Measure theory : exercises
 Bachelor 3
 Academic year 2017-2018

Chapter 3: Product measures

Around Fubini's theorem

1. Let $\left(c_{n, m}\right)_{n, m \geq 1} \subset \mathbb{R}^{+}$, and prove that

$$
\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} c_{n, m}\right)=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} c_{n, m}\right) .
$$

2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $f: \Omega \rightarrow[0, \infty]$. Show that f is \mathcal{F}-measurable if and only if the set $A(f):=\{(t, \omega): 0<t<f(\omega)\} \subset \mathbb{R}^{+} \times \Omega$ belongs to $\mathcal{B}\left(\mathbb{R}^{+}\right) \otimes \mathcal{F}$.
3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $f_{n}: \Omega \rightarrow \mathbb{R}$ be \mathcal{F}-measurable functions. Assuming that $\sum_{n} \int\left|f_{n}\right| d \mu<\infty$ and that μ is σ-finite, prove that

$$
\sum_{n} \int f_{n} d \mu=\int \sum_{n} f_{n} d \mu .
$$

Is this also true without the σ-finiteness assumption?
4. Consider the measure space $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right), \mu\right)$, with $\mu=\lambda \times \sharp$, where λ is the Lebesgue measure on \mathbb{R} and where \sharp is the counting measure on \mathbb{R}. Compare the iterated integrals

$$
\int_{\mathbb{R}}\left(\int_{\{a\}} d \lambda\right) d \sharp \quad \text { and } \quad \int_{\mathbb{R}}\left(\int_{\{a\}} d \sharp\right) d \lambda \text {. }
$$

Does this contradict Fubini's theorem?
5. Consider the measure space $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right), \mu\right)$, with $\mu=\lambda \times \sharp$ as in the previous exercise. Consider the diagonal $D=\{(x, x): x \in \mathbb{R}\}$. Compare the iterated integrals

$$
\int_{[0,1]}\left(\int_{[0,1]} 1_{D} d \lambda\right) d \sharp \quad \text { and } \quad \int_{[0,1]}\left(\int_{[0,1]} 1_{D} d \sharp\right) d \lambda \text {. }
$$

Does this contradict Fubini's theorem?
6. Let $f(x, y)=e^{-x y}-2 e^{-2 x y}$. Check that f is Lebesgue-measurable on \mathbb{R}^{2} and compare the iterated Lebesgue integrals

$$
\int_{[0,1]}\left(\int_{[1, \infty)} f(x, y) d y\right) d x \text { and } \int_{[1, \infty)}\left(\int_{[0,1]} f(x, y) d x\right) d y .
$$

Does this contradict Fubini's theorem?
7. Let $f:(-1,1) \times(-1,1) \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y}{\left(x^{2}+y^{2}\right)^{2}} & \text { if } x^{2} \neq y^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Check that f is Lebesgue-measurable on $(-1,1) \times(-1,1)$ and compare the iterated integrals

$$
\int_{(-1.1)}\left(\int_{(-1.1)} f(x, y) d x\right) d y \quad \text { and } \quad \int_{(-1.1)}\left(\int_{(-1.1)} f(x, y) d y\right) d x
$$

Is f integrable on $(-1,1) \times(-1,1)$?
8. Let $[a, b] \subset[0,1)$ and $g:(0,1) \rightarrow \mathbb{R}^{+}$a continuous function, supported inside (a, b), such that $\int_{0}^{1} g(y) d y=1$.
(a) Given $\epsilon>0$, construct a continuous function $G:(0,1) \times(0,1) \rightarrow \mathbb{R}^{+}$, supported inside $(0,1) \times(a, b)$, such that

$$
G\left(\frac{1}{2}, y\right)=g(y) \quad \text { and } \quad \int_{0}^{1} \int_{0}^{1} G(x, y) d x d y=\epsilon
$$

(b) Let $g_{n}:(0,1) \rightarrow \mathbb{R}^{+}$be continuous functions such that

$$
\operatorname{supp} g_{n} \subset\left(\delta_{n}, \delta_{n+1}\right) \quad \text { and } \quad \int_{0}^{1} g_{n}(y) d y=1
$$

with $0=\delta_{1}<\delta_{2}<\cdots<\delta_{n} \rightarrow 1$ as $n \rightarrow \infty$. For all $n \geq 1$, let G_{n} be the function associated with g_{n} by the construction of item (a) with $\epsilon=2^{-n}$. Show that

$$
H(x, y):=\sum_{n=1}^{\infty} G_{n}(x, y)
$$

is a nonnegative continuous function on $(0,1) \times(0,1)$ with

$$
\iint_{(0,1) \times(0,1)} H(x, y) d x d y=1 \quad \text { and } \quad \int_{0}^{1} H\left(\frac{1}{2}, y\right) d y=+\infty .
$$

(c) Does this contradict Fubini's theorem?

Around Cavalieri's principle

9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be nonnegative and Lebesgue-measurable.
(a) Set

$$
A(f)=\left\{(x, y) \in \mathbb{R}^{2}: 0<y<f(x)\right\} .
$$

Show that $A(f)$ is Lebesgue-measurable in \mathbb{R}^{2} and that the integral of f on \mathbb{R} coincides with the measure of the set $A(f)$ in \mathbb{R}^{2}.
(b) Show that the graph of f,

$$
G(f)=\{(x, f(x)) ; x \in \mathbb{R}\}
$$

has zero Lebesgue measure in \mathbb{R}^{2}.
(Hint : for $i, j \in \mathbb{Z}$, set

$$
\begin{aligned}
I_{i j} & =f^{-1}([i, i+1)) \cap[j, j+1), \\
G_{i j}(f) & =\left\{(x, f(x)) ; x \in I_{i j}\right\},
\end{aligned}
$$

ans show that $G_{i j}(f)$ has zero measure.)
(c) Let $A(f)$ be defined as above. Check that

$$
\mathbb{1}_{A(f)}(x, y)=\mathbb{1}_{(y, \infty)}(f(x)) \quad \text { for all }(x, y) \in \mathbb{R} \times \mathbb{R}^{+} .
$$

Deduce Cavalieri's principle : for all $f: \mathbb{R} \rightarrow \mathbb{R}$ nonnegative and Lebesgue-measurable,

$$
\int_{\mathbb{R}^{2}} f(x) d x=\int_{\mathbb{R}^{+}} m(\{x \in \mathbb{R}: f(x)>y\}) d y .
$$

10. Let X be a nonnegative random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}\left[X^{p}\right]<\infty$, for some $p>0$. Prove that

$$
\mathbb{E}\left[X^{p}\right]=\int_{0}^{\infty} p x^{p-1} \mathbb{P}[X>x] d x .
$$

Miscellaneous

11. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a complete probability space, and let $h: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that $h(\cdot, x)$ is measurable for any fixed $x \in \mathbb{R}^{d}$ (meaning that h is a random field). Show that the following two properties are equivalent :
(a) h is measurable on $\Omega \times \mathbb{R}^{d}$;
(b) h is almost stochastically continuous, that is, for all $x \in \mathbb{R}^{d}$,

$$
\mathbb{P}\{\omega \in \Omega:|h(\omega, x+y)-h(\omega, x)|>\delta\} \xrightarrow{y \rightarrow 0} 0 .
$$

Show that, if h is stationary (that is, $\mathbb{P}\{\omega: h(\omega, x) \in B\}=\mathbb{P}\{\omega: h(\omega, 0) \in B\}$ for all $x \in \mathbb{R}^{d}$ and all Borel set $B \subset \mathbb{C}$), then these properties are further equivalent to the following :
(c) h is stochastically continuous, that is, for all $x \in \mathbb{R}^{d}$,

$$
\mathbb{P}\{\omega \in \Omega:|h(\omega, x+y)-h(\omega, x)|>\delta\} \xrightarrow{y \rightarrow 0} 0 .
$$

(This can be viewed as a stochastic version of Lusin's theorem.) Show that in general without the stationarity assumption property (c) is strictly stronger than (a) and (b).

