Measure theory : exercises

Bachelor 3
Academic year 2017-2018

Chapter 4 : Independence

1. Let $\mathcal{R}^{\mathbb{N}_{0}}$ denote the smallest σ-algebra on $\mathbb{R}^{\mathbb{N}_{0}}$ such that all projections $\pi_{j}\left(\left(x_{n}\right)_{n}\right)=x_{j}, j \geq 1$, are $\mathcal{R}^{\mathbb{N}_{0}}$-measurable.
(a) Show that $\mathcal{R}^{\mathbb{N}_{0}}=\sigma(\mathcal{P})$, where

$$
\mathcal{P}:=\left\{A_{1} \times \ldots \times A_{k} \times \mathbb{R}^{\mathbb{N}_{0}}: A_{1}, \ldots, A_{k} \in \mathcal{R}, k \geq 1\right\}
$$

is a π-system.
(b) Given a family $\left(f_{n}\right)_{n}$ of maps $f_{n}: \Omega \rightarrow \mathbb{R}$ on a measurable space (Ω, \mathcal{F}), show that $\left(f_{n}\right)_{n}: \Omega \rightarrow \mathbb{R}^{\mathbb{N}_{0}}$ is $\left(\mathcal{F}, \mathcal{R}^{\mathbb{N}_{0}}\right)$-measurable if and only if $f_{n}: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable for all n.
(c) Let $\left(P_{n}\right)_{n}$ be a sequence of probability measures on \mathcal{R}. Show that there exists a unique probability measure \mathbb{P} on $\mathcal{R}^{\mathbb{N}_{0}}$ such that

$$
\mathbb{P}\left(A_{1} \times \ldots \times A_{k} \times \mathbb{R}^{\mathbb{N}_{0}}\right)=\prod_{n=1}^{k} P_{n}\left(A_{n}\right)
$$

for all $A_{1}, \ldots, A_{k} \in \mathcal{R}$ and all $k \geq 1$. Notation $: \mathbb{P}:=\otimes_{n=1}^{\infty} P_{n}$.
Hint : Consider a probability space $\left(\Omega_{0}, \mathcal{F}_{0}, P_{0}\right)$ and a sequence of independent random variables $\left(Y_{n}\right)_{n}$ such that $\left(P_{0}\right)_{Y_{n}}=P_{n}$ for all n, and consider the image measure $\left(P_{0}\right)_{\left(Y_{n}\right)_{n}}$.
2. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(A_{n}\right)_{n}$ be a sequence of independent events such that $\mathbb{P}\left[\cup_{n} A_{n}\right]=1$ and $\mathbb{P}\left[A_{n}\right]<1$ for all n. Show that $\mathbb{P}\left[\lim \sup _{n} A_{n}\right]=1$.
3. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(A_{n}\right)_{n}$ be a sequence of independent events with $\mathbb{P}\left[A_{n}\right]=$ $p \in(0,1)$ for all n. Show that the probability space cannot have any atom (that is, there exists no $B \in F$ with $\mathbb{P}[B]>0$ such that for all $C \in \mathcal{F}$ with $C \subset B$ there holds either $\mathbb{P}[C]=0$ or $\mathbb{P}[B \backslash C]=0)$. In particular, the probability space cannot be discrete.
4. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(A_{n}\right)_{n}$ be a sequence of events. The goal of this exercise is to establish the following generalized Borel-Cantelli lemma :

$$
\sum_{n} \mathbb{P}\left[A_{n}\right]=\infty \quad \text { and } \quad \liminf _{N \uparrow \infty} \frac{\sum_{j, k=1}^{n} \mathbb{P}\left[A_{j} \cap A_{k}\right]}{\left(\sum_{k=1}^{n} \mathbb{P}\left[A_{k}\right]\right)^{2}} \leq 1 \quad \Longrightarrow \quad \mathbb{P}\left[\limsup _{n \uparrow \infty} A_{n}\right]=1
$$

What does this statement become in the case of independent events?
Hint : Let $N_{n}:=\sum_{k=1}^{n} \mathbb{1}_{A_{k}}$ and examine $\mathbb{P}\left[N_{n} \leq x\right]$ for any given $x \leq \mathbb{E}\left[N_{n}\right] \uparrow \infty$.
5. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(X_{n}\right)_{n}$ be a sequence of independent random variables with $\mathbb{E}\left[X_{n}\right]=0$ and $\sup _{n} \mathbb{E}\left[X_{n}^{4}\right]<\infty$. Show that $\frac{1}{n} \sum_{k=1}^{n} X_{k} \rightarrow 0$ a.s., even though the random variables X_{n} are not identically distributed.
6. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(X_{n}\right)_{n}$ be a sequence of independent and identically distributed random variables. Prove that

$$
\mathbb{P}\left[\limsup _{n \uparrow \infty} \frac{\left|X_{n}\right|}{\sqrt{n}}<\infty\right]=1 \quad \Longrightarrow \quad \mathbb{E}\left[X_{1}^{2}\right]<\infty
$$

 the Borel-Cantelli lemma.
7. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(X_{n}\right)_{n}$ be a sequence of independent and identically distributed random variables with $\mathbb{P}\left[X_{n}=0\right]=1-\mathbb{P}\left[X_{n}=1\right]=p$ for all n. Show that

$$
p \neq \frac{1}{2} \Longrightarrow \mathbb{P}\left[\limsup _{n}\left\{\sum_{k=1}^{n} X_{k}=0\right\}\right]=0
$$

8. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $X: \Omega \rightarrow[0,1)$ be a random variable such that for all $k=0,1, \ldots, 2^{n}-1$ and all $n \geq 1$ there holds

$$
\mathbb{P}\left[\frac{k}{2^{n}} \leq X<\frac{k+1}{2^{n}}\right]=\frac{1}{2^{n}} .
$$

Show that $\mathbb{E}\left[X^{2}\right]=\frac{1}{3}$.

