Measure theory : exercises Bachelor 3 Academic year 2017-2018

Chapter 1 : Measure spaces

Classes of subsets

1. Let Ω be a set, and let $\mathcal{F} \subset 2^{\Omega}$ be some set of subsets of Ω .

- (a) Assume that $\Omega \in \mathcal{F}$ and that $A \setminus B \in \mathcal{F}$ for all $A, B \in \mathcal{F}$. Show that \mathcal{F} is an algebra.
- (b) Assume that $\Omega \in \mathcal{F}$ and that \mathcal{F} is closed by complementation and by finite disjoint union. Show that \mathcal{F} does not need to be an algebra.
- 2. Let Ω be a finite set of cardinality $\#\Omega = 2p, p \in \mathbb{N}$. Consider the collection

 $\mathcal{K} = \{A \subset \Omega : \#A = 2r \text{ for some } r \in \{0, \cdots, p\}\}.$

- (a) Show that \mathcal{K} is a λ -system.
- (b) For which values of p is \mathcal{K} an algebra and/or a σ -algebra?
- 3. Let Ω be a set, and let $\mathcal{F} \subset 2^{\Omega}$ be some set of subsets of Ω . Show that for any $B \in \sigma(\mathcal{F})$ there exists a countable subset $\mathcal{F}_B \subset \mathcal{F}$ such that $B \in \sigma(\mathcal{F}_B)$.
- 4. Let A_1, \ldots, A_n be subsets of some set Ω . For all $\alpha \in \{0, 1\}^n$, let

$$F(\alpha) = \bigcap_{i=1}^{n} A_i^{(\alpha_i)}$$

where $A_i^{(0)} := A_i$ and $A_i^{(1)} := A_i^c$. Then the collection $\{F(\alpha) : \alpha \in \{0,1\}^n\}$ is a partition of Ω and there holds

$$f(\{A_1,\ldots,A_n\}) = \left\{ \bigcup_{\alpha \in J} F(\alpha) : J \subset \{0,1\}^n \right\}$$

Conclude that $\#f(\{A_1, \ldots, A_n\}) \leq 2^{2^n}$. Write explicitly $f(\{A\}), f(\{A_1, A_2\}), f(\{A_1, A_2, A_3\})$. Similarly, given a countable collection $(A_n)_n$ of subsets of Ω , conclude that $f(\{A_n\}_{n=1}^{\infty})$ is (at most) countable. Is it true that $\sigma((A_n)_n)$ is also always (at most) countable?

- 5. Let $(A_n)_n$ be a sequence of subsets of some set Ω . Considering the construction of exercise 4, show that $\sigma((A_n)_n)$ is either finite or has cardinality at least that of the continuum.¹ In particular, if $\sigma((A_n)_n)$ is infinite, then it is uncountable.
- 6. Let $(A_n)_n$ be a countable partition of some set Ω . Show that

$$\sigma((A_n)_n) = \Big\{ \bigcup_{n \in J} A_n : J \subset \mathbb{N} \Big\}.$$

7. Let Ω be an countable set. Show that every σ -algebra \mathcal{F} on Ω is generated by a partition of Ω as in exercise 6. Show that this fails in general if Ω is uncountable.

Set functions

8. Let (Ω, \mathcal{F}) be a measurable space. The lim sup and the lim inf of a sequence $(C_n)_n \subset \mathcal{F}$ are defined as follows,

$$\liminf_{n \to \infty} C_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} C_k \quad \text{and} \quad \limsup_{n \to \infty} C_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} C_k.$$

Note that both clearly belong to \mathcal{F} . Given two sequences $(A_n)_n, (B_n)_n \subset \mathcal{F}$, show from these definitions that

^{1.} It is actually either finite or has cardinality exactly that of the continuum. This can be shown by transfinite induction on the Borel hierarchy. In particular, the cardinality of the Borel σ -algebra on \mathbb{R}^k is that of the continuum.

- (a) $\limsup_n A_n \supset \liminf_n A_n$;
- (b) $(\limsup_n A_n)^c = \liminf_n A_n^c;$
- (c) $\limsup_n (A_n \cap B_n) \subset (\limsup_n A_n) \cap (\limsup_n B_n);$
- (d) $\limsup_n (A_n \cup B_n) = (\limsup_n A_n) \cup (\limsup_n B_n);$
- (e) $(\liminf_n A_n) \cup (\liminf_n B_n) \subset \liminf_n (A_n \cup B_n);$
- (f) $\liminf_n (A_n \cap B_n) = (\liminf_n A_n) \cap (\liminf_n B_n).$

Give examples showing that the inclusions in items (c) and (e) can be strict. In addition,

(g) if $A_n \to A$ (that is, $\liminf_n A_n = A = \limsup_n A_n$) and $B_n \to B$, then show that

$$A_n \cup B_n \longrightarrow A \cup B$$
 and $A_n \cap B_n \longrightarrow A \cap B;$

(h) if μ is a measure on \mathcal{F} , show that

$$\mu(\liminf_n A_n) \le \liminf_{n \to \infty} \mu(A_n).$$

What can be said about $\mu(\limsup_n A_n)$?

- 9. Let (Ω, \mathcal{F}) be a measurable space endowed with a finite measure μ . Given a sequence $(A_n)_n \subset \mathcal{F}$, establish the following alternative (the so-called *Borel-Cantelli lemma*).
 - (a) If $\sum_{n} \mu(A_n) < \infty$, then $\mu(\limsup_{n} A_n) = 0$.
 - (b) If $\sum_{n} \mu(A_n) = \infty$ and if the sets A_n are independent, then $\mu(\limsup_n A_n) = \mu(\Omega)$.
- 10. Consider the σ -algebra 2^{Ω} on Ω , and for all $A \in 2^{\Omega}$ define

$$\mu(A) := \begin{cases} \#A, & \text{if } \#A < \infty; \\ \infty, & \text{if } A \text{ is infinite.} \end{cases}$$

Show that μ is a measure. It is called the *counting measure*. When is μ a finite measure? When is it σ -finite?

11. Let Ω be a set, consider the algebra $\mathcal{F} = \{A \subset \Omega : A \text{ or } A^c \text{ is finite}\}$, and for all $A \in \mathcal{F}$ define

$$\mu(A) := \begin{cases} 0, & \text{if } A \text{ is finite}; \\ \infty, & \text{if } A \text{ is infinite.} \end{cases}$$

Show that μ is an additive set function on \mathcal{F} but is in general not a measure on \mathcal{F} . When is μ a measure on \mathcal{F} ?

12. Let Ω be an uncountable set and let \mathcal{F} be the collection of all subsets $A \subset \Omega$ such that either A or A^c is (at most) countable. Define

$$\mu(A) := \begin{cases} 0, & \text{if } A \text{ is (at most) countable;} \\ 1, & \text{if } A^c \text{ is (at most) countable.} \end{cases}$$

Show that \mathcal{F} is a σ -algebra and that μ is a measure on \mathcal{F} .

13. A σ -algebra \mathcal{F} is said to be *countably generated* if there exists a countable family $(A_n)_n \subset \mathcal{F}$ such that $\mathcal{F} = \sigma((A_n)_n)$. Show that a sub- σ -algebra of a countably generated σ -algebra does not need to be countably generated.

Hint: Show that the Borel σ -algebra \mathcal{F} on \mathbb{R} is countably generated, and consider the σ -algebra \mathcal{F}' defined in exercise 12 (with $\Omega = \mathbb{R}$).

Extension theorem

14. Let μ be a finite measure on a ring \mathcal{F} . Given two sequences $(A_n)_n, (B_n)_n \subset \mathcal{F}$ with $\bigcup_n A_n, \bigcup_n B_n \in \mathcal{F}$ and with $B_n \subset A_n$ for all n, show that

$$\mu\Big(\bigcup_n A_n\Big) - \mu\Big(\bigcup_n B_n\Big) \le \sum_n \left(\mu(A_n) - \mu(B_n)\right).$$

- 15. Let \mathcal{F} be a semiring. Denote by \mathcal{F}^+ the collection of all finite disjoint unions of elements of \mathcal{F} . Show that \mathcal{F}^+ is a ring, and conclude that \mathcal{F}^+ is the smallest ring that contains \mathcal{F} . For that purpose, we may argue as follows :
 - (a) Show that \mathcal{F}^+ is a π -system.
 - (b) Write $A \cup B$ as a disjoint union $B \cup (A \setminus B)$. Note that \mathcal{F}^+ is closed by finite disjoint unions, so that it is enough to show that $A, B \in \mathcal{S}^+ \Rightarrow A \setminus B \in \mathcal{S}^+$.
- 16. For i = 1, 2, let Ω_i be a nonempty set and let \mathcal{F}_i be a semiring on Ω_i . Define $\mathcal{F} := \{A_1 \times A_2 : A_i \in \mathcal{F}_i, i = 1, 2\}$. Show that \mathcal{F} is a semiring on the product $\Omega_1 \times \Omega_2$.
- 17. Let (Ω, \mathcal{F}) be a measurable space, and let μ_1 and μ_2 be two measures on this space. Let $\mathcal{S} \subset \mathcal{F}$ be a semiring that generates \mathcal{F} , that is, $\sigma(\mathcal{S}) = \mathcal{F}$. Assume that μ_1 and μ_2 are σ -finite on \mathcal{S} and satisfy $\mu_1 \leq \mu_2$ on \mathcal{S} . Then show that $\mu_1 \leq \mu_2$ holds on \mathcal{F} . Give a counterexample without the σ -finiteness assumption.
- 18. Let (Ω, \mathcal{F}) be a measurable space and let $(\mu_n^*)_n$ be a sequence of outer measures on (Ω, \mathcal{F}) . Show that $\sum_n \mu_n^*$ and $\sup_n \mu_n^*$ are also outer measures.
- 19. Let μ be a finite measure on \mathcal{R}^k , that is, the Borel σ -algebra on \mathbb{R}^k . Define

$$\mu_1(A) = \sup\{\mu(F) : F \subseteq A, F \text{ closed}\}, \qquad \mu_2(A) = \inf\{\mu(G) : A \subseteq G, G \text{ open}\}.$$

Show that $\mu = \mu_1 = \mu_2$ on \mathcal{R}^k . This proves that any finite Borel measure on \mathbb{R}^k is regular.

20. Prove the following theorem due to Steinhaus : if $E \subset \mathbb{R}$ is Lebesgue measurable and has positive measure, then the difference set $E - E := \{x - y : x, y \in E\}$ contains a neighborhood of the origin.

Hint: Use the regularity of the Lebesgue measure (cf. exercice 19) to find an compact set K and an open set U such that $K \subset E \subset U$ and $\lambda(U) < 2\lambda(K)$. Consider $\varepsilon := d(K, U^c) > 0$ and use the translation invariance of the Lebesgue measure to show that $(-\varepsilon, \varepsilon) \subset K - K$.

Measurable functions

21. On the Borel measurable space $(\mathbb{R}, \mathcal{R})$, consider the functions f and g defined by

$$f(x) = \begin{cases} |\sin x| & \text{if } -\pi < x \le \pi, \\ 1 & \text{if } 10 < x < 20, \\ 0 & \text{elsewhere }; \end{cases}$$

and

$$g(x) = \begin{cases} 1 - x^2 & \text{if } -1 \le x \le 1 \text{ and } x \notin \mathbb{Q}, \\ 0 & \text{elsewhere.} \end{cases}$$

Show that f and g are measurable.

22. Let $f : \mathbb{R} \to \mathbb{R}$ be Borel measurable, and let $g : \mathbb{R} \to \mathbb{R}$ be such that g(x) = f(x) for all $x \in \mathbb{R} \setminus D$, for some countable set $D \subset \mathbb{R}$. Show that g is also Borel measurable.

Pathological sets

- 23. Construct a subset of [0, 1) that is not Lebesgue measurable.² We proceed as follows (Vitali's counterexample)
 - (a) Consider the relation \sim on [0, 1) defined by

$$x \sim y$$
 if and only if $x - y \in \mathbb{Q}$,

and show that \sim is an equivalence relation on [0, 1).

(b) Consider the quotient space $\mathcal{A} = [0, 1)/\sim$, and use the axiom of choice to select a function $\psi : \mathcal{A} \to [0, 1)$ such that $\psi(\alpha) \in \alpha$ holds for all $\alpha \in \mathcal{A}$. Set $A := \psi(\mathcal{A})$, and show that

$$\{A+q; q \in \mathbb{Q}, |q| < 1\}$$

is a family of disjoint subsets whose union contain [0, 1).

- (c) Show that the measurability of A would lead to a contradiction.
- 24. Construct a subset $E \subset \mathbb{R}$ such that any Lebesgue measurable set that is included in E or in E^c has measure 0. Can such a set E be Lebesgue measurable? Show that this implies that any set $B \subset \mathbb{R}^d$ with positive Lebesgue outer measure contains a set that is not Lebesgue measurable.

For the construction of E, we proceed as follows.

(a) Define

$$G_0 := \{ r + 2n\sqrt{2} : r \in \mathbb{Q}, n \in \mathbb{Z} \}, \qquad G_1 := \{ r + (2n+1)\sqrt{2} : r \in \mathbb{Q}, n \in \mathbb{Z} \},\$$

and $G := G_0 \cup G_1 = \{r + n\sqrt{2} : r \in \mathbb{Q}, n \in \mathbb{Z}\}$. Check that G and G_0 are subgroups of $(\mathbb{R}, +)$, that $G_0 \cap G_1 = \emptyset$, and that $G_1 = \sqrt{2} + G_0$.

(b) Consider the relation \sim on \mathbb{R} defined by

 $x \sim y$ if and only if $x - y \in G$,

and show that \sim is an equivalence relation on \mathbb{R} .

(c) Consider the quotient space $\mathcal{A} = \mathbb{R}/\sim$, and use the axiom of choice to select a function $\psi : \mathcal{A} \to \mathbb{R}$ such that $\psi(\alpha) \in \alpha$ holds for all $\alpha \in \mathcal{A}$. Set $A := \psi(\mathcal{A})$ and $E := A + G_0$. Show that any Lebesgue measurable subset of E has measure 0. *Hint*: Suppose $B \subset E$ is Lebesgue measurable with $\lambda(B) > 0$. Use the Steinhaus theorem

Hint: Suppose $B \subset E$ is Lebesgue measurable with $\lambda(B) > 0$. Use the Steinhaus theorem (cf. exercise 20) to find $\varepsilon > 0$ such that $(-\varepsilon, \varepsilon) \subset E - E$. Due to the density of G_1 in \mathbb{R} , show that this would lead to a contradiction.

- (d) Show that $E^c = A + G_1 = \sqrt{2} + E$, and deduce that any Lebesgue measurable subset $B \subset E^c$ is also of measure 0.
- 25. The triadic Cantor set C is the subset of [0, 1] that remains after having removed successively the interval $(\frac{1}{3}, \frac{2}{3})$, then the 2 intervals $(\frac{1}{3^2}, \frac{2}{3^2})$ and $(\frac{7}{3^2}, \frac{8}{3^2})$, then the 4 intervals

$$\left(\frac{1}{3^3}, \frac{2}{3^3}\right), \quad \left(\frac{7}{3^3}, \frac{8}{3^3}\right), \quad \left(\frac{19}{3^3}, \frac{20}{3^3}\right), \quad \left(\frac{25}{3^3}, \frac{26}{3^3}\right),$$

and so on.

- (a) Give a more formal definition of C.
- (b) Show that C is compact.

^{2.} What the construction shows is that the axiom of choice implies the existence of a non Lebesgue measurable set. Moreover, it was essentially proven by Solovay that the failure of the axiom of choice is consistent with the measurability of all subsets of \mathbb{R} , meaning that it is not possible to construct a non Lebesgue measurable set without using some part of the axiom of choice.

- (c) Show that C has zero Lebesgue measure.
- (d) Let $x \in [0, 1)$. Show that there exists a sequence $(\alpha_n)_n \subset \{0, 1, 2\}$, such that all α_n 's are not all equal to 2 after some index, and such that

$$x = \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n}.$$

Set $x = 0 \cdot \alpha_1 \alpha_2 \dots$ (this is the triadic representation of x).

- (e) Show that $C \supset \{x \in [0,1); x = 0 \cdot \alpha_1 \alpha_2 \dots$ with $\alpha_n \in \{0,2\}\}$. Deduce that C is uncountable.
- 26. Define as follows a function $f : [0,1) \to C$ (where C denotes the Cantor set introduced in exercise 25). If

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n},$$

with $a_n \in \{0, 1\}$ for all n, where all a_n 's are not equal to 1 after some index, we define

$$f(x) = \sum_{n=1}^{\infty} \frac{2a_n}{3^n}.$$

- (a) Show that f is not continuous, but is (strictly) increasing.
- (b) Let $A \subset [0,1)$ be non Lebesgue measurable. Show that f(A) is Lebesgue measurable but not Borel measurable.
- 27. The Smith-Volterra-Cantor (SVC) set is the subset E of [0, 1] obtained as follows : first remove the middle $1/4 = 1/2^2$, so the remaining set is $[0, \frac{3}{8}] \cup [\frac{5}{8}, 1]$, then remove the middle $1/2^4$ of each remaining subinterval, so the remaining set is

$$\left[0,\frac{5}{32}\right] \cup \left[\frac{7}{32},\frac{3}{8}\right] \cup \left[\frac{5}{8},\frac{25}{32}\right] \cup \left[\frac{27}{32},1\right],$$

then remove the middle $1/2^6$ of each remaining subinterval, and so on.

- (a) Give a more formal definition of E.
- (b) Show that E is compact.
- (c) Show that E has Lebesgue measure 1/2 > 0. (In passing, this implies that E has Hausdorff dimension 1.)
- (d) Although the set E has positive measure, show that it is nowhere dense (that is, the interior of the closure of E is empty), which means that E contains no interval!
- (e) Show that the bounded function $\mathbb{1}_E$ is Lebesgue integrable, but is not Riemann integrable, and is in addition not equivalent (that is, equal Lebesgue-a.e.) to any Riemann integrable function.
- (f) Consider the generalization of the definition of E consisting in removing at step n the middle r_n fraction of each remaining subinterval (while E corresponds to the choice $r_n = 2^{-2n}$). Under what condition on the sequence $(r_n)_n$ has the constructed set a positive Lebesgue measure?