This last homework sheet is optional and will not be graded.

Homework 8

Exercise 1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function, and let S_{n} be a random variable having a binomial distribution with parameters n, x. Considering the expectation of $f(x)-f\left(\frac{1}{n} S_{n}\right)$, and distinguishing between the event $\left\{\left|\frac{1}{n} S_{n}-x\right|>\delta\right\}$ and its complement, show that

$$
\lim _{n \uparrow \infty} \sup _{0 \leq x \leq 1}\left|f(x)-\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}\right|=0
$$

This is Weierstrass' approximation theorem, stating that every continuous function on $[0,1]$ may be approximated by a polynomial uniformly over the interval.

Exercise 2. A sequence $\left(X_{n}\right)_{n}$ of random variables is said to be completely convergent to X if

$$
\sum_{n} \mathbb{P}\left[\left|X_{n}-X\right|>\varepsilon\right]<\infty \quad \text { for all } \varepsilon>0
$$

Show that for sequences of independent random variables complete convergence is equivalent to a.s. convergence. Find a sequence of (dependent) random variables that converges a.s. but not completely.

Exercise 3. Let $\left\{X_{n}\right\}_{n}$ be a sequence of independent standard normal random variables. Show that

$$
\mathbb{P}\left[\limsup _{n \uparrow \infty} \frac{\left|X_{n}\right|}{\sqrt{2 \log n}}=1\right]=1 .
$$

Exercise 4. Let $\left(X_{n}\right)_{n}$ be independent random variables such that

$$
\mathbb{P}\left[X_{n}=n\right]=\mathbb{P}\left[X_{n}=-n\right]=\frac{1}{2 n \log n}, \quad \mathbb{P}\left[X_{n}=0\right]=1-\frac{1}{n \log n}
$$

Show that this sequence obeys the weak law but not the strong law of large numbers: more precisely, $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ converges to 0 in probability but not almost surely.
Exercise 5. Let X_{n} and Y_{m} be independent random variables having Poisson distribution with parameters n and m, respectively. Show that

$$
\frac{\left(X_{n}-n\right)-\left(Y_{m}-m\right)}{\sqrt{X_{n}+Y_{m}}} \xrightarrow{d} \mathcal{N}(0,1) \quad \text { as } n, m \uparrow \infty .
$$

Exercise 6. Let $\left\{X_{n}\right\}_{n}$ be a sequence of iid random variables with $\mathbb{P}\left[X_{n}=1\right]=\mathbb{P}\left[X_{n}=-1\right]=\frac{1}{2}$. Does the random harmonic sum $\sum_{r=1}^{n} \frac{1}{r} X_{r}$ converge a.s. as $n \uparrow \infty$?
Exercise 7. Let $\left(X_{n}\right)_{n}$ be iid random variables with uniform distribution on $(0,1)$ and let $Z_{n}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$. As $n \uparrow \infty$, show that

$$
Z_{n} \xrightarrow{\mathbb{P}} 1, \quad \sqrt{Z_{n}} \xrightarrow{\mathbb{P}} 1, \quad n\left(1-Z_{n}\right) \xrightarrow{d} \operatorname{Exp}(1) .
$$

Exercise 8. Let $\left(X_{n}\right)_{n}$ be iid random variables with distribution function F and pdf f. The order statistics $X_{(1)}, \ldots, X_{(n)}$ of the subsequence X_{1}, \ldots, X_{n} are obtained by rearranging the values of the
X_{i} in non-decreasing order. In particular, $X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. The sample median Y_{n} of the sequence X_{1}, \ldots, X_{n} is the "middle value", defined by

$$
Y_{n}= \begin{cases}X_{(r+1)} & : \quad n=2 r+1 \text { odd }, \\ \frac{1}{2}\left(X_{(r)}+X_{(r+1)}\right) & : \quad n=2 r \text { even. }\end{cases}
$$

Assuming that $n=2 r+1$ is odd, show that Y_{n} has pdf

$$
f_{Y_{n}}(y)=(r+1)\binom{n}{r} F(y)^{r}(1-F(y))^{r} f(y) .
$$

Deduce that, if F has median m, then

$$
2 n^{\frac{1}{2}} f(m)\left(Y_{n}-m\right) \xrightarrow{d} \mathcal{N}(0,1) .
$$

