Please provide complete and well-written solutions to the following exercises.
Due on March 5th before noon.

Homework 7

Exercise 1. Let $\left(X_{n}\right)_{n}$ be a sequence of independent random variables with Cauchy distribution, $f_{X_{i}}(t)=\frac{1}{\pi}\left(1+t^{2}\right)^{-1}$ for $t \in \mathbb{R}$. For all n, determine the distribution of $\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)$.
Exercise 2. Let $\left(X_{n}\right)_{n}$ be a sequence of independent random variables, each with characteristic function ϕ.
(i) Given $a_{n}, b_{n} \in \mathbb{R}$, determine the characteristic function of $Y_{n}=a_{n}+b_{n}\left(X_{1}+\ldots+X_{n}\right)$.
(ii) Suppose that $\phi(t)=e^{-|t|^{\alpha}}$ for some $\alpha \in(0,2]$. Determine a_{n}, b_{n} such that Y_{n} has the same distribution as X_{1} for all $n \geq 1$.
(iii) Explicitly find the probability density of X_{1} when $\alpha=1$ and $\alpha=2$.

Exercise 3. The cumulant generating function K_{X} of the random variable X is defined by $K_{X}(t)=$ $\log \mathbb{E}\left[e^{t X}\right]$. If the latter is finite in a neighborhood of the origin, then K_{X} has a convergent Taylor expansion

$$
K_{X}(t)=\sum_{n=1}^{\infty} \frac{1}{n!} \kappa_{n}(X) t^{n}
$$

and $\kappa_{n}(X)$ is called the nth cumulant of X.
(i) Express $\kappa_{1}(X), \kappa_{2}(X), \kappa_{3}(X)$ in terms of moments of X.
(ii) If X and Y are independent random variables, show that $\kappa_{n}(X+Y)=\kappa_{n}(X)+\kappa_{n}(Y)$.
(iii) If X is a standard normal random variable, show that its cumulants are $\kappa_{2}(X)=1$ and $\kappa_{m}(X)=$ 0 for all $m \neq 2$.

Exercise 4. Let X, Y be independent standard normal random variables and let U, V be independent of X, Y. Show that

$$
Z:=\frac{U X+V Y}{\sqrt{U^{2}+V^{2}}}
$$

is also a standard normal random variable.
Exercise 5. Is it possible for three random variables X, Y, Z to have the same distribution and to satisfy $X=U(Y+Z)$ where U is uniform on $[0,1]$ and where Y, Z are independent of U and of one another?

Exercise 6. The random variable X is said to have a lattice distribution if there exist a, b such that X takes values in the set $a+b \mathbb{Z}$. The span of X is defined as the maximal value b for which there exists a such that X takes values in $a+b \mathbb{Z}$.
(i) Suppose that X has a lattice distribution with span b. Show that $\left|\phi_{X}\left(\frac{2 \pi}{b}\right)\right|=1$ and that $\left|\phi_{X}(t)\right|<1$ for $0<t<\frac{2 \pi}{b}$.
(ii) Suppose that $\left|\phi_{X}(\theta)\right|=1$ for some $\theta \neq 0$. Show that X has a lattice distribution with span $\frac{2 \pi k}{\theta}$ for some integer k.

Exercise 7. If X is an integer-valued random variable with characteristic function ϕ, show that

$$
\mathbb{P}[X=k]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i t k} \phi(t) d t .
$$

What is the corresponding result for a random variable with a lattice distribution?
Exercise 8. Consider a sequence of Bernoulli trials with success probability p. Given $r \geq 1$, let N be the smallest value such that at least one run of length r occurs in the N first trials. Determine the moment generating function of N and deduce $\mathbb{E}[N]$.

