Please provide complete and well-written solutions to the following exercises. Due on May 8th before noon.

Homework 4

Exercise 1. In a coin-flipping game, consider the double-your-bet strategy: start by betting $\$ 1$, double your bet until you win, and stop playing once you have won. More precisely, letting $p>0$ be the probability to win a bet, and letting X_{1}, X_{2}, \ldots be iid random variables with $\mathbb{P}\left[X_{1}=1\right]=p$ and $\mathbb{P}\left[X_{1}=-1\right]=1-p$, your net fortune can be written as

$$
M_{n}:=\sum_{m=1}^{n \wedge T} 2^{m-1} X_{m}, \quad T:=\min \left\{m \geq 1: X_{m}=1\right\}
$$

Show that $M_{n} \rightarrow M_{T}=1$ a.s. as $n \uparrow \infty$, which shows that in principle this betting strategy makes you win eventually, whatever the value of $p>0$. However note that $\mathbb{E}\left[M_{n}\right]=2 p-1$ for all n (which is <1 if $p<1$): where is the catch?
Exercise 2. Consider an election with 2 candidates and c voters. Assume that candidate 1 gets a votes and candidate 2 gets b votes, with $a>b, a+b=c$, so that candidate 1 eventually wins the election. The votes are counted one by one in a uniformly random ordering, and we would like to keep a running tally of who is currently winning.
(i) Denote by S_{n} the number of votes for candidate 1 minus the number of votes for candidate 2 after n votes have been counted. Define $M_{n}:=S_{c-n} /(c-n)$ and show that $\left(M_{n}\right)_{n}$ is a martingale.
(ii) Define $T:=\min \left\{0 \leq n \leq c: M_{n}=0\right\}$, and set $T=c-1$ if there is no n with $M_{n}=0$. Show that T is a stopping time.
(iii) With the above ingredients, show that that the probability that candidate 1 is always ahead throughout the running tally is equal to $\frac{a-b}{a+b}$.

Exercise 3. Let $\left(S_{n}\right)$ be the simple random walk, that is, $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$ where X_{1}, X_{2}, \ldots are iid random variables with $\mathbb{P}\left[X_{1}=1\right]=\mathbb{P}\left[X_{1}=-1\right]=\frac{1}{2}$.
(i) Let T be the first time that the walk hits 0 or m. Using that $\left(S_{n}\right)_{n},\left(S_{n}^{2}-n\right)_{n}$, and $\left(S_{n}^{3}-3 n S_{n}\right)_{n}$ are martingales, show that for all $0<k<m$,

$$
\mathbb{P}_{k}\left[S_{T}=m\right]=\frac{k}{m}, \quad \mathbb{E}_{k} T=k(m-k), \quad \mathbb{E}_{k}\left[T \mid S_{T}=m\right]=\frac{1}{3}\left(m^{2}-k^{2}\right)
$$

(ii) Using a martingale involving S_{n}^{4}, further compute $\operatorname{Var}_{k}[T]$.

Exercise 4. Consider the random walk $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$, where X_{1}, X_{2}, \ldots are iid integer-valued random variables with $\mathbb{E} X_{i}>0, \mathbb{P}\left[X_{i} \geq-1\right]=1$, and $\mathbb{P}\left[X_{i}=-1\right]>0$. Let $\phi(\theta)=\mathbb{E}\left[\exp \left(\theta X_{1}\right)\right]$ be the moment generating function and let $V_{a}=\min \{n \geq 0$: $\left.S_{n}=a\right\}$ be the first visit time to $a \in \mathbb{Z}$.
(i) Show that there exists a unique $\alpha<0$ with $\phi(\alpha)=1$.
(ii) Deduce that $\left(\exp \left(\alpha S_{n}\right)\right)_{n}$ is a martingale.
(iii) Prove that $\mathbb{P}_{x}\left[V_{a}<\infty\right]=e^{\alpha(x-a)}$ for all $a<x$.

Exercise 5. Consider a Markov chain with finite state space Ω. We use martingale theory to provide an alternative proof of the characterization of exit probabilities and expected exit times.
(i) Given $a, b \in \Omega$, let $\tau:=V_{a} \wedge V_{b}$ the first visit time to a or b. Assume that a function $h: \Omega \rightarrow \mathbb{R}$ satisfies $h(a)=1, h(b)=0$, and

$$
h(x)=\sum_{y} P_{x y} h(y) \quad \text { for all } x \neq a, b .
$$

Show that $\left(h\left(X_{n \wedge \tau}\right)\right)_{n}$ is a martingale. Provided $\mathbb{P}_{x}[\tau<\infty]>0$ for all $x \neq a, b$, deduce that $h(x)=\mathbb{P}_{x}\left[V_{a}<V_{b}\right]$.
(ii) Given $A \subset \Omega$, let $V_{A}:=\min \left\{n \geq 0: X_{n} \in A\right\}$ be the first visit time to A. Assume that a function $g: \Omega \rightarrow \mathbb{R}$ satisfies $g(x)=0$ for all $x \in A$ and

$$
g(x)=1+\sum_{y} P_{x y} g(y) \quad \text { for all } x \notin A .
$$

Show that $\left(g\left(X_{n \wedge V_{A}}\right)+n \wedge V_{A}\right)_{n}$ is a martingale. Provided $\mathbb{P}_{x}\left[V_{A}<\infty\right]>0$ for all $x \notin A$, deduce that $g(x)=\mathbb{E}_{x} V_{A}$.

Exercise 6. Let $\left(X_{n}\right)_{n}$ be an irreducible Markov chain with state space $\{0,1,2, \ldots\}$ and assume that there exists a nonnegative function ϕ such that $\lim _{x \uparrow \infty} \phi(x)=\infty$ and $\mathbb{E}_{x} \phi\left(X_{1}\right) \leq \phi(x)$ for all $x \geq K$. Then show that $\left(X_{n}\right)_{n}$ is recurrent.

