Phenomenology at colliders (1)

P. Marage

Université Libre de Bruxelles
Egyptian School on High Energy Physics
BUE - Cairo -May 27 to June 4, 2009

Plan

I. INTRODUCTION AND MOTIVATION

1. Why colliders?

- energy
- parameters: luminosity
- structure : orbit, acceleration, collimation, emittance

2. Detectors

- structure, acceptance

3. The need for pdf's

- the Drell-Yan process
- jet production
- top production

II. STRUCTURE FUNCTIONS AND PARTON DISTRIBUTION FUNCTIONS

1. Deep inelastic scattering and structure functions
2. Quark parton model
3. Scaling violation
4. QCD evolution and DGLAP equations
lii. FACTORISATION THEOREMS; PDF PARAMETERISATIONS
5. Factorisation theorems
6. Drell-Yan production with CMS
7. Parton distribution function parameterisations
8. Parton distribution uncertainties
9. Some (of many) uncovered topics

I. 1 Why colliders?
 Structure, parameters

Fixed target and collider experiments

```
Fixed target
    beams: e, p, ions (+ radioactive beams) ; }\gamma,v,\mu,\pi,K, hyperon
    target: p, n(D}),\mathrm{ nuclei
Colliders
    leptons e e+ e- - future }\mp@subsup{\mu}{}{+}\mp@subsup{\mu}{}{-}(?)\quad\mathrm{ LEP, SLC, meson factories (s, c, b)
    hadrons pp ppbar ions
    l-h ep
Centre of mass energy }\sqrt{}{
    FT \sqrt{ s = 2 m E b}{b}
    coll. \sqrt{ }{s}=2 E E
LEP 2x50 ... 2x104 GeV
ISR 2x31 GeV SppS 2x350 Tev 2x1 TeV LHC 2x10-14 TeV
meson factories adjust to }\phi,\Psi,
```

Universe as accelerator :

Cosmic ray spectrum
-> $\quad 10^{19} \mathrm{eV}$
equivalent collider energy?

Collider structure

«Circular » geometry

+ straight sections : injection, extraction, acceleration, experiments

Electron colliders

Limitation of electron circular colliders :
Bremsstrahlung emission (synchrotron radiation) $\sim \gamma^{4}$
cf. LEP at 104 GeV
-> linear colliders : SLD, ILC, CLIC
hudge accelerator gradient needed!
-> hadronic colliders
$->\mu^{+} \mu^{-}$plans

Advantage of lepton colliders
well defined centre of mass energy hadron colliders : parton collisions

Bending : superconducting dipole magnets, B perp. to beam
Focusing: quadrupole magnets 1 focusing +1 defocusing in the 2 perp. directions Acceleration : superconducting radiofrequency cavities

Collider parameters

Luminosity

$$
d N=L \sigma d t
$$

$$
\mathrm{L}=\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{I}_{\mathrm{b}} / \mathrm{s} . \mathrm{c}=1.310^{27} \mathrm{i}_{1} \mathrm{i}_{2} \mathrm{I}_{\mathrm{b}} / \mathrm{s} \quad\left[\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]
$$

NB in colliders, beam are in bunches
record luminosity : Belle $210^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- what is the reach of 1 year running with $L=10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$?
- for $\sigma(p p)$ about 100 mb :
how many superimposed interactions at LHC (time between bunches $=40 \mathrm{~ns}$)

$$
\text { for } 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

increase luminosity => bunches as compact as possible strong focusing close to the interaction points (experiments)

Luminosity measurement

- beam detectors
- physics processes

LEP Bhabha scattering: $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}+\gamma$
HERA Bethe-Heitler scattering: $e+p \rightarrow e+p+\gamma$
LHC Drell-Yan cross section at the Z peak total inelastic cross section (use of forward calorimeters)

particles which are not exactly on « reference orbit » oscillate around it

- $\Delta x \quad x=$ dir. perp. to beam in hor. plane i.e. along radius
$-\Delta z \quad z=$ vert. dir.
$-\Delta p \quad$ not injected with exactly same energy
(no problem with ee: Brem. uniformises !)
- $\Delta \phi \quad$ not injected at exactly the same phase (at the same time)
$\Delta x, \Delta z$: « betatronic oscillations » = transverse oscillations
Δp : effect on acceptance in x
transverse oscillations
amplitude of these oscillations -> acceptance of vacuum chamber
$\Delta \phi:$: synchrotron oscillations » = longitudinal oscillations
(part. should remain inside bunch !)

Betatronic oscillations ($\Delta x, \Delta z$)
oscillation phase space is given by ellipse in the (x, x^{\prime}) sp; $x=$ dir. perp. to beam in hor. plane
$x^{\prime}=$ gradient along the beam : $\mathrm{dx} / \mathrm{ds}$
(idem for z, vert. direction)
Dimension of this ellipse given by injection conditions :
« emittance »

focus in $x=>$ large $x^{\prime}=>$ large angle
this is described by «beta function» focusing by «small beta insertions»

For total cross section measurements (forward elastic scattering) : large dispersion of interaction angle incompatible with measurement at very small angle (TOTEM)
=> which beta function values?

Problem : focusing in $x \leftrightarrow$ defocusing in z
Solution : pairs of focusing and defocusing quadrupoles
(cf. optics)
(+ sextupoles, octopoles for other corrections)

Tuning conditions => chain of injectors

CERN Accelerator Complex

FERMILAB'S ACCELERATOR CHAIN

Tevatron

+ antiproton source and accumulation

I. 2 Collider detectors

$\mathrm{e}^{+} \mathrm{e}^{-}$interactions (LEP)

$$
e^{+} e^{-} \rightarrow Z^{o} \rightarrow q \bar{q}
$$

$$
e^{+} e^{-} \rightarrow Z^{o} \rightarrow q \bar{q} g
$$

symmetric, hermetic, (modest) particle identification (tracks, electrons and photons, hadrons, muons) very « clean » events, well centred

ep interactions (HERA)

hermetic
not symmetric

Other asymmetric detectors:
b factories (Belle)
Y boosted
\rightarrow one b boosted
\rightarrow enhance decay vertex meast.

H1

neutral current event
$e+p \rightarrow e+q$ jet $+p$ jet
asymmetric events \rightarrow asymmetric detector

charged current event

$$
e+p \rightarrow v_{e}+q \text { jet }+p \text { jet }
$$

(where is the v ?)
interaction on a quark in the proton, carrying $E_{q}=x E_{p}$
additional activity in the «forward » region $=p$ remnant jet

$$
W^{2} \simeq Q^{2} / x
$$

Jet fragmentation

quarks and gluons are colour charged
=> must « hadronize »
gluon Bremsstrahlung

typical p_{t} of particles around jet (quark or gluon) axis
given by strong interaction scale $\approx 1 \mathrm{fm}$
$\exp \left(-B p_{T}\right)$ with $B \approx 300 \mathrm{MeV}$
(0.2 GeV fm = 1)

CMS

I. 3 Parton distribution functions motivations

Drell-Yan production

LEP $\quad e^{+} e^{-} \rightarrow \gamma / Z \rightarrow q \bar{q}$

LHC $\quad q \bar{q} \rightarrow \gamma / Z \rightarrow e^{+} e^{-}$

+ Z' ???
(GUT, extradimensions)

Kinematics

quark with proton energy fraction x_{1} antiquark with x_{2}

Let us compute
$M=\sqrt{ }\left(x_{1} x_{2}\right) \sqrt{ } s \quad\left(\sqrt{ }=2 E_{b}\right)$
$x_{1} x_{2}$ not fixed and no reason that $x_{1}=x_{2}$
i.e. two interacting particles (quarks) have different energies $\neq \mathrm{e}^{+} \mathrm{e}^{-}$
$\mathrm{M}=100 \mathrm{GeV} \rightarrow\langle x\rangle=$?
but mass distribution depends on quark distribution in proton - pdf's

Remember: $\quad W^{2} \simeq Q^{2} / x$
=> smaller x reachable at larger beam energy

