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Chapter 2 : Integration

Measurable functions

1. Let (Ω,F) be a measurable space. Assume that f1, f2 : Ω→ [0,∞] are F-measurable functions.
Show that this also holds for f1 + f2, for f1f2, and for log(1 + |f1|ef2).

2. Let (Ω,F) be a measurable space and let A ⊂ Ω be any subset.
(a) Let FA := {A ∩B : B ∈ F} and show that this defines a σ-algebra on A.
(b) Show that if f : Ω→ [−∞,∞] is F-measurable then the restriction f |A : A→ [−∞,∞]

is FA-measurable.
(c) Let g : A→ [−∞,∞] a FA-measurable function. Show that there exists an F-measurable

extension ĝ : Ω→ [−∞,∞] of g on Ω.

Lebesgue’s integral

3. Let (Ω,F , µ) be a measure space. For all A ∈ A and all measurable functions f : Ω→ [0,∞],
we recall ˆ

A
f dµ := sup

{ˆ
A
s dµ : s simple and F-measurable with 0 ≤ s ≤ f

}
.

Show that the following properties hold for all measurable functions f and g and all A,B ∈ F :
(a) A ⊂ B and f ≥ 0⇒

´
A f dµ ≤

´
B f dµ ;

(b) f ≥ 0 and c ∈ [0,∞]⇒
´
A cf dµ = c

´
A f dµ ;

(c) f(x) = 0, ∀x ∈ A⇒
´
A f dµ = 0, even if µ(A) =∞ ;

(d) µ(A) = 0, f ≥ 0⇒
´
A f dµ = 0, even if f(x) =∞, ∀x ∈ A ;

(e) f ≥ 0 ⇒
´
A f dµ =

´
Ω χAf dµ ; deduce that for A,B ∈ A and A ∩ B = ∅ there holds´

A∪B f dµ =
´
A f dµ+

´
B f dµ.

4. Consider the measure space (N, 2N, µ), where µ denotes the counting measure. Show that any
function f : N→ [0,∞] is semi-integrable and that

ˆ
N
fdµ =

∑
n≥1

f(n).

5. Consider the functions

f1(x) =


+∞ if x = 0,
ln |x| if 0 < |x| < 1,
0 if |x| ≥ 1,

f2(x) =

{
1

x2−1
if |x| 6= 1,

20 if |x| = 1,
f3(x) ≡ 1.

Determine whether these functions are integrable on (R,R) with respect to the measure m,
in each of the following two cases, and if possible compute the value of the integrals.
(a) m = λ is the Lebesgue measure ;
(b) m is defined by

m(B) =
∑

n∈B∩Z

1

1 + (n+ 1)2

for all B ∈ R.
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6. Let f, g : [0, 1] → R+ be Lebesgue-integrable functions. Show that f + g is also Lebesgue-
integrable, but that fg is in general not.

7. Let f ∈ L1(µ). Show that for all ε > 0 there exists δ > 0 such that
´
A |f | dµ < ε if µ(A) < δ.

(This is the so-called continuity property for the Lebesgue integral.)

8. Let f ∈ L1(R,R, λ) and assume that
´
K f(x)dx = 0 holds for all compact subset K ⊂ R.

Show that f = 0 almost everywhere.

9. Let f ∈ L1(R,R, λ).

(a) Show that for all ε > 0 there exists a simple function g : R → R of the form g =∑k
i=1 ai1Ai with A1, . . . , Ak bounded intervals, such that

´
R |f(x)− g(x)| < ε.

(b) Conclude that for all ε > 0 there exists a bounded smooth function h : R→ R such that´
R |f(x)− h(x)|dx < ε.

Convergence theorems

10. Let (Ω,F , µ) be a measure space and let fn : Ω→ [0,∞], n ≥ 1, be measurable functions such
that

f1 ≥ f2 ≥ f3 ≥ · · · ≥ 0.

For all x ∈ Ω, define f(x) as the limit of fn(x) as n→∞. Show that if f1 ∈ L1(µ) then

lim
n→∞

ˆ
Ω
fn dµ =

ˆ
Ω
f dµ.

Give a counterexample showing that the conclusion becomes false without the integrability
assumption on f1.

11. Let (Ω,F , µ) be a finite measure space. Let (fn)n be a sequence of complex measurable func-
tions on Ω such that fn → f uniformly on Ω. Show that if fn ∈ L1(Ω) for all n, then

f ∈ L1(Ω) and lim
n→∞

ˆ
Ω
fn dµ =

ˆ
Ω
f dµ.

Also show that the result is in general false if µ(Ω) =∞.

12. Determine the limits of
ˆ n

0

(
1− x

n

)n
ex/2 dx et

ˆ n

0

(
1 +

x

n

)n
e−2x dx

as n→∞.

13. Let (Ω,F , µ) be a finite measure space, and let fn, f : Ω→ R be F-measurable functions with
fn(x)→ f(x) for all x and with

´
fndµ→ c for some c > 0. Show with examples that

´
fdµ

can take any value in [0, c].

14. Let (Ω,F , µ) be a measure space. The goal of this exercise is to establish the Egorov and the
Lusin theorems. 1

(a) Let fn, f : Ω → R be F-measurable functions and assume that there exists A ∈ F with
µ(A) < ∞ such that fn(ω) → f(ω) for all ω ∈ A. Prove the Egorov theorem : for all
ε > 0, there exists Aε ⊂ A with Aε ∈ F and µ(A\Aε) < ε such that fn → f uniformly on
Aε. In other words, almost everywhere convergence is equivalent to the so-called almost
uniform convergence on sets with finite measure.

(b) Show that the Egorov theorem may not hold if µ(A) =∞.

1. This exercise establishes Littlewood’s three principles of real analysis : “Every (measurable) set is nearly a finite
sum of intervals ; every function is nearly continuous ; every convergent sequence of functions is nearly uniformly
convergent.” The rigorous versions of these principles are given respectively by the regularity of the Lebesgue measure,
the Lusin theorem, and the Egorov theorem.
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(c) Deduce from item (a) the Lusin theorem : given a, b ∈ R, if f : [a, b] → C is Lebesgue-
measurable, then for all ε > 0 there exists a compact set K ⊂ [a, b] such that λ([a, b] \
K) < ε and such that the restriction f |K is continuous.

(d) As an application of item (a) together with exercise 11, deduce a new proof of the bounded
convergence theorem.

Miscellaneous

15. Let f be defined on [0, 1) by

f(x) =

{
2x if 0 ≤ x < 1

2 ,
2x− 1 if 1

2 ≤ x < 1.

Show that f is Lebesgue-measurable and that

λ(f−1(E)) = λ(E)

for all measurable E ⊂ [0, 1) (which means that f is a homomorphism of the Lebesgue space
[0, 1)). Show that f is ergodic, that is, λ(f−1(E)∆E) = 0 implies λ(E) = 0 or 1.

16. The goal of this exercise is to define spherical coordinates on Rn.

(a) Let Sn−1 denote the unit sphere in Rn. Show that the function ϕ : x 7→ (|x|, x
|x|) is a

bijection between Rn \ {0} and (0,∞)× Sn−1.

(b) Let λ denote the Lebesgue measure on Rn. Show that we may define as follows a measure
σ on Sn−1 : for any Borel set A ⊂ Sn−1, define Ã = ϕ−1((0, 1)×A) and σ(A) = nλ(Ã).

(c) For a Borel function f ≥ 0, establish the formula
ˆ
Rn

f(x) dx =

ˆ ∞
0

rn−1

(ˆ
Sn−1

f(ru) dσ(u)

)
dr.

We may proceed as follows :

i. Show that for all N ∈ N,

SN = {ϕ−1((a, b]×A) ; 0 ≤ a ≤ b ≤ N and A Borel}

is a semi-algebra on ϕ−1((0, N ]× Sn−1).

ii. Check the formula for f = 1E , with E ∈ SN .

iii. Deduce that the formula holds if f = 1B, for any Borel set B.

iv. Generalize to a simple Borel function f ≥ 0, then to any Borel function f ≥ 0.

(d) Show that f(x) = (1 + |x|2)−m/2 ∈ L1(Rn) if and only if g(x) = (1 + |x|)−m ∈ L1(Rn) if
and only if m > n.
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