Measure theory : exercises Bachelor 3 Academic year 2017-2018

Chapter 3 : Product measures

Around Fubini's theorem

1. Let $(c_{n,m})_{n,m\geq 1} \subset \mathbb{R}^+$, and prove that

$$\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} c_{n,m} \right) = \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} c_{n,m} \right).$$

- 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $f : \Omega \to [0, \infty]$. Show that f is \mathcal{F} -measurable if and only if the set $A(f) := \{(t, \omega) : 0 < t < f(\omega)\} \subset \mathbb{R}^+ \times \Omega$ belongs to $\mathcal{B}(\mathbb{R}^+) \otimes \mathcal{F}$.
- 3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $f_n : \Omega \to \mathbb{R}$ be \mathcal{F} -measurable functions. Assuming that $\sum_n \int |f_n| d\mu < \infty$ and that μ is σ -finite, prove that

$$\sum_{n} \int f_n \, d\mu = \int \sum_{n} f_n \, d\mu.$$

Is this also true without the σ -finiteness assumption?

4. Consider the measure space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \mu)$, with $\mu = \lambda \times \sharp$, where λ is the Lebesgue measure on \mathbb{R} and where \sharp is the counting measure on \mathbb{R} . Compare the iterated integrals

$$\int_{\mathbb{R}} \left(\int_{\{a\}} d\lambda \right) d\sharp \quad \text{and} \quad \int_{\mathbb{R}} \left(\int_{\{a\}} d\sharp \right) d\lambda.$$

Does this contradict Fubini's theorem?

5. Consider the measure space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \mu)$, with $\mu = \lambda \times \sharp$ as in the previous exercise. Consider the diagonal $D = \{(x, x) : x \in \mathbb{R}\}$. Compare the iterated integrals

$$\int_{[0,1]} \left(\int_{[0,1]} \mathbf{1}_D \, d\lambda \right) d\sharp \quad \text{and} \quad \int_{[0,1]} \left(\int_{[0,1]} \mathbf{1}_D \, d\sharp \right) d\lambda.$$

Does this contradict Fubini's theorem?

6. Let $f(x,y) = e^{-xy} - 2e^{-2xy}$. Check that f is Lebesgue-measurable on \mathbb{R}^2 and compare the iterated Lebesgue integrals

$$\int_{[0,1]} \left(\int_{[1,\infty)} f(x,y) dy \right) dx \quad \text{and} \quad \int_{[1,\infty)} \left(\int_{[0,1]} f(x,y) dx \right) dy.$$

Does this contradict Fubini's theorem?

7. Let $f: (-1,1) \times (-1,1) \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & \text{if } x^2 \neq y^2, \\ 0 & \text{otherwise.} \end{cases}$$

Check that f is Lebesgue-measurable on $(-1, 1) \times (-1, 1)$ and compare the iterated integrals

$$\int_{(-1,1)} \left(\int_{(-1,1)} f(x,y) \, dx \right) \, dy \quad \text{and} \quad \int_{(-1,1)} \left(\int_{(-1,1)} f(x,y) \, dy \right) \, dx$$

Is f integrable on $(-1, 1) \times (-1, 1)$?

- 8. Let $[a,b] \subset [0,1)$ and $g: (0,1) \to \mathbb{R}^+$ a continuous function, supported inside (a,b), such that $\int_0^1 g(y) \, dy = 1$.
 - (a) Given $\epsilon > 0$, construct a continuous function $G: (0,1) \times (0,1) \to \mathbb{R}^+$, supported inside $(0,1) \times (a,b)$, such that

$$G(\frac{1}{2}, y) = g(y)$$
 and $\int_{0}^{1} \int_{0}^{1} G(x, y) \, dx \, dy = \epsilon.$

(b) Let $g_n: (0,1) \to \mathbb{R}^+$ be continuous functions such that

supp
$$g_n \subset (\delta_n, \delta_{n+1})$$
 and $\int_0^1 g_n(y) \, dy = 1$,

with $0 = \delta_1 < \delta_2 < \cdots < \delta_n \to 1$ as $n \to \infty$. For all $n \ge 1$, let G_n be the function associated with g_n by the construction of item (a) with $\epsilon = 2^{-n}$. Show that

$$H(x,y) := \sum_{n=1}^{\infty} G_n(x,y)$$

is a nonnegative continuous function on $(0,1) \times (0,1)$ with

$$\iint_{(0,1)\times(0,1)} H(x,y) \, dx \, dy = 1 \qquad \text{and} \qquad \int_0^1 H(\frac{1}{2},y) \, dy = +\infty.$$

(c) Does this contradict Fubini's theorem?

Around Cavalieri's principle

- 9. Let $f : \mathbb{R} \to \mathbb{R}$ be nonnegative and Lebesgue-measurable.
 - (a) Set

$$A(f) = \{ (x, y) \in \mathbb{R}^2 : 0 < y < f(x) \}$$

Show that A(f) is Lebesgue-measurable in \mathbb{R}^2 and that the integral of f on \mathbb{R} coincides with the measure of the set A(f) in \mathbb{R}^2 .

(b) Show that the graph of f,

$$G(f) = \{ (x, f(x)); x \in \mathbb{R} \},\$$

has zero Lebesgue measure in \mathbb{R}^2 . (*Hint* : for $i, j \in \mathbb{Z}$, set

$$I_{ij} = f^{-1}([i, i+1)) \cap [j, j+1),$$

$$G_{ij}(f) = \{(x, f(x)); x \in I_{ij}\},$$

ans show that $G_{ij}(f)$ has zero measure.)

(c) Let A(f) be defined as above. Check that

$$\mathbb{1}_{A(f)}(x,y) = \mathbb{1}_{(y,\infty)}(f(x)) \quad \text{for all } (x,y) \in \mathbb{R} \times \mathbb{R}^+.$$

Deduce Cavalieri's principle : for all $f : \mathbb{R} \to \mathbb{R}$ nonnegative and Lebesgue-measurable,

$$\int_{\mathbb{R}} f(x) \, dx = \int_{\mathbb{R}^+} m(\{x \in \mathbb{R} : f(x) > y\}) \, dy.$$

10. Let X be a nonnegative random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}[X^p] < \infty$, for some p > 0. Prove that

$$\mathbb{E}[X^p] = \int_0^\infty p \, x^{p-1} \mathbb{P}[X > x] \, dx$$

Miscellaneous

- 11. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a complete probability space, and let $h : \Omega \times \mathbb{R}^d \to \mathbb{C}$ such that $h(\cdot, x)$ is measurable for any fixed $x \in \mathbb{R}^d$ (meaning that h is a random field). Show that the following two properties are equivalent :
 - (a) h is measurable on $\Omega \times \mathbb{R}^d$;
 - (b) h is almost stochastically continuous, that is, for all $x \in \mathbb{R}^d$,

$$\mathbb{P}\{\omega \in \Omega : |h(\omega, x+y) - h(\omega, x)| > \delta\} \xrightarrow{y \to 0} 0.$$

Show that, if h is stationary (that is, $\mathbb{P}\{\omega : h(\omega, x) \in B\} = \mathbb{P}\{\omega : h(\omega, 0) \in B\}$ for all $x \in \mathbb{R}^d$ and all Borel set $B \subset \mathbb{C}$), then these properties are further equivalent to the following :

(c) h is stochastically continuous, that is, for all $x \in \mathbb{R}^d$,

$$\mathbb{P}\{\omega \in \Omega : |h(\omega, x + y) - h(\omega, x)| > \delta\} \xrightarrow{y \to 0} 0.$$

(This can be viewed as a stochastic version of Lusin's theorem.) Show that in general without the stationarity assumption property (c) is strictly stronger than (a) and (b).