Please provide complete and well-written solutions to the following exercises.
Due on February 26th before noon.

Homework 6

Exercise 1. Let X, Y be either discrete or jointly absolutely continuous random variables.
(i) If the map $x \mapsto \mathbb{E}[Y \mid X=x]$ is linear, show that it necessarily coincides with the least square regression line

$$
\mathbb{E}[Y \mid X=x]=\mathbb{E}[Y]+\rho(X, Y) \frac{\sigma(Y)}{\sigma(X)}(x-\mathbb{E}[X])
$$

(ii) If $\mathbb{E}[Y \mid X=x]=a x+b$ and $\mathbb{E}[X \mid Y=y]=c y+d$ for all x, y, for some $a, b, c, d \in \mathbb{R}$, deduce that

$$
\rho(X, Y)^{2}=a c \quad \text { and } \quad \operatorname{sgn}(\rho(X, Y))=\operatorname{sgn}(a)=\operatorname{sgn}(b)
$$

(iii) In a class of n students, assume each student gets independently a grade A with probability p_{A}, a grade B with probability p_{B}, and a grade C with probability $1-p_{A}-p_{B}$. Let X and Y be the number of students getting a grade A and a grade B , respectively. Determine the joint density of X, Y, their marginal distributions, and the conditional distribution of $[Y \mid X=x]$ and $[X \mid Y=y]$. Using (ii), deduce $\rho(X, Y)$ without making any further computation.

Exercise 2. Let X and Y be independent random variables, each uniformly distributed on $[0,1]$.
(i) Let $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$. Show that $\mathbb{E}[U]=\frac{1}{3}$, and deduce the covariance of U and V.
(ii) Show that $\mathbb{P}\left[V^{2}>U>x\right]=\frac{1}{3}-x+\frac{2}{3} x^{\frac{3}{2}}$ for $x \in(0,1)$.
(iii) What is the probability that the random quadratic equation $x^{2}+2 V x+U=0$ has real roots?
(iv) Given that the two roots R_{1}, R_{2} of the above quadratic are real, what is the probability that both $\left|R_{1}\right| \leq 1$ and $\left|R_{2}\right| \leq 1$?

Exercise 3. Let $\left(X_{n}\right)_{n}$ be a sequence of uncorrelated random variables, each having mean μ and variance σ^{2}. If $\bar{X}_{n}:=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)$, show that

$$
\mathbb{E}\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}\right]=\sigma^{2}
$$

Exercise 4. Two players A and B play a series of independent games. The probability that A wins any particular game is p^{2}, that B wins is q^{2}, and that the game is a draw is $2 p q$, where $p+q=1$. The winner of a game scores 2 points, the loser none; if a game is drawn, each player scores 1 point. Let X and Y be the number of points scored by A and B , respectively, in a series of n games. Prove that $\operatorname{Cov}[X ; Y]=-2 n p q$.

Exercise 5.

(i) A discrete random variable X with nonnegative integer values satisfies $\mathbb{E}\left[X^{r}\right]=\lambda$ for all $r \geq 1$. Compute its moment generating function and deduce the law of X.
(ii) If a discrete random variable X satisfies $\mathbb{E}\left[X^{r}\right]=5^{r}$ for all $r=1,2, \ldots$, find the momentgenerating function of X. What is its distribution?

Exercise 6. Let $\left(X_{n}\right)_{n}$ be a sequence of independent and identically distributed random variables, and let N be a random variable with positive integer values and independent of the X_{n} 's. Find the moment generating function of $S_{N}:=X_{1}+\ldots+X_{N}$ in terms of the moment generating functions of X_{1} and N, provided these exist.

Exercise 7. Let X, Y be random variables with equal variance.
(i) Show that $X+Y$ and $X-Y$ are uncorrelated. Give an example to show that $X+Y$ and $X-Y$ need not be independent even if in addition X and Y are independent.
(ii) Further assume that X, Y are independent and identically distributed, with mean 0 and variance 1, and with finite moment generating M. If $X+Y$ and $X-Y$ are independent, show that $M(2 t)=M(t)^{3} M(-t)$ and deduce that X and Y have the normal distribution with mean 0 and variance 1 .

Exercise 8. There are c different types of coupon, and each coupon obtained is equally likely to be any one of the c types. Find the moment generating function of the total number N of coupons which you must collect in order to obtain a complete set. Deduce its expectation.

Exercise 9. There is a random number N of foreign objects in your soup, with moment generating function M_{N}. Each object is a fly with probability p, and otherwise a spider; different objects have different types. Let F be the number of flies and S the number of spiders.
(i) Show that F has moment generating function $M_{F}(t)=M_{N}\left(\log \left(p e^{t}+1-p\right)\right)$.
(ii) Suppose that N has the Poisson distribution with parameter λ. Show that F has the Poisson distribution with parameter λp and that F ans S are independent.
(iii) Let $p=\frac{1}{2}$ and suppose that F and S are independent. Show that $M_{N}(t)=M_{N}\left(\log \left(\frac{1}{2}\left(1+e^{t}\right)\right)\right)^{2}$ and deduce that N has a Poisson distribution.

