Measure theory : exercises

Bachelor 3
Academic year 2017-2018

Chapter 1: Measure spaces

Classes of subsets

1. Let Ω be a set, and let $\mathcal{F} \subset 2^{\Omega}$ be some set of subsets of Ω.
(a) Assume that $\Omega \in \mathcal{F}$ and that $A \backslash B \in \mathcal{F}$ for all $A, B \in \mathcal{F}$. Show that \mathcal{F} is an algebra.
(b) Assume that $\Omega \in \mathcal{F}$ and that \mathcal{F} is closed by complementation and by finite disjoint union. Show that \mathcal{F} does not need to be an algebra.
2. Let Ω be a finite set of cardinality $\# \Omega=2 p, p \in \mathbb{N}$. Consider the collection

$$
\mathcal{K}=\{A \subset \Omega: \# A=2 r \text { for some } r \in\{0, \cdots, p\}\} .
$$

(a) Show that \mathcal{K} is a λ-system.
(b) For which values of p is \mathcal{K} an algebra and/or a σ-algebra?
3. Let Ω be a set, and let $\mathcal{F} \subset 2^{\Omega}$ be some set of subsets of Ω. Show that for any $B \in \sigma(\mathcal{F})$ there exists a countable subset $\mathcal{F}_{B} \subset \mathcal{F}$ such that $B \in \sigma\left(\mathcal{F}_{B}\right)$.
4. Let A_{1}, \ldots, A_{n} be subsets of some set Ω. For all $\alpha \in\{0,1\}^{n}$, let

$$
F(\alpha)=\bigcap_{i=1}^{n} A_{i}^{\left(\alpha_{i}\right)},
$$

where $A_{i}^{(0)}:=A_{i}$ and $A_{i}^{(1)}:=A_{i}^{c}$. Then the collection $\left\{F(\alpha): \alpha \in\{0,1\}^{n}\right\}$ is a partition of Ω and there holds

$$
f\left(\left\{A_{1}, \ldots, A_{n}\right\}\right)=\left\{\bigcup_{\alpha \in J} F(\alpha): J \subset\{0,1\}^{n}\right\} .
$$

Conclude that $\# f\left(\left\{A_{1}, \ldots, A_{n}\right\}\right) \leq 2^{2^{n}}$. Write explicitly $f(\{A\}), f\left(\left\{A_{1}, A_{2}\right\}\right), f\left(\left\{A_{1}, A_{2}, A_{3}\right\}\right)$. Similarly, given a countable collection $\left(A_{n}\right)_{n}$ of subsets of Ω, conclude that $f\left(\left\{A_{n}\right\}_{n=1}^{\infty}\right)$ is (at most) countable. Is it true that $\sigma\left(\left(A_{n}\right)_{n}\right)$ is also always (at most) countable?
5 . Let $\left(A_{n}\right)_{n}$ be a sequence of subsets of some set Ω. Considering the construction of exercise 4 , show that $\sigma\left(\left(A_{n}\right)_{n}\right)$ is either finite or has cardinality at least that of the continuum. ${ }^{1}$ In particular, if $\sigma\left(\left(A_{n}\right)_{n}\right)$ is infinite, then it is uncountable.
6. Let $\left(A_{n}\right)_{n}$ be a countable partition of some set Ω. Show that

$$
\sigma\left(\left(A_{n}\right)_{n}\right)=\left\{\bigcup_{n \in J} A_{n}: J \subset \mathbb{N}\right\} .
$$

7. Let Ω be an countable set. Show that every σ-algebra \mathcal{F} on Ω is generated by a partition of Ω as in exercise 6 . Show that this fails in general if Ω is uncountable.

Set functions

8. Let (Ω, \mathcal{F}) be a measurable space. The limsup and the $\lim \inf$ of a sequence $\left(C_{n}\right)_{n} \subset \mathcal{F}$ are defined as follows,

$$
\liminf _{n \rightarrow \infty} C_{n}=\bigcup_{n \geq 1} \bigcap_{k \geq n} C_{k} \quad \text { and } \quad \underset{n \rightarrow \infty}{\limsup } C_{n}=\bigcap_{n \geq 1} \bigcup_{k \geq n} C_{k} .
$$

Note that both clearly belong to \mathcal{F}. Given two sequences $\left(A_{n}\right)_{n},\left(B_{n}\right)_{n} \subset \mathcal{F}$, show from these definitions that

[^0](a) $\limsup { }_{n} A_{n} \supset \liminf _{n} A_{n}$;
(b) $\left(\lim \sup _{n} A_{n}\right)^{c}=\liminf _{n} A_{n}^{c}$;
(c) $\limsup _{n}\left(A_{n} \cap B_{n}\right) \subset\left(\lim \sup _{n} A_{n}\right) \cap\left(\lim \sup _{n} B_{n}\right)$;
(d) $\limsup _{n}\left(A_{n} \cup B_{n}\right)=\left(\lim \sup _{n} A_{n}\right) \cup\left(\lim \sup _{n} B_{n}\right)$;
(e) $\left(\liminf _{n} A_{n}\right) \cup\left(\liminf _{n} B_{n}\right) \subset \liminf _{n}\left(A_{n} \cup B_{n}\right)$;
(f) $\liminf _{n}\left(A_{n} \cap B_{n}\right)=\left(\liminf _{n} A_{n}\right) \cap\left(\liminf _{n} B_{n}\right)$.

Give examples showing that the inclusions in items (c) and (e) can be strict. In addition,
(g) if $A_{n} \rightarrow A$ (that is, $\liminf _{n} A_{n}=A=\limsup A_{n} A_{n}$) and $B_{n} \rightarrow B$, then show that

$$
A_{n} \cup B_{n} \longrightarrow A \cup B \quad \text { and } \quad A_{n} \cap B_{n} \longrightarrow A \cap B ;
$$

(h) if μ is a measure on \mathcal{F}, show that

$$
\mu\left(\liminf _{n} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

What can be said about $\mu\left(\lim \sup _{n} A_{n}\right)$?
9. Let (Ω, \mathcal{F}) be a measurable space endowed with a finite measure μ. Given a sequence $\left(A_{n}\right)_{n} \subset$ \mathcal{F}, establish the following alternative (the so-called Borel-Cantelli lemma).
(a) If $\sum_{n} \mu\left(A_{n}\right)<\infty$, then $\mu\left(\lim \sup _{n} A_{n}\right)=0$.
(b) If $\sum_{n} \mu\left(A_{n}\right)=\infty$ and if the sets A_{n} are independent, then $\mu\left(\lim _{\sup _{n}} A_{n}\right)=\mu(\Omega)$.
10. Consider the σ-algebra 2^{Ω} on Ω, and for all $A \in 2^{\Omega}$ define

$$
\mu(A):= \begin{cases}\# A, & \text { if } \# A<\infty ; \\ \infty, & \text { if } A \text { is infinite } .\end{cases}
$$

Show that μ is a measure. It is called the counting measure. When is μ a finite measure? When is it σ-finite?
11. Let Ω be a set, consider the algebra $\mathcal{F}=\left\{A \subset \Omega: A\right.$ or A^{c} is finite $\}$, and for all $A \in \mathcal{F}$ define

$$
\mu(A):= \begin{cases}0, & \text { if } A \text { is finite } \\ \infty, & \text { if } A \text { is infinite }\end{cases}
$$

Show that μ is an additive set function on \mathcal{F} but is in general not a measure on \mathcal{F}. When is μ a measure on \mathcal{F} ?
12. Let Ω be an uncountable set and let \mathcal{F} be the collection of all subsets $A \subset \Omega$ such that either A or A^{c} is (at most) countable. Define

$$
\mu(A):= \begin{cases}0, & \text { if } A \text { is (at most) countable } \\ 1, & \text { if } A^{c} \text { is (at most) countable. }\end{cases}
$$

Show that \mathcal{F} is a σ-algebra and that μ is a measure on \mathcal{F}.
13. A σ-algebra \mathcal{F} is said to be countably generated if there exists a countable family $\left(A_{n}\right)_{n} \subset \mathcal{F}$ such that $\mathcal{F}=\sigma\left(\left(A_{n}\right)_{n}\right)$. Show that a sub- σ-algebra of a countably generated σ-algebra does not need to be countably generated.
Hint : Show that the Borel σ-algebra \mathcal{F} on \mathbb{R} is countably generated, and consider the σ-algebra \mathcal{F}^{\prime} defined in exercice 12 (with $\Omega=\mathbb{R}$).

Extension theorem

14. Let μ be a finite measure on a ring \mathcal{F}. Given two sequences $\left(A_{n}\right)_{n},\left(B_{n}\right)_{n} \subset \mathcal{F}$ with $\bigcup_{n} A_{n}, \bigcup_{n} B_{n} \in$ \mathcal{F} and with $B_{n} \subset A_{n}$ for all n, show that

$$
\mu\left(\bigcup_{n} A_{n}\right)-\mu\left(\bigcup_{n} B_{n}\right) \leq \sum_{n}\left(\mu\left(A_{n}\right)-\mu\left(B_{n}\right)\right)
$$

15. Let \mathcal{F} be a semiring. Denote by \mathcal{F}^{+}the collection of all finite disjoint unions of elements of \mathcal{F}. Show that \mathcal{F}^{+}is a ring, and conclude that \mathcal{F}^{+}is the smallest ring that contains \mathcal{F}. For that purpose, we may argue as follows :
(a) Show that \mathcal{F}^{+}is a π-system.
(b) Write $A \cup B$ as a disjoint union $B \cup(A \backslash B)$. Note that \mathcal{F}^{+}is closed by finite disjoint unions, so that it is enough to show that $A, B \in \mathcal{S}^{+} \Rightarrow A \backslash B \in \mathcal{S}^{+}$.
16. For $i=1,2$, let Ω_{i} be a nonempty set and let \mathcal{F}_{i} be a semiring on Ω_{i}. Define $\mathcal{F}:=\left\{A_{1} \times A_{2}\right.$: $\left.A_{i} \in \mathcal{F}_{i}, i=1,2\right\}$. Show that \mathcal{F} is a semiring on the product $\Omega_{1} \times \Omega_{2}$.
17. Let (Ω, \mathcal{F}) be a measurable space, and let μ_{1} and μ_{2} be two measures on this space. Let $\mathcal{S} \subset \mathcal{F}$ be a semiring that generates \mathcal{F}, that is, $\sigma(\mathcal{S})=\mathcal{F}$. Assume that μ_{1} and μ_{2} are σ-finite on \mathcal{S} and satisfy $\mu_{1} \leq \mu_{2}$ on \mathcal{S}. Then show that $\mu_{1} \leq \mu_{2}$ holds on \mathcal{F}. Give a counterexample without the σ-finiteness assumption.
18. Let (Ω, \mathcal{F}) be a measurable space and let $\left(\mu_{n}^{*}\right)_{n}$ be a sequence of outer measures on (Ω, \mathcal{F}). Show that $\sum_{n} \mu_{n}^{*}$ and $\sup _{n} \mu_{n}^{*}$ are also outer measures.
19. Let μ be a finite measure on \mathcal{R}^{k}, that is, the Borel σ-algebra on \mathbb{R}^{k}. Define

$$
\mu_{1}(A)=\sup \{\mu(F): F \subseteq A, F \text { closed }\}, \quad \mu_{2}(A)=\inf \{\mu(G): A \subseteq G, G \text { open }\}
$$

Show that $\mu=\mu_{1}=\mu_{2}$ on \mathcal{R}^{k}. This proves that any finite Borel measure on \mathbb{R}^{k} is regular.
20. Prove the following theorem due to Steinhaus : if $E \subset \mathbb{R}$ is Lebesgue measurable and has positive measure, then the difference set $E-E:=\{x-y: x, y \in E\}$ contains a neighborhood of the origin.
Hint: Use the regularity of the Lebesgue measure (cf. exercice 19) to find an compact set K and an open set U such that $K \subset E \subset U$ and $\lambda(U)<2 \lambda(K)$. Consider $\varepsilon:=d\left(K, U^{c}\right)>0$ and use the translation invariance of the Lebesgue measure to show that $(-\varepsilon, \varepsilon) \subset K-K$.

Measurable functions

21. On the Borel measurable space $(\mathbb{R}, \mathcal{R})$, consider the functions f and g defined by

$$
f(x)= \begin{cases}|\sin x| & \text { if }-\pi<x \leq \pi \\ 1 & \text { if } 10<x<20 \\ 0 & \text { elsewhere }\end{cases}
$$

and

$$
g(x)= \begin{cases}1-x^{2} & \text { if }-1 \leq x \leq 1 \text { and } x \notin \mathbb{Q} \\ 0 & \text { elsewhere }\end{cases}
$$

Show that f and g are measurable.
22. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Borel measurable, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $g(x)=f(x)$ for all $x \in \mathbb{R} \backslash D$, for some countable set $D \subset \mathbb{R}$. Show that g is also Borel measurable.

Pathological sets

23. Construct a subset of $[0,1)$ that is not Lebesgue measurable. ${ }^{2}$ We proceed as follows (Vitali's counterexample)
(a) Consider the relation \sim on $[0,1)$ defined by

$$
x \sim y \text { if and only if } x-y \in \mathbb{Q},
$$

and show that \sim is an equivalence relation on $[0,1)$.
(b) Consider the quotient space $\mathcal{A}=[0,1) / \sim$, and use the axiom of choice to select a function $\psi: \mathcal{A} \rightarrow[0,1)$ such that $\psi(\alpha) \in \alpha$ holds for all $\alpha \in \mathcal{A}$. Set $A:=\psi(\mathcal{A})$, and show that

$$
\{A+q ; q \in \mathbb{Q},|q|<1\}
$$

is a family of disjoint subsets whose union contain $[0,1)$.
(c) Show that the measurability of A would lead to a contradiction.
24. Construct a subset $E \subset \mathbb{R}$ such that any Lebesgue measurable set that is included in E or in E^{c} has measure 0 . Can such a set E be Lebesgue measurable? Show that this implies that any set $B \subset \mathbb{R}^{d}$ with positive Lebesgue outer measure contains a set that is not Lebesgue measurable.
For the construction of E, we proceed as follows.
(a) Define

$$
G_{0}:=\{r+2 n \sqrt{2}: r \in \mathbb{Q}, n \in \mathbb{Z}\}, \quad G_{1}:=\{r+(2 n+1) \sqrt{2}: r \in \mathbb{Q}, n \in \mathbb{Z}\},
$$

and $G:=G_{0} \cup G_{1}=\{r+n \sqrt{2}: r \in \mathbb{Q}, n \in \mathbb{Z}\}$. Check that G and G_{0} are subgroups of $(\mathbb{R},+)$, that $G_{0} \cap G_{1}=\varnothing$, and that $G_{1}=\sqrt{2}+G_{0}$.
(b) Consider the relation \sim on \mathbb{R} defined by

$$
x \sim y \text { if and only if } x-y \in G,
$$

and show that \sim is an equivalence relation on \mathbb{R}.
(c) Consider the quotient space $\mathcal{A}=\mathbb{R} / \sim$, and use the axiom of choice to select a function $\psi: \mathcal{A} \rightarrow \mathbb{R}$ such that $\psi(\alpha) \in \alpha$ holds for all $\alpha \in \mathcal{A}$. Set $A:=\psi(\mathcal{A})$ and $E:=A+G_{0}$. Show that any Lebesgue measurable subset of E has measure 0 .
Hint : Suppose $B \subset E$ is Lebesgue measurable with $\lambda(B)>0$. Use the Steinhaus theorem (cf. exercise 20) to find $\varepsilon>0$ such that $(-\varepsilon, \varepsilon) \subset E-E$. Due to the density of G_{1} in \mathbb{R}, show that this would lead to a contradiction.
(d) Show that $E^{c}=A+G_{1}=\sqrt{2}+E$, and deduce that any Lebesgue measurable subset $B \subset E^{c}$ is also of measure 0 .
25. The triadic Cantor set C is the subset of $[0,1]$ that remains after having removed successively the interval $\left(\frac{1}{3}, \frac{2}{3}\right)$, then the 2 intervals $\left(\frac{1}{3^{2}}, \frac{2}{3^{2}}\right)$ and $\left(\frac{7}{3^{2}}, \frac{8}{3^{2}}\right)$, then the 4 intervals

$$
\left(\frac{1}{3^{3}}, \frac{2}{3^{3}}\right), \quad\left(\frac{7}{3^{3}}, \frac{8}{3^{3}}\right), \quad\left(\frac{19}{3^{3}}, \frac{20}{3^{3}}\right), \quad\left(\frac{25}{3^{3}}, \frac{26}{3^{3}}\right),
$$

and so on.
(a) Give a more formal definition of C.
(b) Show that C is compact.
2. What the construction shows is that the axiom of choice implies the existence of a non Lebesgue measurable set. Moreover, it was essentially proven by Solovay that the failure of the axiom of choice is consistent with the measurability of all subsets of \mathbb{R}, meaning that it is not possible to construct a non Lebesgue measurable set without using some part of the axiom of choice.
(c) Show that C has zero Lebesgue measure.
(d) Let $x \in[0,1)$. Show that there exists a sequence $\left(\alpha_{n}\right)_{n} \subset\{0,1,2\}$, such that all α_{n} 's are not all equal to 2 after some index, and such that

$$
x=\sum_{n=1}^{\infty} \frac{\alpha_{n}}{3^{n}} .
$$

Set $x=0 \cdot \alpha_{1} \alpha_{2} \ldots$ (this is the triadic representation of x).
(e) Show that $C \supset\left\{x \in[0,1) ; x=0 \cdot \alpha_{1} \alpha_{2} \ldots\right.$ with $\left.\alpha_{n} \in\{0,2\}\right\}$. Deduce that C is uncountable.
26. Define as follows a function $f:[0,1) \rightarrow C$ (where C denotes the Cantor set introduced in exercise 25). If

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}},
$$

with $a_{n} \in\{0,1\}$ for all n, where all a_{n} 's are not equal to 1 after some index, we define

$$
f(x)=\sum_{n=1}^{\infty} \frac{2 a_{n}}{3^{n}} .
$$

(a) Show that f is not continuous, but is (strictly) increasing.
(b) Let $A \subset[0,1)$ be non Lebesgue measurable. Show that $f(A)$ is Lebesgue measurable but not Borel measurable.
27. The Smith-Volterra-Cantor (SVC) set is the subset E of $[0,1]$ obtained as follows : first remove the middle $1 / 4=1 / 2^{2}$, so the remaining set is $\left[0, \frac{3}{8}\right] \cup\left[\frac{5}{8}, 1\right]$, then remove the middle $1 / 2^{4}$ of each remaining subinterval, so the remaining set is

$$
\left[0, \frac{5}{32}\right] \cup\left[\frac{7}{32}, \frac{3}{8}\right] \cup\left[\frac{5}{8}, \frac{25}{32}\right] \cup\left[\frac{27}{32}, 1\right],
$$

then remove the middle $1 / 2^{6}$ of each remaining subinterval, and so on.
(a) Give a more formal definition of E.
(b) Show that E is compact.
(c) Show that E has Lebesgue measure $1 / 2>0$. (In passing, this implies that E has Hausdorff dimension 1.)
(d) Although the set E has positive measure, show that it is nowhere dense (that is, the interior of the closure of E is empty), which means that E contains no interval!
(e) Show that the bounded function $\mathbb{1}_{E}$ is Lebesgue integrable, but is not Riemann integrable, and is in addition not equivalent (that is, equal Lebesgue-a.e.) to any Riemann integrable function.
(f) Consider the generalization of the definition of E consisting in removing at step n the middle r_{n} fraction of each remaining subinterval (while E corresponds to the choice $r_{n}=2^{-2 n}$). Under what condition on the sequence $\left(r_{n}\right)_{n}$ has the constructed set a positive Lebesgue measure?

[^0]: 1. It is actually either finite or has cardinality exactly that of the continuum. This can be shown by transfinite induction on the Borel hierarchy. In particular, the cardinality of the Borel σ-algebra on \mathbb{R}^{k} is that of the continuum.
