Mathematical analysis of
 the effective viscosity of dilute suspensions

David Gérard-Varet
(based on works with M. Hillairet, R. Höfer, A. Mecherbet)

Context

Starting point :

Suspension of $n \gg 1$ small solid spheres in a viscous flow.

- The solid particles induce resistance to strain.
- Can it be seen at a macroscopic scale as an extra viscosity ?

Hope :

- Averaging to take place as $n \rightarrow \infty$
- Suspension to be described by a single fluid model with some effective viscosity.

Context

Starting point :

Suspension of $n \gg 1$ small solid spheres in a viscous flow.

- The solid particles induce resistance to strain.
- Can it be seen at a macroscopic scale as an extra viscosity ?

Hope :

- Averaging to take place as $n \rightarrow \infty$
- Suspension to be described by a single fluid model with some effective viscosity.

Topic of great interest in rheology.
Many experiments (lab or computer) with sheared suspensions.

Measurement of the effective viscosity (assuming it exists !) :

$$
\mu_{\text {eff }, \text { exp }}=\frac{\text { energy dissipation of the suspension }}{\text { energy dissipation of the fluid alone }}
$$

Crucial parameter : solid volume fraction ϕ.

- ϕ small : dilute suspensions.
- $\phi \sim \phi_{c}$, maximal flowable volume fraction : dense suspensions.

Measurement of the effective viscosity (assuming it exists !) :

$$
\mu_{\text {eff }, \exp }=\frac{\text { energy dissipation of the suspension }}{\text { energy dissipation of the fluid alone }}
$$

Crucial parameter : solid volume fraction ϕ.

- ϕ small : dilute suspensions.
- $\phi \sim \phi_{C}$, maximal flowable volume fraction: dense suspensions.
[Guazzelli-Pouliquen'18]

Suggests a universal behaviour : $\mu_{\text {eff }}=\mu_{\text {eff }}\left(\phi / \phi_{c}\right)$.
But far from understood, notably at large ϕ :

- Contact between particles plays a role
- Confinement plays a role as well.
- Non-newtonian behaviour.

Even in idealized models, difficult mathematical questions, related to percolation/graph theory :

- see [Berlyand et al'05] for finite n.
- Ongoing PhD thesis of Alexandre Girodroux-Lavigne.

Mathematical analysis of dilute suspensions

A simple model, with pure hydrodynamic interactions:

- n spherical particles $B_{i}=B\left(x_{i}, r_{n}\right)$.
- Stokes flow in $\Omega_{n}=\mathbb{R}^{3}-\cup_{i=1}^{n} B_{i}$:

$$
-\mu \Delta u_{n}+\nabla p_{n}=f, \quad \operatorname{div} u_{n}=0 \quad \text { in } \Omega_{n}
$$

with f in $L^{P}\left(\mathbb{R}^{3}\right)$ for p large enough.

- Particles are neutrally buoyant (no sedimentation).

No inertia, no thermal fluctuation.
Force- and torque-free. For all i,

$$
\int_{\partial B_{i}} \sigma_{\mu}\left(u_{n}, p_{n}\right) \nu d s=\int_{\partial B_{i}} \sigma_{\mu}\left(u_{n}, p_{n}\right) \nu \times\left(x-x_{i}\right) d s=0
$$

- Particles are rigid, with no-slip at the boundary: for all i

$$
\left.u_{n}\right|_{\partial B_{i}}=u_{i}+\omega_{i} \times\left(x-x_{i}\right), \quad u_{i}, \omega_{i} \in \mathbb{R}^{3} .
$$

- Decay of u_{n} at infinity.
- Particles are rigid, with no-slip at the boundary: for all i

$$
\left.u_{n}\right|_{\partial B_{i}}=u_{i}+\omega_{i} \times\left(x-x_{i}\right), \quad u_{i}, \omega_{i} \in \mathbb{R}^{3} .
$$

- Decay of u_{n} at infinity.

Remark: Snapshot at a given time t.
In fact: $x_{i}=x_{i}(t), u_{i}=u_{i}(t), \dot{x}_{i}=u_{i}$.
Assumptions made on $\left(x_{i}\right)_{1 \leq i \leq n}$ preserved through time ?
This question is left aside here.

Can we approximate it by an effective fluid equation ?
$-\operatorname{div}\left(2 \mu_{\text {eff }} D\left(u_{e f f}\right)\right)+\nabla p_{\text {eff }}=(1-\phi) f, \quad \operatorname{div} u_{\text {eff }}=0 \quad$ in \mathbb{R}^{3}
with $\mu_{\text {eff }}=\mu_{\text {eff }}(x), \mu_{\text {eff }} \neq \mu$ in the region \mathcal{O} of the particles.
We focus on the dilute regime. With $|\mathcal{O}|=1$, we assume that

$$
\phi=\frac{4 \pi}{3} n r_{n}^{3} \text { is small but independent of } n
$$

Two subquestions:
Q1: Exact effective viscosity ?

$$
\lim _{n} u_{n}=u_{e f f} \quad \text { for some } \mu_{\text {eff }} ?
$$

See [Duerinckx-Gloria'20], [Duerinckx'20], [Jikov et al'1994].

Q2 : Approximate effective viscosity of order k ?

$\lim \sup \left\|u_{n}-u_{\text {eff }}\right\|_{L^{p}}=o\left(\phi^{k}\right)$ for some $\mu_{\text {eff }}$, for some p ? n

In this regime, the hope is to find $\mu_{\text {eff }}$ under the form

$$
\mu_{e f f}=\mu+\phi \mu_{1}+\cdots+\phi^{k} \mu_{k}
$$

where $\mu_{i} \in \operatorname{Sym}\left(\operatorname{Sym}_{0}\left(\mathbb{R}^{3}\right)\right)$

Q2: Approximate effective viscosity of order k ?

$$
\underset{n}{\lim \sup }\left\|u_{n}-u_{e f f}\right\|_{L^{p}}=o\left(\phi^{k}\right) \text { for some } \mu_{e f f}, \text { for some } p ?
$$

In this regime, the hope is to find $\mu_{\text {eff }}$ under the form

$$
\mu_{e f f}=\mu+\phi \mu_{1}+\cdots+\phi^{k} \mu_{k}
$$

where $\mu_{i} \in \operatorname{Sym}\left(\operatorname{Sym}_{0}\left(\mathbb{R}^{3}\right)\right)$

Q2 may require less assumptions than Q1 on the x_{i} 's (e.g. for the derivation of Einstein's formula).

Useful as there is no canonical stationary measure.

First order approximation

[Einstein 1905]: If the suspension is homogeneously distributed in a (smooth bounded) domain \mathcal{O}, and if the interaction between the particles can be neglected, then a first order approx. is given by

$$
\mu_{e f f}=\mu\left(1+\frac{5}{2} \phi\right) \quad \text { in } \mathcal{O}
$$

First order approximation

[Einstein 1905]: If the suspension is homogeneously distributed in a (smooth bounded) domain \mathcal{O}, and if the interaction between the particles can be neglected, then a first order approx. is given by

$$
\mu_{\text {eff }}=\mu\left(1+\frac{5}{2} \phi\right) \quad \text { in } \mathcal{O}
$$

Mathematical justification ?

- [Sanchez Palencia, Levy et al, Haines et all]: x_{i} on a periodic grid.
-

$$
\begin{gather*}
\rho_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \rightharpoonup \rho(x) d x, \quad \rho \text { bounded }, \quad \text { supp } \rho=\overline{\mathcal{O}} . \tag{A1}\\
d_{n} \geq c n^{-1 / 3}, \quad d_{n}=\inf _{i \neq j}\left|x_{i}-x_{j}\right|, \quad c \text { independent of } \phi \tag{A2}
\end{gather*}
$$

Remark: (A1) includes the case of inhomogeneous distributions. Effective viscosity reads

$$
\mu_{e f f}=\mu\left(1+\frac{5}{2} \phi \rho\right) \quad \text { in } \mathcal{O}
$$

One recovers Einstein's formula for $\rho=1_{\mathcal{O}}$.
Remark: The assumption that $d_{n} \geq c n^{-1 / 3}$ is stringent compared to the no-penetration condition, that reads

$$
d_{n} \geq 2 r_{n}=c^{\prime} \phi^{1 / 3} n^{-1 / 3}
$$

Theorem ([G-V and Höfer], see also [Duerinckx and Gloria])

Einstein's formula is still valid if (A2) is relaxed into a set of two conditions.

$$
\begin{gather*}
\exists \delta>0, \quad \delta_{n} \geq(2+\delta) r_{n} \tag{A2'}\\
\exists C, \alpha>0, \text { s.t. } \forall \eta, \quad \sharp\left\{i,\left|x_{i}-x_{j}\right| \leq \eta n^{-1 / 3}\right\} \leq C \eta^{\alpha} n . \tag{A2"}
\end{gather*}
$$

Remark :

(A2') could be even more relaxed.
(A2") satisfied by i.i.d. random variables, points drawn from classical stationary ergodic processes...

Second order approximation

Can we go beyond Einstein's formula ? o $\left(\phi^{2}\right)$ approximation ?
Various formula in the literature, for periodic and random stationary distributions of particles: Nunan et al, O'Brien, Zuzovski et al, Ammari et al, Batchelor and Green, Hinch.... But ...

- Formulas do not always coincide!
- Some methods of derivation require mathematical clarity (like the renormalization technique of Batchelor and Green)

Second order approximation

Can we go beyond Einstein's formula ? o $\left(\phi^{2}\right)$ approximation ?
Various formula in the literature, for periodic and random stationary distributions of particles: Nunan et al, O'Brien, Zuzovski et al, Ammari et al, Batchelor and Green, Hinch.... But ...

- Formulas do not always coincide !
- Some methods of derivation require mathematical clarity (like the renormalization technique of Batchelor and Green)

Difficulties:

- Pairwise interactions must be taken into account.
- Microscopic structure plays a role: knowing ρ is not enough.

Mix of deterministic and probabilistic approaches.

Tools:

- Method of reflections
- Theory of Coulomb gases
- Stochastic homogenization
- Cluster expansions

Remark: two extreme types of diluteness (remind $\phi=\frac{4 \pi}{3} n r_{n}^{3}$)

- play on the inter-particle distance. Example : periodic.
- play with thinning. No constraint on the minimal distance
(except non-penetration condition). Example : point processes of
Poisson type.

Suspensions with strong inter-particle distance

Main assumptions : (A1)-(A2)
Important object:
The 4-tensor field $\mathcal{M}(x)=D(\nabla \mathcal{U})$, with \mathcal{U} the Oseen 2-tensor.
For all $x, \mathcal{M}(x) \in \operatorname{Sym}\left(\operatorname{Sym}_{0}\left(\mathbb{R}^{3}\right)\right)$, with

$$
\mathcal{M}(x) S=-\frac{3}{8 \pi} D\left(\frac{x \otimes x: S}{|x|^{5}} x\right)
$$

Mean field functionals : for any smooth φ,

$$
\begin{aligned}
W_{n}[\varphi]:=\frac{25 \mu}{2}\left(\frac{1}{n^{2}}\right. & \sum_{i \neq j} \mathcal{M}\left(x_{i}-x_{j}\right) \varphi\left(x_{i}\right) \varphi\left(x_{j}\right) \\
& \left.-\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \mathcal{M}(x-y) \varphi(x) \varphi(y) \rho(x) \rho(y) d x d y\right)
\end{aligned}
$$

Theorem [GV-Hillairet], [GV-Mecherbet]

Assume (A1)-(A2). Let $\left.\mu_{2}=\mu_{2}(x) \in L^{\infty}\left(\mathbb{R}^{3}\right), \operatorname{Sym}\left(\operatorname{Sym}_{0}\left(\mathbb{R}^{3}\right)\right)\right)$.

Let $\mu_{\text {eff }}=\mu+\frac{5}{2} \mu \rho \phi+\mu_{2} \phi^{2}$. Then,

$$
\limsup _{n}\left\|u_{n}-u_{e f f}\right\|_{L^{p}}=O\left(\phi^{7 / 3}\right), \quad \forall p \leq 3
$$

if and only if for all smooth φ,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} W_{n}[\varphi]=\int_{\mathbb{R}^{3}} \mu_{2}(x)|\varphi(x)|^{2} d x \tag{MF}
\end{equation*}
$$

Remark: $W_{n}[\varphi] \nrightarrow 0$ as $n \rightarrow+\infty$! Due to the singularity of \mathcal{M}. \mathcal{M} is a Calderon-Zygmund operator, which is crucial to us.

Remark: The convergence (MF) of the mean-field functional is necessary and sufficient to have a $O\left(\phi^{2}\right)$ effective model.

Quick ideas from the proof:

1. Duality argument : it is enough to show that
$\forall q \geq 3, \quad \exists C>0, \quad\left|\int_{\mathbb{R}^{3}} v_{n} f\right| \leq C \phi^{7 / 3}\|v\|_{W^{1, q}}, \quad \forall v \in \mathcal{D}_{\sigma}\left(\mathbb{R}^{3}\right)$,
where $v_{n}=v_{n}[v]$ is the solution of

$$
\begin{aligned}
-\mu \Delta v_{n}+\nabla q_{n}=2 \operatorname{div}\left(\frac{5}{2} \rho \phi+\mu_{2} \phi^{2}\right) & \text { in } \mathbb{R}^{3} \backslash \cup B_{i} \\
\operatorname{div} \phi_{n}=0 & \text { in } \mathbb{R}^{3} \backslash \cup B_{i}, \\
v_{n}=v+v_{i}+\omega_{i} \times\left(x-x_{i}\right) & \text { in } B_{i}, \quad \forall 1 \leq i \leq n .
\end{aligned}
$$

+ consistent force and torque conditions.

2. Method of reflections to build an approximation of v_{n}.

$$
v_{n, a p p}=v_{\text {source }}+v_{n, b c}
$$

- $v_{\text {source }}=\mathcal{U} \star \operatorname{div}\left(\frac{5}{2} \rho \phi+\mu_{2} \phi^{2}\right)$
- $v_{n, b c}=\sum_{i=1}^{n} V_{\text {single }, i}\left[A_{i}\right]$
where $V_{\text {single, } i}$ solves a one-sphere Stokes problem:

$$
\begin{aligned}
-\Delta V_{\text {single }, i}+\nabla P_{i}=0, \operatorname{div} V_{\text {single }, i}=0 & \text { in } \mathbb{R}^{3} \backslash B_{i} \\
V_{\text {single }, i}=A_{i}\left(x-x_{i}\right) & \text { in } B_{i} .
\end{aligned}
$$

Matrices A_{i} are obtained in the form of an expansion, adding at each step a superposition of one-sphere solutions.

Last: - control $v_{n}-v_{n, \text { app }}$ strongly in \dot{H}^{1}

- control $\int v_{n, a p p} f$ through a duality argument.

Connection to theory of Coulomb gases

How to show that convergence (MF) holds and how to compute the limit μ_{2} ?

Inspiration taken from the lecture notes of Sylvia Serfaty.
Example: homogeneous setting : $\rho=1_{\mathcal{O}}$. We restrict to

$$
W_{n}[1]=\frac{25 \mu}{2}\left(\frac{1}{n^{2}} \sum_{i \neq j} \mathcal{M}\left(x_{i}-x_{j}\right)-\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \mathcal{M}(x-y) \rho(x) \rho(y) d x d y\right)
$$

1. We prove that for $S \in \operatorname{Sym}_{0}\left(\mathbb{R}^{3}\right)$, with $g_{s}(x):=\frac{25 \mu}{2} \mathcal{M}(x) S: S$,

$$
\begin{aligned}
& W_{n}[1] S: S \\
= & \underbrace{\left.\int_{x \neq y} g_{S}(x-y)\left(\rho_{n}(d x)-\rho(x) d x\right)\right)\left(\rho_{n}(d y)-\rho(y) d y\right)}_{:=V_{n}}+o_{n}(1)
\end{aligned}
$$

2. To understand V_{n}, we express it as an energy.

Proposition

For all $f \in L^{2}\left(\mathbb{R}^{3}\right)$,

$$
\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} g_{S}(x-y) f(x) f(y) d y=25 \int_{\mathbb{R}^{3}}\left|D\left(u_{f}\right)\right|^{2}
$$

$$
\text { where } \quad-\Delta u_{f}+\nabla p_{f}=\operatorname{div}(S f), \quad \operatorname{div} u_{f}=0 \quad \text { in } \mathbb{R}^{3}
$$

Idea : replace f by $\rho_{n}-\rho$ to find
$" \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} g_{S}(x-y)\left(\delta_{n}(d x)-\rho(x) d x\right)\left(\delta_{n}(d y)-\rho(y) d x\right)=25 \int_{\mathbb{R}^{3}}\left|D\left(h_{n}\right)\right|^{2 "}$ with $h_{n}=u_{\rho_{n}-\rho}$
$" \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} g_{S}(x-y)\left(\delta_{n}(d x)-\rho(x) d x\right)\left(\delta_{n}(d y)-\rho(y) d x\right)=25 \int_{\mathbb{R}^{3}}\left|D\left(h_{n}\right)\right|^{2 "}$
Problem: both terms are infinite !

- the left-hand side is infinite because of the diagonal (which was excluded in the definition of V_{n}).
- the right-hand side is infinite because $\rho_{n}-\rho$ is not in H^{-1}.

But there is a way to make sense of this equality and use it, through regularization and renormalization : see [Serfaty'14].
$" \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} g_{S}(x-y)\left(\delta_{n}(d x)-\rho(x) d x\right)\left(\delta_{n}(d y)-\rho(y) d x\right)=25 \int_{\mathbb{R}^{3}}\left|D\left(h_{n}\right)\right|^{2 "}$
Problem: both terms are infinite !

- the left-hand side is infinite because of the diagonal (which was excluded in the definition of V_{n}).
- the right-hand side is infinite because $\rho_{n}-\rho$ is not in H^{-1}.

But there is a way to make sense of this equality and use it, through regularization and renormalization : see [Serfaty'14].

At the end of the day : one needs for a fixed value of a regularization parameter η, to understand the limit in n of $\int_{\mathbb{R}^{3}}\left|D\left(h_{n}^{\eta}\right)\right|^{2}$, with

$$
-\Delta h_{n}^{\eta}+\nabla p_{n}^{\eta}=\operatorname{div}\left(S\left(\rho_{n}^{\eta}-\rho\right)\right), \quad \operatorname{div} h_{n}^{\eta}=0
$$

More precisely,

$$
-\Delta h_{n}^{\eta}+\nabla p_{n}^{\eta}=\operatorname{div}\left(\sum_{i=1}^{n} \psi^{\eta}\left(n^{1 / 3}\left(x-x_{i}\right)\right)-S \rho\right)
$$

with ψ^{η} compactly supported.

More precisely,

$$
-\Delta h_{n}^{\eta}+\nabla p_{n}^{\eta}=\operatorname{div}\left(\sum_{i=1}^{n} \psi^{\eta}\left(n^{1 / 3}\left(x-x_{i}\right)\right)-S \rho\right)
$$

with ψ^{η} compactly supported.
Idea : Evokes the following baby model :

$$
\begin{equation*}
-\Delta h^{\varepsilon}+\nabla p^{\varepsilon}=\operatorname{div}(F(x / \varepsilon)), \quad \operatorname{div} h^{\varepsilon}=0 \tag{1}
\end{equation*}
$$

with $F=F(y) \mathbb{Z}^{3}$-periodic in y, with zero average.

In this analogy:

- $F(x / \varepsilon)$ corresponds to $\sum_{i=1}^{n} \psi^{\eta}\left(n^{1 / 3}\left(x-x_{i}\right)\right)-S \rho$.
- It oscillates at typical scale $\varepsilon=n^{-1 / 3}$.

Bottom line : Possible to understand the limit of the energy, and eventually compute μ_{2}, in classical homogenization settings.

Example 1 : Cubic lattice.

Theorem

If the x_{i} are distributed according to a cubic lattice:

$$
\mu_{2} S: S=\mu\left(\alpha \sum_{i}\left|S_{i i}\right|^{2}+\beta \sum_{i \neq j}\left|S_{i j}\right|^{2}\right), \quad \alpha \approx 9.48, \beta \approx-2.5 .
$$

Example 2 : Stationary ergodic point process. Given a small ϕ :

- We start from a point process with intensity $\phi,\left\{y_{k}\right\}=\left\{y_{k}(\omega)\right\}$ satisfying $\left|y_{k}-y_{k^{\prime}}\right| \geq c \phi^{-1 / 3}$ a. s. for some fixed $c>0$.
- We introduce a small parameter $0<\varepsilon \ll 1$.
- We set $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{\varepsilon y_{k}\right\} \cap \mathcal{O}$.

Remark : n is now random.
By the ergodic theorem, goes to infinity almost surely as $\varepsilon \rightarrow 0$, with $n \sim \phi \varepsilon^{-3}$.

The resulting set $\left\{x_{1}, \ldots, x_{n}\right\}$ satisfies (A2) almost surely.

Theorem

$$
\mu_{2}=\frac{25}{2} \mu \lim _{n} \frac{1}{n} \int_{B_{n} \times B_{n}} \mathcal{M}(x-y) g_{2}(x, y) d x d y
$$

with B_{n} the ball of volume n and $g_{2}(x, y)=g(x-y)$ the two-point correlation function of the process $\left(y_{k}\right)$.

If furthermore the point process is isotropic and if $g \rightarrow 1$ fast enough,

$$
\mu_{2}=\frac{5}{2} \mu .
$$

Remark: for $|x-y| \rightarrow \infty$:

- $g_{2}(x, y) \sim 1$
- $\mathcal{M}(x-y)$ scales like $\frac{1}{|x-y|^{3}}$ (borderline integrable)

Not obvious to show that the limit exists.
[Batchelor-Green'1972] : solve the problem by the so-called renormalization technique.

They add artificially in the expression for μ_{2} an expression which has zero expectation, and exhibits the same kind of divergence.

Actually not needed! As \mathcal{M} is of Calderon-Zygmund type, it vanishes on spheres, and this is enough to circumvent the problem.

Suspensions dilute through thinning

Same stochastic model as before, but:

- we relax the assumption (A2) into (A2')
- we assume boundedness and decorrelation properties at large distances of k-point correlation functions $g_{k}, 0 \leq k \leq 5$. (consistent with Poisson type processes).

Exemple: $g_{2}(x, y)=1+R(x-y), \quad R \in L^{q} \cap L^{\infty}$ for some q

Theorem

$$
\mu_{2}=\frac{25}{2} \mu \lim _{n \rightarrow+\infty} \frac{1}{n} \int_{B_{n} \times B_{n}} \mathcal{N}(x-y) g_{2}(x, y) d x d y
$$

with $\mathcal{N}(x)$ explicit in terms of solutions of two-sphere Stokes problems, and behaving like \mathcal{M} at infinity.

Vague idea of the proof :

Relies from the start on stochastic homogenization.
We use the expression of effective viscosity given by homogenization.

We show that it can be rewritten as

$$
\mu_{\text {eff }} S: S=\mathbb{E} \lim _{n} \mathcal{L}_{n}\left[u_{n}^{S}\right]
$$

where \mathcal{L}_{n} is a linear functional, and u_{n}^{S} satisfies the same system as before, replacing the source term with inhomogeneous b.c.

$$
u_{n}^{S}=S x+u_{i}+\omega_{i} \times\left(x-x_{i}\right) \quad \text { on } \quad B_{i}
$$

To compute the $O\left(\phi^{2}\right)$ term in $\mu_{\text {eff }}$, we use a cluster expansion of u_{n}^{S}. Substitute to the method of reflections.

Idea [Felderhof'82]: for any function $f=f(I)$ defined on finite subsets of \mathbb{N}, we can always decompose

$$
\begin{equation*}
f(I)=\sum_{J \subset I} g(J), \quad \text { with } g(I):=\sum_{J \subset I}(-1)^{\sharp I-\sharp J} f(J) \tag{CE}
\end{equation*}
$$

Expansion (CE) allows to distinguish in the value of f the contribution of subsets of one element, two elements, ...

Here : we take $f(I)=u_{l}^{s}$, with $I \subset\{1, \ldots, n\}$ and u_{l}^{S} the Stokes solution outside the balls with centers whose indices are in I.

$$
u_{l}^{S}=u_{\emptyset}^{S}+\sum_{k} u_{\{k\}}^{S}+\sum_{k \neq l} u_{\{k, l\}}^{S}
$$

The k-th term in the expansion provides the ϕ^{k} term in the effective viscosity.

