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Chapter 1 : Measure spaces

Classes of subsets

1. Let Ω be a set, and let F ⊂ 2Ω be some set of subsets of Ω.
(a) Assume that Ω ∈ F and that A \B ∈ F for all A,B ∈ F . Show that F is an algebra.
(b) Assume that Ω ∈ F and that F is closed by complementation and by finite disjoint

union. Show that F does not need to be an algebra.
2. Let Ω be a finite set of cardinality #Ω = 2p, p ∈ N. Consider the collection

K = {A ⊂ Ω : #A = 2r for some r ∈ {0, · · · , p}} .

(a) Show that K is a λ-system.
(b) For which values of p is K an algebra and/or a σ-algebra ?

3. Let Ω be a set, and let F ⊂ 2Ω be some set of subsets of Ω. Show that for any B ∈ σ(F) there
exists a countable subset FB ⊂ F such that B ∈ σ(FB).

4. Let A1, . . . , An be subsets of some set Ω. For all α ∈ {0, 1}n, let

F (α) =
n⋂
i=1

A
(αi)
i ,

where A(0)
i := Ai and A

(1)
i := Aci . Then the collection {F (α) : α ∈ {0, 1}n} is a partition of Ω

and there holds
f({A1, . . . , An}) =

{ ⋃
α∈J

F (α) : J ⊂ {0, 1}n
}
.

Conclude that #f({A1, . . . , An}) ≤ 22n . Write explicitly f({A}), f({A1, A2}), f({A1, A2, A3}).
Similarly, given a countable collection (An)n of subsets of Ω, conclude that f({An}∞n=1) is (at
most) countable. Is it true that σ((An)n) is also always (at most) countable ?

5. Let (An)n be a sequence of subsets of some set Ω. Considering the construction of exercise 4,
show that σ((An)n) is either finite or has cardinality at least that of the continuum. 1 In
particular, if σ((An)n) is infinite, then it is uncountable.

6. Let (An)n be a countable partition of some set Ω. Show that

σ((An)n) =
{ ⋃
n∈J

An : J ⊂ N
}
.

7. Let Ω be an countable set. Show that every σ-algebra F on Ω is generated by a partition of
Ω as in exercise 6. Show that this fails in general if Ω is uncountable.

Set functions

8. Let (Ω,F) be a measurable space. The lim sup and the lim inf of a sequence (Cn)n ⊂ F are
defined as follows,

lim inf
n→∞

Cn =
⋃
n≥1

⋂
k≥n

Ck and lim sup
n→∞

Cn =
⋂
n≥1

⋃
k≥n

Ck.

Note that both clearly belong to F . Given two sequences (An)n, (Bn)n ⊂ F , show from these
definitions that

1. It is actually either finite or has cardinality exactly that of the continuum. This can be shown by transfinite
induction on the Borel hierarchy. In particular, the cardinality of the Borel σ-algebra on Rk is that of the continuum.
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(a) lim supnAn ⊃ lim infnAn ;

(b) (lim supnAn)c = lim infnA
c
n ;

(c) lim supn (An ∩Bn) ⊂ (lim supnAn) ∩ (lim supnBn) ;

(d) lim supn (An ∪Bn) = (lim supnAn) ∪ (lim supnBn) ;

(e) (lim infnAn) ∪ (lim infnBn) ⊂ lim infn (An ∪Bn) ;

(f) lim infn (An ∩Bn) = (lim infnAn) ∩ (lim infnBn).

Give examples showing that the inclusions in items (c) and (e) can be strict. In addition,

(g) if An → A (that is, lim infnAn = A = lim supnAn) and Bn → B, then show that

An ∪Bn −→ A ∪B and An ∩Bn −→ A ∩B;

(h) if µ is a measure on F , show that

µ(lim inf
n

An) ≤ lim inf
n→∞

µ(An).

What can be said about µ(lim supnAn) ?

9. Let (Ω,F) be a measurable space endowed with a finite measure µ. Given a sequence (An)n ⊂
F , establish the following alternative (the so-called Borel-Cantelli lemma).

(a) If
∑

n µ(An) <∞, then µ(lim supnAn) = 0.

(b) If
∑

n µ(An) =∞ and if the sets An are independent, then µ(lim supnAn) = µ(Ω).

10. Consider the σ-algebra 2Ω on Ω, and for all A ∈ 2Ω define

µ(A) :=

{
#A, if #A <∞;
∞, if A is infinite.

Show that µ is a measure. It is called the counting measure. When is µ a finite measure ?
When is it σ-finite ?

11. Let Ω be a set, consider the algebra F = {A ⊂ Ω : A or Ac is finite}, and for all A ∈ F define

µ(A) :=

{
0, if A is finite ;
∞, if A is infinite.

Show that µ is an additive set function on F but is in general not a measure on F . When is
µ a measure on F ?

12. Let Ω be an uncountable set and let F be the collection of all subsets A ⊂ Ω such that either
A or Ac is (at most) countable. Define

µ(A) :=

{
0, if A is (at most) countable;
1, if Ac is (at most) countable.

Show that F is a σ-algebra and that µ is a measure on F .
13. A σ-algebra F is said to be countably generated if there exists a countable family (An)n ⊂ F

such that F = σ((An)n). Show that a sub-σ-algebra of a countably generated σ-algebra does
not need to be countably generated.
Hint : Show that the Borel σ-algebra F on R is countably generated, and consider the σ-algebra
F ′ defined in exercice 12 (with Ω = R).
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Extension theorem

14. Let µ be a finite measure on a ring F . Given two sequences (An)n, (Bn)n ⊂ F with
⋃
nAn,

⋃
nBn ∈

F and with Bn ⊂ An for all n, show that

µ
(⋃

n

An

)
− µ

(⋃
n

Bn

)
≤
∑
n

(µ(An)− µ(Bn)) .

15. Let F be a semiring. Denote by F+ the collection of all finite disjoint unions of elements of
F . Show that F+ is a ring, and conclude that F+ is the smallest ring that contains F . For
that purpose, we may argue as follows :

(a) Show that F+ is a π-system.

(b) Write A ∪ B as a disjoint union B ∪ (A \ B). Note that F+ is closed by finite disjoint
unions, so that it is enough to show that A,B ∈ S+ ⇒ A \B ∈ S+.

16. For i = 1, 2, let Ωi be a nonempty set and let Fi be a semiring on Ωi. Define F := {A1 ×A2 :
Ai ∈ Fi, i = 1, 2}. Show that F is a semiring on the product Ω1 × Ω2.

17. Let (Ω,F) be a measurable space, and let µ1 and µ2 be two measures on this space. Let S ⊂ F
be a semiring that generates F , that is, σ(S) = F . Assume that µ1 and µ2 are σ-finite on
S and satisfy µ1 ≤ µ2 on S. Then show that µ1 ≤ µ2 holds on F . Give a counterexample
without the σ-finiteness assumption.

18. Let (Ω,F) be a measurable space and let (µ∗n)n be a sequence of outer measures on (Ω,F).
Show that

∑
n µ
∗
n and supn µ

∗
n are also outer measures.

19. Let µ be a finite measure on Rk, that is, the Borel σ-algebra on Rk. Define

µ1(A) = sup{µ(F ) : F ⊆ A,F closed}, µ2(A) = inf{µ(G) : A ⊆ G,G open}.

Show that µ = µ1 = µ2 on Rk. This proves that any finite Borel measure on Rk is regular.

20. Prove the following theorem due to Steinhaus : if E ⊂ R is Lebesgue measurable and has
positive measure, then the difference set E−E := {x− y : x, y ∈ E} contains a neighborhood
of the origin.
Hint : Use the regularity of the Lebesgue measure (cf. exercice 19) to find an compact set K
and an open set U such that K ⊂ E ⊂ U and λ(U) < 2λ(K). Consider ε := d(K,U c) > 0
and use the translation invariance of the Lebesgue measure to show that (−ε, ε) ⊂ K −K.

Measurable functions

21. On the Borel measurable space (R,R), consider the functions f and g defined by

f(x) =


| sinx| if −π < x ≤ π,
1 if 10 < x < 20,
0 elsewhere ;

and

g(x) =

{
1− x2 if −1 ≤ x ≤ 1 and x 6∈ Q,
0 elsewhere.

Show that f and g are measurable.

22. Let f : R → R be Borel measurable, and let g : R → R be such that g(x) = f(x) for all
x ∈ R \D, for some countable set D ⊂ R. Show that g is also Borel measurable.
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Pathological sets

23. Construct a subset of [0, 1) that is not Lebesgue measurable. 2 We proceed as follows (Vitali’s
counterexample)
(a) Consider the relation ∼ on [0, 1) defined by

x ∼ y if and only if x− y ∈ Q,

and show that ∼ is an equivalence relation on [0, 1).

(b) Consider the quotient space A = [0, 1)/∼, and use the axiom of choice to select a function
ψ : A → [0, 1) such that ψ(α) ∈ α holds for all α ∈ A. Set A := ψ(A), and show that

{A+ q ; q ∈ Q, |q| < 1}

is a family of disjoint subsets whose union contain [0, 1).

(c) Show that the measurability of A would lead to a contradiction.
24. Construct a subset E ⊂ R such that any Lebesgue measurable set that is included in E or in

Ec has measure 0. Can such a set E be Lebesgue measurable ? Show that this implies that
any set B ⊂ Rd with positive Lebesgue outer measure contains a set that is not Lebesgue
measurable.
For the construction of E, we proceed as follows.
(a) Define

G0 := {r + 2n
√

2 : r ∈ Q, n ∈ Z}, G1 := {r + (2n+ 1)
√

2 : r ∈ Q, n ∈ Z},

and G := G0 ∪ G1 = {r + n
√

2 : r ∈ Q, n ∈ Z}. Check that G and G0 are subgroups of
(R,+), that G0 ∩G1 = ∅, and that G1 =

√
2 +G0.

(b) Consider the relation ∼ on R defined by

x ∼ y if and only if x− y ∈ G,

and show that ∼ is an equivalence relation on R.
(c) Consider the quotient space A = R/ ∼, and use the axiom of choice to select a function

ψ : A → R such that ψ(α) ∈ α holds for all α ∈ A. Set A := ψ(A) and E := A + G0.
Show that any Lebesgue measurable subset of E has measure 0.
Hint : Suppose B ⊂ E is Lebesgue measurable with λ(B) > 0. Use the Steinhaus theorem
(cf. exercise 20) to find ε > 0 such that (−ε, ε) ⊂ E −E. Due to the density of G1 in R,
show that this would lead to a contradiction.

(d) Show that Ec = A + G1 =
√

2 + E, and deduce that any Lebesgue measurable subset
B ⊂ Ec is also of measure 0.

25. The triadic Cantor set C is the subset of [0, 1] that remains after having removed successively
the interval (1

3 ,
2
3), then the 2 intervals ( 1

32
, 2

32
) and ( 7

32
, 8

32
), then the 4 intervals(

1

33
,

2

33

)
,

(
7

33
,

8

33

)
,

(
19

33
,
20

33

)
,

(
25

33
,
26

33

)
,

and so on.
(a) Give a more formal definition of C.

(b) Show that C is compact.

2. What the construction shows is that the axiom of choice implies the existence of a non Lebesgue measurable
set. Moreover, it was essentially proven by Solovay that the failure of the axiom of choice is consistent with the
measurability of all subsets of R, meaning that it is not possible to construct a non Lebesgue measurable set without
using some part of the axiom of choice.
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(c) Show that C has zero Lebesgue measure.

(d) Let x ∈ [0, 1). Show that there exists a sequence (αn)n ⊂ {0, 1, 2}, such that all αn’s are
not all equal to 2 after some index, and such that

x =

∞∑
n=1

αn
3n
.

Set x = 0 · α1α2 . . . (this is the triadic representation of x).

(e) Show that C ⊃ {x ∈ [0, 1) ; x = 0 · α1α2 . . . with αn ∈ {0, 2}}. Deduce that C is
uncountable.

26. Define as follows a function f : [0, 1) → C (where C denotes the Cantor set introduced in
exercise 25). If

x =
∞∑
n=1

an
2n
,

with an ∈ {0, 1} for all n, where all an’s are not equal to 1 after some index, we define

f(x) =

∞∑
n=1

2an
3n

.

(a) Show that f is not continuous, but is (strictly) increasing.

(b) Let A ⊂ [0, 1) be non Lebesgue measurable. Show that f(A) is Lebesgue measurable but
not Borel measurable.

27. The Smith-Volterra-Cantor (SVC) set is the subset E of [0, 1] obtained as follows : first remove
the middle 1/4 = 1/22, so the remaining set is [0, 3

8 ] ∪ [5
8 , 1], then remove the middle 1/24 of

each remaining subinterval, so the remaining set is[
0,

5

32

]
∪
[

7

32
,
3

8

]
∪
[

5

8
,
25

32

]
∪
[

27

32
, 1

]
,

then remove the middle 1/26 of each remaining subinterval, and so on.

(a) Give a more formal definition of E.

(b) Show that E is compact.

(c) Show that E has Lebesgue measure 1/2 > 0. (In passing, this implies that E has Haus-
dorff dimension 1.)

(d) Although the set E has positive measure, show that it is nowhere dense (that is, the
interior of the closure of E is empty), which means that E contains no interval !

(e) Show that the bounded function 1E is Lebesgue integrable, but is not Riemann integrable,
and is in addition not equivalent (that is, equal Lebesgue-a.e.) to any Riemann integrable
function.

(f) Consider the generalization of the definition of E consisting in removing at step n the
middle rn fraction of each remaining subinterval (while E corresponds to the choice
rn = 2−2n). Under what condition on the sequence (rn)n has the constructed set a
positive Lebesgue measure ?
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