Exercises Measure Theory Bachelor 3 Academic Year 2017-2018

Chapter 5: Signed Measures

- 1. Let (Ω, \mathcal{F}) be a measurable space and let μ, ν be two **finite** measures on \mathcal{F} . Prove that $\nu \ll \mu$ if and only if $\forall \epsilon > 0, \exists \delta > 0, \forall A \in \mathcal{F} : \mu(A) < \delta \implies \nu(A) < \epsilon$. Is this also true if μ and ν are σ -finite measures? *Hint:* Let ν be the counting measure for all subsets of \mathbb{N} and let μ be the discrete measure on this σ -field satisfying $\mu(\{n\}) = (n+1)^{-2}$ for $n \in \mathbb{N}$.
- 2. Show that the Radon-Nikodym theorem is NOT true in general if μ is not σ -finite. *Hint:* Look at the Lebesgue measure λ and the counting measure μ on $([0, 1], \mathcal{R}_{[0,1]})$.
- 3. Let μ be a σ -finite measure. Show that there exists a **finite** measure ν such that $\mu \equiv \nu$.
- 4. Show that there is a Lebesgue decomposition in the σ -finite as well as in the finite case. Prove that it is unique.
- 5. Let (Ω, \mathcal{F}) be a measurbale space and let λ, μ , and ν be σ -finite measures on (Ω, \mathcal{F}) such that $\nu \ll \mu \ll \lambda$. Denote the μ_2 -density of a measure μ_1 always by $\frac{d\mu_1}{d\mu_2}$ provided that it exists.
 - (a) If $f: \Omega \to \mathbb{R}$ is μ -integrable, show that

$$\int f d\mu = \int f \frac{d\mu}{d\lambda} d\lambda$$

(b) Show that

$$rac{d
u}{d\lambda} = rac{d
u}{d\mu} rac{d\mu}{d\lambda} \qquad \lambda ext{-}a.e.$$

(c) If we also have $\mu \ll \nu$, show that

$$\frac{d\nu}{d\mu} = \left(\frac{d\mu}{d\nu}\right)^{-1}$$
 μ, ν -a.e.