

HERA-LHC CERN 26-30/05/2008

Vector meson production and DVCS at HERA

From soft to hard diffraction

Pierre Marage Université Libre de Bruxelles

Introduction

do / dQ², dW, dt, helicity amplitudes (ang. distrib.)

 > 30 H1 + ZEUS exp. papers + several "preliminary results" mostly HERA-1 O(100 pb-1) – some HERA-2
huge number of theoretical papers
strong theory – experiment interactions

Content

I. Interpretation frameworks

II. From soft to hard : mass

W, t dependences σ_{tot} , ρ, ω, φ, J/Ψ,Υ

III. From soft to hard : Q^2

universality ($Q^2 + M^2$), *W*, *t* dependences DVCS, ρ , ϕ , J/ Ψ

IV. From soft to hard : *t*

universality (*t*), *t*, *W* dependences $\rho, \phi, J/\Psi$

V. Helicity amplitudes

 Q^2 , *W*, *t*, *m* dependences ρ, ϕ (DIS), J/ Ψ (photoprod.), large |*t*|

VI. Summary and conclusions

I. Interpretation frameworks

4

QCD factorisation

Large Q^2 , large energy (LLQ², 1/x) -> basic ingredients

Factorisation theorem

5

γ - VM wave functions

1. γ wave function

well known : $\Psi(z, k_t)$ however : large *|t|* studies -> chiral odd contributions

3. pair recombination into VM

- VM wave function description ?
- role on $\sigma_{\!\scriptscriptstyle L}\,/\,\sigma_{\!\scriptscriptstyle T}\,$ and helicity amplitudes

Dipole universality

2. dipole – proton interaction

1. universality of dipole cross section

 $\sigma(r)$: "scanning radius" - colour transparency : r decreases with increased Q², M_V

-> universal scale $\overline{Q}^2 = z (1-z) (Q^2 + M_V^2)$

dependences

2. W dependence

Regge-like parameterisation

high energy <i>h–h</i> interactions : (soft) pomeron trajectory :	$\sigma_{tot}(h-h) \propto s^{\alpha(0)-1}$ $\alpha(t) = \alpha(0) + \alpha' t$ $\alpha(0) \Box 1.08 \qquad (1.07 \dots 1.11)$ $\alpha' \Box 0.25 \text{ GeV}^{-2}$
- pQCD VM production : $\sigma \sim W^{\delta}$	δ = 4 (α(t) - 1) = 4 (α(0) + α' t - 1)
$\sigma \sim x G(x) ^2 \rightarrow hard$ cf. BFKL, low x DIS DGLAP	
- shrinkage of diffractive peak : $\frac{d\sigma}{dt}(W) = e^{bt} = e^{b_0 t} W^{4(\alpha(0)+\alpha't-1)}$ $b = b_0 + 4\alpha' \ln(W/W_0)$	
W dependence as	a function of t t dependence as a function of W

BFKL : shrinkage expected to be small

 \rightarrow W^{δ} hard, α (0) large, universal (Q²+M²), α ' small

8

dependences

3. Q² dependence

(in the pert. domain) **universal** $(Q^2 + M^2)$

NB formally $\sigma_L \propto Q^2 |xG(x)|^2 / (Q^2 + M_V^2)^4 \Box 1/Q^6$ <u>but</u> gluon anomalous dim. slows down $xG(x) \propto (Q^2 / Q_0^2)^{\gamma}$ (especially at smaller Q², where γ is larger)

4. *t* **dependence** (moderate |t|, ≤ 1.5 GeV²)

$$\frac{d\sigma}{dt} \propto e^{-b|t|} \quad \text{with} \quad b = b_{dip} \oplus b_{exch} \oplus b_{Y}$$

 \rightarrow decreases with increasing ($Q^2 + M^2$)

(in the pert. domain)

universal ($Q^2 + M^2$)

5. vertex factorisation

in part. elastic – proton dissociation universality for Q^2 , W, hel. amplitudes

transverse, soft contributions

6. transverse amplitudes

transverse γ (light quarks) : contributions up of end points ($z \approx 0, 1$) \rightarrow even for large Q^2 scale $z (1-z) (Q^2+M^2)$ can be small large transverse dipoles, even for large Q^2

 \rightarrow soft contributions, delayed pQCD expected

visible in $R = \sigma_L / \sigma_T$: R(W), R(t), Re / Im contributions (disp. rel.)

NB : also longitudinal extension of longitudinal wave function at moderate Q²

 \rightarrow possibly finite size effects also in σ_{L}

Beyond LLQ²,1/x

2 mains - complementary - extensions

1. Hard scattering

Beyond LL1/x (where 2 gluons have the same x)

- skewing : $Q^2 \neq M^2 \Rightarrow x(in) \neq x(out)$ (Y, DVCS)
- large Re / Im

GPD (Generalised Parton Distributions)

- large scale requested (Q^2 , M_V)

- relax 1/x requirement : also valid at low energy (Hermes, Compas, JLab); role of quarks

+ NLO

2. Dipole scattering

Large 1/x => factorisation relax large scale : also valid at low Q²)

 σ (dip-p) universal : DIS, DDIS, VM production

+ include saturation

Also other approaches (2 pomerons, GVDM, ...)

II. From soft to hard : mass

 $(σ_{tot}, ρ, ω, φ, J/Ψ, Y)$

W dependences t dependences

Photoproduction

σ_{tot}

H1 (W=200 GeV), $165 \pm 2 \pm 11 \ \mu b$

ZEUS (W=209 GeV), $174 \pm 1 \pm 13 \mu b$

Large systematic uncertainties

ZEUS

+ ratios at different W

-> prel. 2008

 $\varepsilon = 0.070 \pm 0.007 (\text{stat.}) \pm 0.021 (\text{syst.}) \pm 0.050 (6 \text{mT})$

+ use of low energy run

II.1 From soft to hard : mass ρ, ω, ϕ

soft W dependence

W dependences + t evolution

16

Should we be surprised ?

II.2 From soft to hard : mass J/Ψ

J/Ψ, *t* dependence

exponential slopes \leftrightarrow size of the dipole

heavy charm quark -> small dipole -> flatter *t* distribution, smaller slope

J/Ψ , W dependence, shrinkage

II.3 From soft to hard : mass Upsilon

Upsilon

Zeus HERA 1+2

Great progress !

skewing and GPD, NLO calculations, dipole calc.

III. From soft to hard : Q^2 (DVCS, ρ , ϕ , J/ Ψ) universality ($Q^2 + M^2$) *W* dependences *t* dependences

Universality $(Q^2 + M^2)$

Cross section comparison :

support to the dipole approach ideas

(qualitatively) striking !

III.1 From soft to hard : Q² DVCS

Deeply Virtual Compton Scattering

DIS domain : e + p \rightarrow e + p + γ (real) i.e. $\gamma^* p \rightarrow \gamma p$

2 complementary approaches :

+ no WF uncertainties in calculations \leftrightarrow light VM

+ interference with Bethe-Heitler \rightarrow access to Re contributions

DVCS – W dependence

slope not soft, but steeper than J/Ψ ?

III.2 From soft to hard : Q^2 ρ and ϕ

ρ and ϕ , elastic and p. dissoc.

H1 and ZEUS **HERA-1**

large data sets

transition region $1.5 < Q^2 < 50 \text{ GeV}^2$ (+ ZEUS $0.3 < Q^2 < 1 \text{ GeV}^2$)

 Q^2 , W, t measurements

helicity amplitudes (15 SDME + kin. dependences)

VM and DVCS at HERA: from soft to hard diffraction

ρ and φ, proton vertex factorisation

no Q^2 dependence ($Q^2 > 2.5 \text{ GeV}^2$)

of proton dissociation ($M_{\rm Y}$ < 5 GeV) / elastic cross section ratio

(also *t* slopes ratios indep. of Q^2

matrix elements compatible for elastic and p. dissoc.)

ρ, **W dependence**

hardening of W dependence with Q^2

some sensitivity to pdf (MRT) – dipole + sat. preferred – no model perfect

34

ρ, *t* dependence

dipole + saturation

t dependent sat. scale trend OK but not in detai

ρ, trajectory

P. Marage

k t fact., dipole + saturation too steep

III.3 From soft to hard : Q^2 J/ Ψ

J/Ψ , W dependence

 J/Ψ hard in photoproduction With Q², second hard scale σ(γ^{*}p→J/ψp) (nb) 10² < W > = 90 GeV-> predictions of $d\sigma/dQ^2$, *W* dep. 10 MRT (ZEUS-S) × 1.49 رdr) (dγ^{*}p→J/γp) (nb) $Q^2 (GeV^2)$ FKS (CTEQ4L) × 1.7 **ZEUS** Photoproduction GLLMN × 0.9 **ZEUS DIS 98-00** 1 10² (b) $(\times 1)$ 1 1 1 1 0.4 10^{-1} 10 Q^2 (GeV²) (× 0.2) 3.1 10 $(\times 0.1)$ 6.8 (× 0.05) 1 16. δ H1 $(\times 0.03)$ ▲ ZEUS 1.5 -1 10 (a) $Q^2 (GeV^2)$ -2 10 10^{2} W (GeV) 0.5 hard ($\alpha(0) = 1.20$), indep. of **Q**² 0 b) 10 Q² [GeV²])8 0.1 1

From soft to hard : Q² summary

universality, onset of hard diffraction

Universality $(Q^2 + M^2)$ and onset of hard diffraction

(small dipoles, hard gluons)

IV. From soft to hard : t(ρ, φ, J/Ψ) universality (t) t dependences W dependences

Universality (*t***)**

t dependences

Power like t dependences, exponential excluded at large |t| (ρ , J/ Ψ)

pQCD calculations

J/Ψ , W dependence

rise of σ with *W* described by BFKL, not by DGLAP

J/Ψ , shrinkage

49

V. Helicity amplitudes (Q^2, W, t, m)

 ρ, ϕ (DIS), J/ Ψ (photoprod.), large |t|

spin density matrix elements

ZEUS, H1 HERA-1 ρ, φ (*Q*², *W*, *t*, *m*)

V.1 Helicity amplitudes ρ and φ

spin density matrix elements (Q²)

spin density matrix elements (t)

amplitudes ratios and phases

Extract amplitude ratios from matrix elements

0.75 0.5 0.25 0

0

 $\cos (\phi_{11} - \phi_{00})$

20

Q² [GeV²]

pQCD predictions on Q², t and M dependences of amplitude ratios

+ extraction of **phase** between T_{00} and T_{11}

more to come from H1 on matrix elements and amplitudes

separate low Q^2 (< 5) and high Q^2 (> 5 GeV²) – transition region

(finite size effects also in long. ampl.)

$R = \sigma_L / \sigma_T (Q^2)$

variety of dipole approaches

$R = \sigma_L / \sigma_T$ (W)

W dependence of R expected :

more large, soft dipoles for σ_T than $\sigma_L => \sigma_L$ harder than σ_T

- predicted by most models (but problems with Q² absolute normalisations)

- not seen in data (but limited lever arm)

NB phase between T_{00} and T_{11}, i.e. different Re contributions

possibly related to **different W dependences** through dispersion relations

VM and DVCS at HERA: from soft to hard diffraction

$R = \sigma_L / \sigma_T (t, m)$

t **dependence of** *R* expected in dipole approach transverse dipoles larger than longitudinal dipoles

 $\rightarrow b_T$ steeper than b_L

 \rightarrow R should increase with *t*

More to come from H1, including effects on SCHC violation

cf. generic Q^2 / M^2 expected dependence

+ effect à la parton - hadron duality (i.e. weak effect of the resonance) ?

V.2 Helicity amplitudes J/Ψ

$R = \sigma_L / \sigma_T$

non-relativistic model for J/Ψ : $z \sim 1/2 \rightarrow$ **no helicity flip**

basic scale for R given by $R \sim Q^2 / M^2 \rightarrow$ much slower increase of R with Q² than for ρ, ϕ

VM and DVCS at HERA: from soft to hard diffraction

V.3 Helicity amplitudes large |*t*/, ρ and J/Ψ

ρ (photoproduction)

J/Ψ (photoproduction)

no helicity flip

cf. non-relativistic model

VI. Summary and conclusions

summary

Enormous progress

- experiments

DVCS, light VM, J/Ψ , Y

- Q^2 (but stat. limited $Q^2 > 20 \text{ GeV}^2$) \rightarrow HERA-2 !?
- W (but limited lever arm)
- *t* (but p.diss. bg. (LPS/FPS/VFPS) + other VM bg.; stat. limited very large |*t*|)
- ang. var. (but other VM bg.; DVCS + FPS/VFPS)
- p.diss. / el. (but no clean meast LPS/FPS/VFPS)
- missing other VM, in part. ρ '

- theory

DVCS, J/Ψ , Y, large |t|, also light VM

- GPD
- NLO
- dipole + saturation

- ...

training ground / tests of several general ideas / techniques

conclusions

Very rich and varied landscape,

of which semi-quantitative understanding thus achieved,

but detailed quantitative description of data still missing in most corners,

in particular :

- W dependences (esp. light VM)
- *t* dependences, shrinkage
- detailed description of helicity amplitudes (light VM)
- generally, soft physics interplay

Many thanks to the convenors,

and to all those to whom I borrowed data - plots - ideas