BA3 en mathématiques Exercices d'analyse

Séance 2

Espaces mesurables

- **1.** Soit (Ω, \mathcal{A}) un espace mesurable et $\mu : \mathcal{A} \to \mathbb{R}^+$ une fonction additive sur la σ -algèbre \mathcal{A} , c'est-à-dire telle que $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$ si A_1, A_2 sont disjoints et dans \mathcal{A} . Montrer que les conditions suivantes sont équivalentes :
 - (i) μ est σ -additive sur \mathcal{A} ;
 - (ii) lorsque B_n est une suite croissante d'éléments de \mathcal{A} ,

$$\mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} \mu(B_n);$$

(iii) lorsque C_n est une suite décroissante d'éléments de \mathcal{A} ,

$$\mu\left(\bigcap_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} \mu(C_n).$$

- 2. Soient Ω un ensemble non dénombrable et \mathcal{A} la famille de tous les sousensembles A de Ω tels que A ou A^C soit (au plus) dénombrable. On définit $\mu(A) = 0$ dans le premier cas, $\mu(A) = 1$ dans le second. Montrer que \mathcal{A} est une σ -algèbre et que μ est une mesure sur \mathcal{A} .
- **3** (Théorème de Borel-Cantelli). Soit (X, \mathcal{A}, μ) un espace de mesure avec $\mu(X) < \infty$. Soit une suite $(A_n)_n \subset \mathcal{A}$. Définissons

$$\limsup_{n} A_{n} := \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_{j}.$$

- (i) Si $\sum_{n} \mu[A_n] < \infty$, alors $\mu(\limsup_{n} A_n) = 0$.
- (ii) Si au contraire $\sum_n \mu[A_n] = \infty$ et si les A_n sont indépendants, alors $\mu(\limsup_n A_n) = \mu(X)$.

^{1.} Pour remarque, si \mathcal{A} est une algèbre sur Ω (donc un sous-ensemble de $\mathcal{P}(\Omega)$ non vide, fermé par complémentations et par unions finies), une application $\mu: \mathcal{A} \to [0, \infty]$ additive est appelée un *contenu* si en outre $\mu(\emptyset) = 0$.

4. Une σ -algèbre \mathcal{A} est dite dénombrablement engendrée s'il existe une famille dénombrable $(A_n)_n$ d'ensembles de \mathcal{A} telle que $\mathcal{A} = \sigma((A_n)_n)$. Montrer qu'une sous- σ -algèbre d'une σ -algèbre dénombrablement engendrée n'est pas forcément dénombrablement engendrée.

Hint: se souvenir que la σ -algèbre borélienne \mathcal{A} sur \mathbb{R}^d est dénombrablement engendrée, et considrer alors la σ -algèbre \mathcal{A}' de l'exercice 2 (pour $X = \mathbb{R}^d$).

- 5. Soient $(\Omega_1, \mathcal{A}_1)$ et $(\Omega_2, \mathcal{A}_2)$ des espaces mesurables. On dit que $f : \Omega_1 \to \Omega_2$ est mesurable si $f^{-1}(B) \in \mathcal{A}_1$ pour tout $B \in \mathcal{A}_2$. Montrer que si \mathcal{A}_2 est la σ -algèbre engendrée par une famille $\mathcal{F} \subset \mathcal{P}(\Omega_2)$, alors f est mesurable si et seulement si $f^{-1}(B) \in \mathcal{A}_1$ pour tout $B \in \mathcal{F}$.
- **6.** Soit f une fonction réelle sur un espace mesurable (Ω, \mathcal{A}) . Montrer que si f est telle que $\{x \in \Omega; f(x) > r\}$ est mesurable pour tout r rationnel, alors f est mesurable.
- 7. Dans l'espace mesurable (\mathbb{R},\mathcal{B}) on considère les fonctions f et g définies par

$$f(x) = \begin{cases} |\sin x| & \text{si } -\pi < x \le \pi, \\ 1 & \text{si } 10 < x < 20, \\ 0 & \text{ailleurs}; \end{cases}$$

et

$$g(x) = \begin{cases} 1 - x^2 & \text{si } -1 \le x \le 1 \text{ et } x \notin \mathbb{Q}, \\ 0 & \text{ailleurs.} \end{cases}$$

Montrer que f et g sont mesurables.

8. Soient $f: \mathbb{R} \to \mathbb{R}$ borélienne et $g: \mathbb{R} \to \mathbb{R}$ telle que g(x) = f(x) pour tout $x \in \mathbb{R} \setminus D$, où D est un ensemble dénombrable. Montrer que g est borélienne.