CIPANP 2006 Puerto-Rico 29/5-4/6/2006

Diffraction at HERA

Pierre Marage Univ. Libre de Bruxelles

On behalf of the H1 and ZEUS collaborations

1

Content

- 1. Introduction : diffraction and QCD at HERA
- 2. Inclusive diffraction measurements
- 3. Diffractive parton distribution functions (dpdf)
- 4. Semi-inclusive diffraction and comparison with dpdf
 - ➢ jets
 - charm
- 5. Exclusive production
 - vector mesons: rho photoproduction BFKL
 - DVCS -GPD

Diffraction

Hadronic interactions

diffractive dissociation (differential absorption of hadronic components)

high energy $\sigma(h-h) \propto s^{\alpha_{IIP}(0)-1}$

α_{IP}(0)≈1.08

soft pomeron

unitarity !

HERA

some 10% of cross section in electroproduction !

NON-DIFFRACTIVE

The proton breaks up Activity in the forward direction

DIFFRACTIVE

A colourless object is exchanged No activity in a large rapidity range

Diffraction at HERA and QCD

Hard scales : Q^2 , large p_t (jets), large quark mass (charm), large t

 \rightarrow QCD analyses

challenge : quark and gluon understanding of diffraction, unitarity mechanisms, etc.

✓ pomeron structure

diffractive parton densities factorisation theorem

✓ colour dipole

dipole – proton cross section lowest order = 2 gluon exchange small dipoles in presence of hard scale

Diffractive variables

$$Q^{2} = -q^{2}$$

$$x_{IP} = (1 - x_{L}) = \frac{Q^{2} + M_{X}^{2}}{Q^{2} + W^{2}}$$

$$\beta = \frac{Q^{2}}{Q^{2} + M_{X}^{2}} \qquad x = \beta x_{IP}$$

$$t = (p - p')^{2}$$

$$M_{Y}$$

Inclusive cross section

$$\frac{d^{5}\sigma^{D}}{dx_{IP} d\beta dQ^{2} dM_{Y} dt} = \frac{2\pi\alpha_{em}^{2}}{\beta Q^{4}} (1 - y + \frac{y^{2}}{2}) \sigma_{r}^{D(5)}(x_{IP}, \beta, Q^{2}, M_{Y}, t)$$

Inclusive diffraction : 3 measurement methods

1. Proton spectrometers

-> t measurement

2. Large rapidity gap

NC and CC diffraction

$$e + p \rightarrow v + X + p$$

T (IAMUS) - 20000000 20006

3. Non-exponential fall off

Cross sections measurements

Factorisation and pdf's

Collinear factorisation

cf. total ep cross section

$$d\sigma_i(ep \rightarrow eXY) = f_i^D(x, Q^2, x_{IP}, t) \otimes d\hat{\sigma}_{ei}(x, Q^2) \quad (i = q, g)$$

for fixed $x_{IP}, t(M_Y)$

Vertex factorisation

$$f_{i}^{D}(x,Q^{2},x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_{i}^{IP}(\beta,Q^{2}) \quad (\beta = x \ / \ x_{IP})$$

usefull hypothesis (Regge inspired)

Scaling violations

Parton distribution function parameterisations

• Fit A

$$z\Sigma(z,Q_0^2) = A_q z^{Bq} (1-z)^{C_q}$$

• Lack of sensitivity to high z gluon confirmed by dropping (high z) C_g parameter, so gluon is a simple constant at starting scale!

• Fit B $\chi^2 \sim 164 / 184 \text{ d.o.f.}$ $Q_0^2 = 2.5 \text{ GeV}^2$

- Quarks very stable
- Gluon similar at low z
- Substantial change to gluon at high z

and
$$zg(z,Q_0^2) = A_g(1-z)^{C_g}$$

(exp.+theor. error)

0.2

0.1

0

0.2

0.1

0 0.2

0.1

0 0.2

0.1

$$Q_0^2 = 1.75 \text{ GeV}^2$$

 $\chi^2 \sim 158 / 183 \text{ d.o.f.}$

 $F_2^{D(4)}(x_{IP},\beta,Q^2,t)$

2-gluon exchange model

J. Bartels at al., Eur. Phys. J. C7, 443 (1999).

ZEUS

Dijets in diffractive DIS : factorisation ?

Joint (inclusive + jets) pdf fits

Low sensitivity of fits to inclusive cross section to gluon pdf, especially at large z_{II} → use jets in combined fits

Combined fit close to Fit B; dijets provide significant constraints on high β gluons !

Diffractive charm production (photoprod.)

hard scale

pdf evolution (gluons)

ZEUS photoproduction

Diffractive charm production (DIS)

Agreement with NLO calc. within the (large) errors.

Factorisation

Factorisation tested with jets, charm

But still large errors.

NB low sensitivity of inclusive pdf's to gluons at high $\beta \rightarrow$ joint fits important

Factorisation breaking

by underlying interactions in hadron-hadron (Tevatron, LHC) and for resolved photons

 \rightarrow gap survival probability

Vector meson production

soft diffraction (ex. ρ photoprod.)

 low cross section increase with energy (soft pomeron)

- fast fall of t distribution
$$\frac{d\sigma}{dt} \propto e^{Bt}$$

hard diffraction (J/ Ψ , large Q²)

- stronger energy dependence large gluon density at small x
- flatter *t* distribution
 small dipole size

Large |t| p photoproduction and BFKL

20

DVCS

Generalised Parton Distributions

Conclusions

✓ Measurement precision of inclusive cross section

 $F_2^{D(3)}(x_{IP},\beta,\mathsf{Q}^2) \qquad F_2^{D(4)}(x_{IP},\beta,\mathsf{Q}^2,t)$

- ✓ Extraction of diffractive pdf's
- Factorisation tests / joint fits with jets, charm (especially for gluon at large β)
- ✓ Exclusive processes : vector mesons, DVCS, etc.

QCD understanding of diffraction