Measure theory : exercises
 Bachelor 3
 Academic year 2017-2018

Chapter 4: Convergence

Reminder on different types of convergence

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. A sequence $\left(f_{n}\right)_{n}$ of measurable functions converge

- in measure to f if for all $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x \in \Omega:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=0
$$

- in L^{p} to f, with $1 \leq p \leq \infty$, if $f \in L^{p}, f_{n} \in L^{p}$ for all n, and

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|f_{n}-f\right|^{p} d \mu=0
$$

- almost uniformly to f if for all $\epsilon>0$, there exists $\Omega_{\epsilon} \subset \Omega$ such that

$$
\mu\left(\Omega \backslash \Omega_{\epsilon}\right)<\epsilon \text { and } f_{n} \rightarrow f \text { uniformly on } \Omega_{\epsilon} ;
$$

- almost everywhere to f if there exists a set $N \subset \Omega$ of zero measure such that $f_{n}(x) \rightarrow f(x)$ for all $x \in \Omega \backslash N$.

1. Convergence almost everywhere does not imply L^{p} convergence, except if the sequence $\left(f_{n}\right)_{n}$ is bounded by a function $g \in L^{p}$.
2. L^{p} convergence implies convergence in measure.
3. Convergence almost everywhere does not imply convergence in measure, except if $\mu(\Omega)<\infty$.
4. Convergence in measure does not imply convergence almost everywhere, but only convergence almost everywhere of a subsequence.
5. Convergence in measure does not imply L^{p} convergence, except if $\left(f_{n}\right)_{n}$ is bounded by a function $g \in L^{p}$.
6. Convergence almost everywhere does not imply almost uniform convergence, except if $\mu(\Omega)<$ ∞ (Egorov's theorem).

Convergence of random variables

7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space given by $\Omega=[0,1], \mathcal{F}=\mathcal{B}([0,1]), \mathbb{P}=\left.\lambda\right|_{\mathcal{F}}$.
(a) Consider the sequence $\left(X_{n}\right)_{n}$ defined by $X_{n}:[0,1] \rightarrow \mathbb{R}: \omega \mapsto \sqrt{n}(-\omega)^{n}$. Does $\left(X_{n}\right)_{n}$ converge in L^{1}, L^{2}, L^{3}, in probability, and almost everywhere? Is it uniformly integrable?
(b) Consider the sequence $\left(Y_{n}\right)_{n}$ defined by $Y_{1}=\mathbb{1}_{[0,1]}$ and $Y_{2^{n}+j}=\sqrt{2^{n}} \mathbb{1}_{\left[j 2^{-n},(j+1) 2^{-n}\right]}$ for all $0 \leq j \leq 2^{n}-1$ and $n \geq 1$. Does $\left(Y_{n}\right)_{n}$ converge in L^{1}, L^{2}, L^{3}, in probability, and almost everywhere? Is it uniformly integrable?
(c) Consider the sequence $\left(Z_{n}\right)_{n}$ defined by $Z_{n}=n \mathbb{1}_{\left[0, \frac{1}{n}\right]}-n \mathbb{1}_{\left[1-\frac{1}{n}, 1\right]}$. Show that there exists a random variable Z such that $Z_{n} \rightarrow Z$ in probability and $\mathbb{E}\left[Z_{n}\right] \rightarrow \mathbb{E}[Z]$, but that Z_{n} does not converge in L^{1}. Which assumption of which theorem is not satisfied?
8. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(X_{n}\right)_{n}$ be a sequence of random variables. Show that

$$
X_{n} \rightarrow X \text { in probability } \quad \Leftrightarrow \quad \mathbb{E}\left[\left|X_{n}-X\right| \wedge 1\right] \rightarrow 0
$$

9. Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and some $p \in[1, \infty)$, consider $B_{p}:=\left\{X \in L^{p}(\Omega)\right.$: $\left.\mathbb{E}\left[|X|^{p}\right]^{\frac{1}{p}} \leq 1\right\}$. Show that B_{p} is uniformly integrable for $p \in(1, \infty)$ but not for $p=1$.
10. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(X_{n}\right)_{n}$ be a sequence of Gaussian random variables such that $X_{n} \rightarrow X$ in probability. Show that X is also Gaussian and that $\mathbb{E}\left[X_{n}^{p}\right] \rightarrow \mathbb{E}\left[X^{p}\right]$ holds for all $p \geq 1$.
Hint : Show that $\left(X_{n}\right)_{n}$ is uniformly integrable.

L^{p} spaces

11. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $1 \leq q<p<\infty$.
(a) If $\mu(\Omega)<\infty$, show that for all $u \in L^{p}(\Omega)$ we have

$$
\frac{\|u\|_{L^{q}}}{\mu(\Omega)^{1 / q}} \leq \frac{\|u\|_{L^{p}}}{\mu(\Omega)^{1 / p}}
$$

hence $L^{p}(\Omega) \subset L^{q}(\Omega)$ (but the converse is in general false).
(b) Let A be a countable set. For all $1 \leq r<\infty$, we define the space $\ell^{r}(A)$ as

$$
\ell^{r}(A)=\left\{\left(x_{k}\right)_{k \in A}:\left\|\left(x_{k}\right)_{k}\right\|_{\ell^{r}(A)}:=\left(\sum_{k \in A}\left|x_{k}\right|^{r}\right)^{1 / r}<\infty\right\}
$$

Show that for all $\left(x_{k}\right)_{k} \in \ell^{q}(A)$ we have

$$
\left\|\left(x_{k}\right)_{k}\right\|_{\ell p(A)} \leq\left\|\left(x_{k}\right)_{k}\right\|_{\ell q(A)},
$$

hence $\ell^{q}(A) \subset \ell^{p}(A)$ (but the converse is in general false).
(c) Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
u(x)= \begin{cases}(1 / x)^{1 / q} & \text { if } x \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Show that $u \in L^{p}(\mathbb{R})$ but $u \notin L^{q}(\mathbb{R})$, hence $L^{p}(\mathbb{R}) \not \subset L^{q}(\mathbb{R})$.
(d) Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
v(x)= \begin{cases}(1 / x)^{1 / p} & \text { if } 0<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Show that $v \in L^{q}(\mathbb{R})$ but $v \notin L^{p}(\mathbb{R})$, hence $L^{p}(\mathbb{R}) \not \supset L^{q}(\mathbb{R})$.
(e) Is it true that $L^{q}(\mathbb{R}) \supset L^{\infty}(\mathbb{R})$? And that $L^{q}(\mathbb{R}) \subset L^{\infty}(\mathbb{R})$?
(f) Is it true that $\cap_{1 \leq r<\infty} L^{r}(\mathbb{R}) \subset L^{\infty}(\mathbb{R})$? And what if \mathbb{R} is replaced by a compact subset?
12. Let $1 \leq p<\infty$. Construct a measurable function f on \mathbb{R} such that $f \in L^{p}(\mathbb{R})$ but $f \notin L^{q}(\mathbb{R})$ for all $q \neq p$.
13. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that the map $p \mapsto\|\cdot\|_{p}^{p}$ is log-convex, that is, for all $1 \leq p, q<\infty$ and all measurable functions u on Ω, we have for all $0 \leq \theta \leq 1$,

$$
\|u\|_{L^{\theta p+(1-\theta) q}}^{\theta p+(1-\theta) q} \leq\|u\|_{L^{p}}^{\theta p}\|u\|_{L^{q}}^{(1-\theta) q} .
$$

Deduce that, for all $p \leq q$, we have $\cap_{r \in[p, q]} L^{r}(\Omega)=L^{p}(\Omega) \cap L^{q}(\Omega)$. In particular, if u is measurable on Ω, the set $\left\{p \in[1, \infty]: u \in L^{p}\right\}$ is convex (hence an interval). Examining the previous exercises, deduce that any convex subset of $[1, \infty]$ can be obtained in this form.

