR|∂tuε|2 +K2R−2Nε + εNε|log ε|+ o(|log ε|−1).

Using (8.268) to estimate the first right-hand side term, and choosing λ−1
ε � K2 � λεR

2, we obtain∣∣∣ˆ
R2

χzR(µtε − µ◦ε)
∣∣∣ .t K−2

λε|log ε|
(Êz,◦ε,R − Ê

z,t
ε,R)+ + o(K−2Nε) +K2R−2Nε + o(|log ε|−1)

.t o(|log ε|−1)(Êz,◦ε,R − Ê
z,t
ε,R)+ + o(λεNε). (8.270)

It remains to smuggle the weight a into the left-hand side. For all t ≤ T , applying Lemma 8.5.1(iii)
in the form (8.125) with γ = 1, as well as (8.142), and using the choice of R � ε−1(Nε|log ε|)−1/2,
we find for any total radius ε1/2 < r � 1,∣∣∣ ˆ

R2

(1− a)χzR(µtε − ν
r,t
ε,R)

∣∣∣ .t λεrNε + ε1/2Nε|log ε|+ λεεRNε(Nε|log ε|)1/2 � λεNε,

and hence, by Lemma 8.5.1(ii) with ‖1− a‖L∞ . λεηε � λε,∣∣∣ ˆ
R2

(1− a)χzRµ
t
ε

∣∣∣ . ‖1− a‖L∞ ˆ
R2

χzR|ν
r,t
ε,R|+ o(λεNε)� λεNε.

Combining this with (8.270) and with the result of Step 2, we deduce∣∣∣ ˆ
R2

aχzR(µtε − µ◦ε)
∣∣∣ .t o(|log ε|−1)(Êz,◦ε,R − Ê

z,t
ε,R)+ + o(λεNε) .t o(1)

∣∣∣ ˆ
R2

aχzR(µtε − µ◦ε)
∣∣∣+ o(λεNε),

and the result follows.

Step 4. Conclusion.
Combining the results of Steps 1–2 with the well-preparedness assumption Êz,◦ε,R ≤

1
2 |log ε|

´
R2 aχ

z
Rµ
◦
ε+

o(N2
ε ), we find

λεα

2

ˆ T

0

ˆ
R2

aχzR|∂tuε|2 ≤ |log ε|
ˆ
R2

aχzR(µ◦ε − µTε ) + oT (λεNε|log ε|),

and hence by the result of Step 3,
ˆ T

0

ˆ
R2

aχzR|∂tuε|2 �T Nε|log ε|.

The product estimate of [395, Appendix A] (see also Lemma 8.5.4) then yields for allX ∈W 1,∞([0, T ]×
R2)2 and all |log ε|−1 . K . |log ε|,∣∣∣ˆ T

0

ˆ
R2

χzRX · Vε
∣∣∣ .

1

|log ε|

( 1

K

ˆ T

0

ˆ
R2

χzR|∂tuε|2 +K

ˆ T

0

ˆ
R2

χzR|X · (∇uε − iuεNεv
◦
ε)|2
)

+o(1)
(
1 + ‖X‖5W 1,∞([0,T ]×R2)

)
.T

(
o(K−1Nε) +KNε + o(1)

)(
1 + ‖X‖5W 1,∞([0,T ]×R2)

)
,
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hence, for a suitable choice of K,

sup
z

∣∣∣ ˆ T

0

ˆ
R2

χzRX · Vε
∣∣∣�T Nε

(
1 + ‖X‖5W 1,∞([0,T ]×R2)

)
.

This provesN−1
ε Vε

∗−⇀ 0 in (C1
c ([0, T ]×R2))∗, so that identity (8.102) yields ∂t(N−1

ε µε) = N−1
ε curlVε

∗−⇀
0 in (C1([0, T ];C2

c (R2)))∗. Arguing as in Step 5 of the proof of Proposition 8.6.1, the well-preparedness
assumption on the initial data implies N−1

ε j◦ε → v◦ in L1
uloc(R2)2, hence in particular N−1

ε µ◦ε
∗−⇀

curl v◦ in (C1
c (R2))∗. We easily conclude N−1

ε µε
∗−⇀ curl v◦ in (C([0, T ];C2

c (R2)))∗. The conclusion
then follows, noting that by Lemma 8.5.1(iii) and by (8.130) the sequence (N−1

ε µε)ε is bounded in
L∞([0, T ]; (C0,γ

c (R2))∗) for all γ > 0, and using interpolation (as e.g. in [262]).

8.A Appendix: Well-posedness for the modified Ginzburg-Landau
equation

In this appendix, we address global well-posedness for equation (8.6), proving Proposition 8.2.2 as
well as additional regularity. We start with the decaying setting, that is, the case when ∇h, F, f are
assumed to have some decay at infinity. Note that in this setting no transport is expected to occur
at infinity. As is classical since the work of Bethuel and Smets [59] (see also [323]), we consider the
existence of solutions uε of (8.6) in the affine space L∞loc(R+;U +H1(R2;C)) for some “reference map”
U , which is typically chosen smooth and equal (in polar coordinates) to eiDεθ outside a ball at the
origin, for some given Dε ∈ Z. Such a choice U = UDε imposes a total degree Dε at infinity. More
generally, we consider here the following spaces of “admissible” reference maps, for all k ≥ 0,

Ek(R2) :=
{
U ∈ L∞(R2;C) : ∇2U ∈ Hk(R2;C),∇|U | ∈ L2(R2),

1− |U |2 ∈ L2(R2),∇U ∈ Lp(R2;C) ∀p > 2
}
.

(Note that this definition slightly differs from the usual one in [59], but it is more suitable in this form
in the presence of pinning and forcing.) The map UDε above clearly belongs to the space E∞(R2).
Global well-posedness and regularity in this framework are provided by the following proposition. Note
that a stronger decay of the coefficients ∇h, F, f is required in the Gross-Pitaevskii case, although we
do not know whether it is necessary.

Proposition 8.A.1 (Well-posedness for (8.6) — decaying setting). Set a := eh with h : R2 → R.
(i) Dissipative case α > 0, β ∈ R:

Given h ∈ W 1,∞(R2), F ∈ L∞(R2)2, f ∈ L2 ∩L∞(R2), with ∇h, F ∈ Lp(R2)2 for some
p < ∞, and u◦ε ∈ U + H1(R2;C) for some U ∈ E0(R2), there exists a unique global solu-
tion uε ∈ L∞loc(R+;U +H1(R2;C)) of (8.6) on R+ × R2 with initial data u◦ε.
Moreover, if for some k ≥ 0 we have h ∈ W k+1,∞(R2), F ∈ W k,∞(R2)2, f ∈ Hk ∩W k,∞(R2),
with ∇h, F ∈ W k,p(R2)2 for some p < ∞, and U ∈ Ek(R2), then uε ∈ L∞loc([δ,∞);U +
Hk+1(R2;C)) for all δ > 0, and if in addition u◦ε ∈ U + Hk+1(R2;C), then uε ∈ L∞loc(R+;U +
Hk+1(R2;C)).

(ii) Gross-Pitaevskii case α = 0, β ∈ R:
Given h ∈W 2,∞(R2), ∇h ∈ H1(R2)2, F ∈ H2 ∩W 2,∞(R2)2 with div F = 0, f ∈ L2 ∩L∞(R2),
and u◦ε ∈ U + H1(R2;C) for some U ∈ E0(R2), there exists a unique global solution uε ∈
L∞loc(R+;U +H1(R2;C)) of (8.6) on R+ × R2 with initial data u◦ε.
Moreover, if for some k ≥ 0 we have h ∈ W k+2,∞(R2), ∇h ∈ Hk+1(R2)2, F ∈ Hk+2 ∩
W k+2,∞(R2)2 with div F = 0, f ∈ Hk+1 ∩W k+1,∞(R2), and u◦ε ∈ U + Hk+1(R2;C) for some
U ∈ Ek+1(R2), then uε ∈ L∞loc(R+;U +Hk+1(R2;C)). ♦
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The proof below is based on arguments by [59, 323], which need to be adapted in the present
context with both pinning and forcing. The conservative case α = 0 is however more delicate, and
we then use the structure of the equation to make a crucial change of variables that transforms the
first-order terms into zeroth-order ones. As shown in the proof, in the dissipative regime, the decay
assumption ∇h, F ∈ Lp(R2)2 (for some p <∞) can be replaced by (|∇h|+ |F |)∇U ∈ L2(R2;C)2.

Proof of Proposition 8.A.1. We split the proof into seven steps. We start with the (easiest) case
α > 0, and then turn to the conservative case α = 0 in Steps 4–7.

Step 1. Local existence in U +Hk+1(R2;C) for α > 0.
In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2), F ∈ W k,∞(R2)2, f ∈ Hk ∩W k,∞(R2),

∇h, F ∈ W k,p(R2) for some p < ∞, and u◦ε ∈ U + Hk+1(R2;C) for some U ∈ Ek(R2), and we prove
that there exists some T > 0 and a unique solution uε ∈ L∞([0, T );U + Hk+1(R2;C)) of (8.6) on
[0, T )× R2. To simplify notation, we replace equation (8.6) by its rescaled version

(α+ iβ)∂tu = 4u+ au(1− |u|2) +∇h · ∇u+ iF⊥ · ∇u+ fu, u|t=0 = u◦. (8.271)

We start with the case k = 0, and briefly comment afterwards on the adaptations needed for k ≥ 1.
We argue by a fixed-point argument in the set EU,u◦(C0, T ) := {u : ‖u−U‖L∞T H1 ≤ C0, u|t=0 = u◦},
for some C0, T > 0 to be suitably chosen. We denote by C ≥ 1 any constant that only depends
on an upper bound on α, α−1, |β|, ‖h‖W 1,∞ , ‖(F, f, U)‖L∞ , ‖1 − |U |2‖L2 , ‖4U‖L2 , ‖f‖L2 , and
‖(|F |+ |∇h|)∇U‖L2 , and we add a subscript to indicate dependence on further parameters.

The kernel of the semigroup operator e(α+iβ)−1t4 is given explicitly by

St(x) := (α+ iβ)(4πt)−1e−(α+iβ)|x|2/(4t).

Since α > 0, this kernel decays just like the standard heat kernel,

|St(x)| ≤ Ct−1e−α|x|
2/(4t), (8.272)

and we have the following obvious estimates, for all 1 ≤ r ≤ ∞, k ≥ 1,

‖St‖Lr ≤ Ct
1
r
−1, ‖∇kSt‖Lr ≤ Ckt

1
r
−1− k

2 . (8.273)

Setting û := u− U , we may rewrite equation (8.271) as follows:

(α+ iβ)∂tû = 4û+4U + a(û+ U)(1− |U |2)− 2a(û+ U)〈U, û〉 − a(û+ U)|û|2

+∇h · ∇û+∇h · ∇U + iF⊥ · ∇û+ iF⊥ · ∇U + fû+ fU, (8.274)

with initial data û|t=0 = û◦ := u◦−U . Any solution û ∈ L∞([0, T );H1(R2;C)) satisfies the Duhamel
formula û = ΞU,û◦(û), where we have set

ΞU,û◦(û)t := St ∗ û◦ + (α+ iβ)−1

ˆ t

0
St−s ∗ ZU,û◦(ûs)ds,

ZU,û◦(û
s) := 4U + a(ûs + U)(1− |U |2)− 2a(ûs + U)〈U, ûs〉 − a(ûs + U)|ûs|2

+∇h · ∇ûs +∇h · ∇U + iF⊥ · ∇ûs + iF⊥ · ∇U + fûs + fU.

Let us examine the map ΞU,û◦ more closely. Using (8.273) in the forms ‖St‖L1 ≤ C and ‖∇St‖L1 ≤
Ct−1/2, we obtain by the triangle inequality

‖ΞU,û◦(û)t‖H1 ≤ ‖St‖L1‖û◦‖H1 + C

ˆ t

0
(1 + (t− s)−1/2)

(
1 + ‖ûs‖L2 + ‖ûs‖3

L6 + ‖∇ûs‖L2

)
ds,
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and hence, by the Sobolev embedding in the form ‖ûs‖L6 ≤ C‖ûs‖H1 , for all û ∈ −U +EU,u◦(C0, T ),

‖ΞU,û◦(û)‖L∞T H1 ≤ C‖û◦‖H1 + C(T + T 1/2)(1 + C3
0 ).

Similarly, again using the Sobolev embedding, we easily find for all û, v̂ ∈ −U + EU,u◦(C0, T )

‖ΞU,û◦(û)− ΞU,û◦(v̂)‖L∞T H1 ≤ C
ˆ t

0
(1 + (t− s)−1/2)(1 + ‖ûs‖2H1 + ‖v̂s‖2H1)‖ûs − v̂s‖H1ds

≤ C(T + T 1/2)(1 + C2
0 )‖û− v̂‖L∞T H1 .

Choosing C0 := 1 + C‖û◦‖H1 and T := 1 ∧ (4C(1 + C3
0 ))−2, we deduce that ΞU,û◦ maps the set

−U + EU,u◦(C0, T ) into itself, and is contracting on that set. The conclusion follows from a fixed-
point argument.

Let us now briefly comment on the case k ≥ 1 and explain how to adapt the argument above. We
again proceed by a fixed point argument, but estimating this time ΞU,û◦(w) in Hk+1(R2;C) as follows

‖ΞU,û◦(û)t‖Hk+1 ≤ ‖St‖L1‖û◦‖Hk+1 + C

ˆ t

0
(‖St−s‖L1 + ‖∇St−s‖L1)‖ZU,û◦(ûs)‖Hk ,

where we easily check with the Sobolev embedding that

‖ZU,û◦(ûs)‖Hk ≤ Ck(1 + ‖ûs‖3Hk+1), (8.275)

for some constant Ck ≥ 1 that only depends on an upper bound on α, α−1, |β|, k, ‖h‖Wk+1,∞ ,
‖F‖Wk,∞ , ‖f‖Hk∩Wk,∞ , ‖U‖L∞ , ‖∇|U |‖L2 , ‖∇2U‖Hk , ‖1−|U |2‖L2 , and

∑
j≤k ‖(|∇jF |+|∇j∇h|)∇U‖L2 .

Similarly estimating the Hk+1-norm of the difference ΞU,û◦(û)− ΞU,û◦(v̂), the result follows.

Step 2. Regularizing effect for α > 0.
In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2), F ∈ W k,∞(R2)2, f ∈ Hk ∩W k,∞(R2),

∇h, F ∈ W k,p(R2)2 for some p < ∞, and U ∈ Ek(R2), and we prove that any solution u ∈
L∞([0, T );U + H1(R2;C)) of (8.271) satisfies u ∈ L∞([δ, T );U + Hk+1(R2;C)) for all δ > 0. We
denote by Ck ≥ 1 any constant that only depends on an upper bound on α, α−1, |β|, k, ‖h‖Wk+1,∞ ,
‖F‖Wk,∞ , ‖f‖Hk∩Wk,∞ , ‖U‖L∞ , ‖1− |U |2‖L2 , ‖∇|U |‖L2 , ‖∇2U‖Hk ,

∑
j≤k ‖(|∇jF |+ |∇j∇h|)∇U‖L2 ,

and ‖u◦ − U‖H1 . We write C for such a constant in the case k = 1. We denote by Ck,t ≥ 1 any con-
stant that additionally depends on an upper bound on t, t−1, and ‖u−U‖L∞t H1 . We add a subscript
to indicate dependence on further parameters.

Let u ∈ L∞([0, T );U + H1(R2;C)) be a solution of (8.271), and let û := u − U . We prove by
induction that ‖ût‖Hk+1 ≤ Ck,t for all t ∈ (0, T ) and k ≥ 0. As it is obvious for k = 0, we assume
that it holds for some k ≥ 0 and we then deduce that it also holds for k replaced by k+ 1. Using the
Duhamel formula û = ΞU,û◦(û) as in Step 1, we find

‖∇k+1ût‖L2 ≤ ‖∇kSt‖L1‖∇û◦‖L2

+ C

ˆ t

t/2
‖∇St−s ∗ ∇kZU,û◦(ûs)‖L2ds+ C

ˆ t/2

0
‖∇k+1St−s ∗ ZU,û◦(ûs)‖L2ds. (8.276)

A finer estimate than (8.275) is now needed. Arguing as in [59, Lemma 2] by means of various Sobolev
embeddings, we have for all 1 < r < 2,

‖∇ZU,û◦(ût)‖L2 + Lr ≤ Cr(1 + ‖ût‖3H1 + ‖ût‖H2). (8.277)

(Note that we cannot choose r = 2 above because of terms of the form ‖|ûs|2∇ûs‖Lr , and that the term
‖ût‖H2 in the right-hand side simply comes from the forcing terms (∇h+ iF⊥) ·∇ût in the expression
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for ZU,û◦(ût).) By a similar argument (see e.g. [323, Step 1 of the proof of Proposition A.8]), we find
for all k ≥ 0 and 1 < r < 2,

‖∇kZU,û◦(ût)‖L2 + Lr ≤ Ck,r(1 + ‖ût‖3Hk + ‖ût‖Hk+1). (8.278)

We may then deduce from (8.276) together with Young’s convolution inequality and with (8.273), for
all 1 < r < 2,

‖∇k+1ût‖L2 ≤ ‖∇kSt‖L1‖∇û◦‖L2 + C

ˆ t

t/2
‖∇St−s‖L1 ∩L2r/(3r−2)‖∇kZU,û◦(ûs)‖L2 + Lrds

+ C

ˆ t/2

0
‖∇k+1St−s‖L1‖ZU,û◦(ûs)‖L2ds

≤ Ct−k/2 + Ck,r

ˆ t

t/2
((t− s)−1/2 + (t− s)−1/r)(1 + ‖ûs‖3Hk + ‖ûs‖Hk+1)ds

+ C

ˆ t/2

0
(t− s)−(k+1)/2(1 + ‖ûs‖3H1)ds

≤ Ck,t + Ck,t sup
t/2≤s≤t

‖ûs‖3Hk + Ck,t

( ˆ t

0
‖∇k+1ûs‖3

L2ds

)1/3

.

By induction hypothesis, this yields ‖∇k+1ût‖3
L2 ≤ Ck,t+Ck,t

´ t
0 ‖∇

k+1ûs‖3
L2ds, and the result follows

from the Grönwall inequality.

Step 3. Global existence for α > 0.
In this step, we assume h ∈ L∞(R2), f ∈ L2 ∩L∞(R2), ∇h, F ∈ Lp ∩L∞(R2) for some p < ∞,

u◦ ∈ U + H1(R2;C), and U ∈ E0(R2), and we prove that (8.271) admits a unique global solution
u ∈ L∞loc(R+;U+H1(R2;C)). We denote by C > 0 any constant that only depends on an upper bound
on α, α−1, |β|, ‖h‖W 1,∞ , ‖(F,U)‖L∞ , ‖1− |U |2‖L2 , ‖4U‖L2 , ‖f‖L2 ∩L∞ , and ‖(|F |+ |∇h|)∇U‖L2 .

Given a solution u ∈ L∞([0, T );U + H1(R2;C)) of (8.271), we claim that the following a priori
estimate holds for all t ∈ [0, T ),

α

2

ˆ t

0

ˆ
R2

|∂tu|2 +
1

2

ˆ
R2

(
|∇(ut − U)|2 +

a

2
(1− |ut|2)2 + |ut − U |2

)
≤ CeCt(1 + ‖u◦ − U‖2H1).

(8.279)

Combining this with the local existence result of Step 1 in the space U +H1(R2;C), we deduce that
local solutions can be extended globally in that space, and the result follows. It thus remains to prove
the claim (8.279). For simplicity, we assume in the computations below that u ∈ L∞([0, T );U +
H2(R2;C)), which in particular implies ∂tu ∈ L∞([0, T ); L2(R2;C)) by (8.271). The general result
then follows from a simple approximation argument based on the local existence result of Step 1 in
the space U +H2(R2;C).

We set for simplicity (α + iβ)−1 = α′ + iβ′, α′ > 0. Using equation (8.271), we compute the
following time derivative, suitably regrouping the terms and integrating by parts,

1

2
∂t

ˆ
R2

|u− U |2 =

ˆ
R2

〈u− U, (α′ + iβ′)(4u+ au(1− |u|2) +∇h · ∇u+ iF⊥ · ∇u+ fu)〉

= −α′
ˆ
R2

|∇(u− U)|2 + α′
ˆ
R2

a|u− U |2(1− |u|2)

+

ˆ
R2

〈u− U, (α′ + iβ′)(∇h · ∇(u− U) + iF⊥ · ∇(u− U) + f(u− U))〉

+

ˆ
R2

〈u− U, (α′ + iβ′)(4U + aU(1− |u|2) +∇h · ∇U + iF⊥ · ∇U + fU)〉,
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which we may now estimate as follows

1

2
∂t

ˆ
R2

|u− U |2 ≤ −α′
ˆ
R2

|∇(u− U)|2 + C

ˆ
R2

|u− U |2 + C

ˆ
R2

|u− U ||∇(u− U)|

+

ˆ
R2

|u− U |(|4U |+ |1− |u|2|+ (|∇h|+ |F |)|∇U |+ |f |)

≤ −α
′

2

ˆ
R2

|∇(u− U)|2 + C + C

ˆ
R2

|u− U |2 + C

ˆ
R2

(1− |u|2)2.

On the other hand, again using the equation, and integrating by parts, we compute

1

2
∂t

ˆ
R2

|∇(u− U)|2 =

ˆ
R2

〈∇(u− U),∇∂tu〉 = −
ˆ
R2

〈4(u− U), ∂tu〉

= −
ˆ
R2

〈(α+ iβ)∂tu−4U − au(1− |u|2)−∇h · ∇u− iF⊥ · ∇u− fu, ∂tu〉

= −α
ˆ
R2

|∂tu|2 −
1

4
∂t

ˆ
R2

a(1− |u|2)2 +

ˆ
R2

〈∇h · ∇(u− U) + iF⊥ · ∇(u− U) + f(u− U), ∂tu〉

+

ˆ
R2

〈4U +∇h · ∇U + iF⊥ · ∇U + fU, ∂tu〉

and hence

1

2
∂t

ˆ
R2

|∇(u− U)|2 +
1

4
∂t

ˆ
R2

a(1− |u|2)2

≤ −α
ˆ
R2

|∂tu|2 + C

ˆ
R2

|∂tu|(|u− U |+ |∇(u− U)|)

+C

ˆ
R2

|∂tu|(|4U |+ (|∇h|+ |F |)|∇U |+ |f |)

≤ −α
2

ˆ
R2

|∂tu|2 + C + C

ˆ
R2

|u− U |2 + C

ˆ
R2

|∇(u− U)|2.

We may thus conclude

α

2

ˆ
R2

|∂tu|2 + ∂t

ˆ
R2

(1

2
|∇(u− U)|2 +

a

4
(1− |u|2)2 +

1

2
|u− U |2

)
≤ C + C

ˆ
R2

(1

2
|∇(u− U)|2 +

a

4
(1− |u|2)2 +

1

2
|u− U |2

)
,

and the claim (8.279) follows from the Grönwall inequality.

Step 4. A useful change of variables.
We now turn to the conservative case α = 0. The first-order terms (that are, forcing terms) in

the right-hand side of (8.6) can then no longer be treated as errors, since the lost derivative is not
retrieved by the Schrödinger operator. The proof of local existence in Step 1 can thus not be adapted
to this case. The global estimates in Step 3 similarly fail, as no dissipation is available to absorb the
first-order terms. To remedy this, we start by performing a useful change of variables transforming
first-order terms into zeroth-order ones, which are much easier to deal with. Since by assumption
div F = 0 with F ∈ L∞(R2)2, we deduce from a Hodge decomposition that there exists ψ ∈ H1

loc(R2)
such that F = −2∇⊥ψ. Using the relation a = eh, and setting wε :=

√
auεe

i|log ε|ψ, a straightforward
computation shows that the equation (8.6) for uε is equivalent to{

λε(α+ i|log ε|β)∂twε = 4wε + wε
ε2

(a− |wε|2) + (f0 + ig0)wε, in R+ × R2,
wε|t=0 = w◦ε :=

√
aei|log ε|ψu◦ε.

(8.280)
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where we have set

f0 := f − 4
√
a√
a

+
1

4
|log ε|2|F |2, g0 :=

1

2
|log ε|a−1curl (aF ).

We look for solutions wε of the above in the class W +H1(R2;C), for a “weighted reference map” W ,
that is an element of

Eak(R2) := {W ∈ L∞(R2;C) : ∇2W ∈ Hk(R2;C),∇|W | ∈ L2(R2),

a− |W |2 ∈ L2(R2),∇W ∈ Lp(R2;C) ∀p > 2}.

For k ≥ 0, and ∇h,∇ψ ∈ Hk+1(R2)2, we indeed observe that wε is a solution of (8.280) in
L∞([0, T );W+Hk+1(R2;C)) for someW ∈ Eak if and only if uε is a solution of (8.6) in L∞([0, T );U+
Hk+1(R2;C)) for some U ∈ Ek.

Step 5. Local existence for α = 0.
In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2), ∇h ∈ Hk(R2)2, f0, g0 ∈ Hk+1 ∩

W k+1,∞(R2), and w◦ ∈ W + Hk+1(R2;C) for some W ∈ Eak+1(R2), and we prove that there ex-
ists some T > 0 and a unique solution wε ∈ L∞([0, T );W + Hk+1(R2;C)) of (8.280) on [0, T )× R2.
To simplify notation, we replace equation (8.280) (with α = 0) by its rescaled version

i∂tw = 4w + w(a− |w|2) + (f0 + ig0)w, w|t=0 = w◦. (8.281)

We start with the case k = 0, and comment afterwards on the adaptations needed for k ≥ 1. We
argue by a fixed-point argument in the set EW,w◦(C0, T ) := {w : ‖w −W‖L∞T H1 ≤ C0, w|t=0 = w◦},
for some C0, T > 0 to be suitably chosen. We denote by C ≥ 1 any constant that only depends
on an upper bound on ‖∇h‖L2 ∩L∞ , ‖(f0, g0)‖H1∩W 1,∞ , ‖(h,W )‖L∞ , ‖a − |W |2‖L2 , ‖∇|W |‖L2 , and
‖4W‖H1 , and we add a subscript to indicate dependence on further parameters.

Let St denote the kernel of the semigroup operator e−it4. Setting ŵ := w −W , we may rewrite
equation (8.281) as follows:

i∂tŵ = 4ŵ +4W + (ŵ +W )(a− |W |2)− 2(ŵ +W )〈W, ŵ〉 − (ŵ +W )|ŵ|2

+ (f0 + ig0)ŵ + (f0 + ig0)W,

with initial data ŵ|t=0 = ŵ◦ := w◦ − W . Any solution ŵ ∈ L∞([0, T );H1(R2;C)) satisfies the
Duhamel formula ŵ = ΞW,ŵ◦(ŵ), where we have set

ΞW,ŵ◦(ŵ)t := St ∗ ŵ◦ − i
ˆ t

0
St−s ∗ ZW,ŵ◦(ws)ds,

ZW,ŵ◦(ŵ
s) := 4W + (ŵs +W )(a− |W |2)− 2(ŵs +W )〈W, ŵs〉 − (ŵs +W )|ŵs|2

+ (f0 + ig0)ŵs + (f0 + ig0)W.

Similarly as in Step 1, we find ‖ZW,ŵ◦(ŵs)‖L2 ≤ C(1+‖ŵs‖3H1). On the other hand, arguing as in [59,
Lemma 2] by means of various Sobolev embeddings, we have the following version of (8.277) without
forcing: we may decompose ∇ZW,ŵ◦(ŵs) = Z1

W,ŵ◦(ŵ
s) + Z2

W,ŵ◦(w
s), such that for all 1 < r < 2,

‖Z1
W,ŵ◦(ŵ

s)‖L2 ≤ C(1 + ‖ŵs‖3H1), ‖Z2
W,ŵ◦(ŵ

s)‖Lr ≤ Cr(1 + ‖ŵs‖3H1). (8.282)

(Recall that we cannot choose r = 2 above because of terms of the form ‖|ŵs|2∇ŵs‖Lr .) Let us now
examine the map ΞW,ŵ◦ more closely. We have

‖ΞW,ŵ◦(ŵ)t‖H1 ≤ ‖St ∗ (ŵ◦,∇ŵ◦)‖L2 +

∥∥∥∥ˆ t

0
e−i(t−s)4(ZW,ŵ◦(ŵ

s), Z1
W,ŵ◦(ŵ

s), Z2
W,ŵ◦(ŵ

s))ds

∥∥∥∥
L2

,
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and hence by the Strichartz estimates for the Schrödinger operator [270], for all 1 < r ≤ 2,

‖ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C‖ŵ◦‖H1 + C‖(ZW,ŵ◦(ŵ), Z1
W,ŵ◦(ŵ))‖L1

T L2 + Cr‖Z2
W,ŵ◦(ŵ)‖

L
2r/(3r−2)
T Lr

.

The above estimates for ZW,ŵ◦ then yield for all 1 < r < 2,

‖ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C‖ŵ◦‖H1 + (CT + CrT
3
2
− 1
r )(1 + ‖ŵ‖3L∞T H1).

Choosing r = 4/3, this yields in particular, for all ŵ ∈ −W + EW,ŵ◦(C0, T ),

‖ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C‖ŵ◦‖H1 + C(T + T 3/4)(1 + C3
0 ).

Similarly, again using Sobolev embeddings and Strichartz estimates, we easily find for all v̂, ŵ ∈
−W + EW,ŵ◦(C0, T )

‖ΞW,ŵ◦(v̂)− ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C(T + T 3/4)(1 + C2
0 )‖v̂ − ŵ‖L∞T H1 .

Choosing C0 := 1 +C‖ŵ◦‖H1 and T := 1 ∧ (4C(1 +C3
0 ))−4/3, we may then deduce that ΞW,ŵ◦ maps

the set −W +EW,ŵ◦(C0, T ) into itself, and is contracting on that set. The conclusion follows from a
fixed-point argument.

Let us now briefly comment on the case k ≥ 1 and explain how to adapt the above argument.
We again proceed by a fixed point argument, estimating this time ΞW,ŵ◦(ŵ) hence ZW,ŵ◦(ŵ) in
Hk+1(R2;C). Arguing similarly as e.g. in [323, Step 1 of the proof of Proposition A.8] by means of
various Sobolev embeddings, we have the following version of (8.278) without forcing: for all k ≥ 1,

‖∇k+1ZW,ŵ◦(ŵ)‖L∞t (L2 + Lr) ≤ Ck(1 + ‖ŵ‖3L∞t Hk+1), (8.283)

for some constant Ck ≥ 1 that only depends on an upper bound on k, ‖∇h‖Hk∩Wk,∞ , ‖(h,W )‖L∞ ,
‖(f0, g0)‖Hk+1∩Wk+1,∞ , ‖a− |W |2‖L2 , ‖∇|W |‖L2 , and ‖∇2W‖Hk+1 . The result then easily follows as
above.

Step 6. Global existence for α = 0.
In this step, we assume h ∈ L∞(R2), f0 ∈ L2 ∩L∞(R2), g0 ∈ H1 ∩W 1,∞(R2), and w◦ ∈ W +

H1(R2;C) for some W ∈ Ea0 (R2), and we prove that (8.281) admits a unique global solution w ∈
L∞loc(R+;W +H1(R2;C)). We denote by C > 0 any constant that only depends on an upper bound
on ‖h‖L∞ , ‖f0‖L2 ∩L∞ , ‖g0‖H1∩W 1,∞ , ‖W‖L∞ , ‖1− |W |2‖L2 , and ‖4W‖L2 .

Given a solution w ∈ L∞([0, T );W + H1(R2;C)) of (8.281), we claim that the following a priori
estimate holds for all t ∈ [0, T ),ˆ

R2

(
|∇(wt −W )|2 +

1

2
(a− |wt|2)2 + |wt −W |2

)
≤ CeCt(1 + ‖w◦ −W‖2H1). (8.284)

Combining this with the local existence result of Step 5 in the space W +H1(R2;C), we deduce that
local solutions can be extended globally in that space, and the result follows. So it remains to prove
the claim (8.284). For simplicity, we assume in the computations below that w ∈ L∞([0, T );W +
H2(R2;C)), which in particular implies ∂tw ∈ L∞([0, T ); L2(R2;C)) by (8.281). The general result
then follows from a simple approximation argument based on the local existence result of Step 5 in
the space W +H2(R2;C).

Using equation (8.281), we compute the following time derivative, suitably regrouping the terms
and integrating by parts,

1

2
∂t

ˆ
R2

|w −W |2 =

ˆ
R2

〈i(w −W ),4w + w(a− |w|2) + f0w + ig0w〉

=

ˆ
R2

〈i(w −W ),4W +W (a− |w|2) + f0W + ig0W 〉+

ˆ
R2

g0|w −W |2

≤ C + C

ˆ
R2

|w −W |2 + C

ˆ
R2

(a− |w|2)2. (8.285)
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Likewise, we compute

∂t

ˆ
R2

|∇(w −W )|2 = 2

ˆ
R2

〈∇(w −W ),∇∂tw〉

= −2

ˆ
R2

〈4(w −W ), ∂tw − g0w〉

+2

ˆ
R2

〈∇(w −W ), g0∇(w −W ) + g0∇W + (w −W )∇g0 +W∇g0〉

≤ −2

ˆ
R2

〈4(w −W ), ∂tw − g0w〉+ C + C

ˆ
R2

|∇(w −W )|2 + C

ˆ
R2

|w −W |2, (8.286)

where we have

−2

ˆ
R2

〈4(w −W ), ∂tw − g0w〉

= −2

ˆ
R2

〈i(∂tw − g0w)− w(a− |w|2)− f0w −4W,∂tw − g0w〉

= 2

ˆ
R2

〈w(a− |w|2) + f0w +4W,∂tw − g0w〉

= −∂t
ˆ
R2

(1

2
(a− |w|2)2 − f0|w|2 − 2〈4W,w〉

)
+2

ˆ
R2

g0(a− |w|2)2 − 2

ˆ
R2

ag0(a− |w|2)− 2

ˆ
R2

f0g0|w|2 − 2

ˆ
R2

g0〈4W,w〉

≤ −∂t
ˆ
R2

(1

2
(a− |w|2)2 − f0|w −W |2 − 2〈w,4W + f0W 〉

)
+C + C

ˆ
R2

(a− |w|2)2 + C

ˆ
R2

|w −W |2.

Combining this with (8.285) and (8.286), we obtain

∂t

ˆ
R2

(
(C − f0)|w −W |2 + |∇(w −W )|2 +

1

2
(a− |w|2)2 − 2〈w,4W + f0W 〉

)
≤ C + C

ˆ
R2

(
|w −W |2 + |∇(w −W )|2 + (a− |w|2)2

)
,

and the result easily follows from the Grönwall inequality, choosing a large enough constant C in the
left-hand side.

Step 7. Propagation of regularity for α = 0.
In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2), ∇h ∈ Hk(R2)2, f0, g0 ∈ Hk+1 ∩

W k+1,∞(R2), and w◦ ∈W +Hk+1(R2;C) for someW ∈ Eak+1(R2), and we prove that the global solu-
tion w of Step 6 belongs to L∞loc(R+;W +Hk+1(R2;C)). We denote by Ck ≥ 1 any constant that only
depends on an upper bound on k, ‖∇h‖Hk∩Wk,∞ , ‖(f0, g0)‖Hk+1∩Wk+1,∞ , ‖(h,W )‖L∞ , ‖a− |W |2‖L2 ,
‖∇|W |‖L2 , and ‖∇2W‖Hk+1 . We add a subscript to indicate dependence on further parameters.

Let w ∈ L∞([0, T );W + H1(R2;C)) be a solution of (8.271), and let ŵ := w −W . We argue
by induction: as the result is obvious for k = 0, we assume that it holds for some k ≥ 0 and
we deduce that it then also holds for k replaced by k + 1. By a similar argument as e.g. in [59,
Lemma 4] or in [323, Step 1 of the proof of Proposition A.8], we have the following version of (8.278)
without forcing (which generalizes (8.282) to higher derivatives): for all k ≥ 0 we may decompose
∇k+1ZW,ŵ◦(ŵ

t) = ∇k+1Z1
W,ŵ◦(ŵ

t) +∇k+1Z2
W,ŵ◦(w

t) such that for all 1 < r < 2

‖∇k+1Z1
W,ŵ◦(ŵ

t)‖L2 + ‖∇k+1Z2
W,ŵ◦(ŵ

t)‖Lr ≤ Ck,r(1 + ‖ŵt‖3Hk+1),
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or even more precisely,

‖∇k+1Z1
W,ŵ◦(ŵ

t)‖L2 + ‖∇k+1Z2
W,ŵ◦(ŵ

t)‖Lr ≤ Ck,r(1 + ‖ŵt‖2Hk)(1 + ‖ŵt‖Hk+1). (8.287)

Using Duhamel’s formula ŵ = ΞW,ŵ◦(ŵ) and applying the Strichartz estimates for the Schrödinger
operator [270] as in Step 5, we find for all k ≥ 0 and 1 < r ≤ 2

‖∇k+1ŵt‖L2 ≤ ‖St ∗ ∇k+1ŵ◦‖L2 +

∥∥∥∥ˆ t

0
St−s ∗ ∇k+1ZW,ŵ◦(ŵ

s)ds

∥∥∥∥
L2

≤ C‖∇k+1ŵ◦‖L2 + C‖∇k+1Z1
W,ŵ◦(ŵ)‖L1

t L2 + Cr‖∇k+1Z2
W,ŵ◦(ŵ)‖

L
2r/(3r−2)
t Lr

,

and hence, by (8.287), for all k ≥ 0,

‖ŵt‖Hk+1 ≤ Ck‖ŵ◦‖Hk+1 + Ck,r(1 + t)(1 + ‖ŵ‖2L∞t Hk)(1 + ‖ŵ‖
L

2r/(3r−2)
t Hk+1).

The result then follows from the induction hypothesis and the Grönwall inequality.

In the dissipative case, we now prove a well-posedness result for equation (8.6) in the general non-
decaying setting, that is, without decay assumption on the coefficients ∇h, F, f . Since the forcing
does not decay, subtle advection forces may occur at infinity, preventing the solution uε from staying
in the same affine space L∞loc(R+;U + H1(R2;C)) for any stationary reference map U . The well-
posedness result below is therefore simply obtained in the space L∞(R+;H1

uloc(R2;C)), which yields
no information at all on the behavior of the constructed solution at infinity. It is in particular
completely unclear whether the total degree of the solution remains well-defined for positive times.
In the proof below, the key observation is that the Grönwall argument for the energy in Step 3 of the
proof of Proposition 8.A.1 above can be localized by means of an exponential cut-off. Note that the
same argument does not seem applicable to the Gross-Pitaevskii case.

Proposition 8.A.2 (Well-posedness for (8.6) — non-decaying setting). Set a := eh, with h : R2 → R.
In the dissipative case α > 0, β ∈ R, given h ∈ W 1,∞(R2), F ∈ L∞(R2)2, f ∈ L∞(R2), and
u◦ε ∈ H1

uloc(R2;C), there exists a unique global solution uε ∈ L∞loc(R+;H1
uloc(R2;C)) of (8.6) on

R+ × R2 with initial data u◦ε, and this solution satisfies ∂tuε ∈ L∞loc(R+; L2
uloc(R2;C)). Moreover, if

for some k ≥ 0 we have h ∈ W k+1,∞(R2), F ∈ W k,∞(R2)2, f ∈ W k,∞(R2), and u◦ε ∈ Hk+1
uloc (R2;C),

then uε ∈ L∞loc(R+;Hk+1
uloc (R2;C)) and ∂tuε ∈ L∞loc(R+;Hk

uloc(R2;C)). ♦

Proof. We split the proof into four steps. We denote by ξz(x) := e−|x−z| the exponential cut-off
centered at z ∈ Z2, and ξ(x) := ξ0(x) = e−|x|. To simplify notation, we replace equation (8.6) by its
rescaled version

(α+ iβ)∂tu = 4u+ au(1− |u|2) +∇h · ∇u+ iF⊥ · ∇u+ fu, u|t=0 = u◦. (8.288)

Step 1. Global existence with k = 0.
In this step, we assume h ∈ W 1,∞(R2), F ∈ L∞(R2)2, f ∈ L∞(R2), and u◦ ∈ H1

uloc(R2;C), and
we prove that there exists a global solution u ∈ L∞loc(R+;H1

uloc(R2;C)) of (8.288) on R+ × R2 with
initial data u◦. We denote by C ≥ 1 any constant that only depends on an upper bound on α, α−1,
|β|, ‖(h,∇h, F, f)‖L∞ , and ‖u◦‖H1

uloc
.

We argue by approximation: for all n ≥ 1, we let χn := χ(·/n) for some fixed cut-off function
χ with χ|B1 ≡ 1 and χ|R2\B2

≡ 0, and we set hn := χnh, an := ehn , Fn := χnF , and fn := χnf .
Note that by construction ‖(hn,∇hn, Fn, fn)‖L∞ ≤ C. We also need to approximate the initial data
u◦ ∈ H1

uloc(R2;C): for all n ≥ 1, we let ρn := n2ρ(nx) for some ρ ∈ C∞c (R2) with
´
R2 ρ = 1, and we

set u◦n := χn(u◦ ∗ ρn) + 1 − χn. By definition, we have u◦n ∈ E0, the sequence (u◦n)n is bounded in

525



H1
uloc(R2;C), and as n ↑ ∞ we obtain u◦n → u◦ in H1

loc(R2;C), and an → a, ∇hn → ∇h, and Fn → F
in L∞loc(R2)2. By Proposition 8.A.1, there exists a unique global solution un ∈ L∞loc(R+;U+H1(R2;C))
of the following truncated equation on R+ × R2,

(α+ iβ)∂tun = 4un + anun(1− |un|2) +∇hn · ∇un + iF⊥n · ∇un + fnun, un|t=0 = u◦n. (8.289)

In order to pass to the limit n ↑ ∞ in (the weak formulation of) this equation, we prove the bound-
edness of the sequence (un)n in L∞loc(R+;H1

uloc(R2;C)), that is, we claim that the following a priori
estimate holds for all t ≥ 0,

‖utn‖H1
uloc
≤ sup

z
‖utn‖H1(B(z)) + α1/2 sup

z
‖∂tun‖L2

t L2(B(z)) ≤ Ce
Ct. (8.290)

Before proving this estimate, we show how to conclude from this. Up to a subsequence, the se-
quence un converges weakly-* to some u in L∞loc(R+;H1

uloc(R2;C)). Since moreover ∂tun is bounded
in L2

loc(R+; L2(B(z);C)), uniformly in z, and asH1(B(z);C) is compactly embedded into L2(B(z);C),
we deduce from the Aubin-Simon lemma that un → u strongly in L∞loc(R+;H1

uloc(R2;C)). This allows
to pass to the limit in the weak formulation of equation (8.289), and deduce that the limit u is a
global solution of (8.288) on R+ × R2 with initial data u◦.

It remains to prove (8.290). We set for simplicity (α + iβ)−1 = α′ + iβ′, α′ > 0. Using equa-
tion (8.289), integrating by parts, and using |∇ξz| ≤ ξz, we compute the following time derivative,
for all z ∈ RZ2,

1

2
∂t

ˆ
R2

ξz|un|2 =

ˆ
R2

ξz〈un, (α′ + iβ′)(4un + anun(1− |un|2) +∇hn · ∇un + iF⊥n · ∇un + fnun)〉

≤
ˆ
R2

ξz〈un, (α′ + iβ′)4un〉+ α′
ˆ
R2

anξ
z|un|2(1− |un|2) + C

ˆ
R2

ξz|un||∇un|+ C

ˆ
R2

ξz|un|2

≤ −α′
ˆ
R2

ξz|∇un|2 + C

ˆ
R2

ξz|un||∇un|+ C

ˆ
R2

ξz|un|2,

and hence

1

2
∂t

ˆ
R2

ξz|un|2 ≤ −
α′

2

ˆ
R2

ξz|∇un|2 + C

ˆ
R2

ξz|un|2.

On the other hand, integration by parts yields

1

2
∂t

ˆ
R2

ξz|∇un|2 =

ˆ
R2

ξz〈∇un,∇∂tun〉 = −
ˆ
R2

ξz〈4un, ∂tun〉 −
ˆ
R2

∇ξz · 〈∇un, ∂tun〉,

hence, inserting equation (8.289) in the first right-hand side term,

1

2
∂t

ˆ
R2

ξz|∇un|2

= −
ˆ
R2

ξz〈(α+ iβ)∂tun − anun(1− |un|2)−∇hn · ∇un − iF⊥n · ∇un − fnun, ∂tun〉

−
ˆ
R2

∇ξz · 〈∇un, ∂tun〉

≤ −α
ˆ
R2

ξz|∂tun|2 −
1

4
∂t

ˆ
R2

anξ
z(1− |un|2)2 + C

ˆ
R2

ξz(|un|+ |∇un|)|∂tun|,

and thus

1

2
∂t

ˆ
R2

ξz|∇un|2 +
1

4
∂t

ˆ
R2

anξ
z(1− |un|2)2 ≤ −α

2

ˆ
R2

ξz|∂tun|2 + C

ˆ
R2

ξz(|un|2 + |∇un|2).
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We may then conclude

1

2
∂t

ˆ
R2

ξz(|un|2 + |∇un|2) +
1

4
∂t

ˆ
R2

anξ
z(1− |un|2)2 +

α

2

ˆ
R2

ξz|∂tun|2 ≤ C
ˆ
R2

ξz(|un|2 + |∇un|2).

By the Grönwall inequality, this yields for all t ≥ 0 and z ∈ RZ2,

ˆ
R2

ξz(|utn|2 + |∇utn|2) +
1

2

ˆ
R2

anξ
z(1− |utn|2)2 + α

ˆ t

0

ˆ
R2

ξz|∂tun|2

≤ eCt
(ˆ

R2

ξz(|u◦n|2 + |∇u◦n|2) +
1

2

ˆ
R2

anξ
z(1− |u◦n|2)2

)
,

and hence, using the Sobolev embedding of H1
uloc(R2) into L4

uloc(R2) (see e.g. (8.293) below),

ˆ
R2

ξz(|utn|2 + |∇utn|2) +
1

2

ˆ
R2

anξ
z(1− |utn|2)2 + α

ˆ t

0

ˆ
R2

ξz|∂tun|2

≤ eCt
(

1 +

ˆ
R2

ξz(|u◦n|2 + |∇u◦n|2)
)2
.

The claim (8.290) then follows from the boundedness of u◦n in H1
uloc(R2;C), noting that

‖ζ‖2
L2

uloc
' sup

z∈R2

ˆ
R2

ξz|ζ|2. (8.291)

Step 2. Global existence with k ≥ 0.
In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2), F ∈ W k,∞(R2)2, f ∈ W k,∞(R2), and

u◦ ∈ Hk+1
uloc (R2;C), and we prove that the global solution u constructed in Step 1 then belongs to

L∞loc(R+;Hk+1
uloc (R2;C)). We denote by Ck ≥ 1 any constant that only depends on an upper bound on

k, α, α−1, |β|, ‖(h,∇h, F, f)‖Wk,∞ , and ‖u◦‖Hk+1
uloc

, and we write Ck,t if it additionally depends on an
upper bound on t.

We argue again by approximation. We consider the truncations hn, an, Fn, fn, u◦n defined in Step 1,
as well as the solution un to the corresponding equation (8.289). We claim that for all k ≥ 0, for all
t ≥ 0,

‖utn‖Hk+1
uloc

+ ‖∂tutn‖Hk
uloc
≤ Ck,t. (8.292)

The desired result then follows by passing to the limit n ↑ ∞. This result is proved by induction on
k. As for k = 0 the result already follows from Step 1, we assume that ‖utn‖Hk

uloc
≤ Ck,t holds for

some k ≥ 1, and we deduce that (8.292) also holds for this k. Integrating by parts, we find

1

2
∂t

ˆ
R2

ξz|∇k+1un|2 =

ˆ
R2

ξz〈∇k+1un,∇k+1∂tun〉

≤ C
ˆ
R2

ξz|∇k+1un||∇k∂tun| −
ˆ
R2

ξz〈∇k4un,∇k∂tun〉,
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hence, inserting equation (8.289) in the first right-hand side term, and developing the terms,

1

2
∂t

ˆ
R2

ξz|∇k+1un|2

≤ −α
ˆ
R2

ξz|∇k∂tun|2 + C

ˆ
R2

ξz|∇k+1un||∇k∂tun|

+

ˆ
R2

ξz
〈
∇k
(
anun(1− |un|2) +∇hn · ∇un + iF⊥n · ∇un + fnun

)
,∇k∂tun

〉
≤ −α

ˆ
R2

ξz|∇k∂tun|2 + Ck

k+1∑
j=0

ˆ
R2

ξz|∇jun||∇k∂tun|+ Ck

k−1∑
j=0

ˆ
R2

ξz|∇jun|3|∇k∂tun|

+C

ˆ
R2

ξz|un|2|∇kun||∇k∂tun|

≤ −α
2

ˆ
R2

ξz|∇k∂tun|2 + Ck

k+1∑
j=0

ˆ
R2

ξz|∇jun|2 + Ck

k−1∑
j=0

ˆ
R2

ξz|∇jun|6

+C

ˆ
R2

ξz|un|4|∇kun|2.

Note that the Sobolev embedding in the balls B2(x) yields
ˆ
R2

ξz|∇jun|6 .
∑
x∈Z2

ξz(x)

ˆ
B2(x)

|∇jun|6

.
∑
x∈Z2

ξz(x)
(ˆ

B2(x)
(|∇jun|2 + |∇j+1un|2)

)3

.
( ∑
x∈Z2

ξz(x)

ˆ
B2(x)

(|∇jun|2 + |∇j+1un|2)
)3

.
(ˆ

R2

ξz(|∇jun|2 + |∇j+1un|2)
)3
, (8.293)

and similarly
ˆ
R2

ξz|un|4|∇kun|2 ≤
(ˆ

R2

ξz|un|8
)1/2(ˆ

R2

ξz|∇kun|4
)1/2

.
(ˆ

R2

ξz|∇un|2
)2( ˆ

R2

ξz(|∇kun|2 + |∇k+1un|2)
)
.

Inserting these estimates in the above, and using (8.291), we obtain

∂t

ˆ
R2

ξz|∇k+1un|2 + α

ˆ
R2

ξz|∇k∂tun|2

≤ Ck

k∑
j=0

(
1 +

ˆ
R2

ξz|∇jun|2
)3

+ Ck

(
1 +

ˆ
R2

ξz|∇un|2
)2

ˆ
R2

ξz|∇k+1un|2

≤ Ck
(
1 + ‖un‖6Hk

uloc
) + Ck

(
1 + ‖un‖4H1

uloc
)

ˆ
R2

ξz|∇k+1un|2.

By the induction hypothesis, we deduce for all t ≥ 0

∂t

ˆ
R2

ξz|∇k+1utn|2 + α

ˆ
R2

ξz|∇k∂tutn|2 ≤ Ck,t + Ck,t

ˆ
R2

ξz|∇k+1utn|2,

528



and the result (8.292) follows from the Grönwall inequality, taking the supremum over z ∈ Z2.

Step 3. Uniqueness.
In this step, we assume h ∈ W 1,∞(R2), F ∈ L∞(R2)2, and f ∈ L∞(R2), and we prove that there

exists at most one global solution u ∈ L∞loc(R+;H1
uloc(R2;C)) of (8.288) on R+×R2 with given initial

data u◦. We denote by C ≥ 1 any constant that only depends on an upper bound on α, α−1, |β|, and
‖(h,∇h, F, f)‖L∞ .

Let u1, u2 ∈ L∞loc(R+;H1
uloc(R2;C)) denote two solutions as above. We set for simplicity (α +

iβ)−1 = α′ + iβ′, α′ > 0. Using equation (8.288) and integrating by parts, we find

1

2
∂t

ˆ
R2

ξz|u1 − u2|2 ≤ −α′
ˆ
R2

ξz|∇(u1 − u2)|2 + C

ˆ
R2

ξz|u1 − u2||∇(u1 − u2)|+ C

ˆ
R2

ξz|u1 − u2|2

+

ˆ
R2

aξz
〈
u1 − u2, (α

′ + iβ′)
(
u1(1− |u1|2)− u2(1− |u2|2)

)〉
≤ −α

′

2

ˆ
R2

ξz|∇(u1 − u2)|2 + C

ˆ
R2

ξz|u1 − u2|2(1 + |u1|+ |u2|)2. (8.294)

It remains to estimate the last integral. For that purpose, we decompose
ˆ
R2

ξz|u1 − u2|2(|u1|+ |u2|)2 .
∑
x∈Z2

ξz(x)

ˆ
B2(x)

|u1 − u2|2(|u1|+ |u2|)2

.
∑
x∈Z2

ξz(x)
( ˆ

B2(x)
|u1 − u2|4

)1/2(ˆ
B2(x)

(|u1|+ |u2|)4
)1/2

,

hence, using the Sobolev embedding of H3/4(B2(x)) (and of H1(B2(x))) into L4(B2(x)),
ˆ
R2

ξz|u1 − u2|2(|u1|+ |u2|)2 . ‖(u1, u2)‖2H1
uloc

∑
x∈Z2

ξz(x)‖u1 − u2‖2H3/4(B2(x))
.

Using interpolation and Young’s inequality then yields for all K ≥ 1,
ˆ
R2

ξz|u1 − u2|2(|u1|+ |u2|)2 . ‖(u1, u2)‖2H1
uloc

∑
x∈Z2

ξz(x)‖u1 − u2‖3/2H1(B2(x))
‖u1 − u2‖1/2L2(B2(x))

. K−1
∑
x∈Z2

ξz(x)

ˆ
B2(x)

|∇(u1 − u2)|2 +K3(1 + ‖(u1, u2)‖8H1
uloc

)
∑
x∈Z2

ξz(x)

ˆ
B2(x)

|u1 − u2|2

. K−1

ˆ
R2

ξz|∇(u1 − u2)|2 +K3(1 + ‖(u1, u2)‖8H1
uloc

)

ˆ
R2

ξz|u1 − u2|2.

Inserting this into (8.294) with K ' 1 large enough, we find

1

2
∂t

ˆ
R2

ξz|u1 − u2|2 ≤ C
(
1 + ‖(u1, u2)‖8H1

uloc

) ˆ
R2

ξz|u1 − u2|2,

and the conclusion u1 = u2 follows from the Grönwall inequality.
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Abstract

This thesis is devoted to the mathematical study of effects of disorder in various physical systems.
We start with three stochastic homogenization problems in connection with static classical physics
questions. First, motivated by the rigorous derivation of nonlinear elasticity from the statistical
physics of polymer-chain networks, we establish the existence of effective properties for randomly
heterogeneous hyperelastic materials under general growth assumptions. Second, in the simplest
linearized setting, we investigate the so-called Clausius-Mossotti formulas for the effective properties
of dilute two-phase dispersed media: we provide the first general and rigorous proof of these formulas,
as well as an extension to higher orders. Third, again for linearized models, we propose to study
deviations with respect to effective properties and we establish the first general theory of fluctuations
in stochastic homogenization. In the second part of this thesis, the focus is on the interplay between
disorder and interactions, and more precisely we study the dynamics of Ginzburg-Landau vortices in
2D type-II superconductors in the presence of several impurities. Although a complete mathematical
understanding of the complex glassy properties of such systems seems out of reach, we rigorously
establish the mean-field dynamics of a large number of vortices, and we investigate the homogenization
of the fluid-like mean-field equations and their stick-slip properties.

Keywords: stochastic homogenization, fluctuations, Clausius-Mossotti formula, Ginzburg-Landau,
vortex liquid, mean-field limit.

Quelques résultats en mathématique des milieux désordonnés

Résumé

Cette thèse est consacrée à l’étude mathématique des effets de désordre dans divers systèmes phy-
siques. On commence par trois problèmes d’homogénéisation stochastique en lien avec des questions
statiques de physique classique. Premièrement, en vue de la déduction rigoureuse de l’élasticité non
linéaire à partir de la physique statistique de réseaux de chaînes de polymères, on établit l’existence
de propriétés effectives pour des matériaux hyperélastiques hétérogènes aléatoires sous des hypothèses
générales de croissance. Deuxièmement, dans un cadre linéarisé simplifié, on étudie les formules de
Clausius-Mossotti pour les propriétés effectives d’alliages binaires dilués : on donne la première preuve
générale et rigoureuse de ces formules, ainsi qu’une extension aux ordres supérieurs. Troisièmement,
encore pour des systèmes linéarisés, on propose d’étudier les déviations par rapport aux propriétés
effectives et on établit la première théorie générale des fluctuations en homogénéisation stochastique.
Dans la seconde partie de cette thèse, on se focalise sur la compétition entre désordre et interactions, et
on étudie plus particulièrement la dynamique des vortex de Ginzburg-Landau dans des supraconduc-
teurs 2D de type II en présence d’impuretés. Bien que la compréhension mathématique des propriétés
vitreuses complexes de ces systèmes semble hors de portée, on établit rigoureusement la limite de
champ moyen pour la dynamique d’un grand nombre de vortex, et on étudie l’homogénéisation de
ces équations limites et leurs propriétés.

Mots clés : homogénéisation stochastique, fluctuations, formule de Clausius-Mossotti, Ginzburg-
Landau, liquide de vortex, limite de champ moyen.
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