Measure theory : exercises Bachelor 3 Academic year 2017-2018

Chapter 4 : Independence

- 1. Let $\mathcal{R}^{\mathbb{N}_0}$ denote the smallest σ -algebra on $\mathbb{R}^{\mathbb{N}_0}$ such that all projections $\pi_j((x_n)_n) = x_j, j \ge 1$, are $\mathcal{R}^{\mathbb{N}_0}$ -measurable.
 - (a) Show that $\mathcal{R}^{\mathbb{N}_0} = \sigma(\mathcal{P})$, where

$$\mathcal{P} := \{A_1 \times \ldots \times A_k \times \mathbb{R}^{\mathbb{N}_0} : A_1, \ldots, A_k \in \mathcal{R}, \, k \ge 1\}$$

is a π -system.

- (b) Given a family $(f_n)_n$ of maps $f_n : \Omega \to \mathbb{R}$ on a measurable space (Ω, \mathcal{F}) , show that $(f_n)_n : \Omega \to \mathbb{R}^{\mathbb{N}_0}$ is $(\mathcal{F}, \mathcal{R}^{\mathbb{N}_0})$ -measurable if and only if $f_n : \Omega \to \mathbb{R}$ is \mathcal{F} -measurable for all n.
- (c) Let $(P_n)_n$ be a sequence of probability measures on \mathcal{R} . Show that there exists a unique probability measure \mathbb{P} on $\mathcal{R}^{\mathbb{N}_0}$ such that

$$\mathbb{P}(A_1 \times \ldots \times A_k \times \mathbb{R}^{\mathbb{N}_0}) = \prod_{n=1}^k P_n(A_n),$$

for all $A_1, \ldots, A_k \in \mathcal{R}$ and all $k \ge 1$. Notation : $\mathbb{P} := \bigotimes_{n=1}^{\infty} P_n$.

Hint: Consider a probability space $(\Omega_0, \mathcal{F}_0, P_0)$ and a sequence of independent random variables $(Y_n)_n$ such that $(P_0)_{Y_n} = P_n$ for all n, and consider the image measure $(P_0)_{(Y_n)_n}$.

- 2. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(A_n)_n$ be a sequence of independent events such that $\mathbb{P}[\bigcup_n A_n] = 1$ and $\mathbb{P}[A_n] < 1$ for all n. Show that $\mathbb{P}[\limsup_n A_n] = 1$.
- 3. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(A_n)_n$ be a sequence of independent events with $\mathbb{P}[A_n] = p \in (0, 1)$ for all n. Show that the probability space cannot have any atom (that is, there exists no $B \in F$ with $\mathbb{P}[B] > 0$ such that for all $C \in \mathcal{F}$ with $C \subset B$ there holds either $\mathbb{P}[C] = 0$ or $\mathbb{P}[B \setminus C] = 0$). In particular, the probability space cannot be discrete.
- 4. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(A_n)_n$ be a sequence of events. The goal of this exercise is to establish the following generalized Borel-Cantelli lemma :

$$\sum_{n} \mathbb{P}[A_{n}] = \infty \text{ and } \liminf_{N \uparrow \infty} \frac{\sum_{j,k=1}^{n} \mathbb{P}[A_{j} \cap A_{k}]}{(\sum_{k=1}^{n} \mathbb{P}[A_{k}])^{2}} \leq 1 \implies \mathbb{P}\left[\limsup_{n \uparrow \infty} A_{n}\right] = 1.$$

What does this statement become in the case of independent events?

Hint: Let $N_n := \sum_{k=1}^n \mathbb{1}_{A_k}$ and examine $\mathbb{P}[N_n \leq x]$ for any given $x \leq \mathbb{E}[N_n] \uparrow \infty$.

- 5. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(X_n)_n$ be a sequence of independent random variables with $\mathbb{E}[X_n] = 0$ and $\sup_n \mathbb{E}[X_n^4] < \infty$. Show that $\frac{1}{n} \sum_{k=1}^n X_k \to 0$ a.s., even though the random variables X_n are not identically distributed.
- 6. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(X_n)_n$ be a sequence of independent and identically distributed random variables. Prove that

$$\mathbb{P}\left[\limsup_{n\uparrow\infty}\frac{|X_n|}{\sqrt{n}} < \infty\right] = 1 \qquad \Longrightarrow \qquad \mathbb{E}\left[X_1^2\right] < \infty.$$

Hint: First show that for some K > 0 there holds $\mathbb{P}[\limsup_{n \uparrow \infty} \frac{1}{\sqrt{n}} |X_n| \le K] = 1$ and use the Borel-Cantelli lemma.

7. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(X_n)_n$ be a sequence of independent and identically distributed random variables with $\mathbb{P}[X_n = 0] = 1 - \mathbb{P}[X_n = 1] = p$ for all n. Show that

$$p \neq \frac{1}{2} \implies \mathbb{P}\left[\limsup_{n} \left\{\sum_{k=1}^{n} X_{k} = 0\right\}\right] = 0.$$

8. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $X : \Omega \to [0, 1)$ be a random variable such that for all $k = 0, 1, \ldots, 2^n - 1$ and all $n \ge 1$ there holds

$$\mathbb{P}\left[\frac{k}{2^n} \le X < \frac{k+1}{2^n}\right] = \frac{1}{2^n}.$$

Show that $\mathbb{E}\left[X^2\right] = \frac{1}{3}$.