Phenomenology at colliders (3)

P. Marage
Université Libre de Bruxelles
Egyptian School on High Energy Physics
BUE – Cairo –May 27 to June 4, 2009

Plan

I. INTRODUCTION AND MOTIVATION

II. STRUCTURE FUNCTIONS AND PARTON DISTRIBUTION FUNCTIONS

- 1. Deep inelastic scattering and structure functions
- 2. Quark parton model
- 3. Scaling violation
- 4. QCD evolution and DGLAP equations

III. FACTORISATION THEOREMS; PDF PARAMETERISATIONS

- 1. Factorisation theorems
- 2. Drell-Yan production with CMS
- 3. Parton distribution function parameterisations
- 4. Parton distribution uncertainties
- 5. Some (of many) uncovered topics

DIS cross section

$$F_1(x,Q^2) = MW_1$$
 $F_2(x,Q^2) = vW_2$

$$\frac{d^2\sigma}{dxdy} = \frac{d^2\sigma}{dxdQ^2}xs = \frac{4\pi\alpha^2}{Q^4}s\left[(1-y)F_2(x,Q^2) + \frac{y^2}{2}2xF_1(x,Q^2)\right]$$
 em interaction : NC γ exchange

$$= ... \left[... \pm \frac{G_F^2}{8\pi^2} \frac{Q^4}{(1+Q^2/M^2)} y(1-y/2) x F_3(x,Q^2) \right]$$
 weak interaction : CC W exchange

 F_1 , F_2 , $F_3(x,Q^2)$ = structure functions – physical observables (measured quantities)

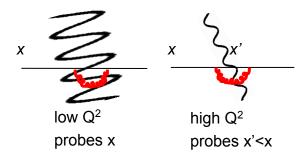
Scaling

Incoherent scattering on free partons

$$\rightarrow F_2(x) = \sum_i e_i^2 x f_i(x)$$

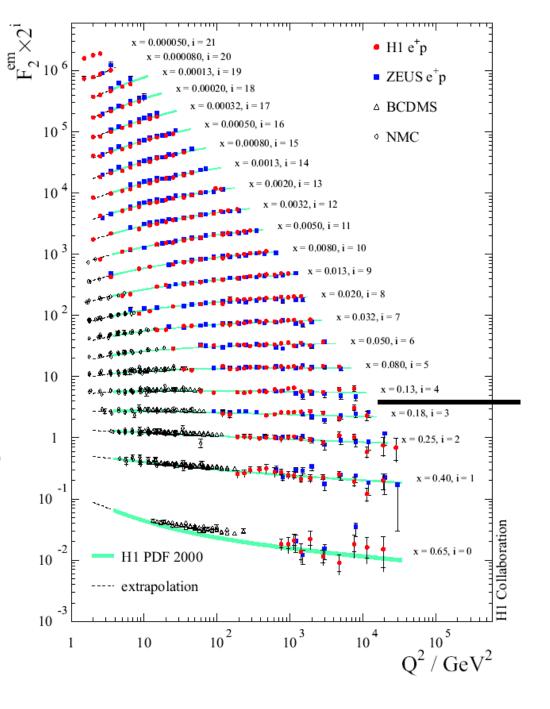
$$\rightarrow F_1(x) = \frac{1}{2x} F_2(x)$$

$$\Rightarrow QPM$$


Structure functions depend only on x; cross section given by quark distributions f(x)

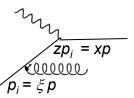
$$\frac{d^2\sigma}{dxdy} = \frac{2\pi\alpha^2}{Q^4} s \left[1 + (1 - y)^2 \right] \sum_i e_i^2 x f_i(x)$$
 QPM

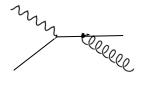
Scaling violations

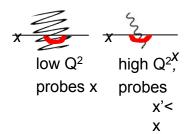

Q² evolution of structure functions

photon resolution improves with Q^2 \rightarrow disentangles virtual gluon emission

As Q^2 increases, quark content decreases at large x (valence) and increases at low xalso: at low x, the gluon content and the sea increase (low x since due to bremsstrahlung \rightarrow soft)


parton distribution function evolutions




« structure of the quark »

Gluon emission by the quark:

a quark « structure » shows up

Take over the SF formalism, with

quark

$$p_i = \zeta p$$

$$p p_i = \xi p$$

$$x = Q^2/2p.q z = Q^2/2p_i.q = x/\xi$$

Hence
$$2F_1(x,Q^2) = \frac{\sigma_T(x,Q^2)}{\sigma_0}\bigg|_{\gamma^*p}$$

$$= \sum_i \int_0^1 dz \int_0^1 d\xi \, f_i(\xi) \, \delta(x - \xi z) \frac{\hat{\sigma}_T(z,Q^2)}{\hat{\sigma}_0}\bigg|_{\gamma^*quark}$$

where
$$\sigma_0 = \frac{4\pi \alpha_s^2(Q^2)}{s}$$
 and similarly for $\hat{\sigma}_0$ with $\hat{s} = \xi s$

 $f_i(\xi)$ is the probability to find in the proton a (« **primary** ») quark with momentum fraction ξ , $\hat{\sigma}_{\scriptscriptstyle \mathcal{T}}(\mathbf{z},\mathbf{Q}^2)$ is the photon-quark transverse cross section,

for a (« secondary ») quark of momentum fraction z;

 ξ and z can vary from 0 to 1, but $x = \xi z$ is fixed (hence the δ function)

After integration on z:

$$2F_{1}(x,Q^{2}) = \sum_{i} \int_{0}^{1} \frac{d\xi}{\xi} f_{i}(\xi) \frac{\hat{\sigma}_{\tau}(x/\xi,Q^{2})}{\hat{\sigma}_{0}}$$

quark evolution equation

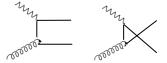
At first order :
$$\gamma^* q \rightarrow q$$
 where $z = x / \xi = 1$

At next order, the photon quark cross section contains a $\gamma^* q \rightarrow q g$ contribution

with for
$$\frac{d\hat{\sigma}}{dp_T^2} \simeq e_q^2 \; \hat{\sigma}_0 \; \frac{1}{p_T^2} \frac{\alpha_s(Q^2)}{2\pi} P_{qq}(z) \qquad \text{where } P_{qq}(z) = \frac{4}{3} \left(\frac{1+z^2}{1-z} \right)$$

 $P_{qq}(z)$ is the probability of a quark emitting a gluon and reducing the quark momentum by the factor z:

« splitting function »


$$\hat{\sigma}(\gamma^* q \to qg) = \int_{\mu_F^2}^{S^2/4} dp_T^2 \frac{d\hat{\sigma}}{dp_T^2} \simeq e_q^2 \; \hat{\sigma}_0 \; \frac{\alpha_S(Q^2)}{2\pi} P_{qq}(z) \; \log \frac{Q^2}{\mu_F^2} \qquad \text{log. scaling violation}$$

Keeping the relation between F_2 and quarks $\frac{1}{x}F_2(x,Q^2) = \sum_q e_q^2 \left[q(x) + \Delta q(x,Q^2) \right]$

=> quark density evolution
$$\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} q(\xi,Q^2) P_{qq}(\frac{x}{\xi})$$

DGLAP equations

Similarly: quark in gluon P_{qg}

gluon in gluon P_{qg}

Notation
$$P_{ij} \otimes f_i(x, Q^2) = \int_x^1 \frac{d\xi}{\xi} P_{ij}(\frac{x}{\xi}) f_i(\xi, Q^2)$$

$$\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{qq} \otimes q(x,Q^2) + P_{qg} \otimes g(x,Q^2) \right]$$

$$\frac{dg(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{gq} \otimes q(x,Q^2) + P_{gg} \otimes g(x,Q^2) \right]$$

Remarks

1. DGLAP equations = Renormalisation group equations (RGE)

$$q(x,Q^2;\mu_F^2) = q(x) + \frac{\alpha_S(Q^2)}{2\pi} \log \frac{Q^2}{\mu_F^2} \int_X^1 \frac{d\xi}{\xi} P_{qq}(\frac{x}{\xi}) q(\xi)$$

Choice of factorisation scale μ_F is arbitrary $\rightarrow q(x,Q^2)$ should not depend on μ_F :

$$\frac{dq(x,Q^2;\mu_F^2)}{d\log\mu_F} = 0 \quad \to \text{ the DGLAP equations}$$

2. Higher orders

NLO and NNLO splitting functions have been calculated. Very complicated!

III. Factorisation theorems; pdf parameterisations

III.1 Factorisation theorems


Infrared singularities

Remember logarithmic singularity for quark structure, due to collinear gluon emission

$$\hat{\sigma}(\gamma^* q \to qg) = e_q^2 \; \hat{\sigma}_0 \; \frac{\alpha_s}{2\pi} \, P_{qq}(z) \; \log \frac{Q^2}{\mu_F^2} + \int_0^{\mu_F^2} dp_T^2 \; \frac{d\hat{\sigma}}{dp_T^2}$$

For gluon structure, $\log (Q/m)$ singularity due to γg fusion diagrams

Generally speaking, <u>infrared</u> singularities due to <u>soft</u> and <u>collinear</u> configurations

(degenerate kinematic situations)

they correspond to on mass shell intermediate parton, with $k^2 = m^2 \approx 0$

They correspond to *long distances*

QCD factorisation theorems

(to be demonstrated : DIS, jet production, Drell-Yan, prompt photon emission, fragmentation in e⁺e⁻) :

Infrared (long distance) singularities (due to nearly on mass shell partons)

can be separated from hard (short distance) partonic process (with large off mass shellness)

i.e. infrared singularities can be « factorised out »

order by order in pQCD (or useless !)

into universal parton density functions

- which must be <u>measured</u> (cannot be calculated!)
- at some factorisation scale μ_F
- of which the <u>evolution</u> from μ_F can be calculated using the P_{ij} coefficient kernels (DGLAP equations)

Very much like charge and mass are redefined to dispose of familiar UV singularities due to loop corrections

$$\frac{1}{\alpha} = \frac{1}{\alpha_0} + \frac{1}{\alpha_0} + \frac{1}{\alpha_0}$$
physical charge bare charge bare charge screened

« renormalisation » is factorisation of UV divergences

« factorisation » is renormalisation of soft / collinear divergences

Master formula

$$\sigma^{h}(x,Q^{2}) = \sum_{i=q \ \overline{q} \ g} \int_{0}^{1} \frac{d\xi}{\xi} \quad C^{i}(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}, \frac{\mu_{F}^{2}}{\mu^{2}}, \alpha_{S}(\mu^{2})) \quad \phi_{i/h}(\xi, \mu_{F}, \mu^{2})$$

$$\underbrace{\qquad \qquad }_{coefficient \ function} \qquad \underbrace{\qquad \qquad }_{pdf}$$

- μ renormalisation scale (fixes $\alpha_s(\mu^2)$)
- $\mu_{\rm F}$ factorisation scale

ones often takes $\mu_F = \mu$ - can be Q^2 or E_T (jet) etc.

NB complicated cases where 2 scales (e.g. Q^2 and jet E_T ; also when large log 1/x)

 \triangleright the factorisation scale μ_F can be seen as where hard and soft processes separate,

i.e. maximum off-shelness of partons grouped into pdf $\phi_{i/h}$

 \triangleright as μ is present in both coeff. fct. and in pdf's,

a « factorisation scheme » (MS-bar, DIS) must define (for higher orders) the attribution of the short distance finite contributions (i.e. to coeff. fct. or to pdf's)

(remember: pdf's are « theoretical » objects)

Parton distribution functions

$$\sigma^h(x,Q^2) = \sum_{i=q \ \bar{q} \ g} \int_0^1 \frac{d\xi}{\xi} \quad C^i(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \frac{\mu_F^2}{\mu^2}, \alpha_S(\mu^2)) \quad \phi_{i/h}(\xi, \mu_{F,\mu}^2)$$

 \Box coeff. functions are QCD calculable as power series in α_s ,

infrared safe

process dependent (NC DIS, CC DIS, jet, etc.)

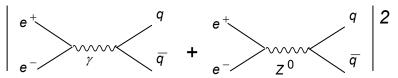
independent of initial hadron h

pdf's are specific to h

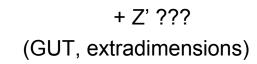
but process independent (including independent of Q²)

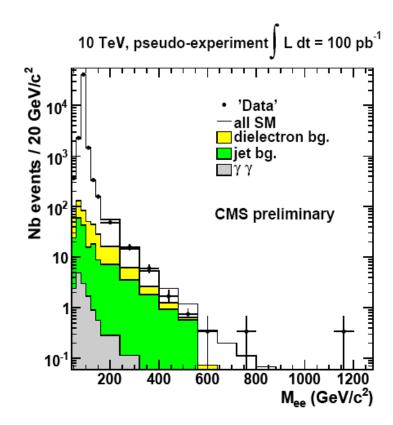
pdf evolution kernels (e.g. DGLAP) are

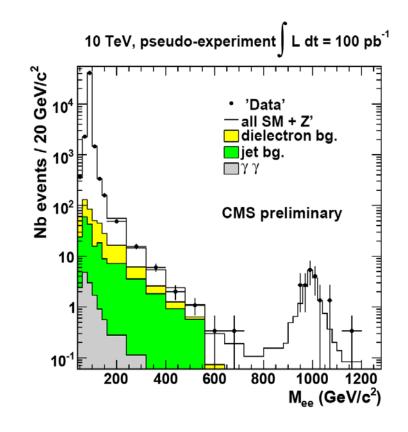
QCD calculable as power series in α_s


infrared safe

- compute the process (e⁺ e⁻, DIS, ...) cross section at parton level, at a given order of perturbation theory
- \triangleright compute the « parton structures » $\phi_{i/q}$ $\phi_{i/q}$ at the same order (in a given factorisation scheme)
- \triangleright thus derive the coefficient functions C^i (at same order, in the same scheme)
- \triangleright combine the C^i with the experimental cross section σ^h to derive the non perturbative parton distributions in the hadron $\phi_{i/h}$ (at same order, in the chosen scheme) (i.e. inverse master formula)
- \triangleright use the evolution kernels to extract the pdf's for a given μ factorisation scale value


III.2 Drell-Yan production with CMS


Drell-Yan production

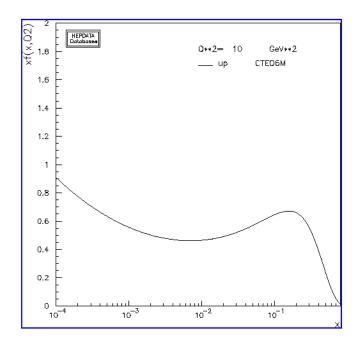

LEP
$$e^+e^- \rightarrow \gamma / Z \rightarrow q\bar{q}$$

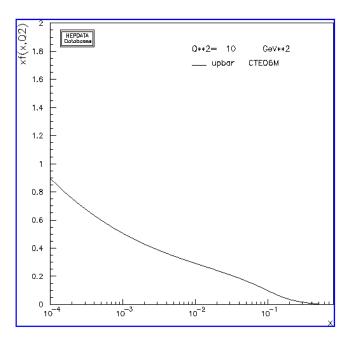
LHC
$$qq \rightarrow \gamma / Z \rightarrow e^+ e^-$$

Kinematics

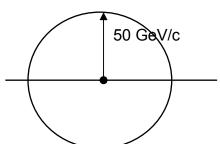
quark with proton energy fraction x_1 antiquark with x_2

Let us compute

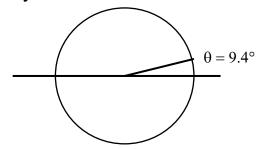

$$M = \sqrt{(x_1 x_2)} \sqrt{s} \quad (\sqrt{s} = 2E_b)$$

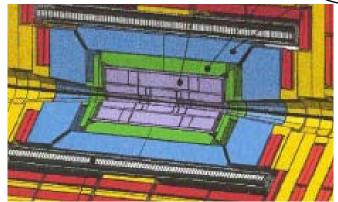

 $x_1 x_2$ not fixed and no reason that $x_1 = x_2$

i.e. two interacting particles (quarks) have different energies \neq e⁺e⁻


$$M = 100 \text{ GeV} \rightarrow \langle x \rangle = ?$$

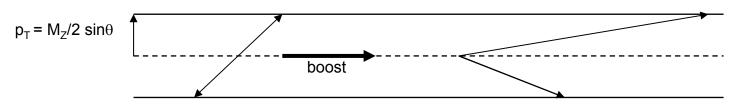
<u>but</u> mass distribution depends on quark distribution in proton – pdf's





What is $Z p_t$ distribution for Z at rest?

mostly « central » in detector acceptance

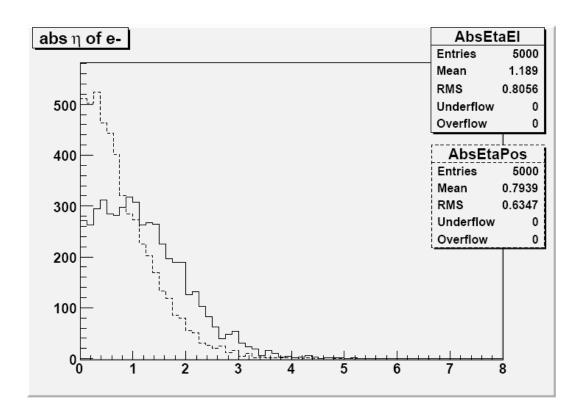


but is Z at rest?

$$M = \sqrt{(x_1 x_2)} \sqrt{s}$$

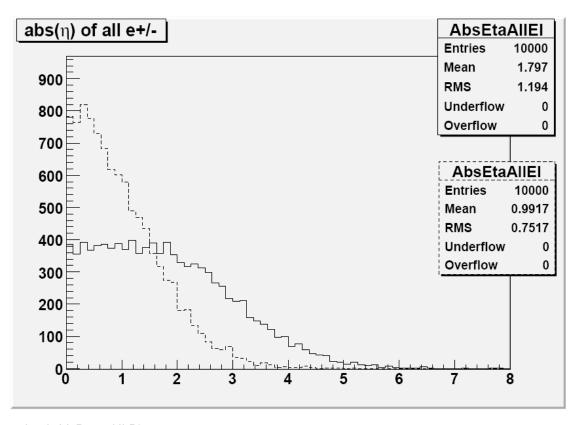
$$=> p_z = ?$$

=> Z boosted – decay out of acceptance



loss of acceptance depends of pdf's!

NB different acceptance for e+ and e-


Different acceptance for electrons (solid) and positrons (dashed)

In SM, e⁻ is preferentially emitted in direction of quark x(quark) is generally larger than x (antiquark) => e⁻ is statistically more boosted than e⁺

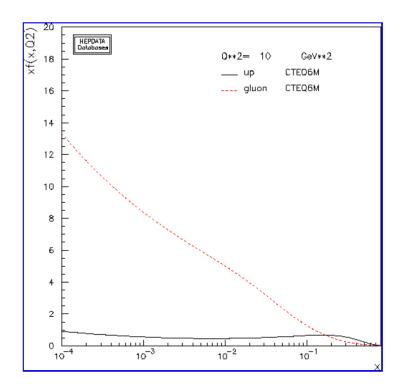
Different acceptance for low (200 GeV - solid) and large mass (2000 GeV - dashed)

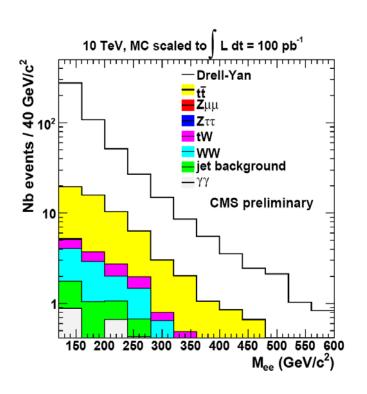
2000 GeV => $\sqrt{(x_1x_2)}$ = 0.2 => both quark at relatively large x => Z not much boosted 200 GeV => $\sqrt{(x_1x_2)}$ = 0.02 => x (quark) can be large (0.1), x (antiquark) small 0.004 => very different => Z boosted

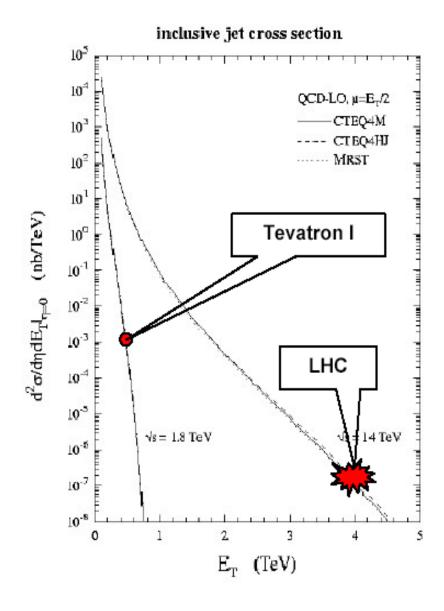
(Master thesis V. Dero, ULB)

jet production

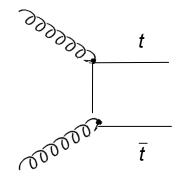
Jets LO diagrams


Sample of LO diagrams:

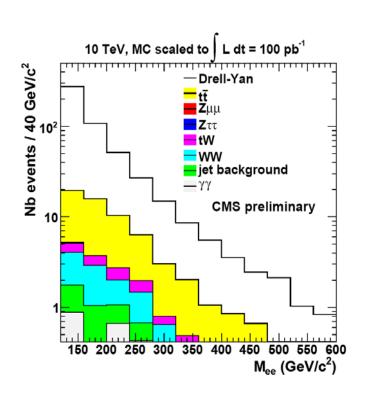

different diagram contributions (gg, gq, qq) depend on pdf's

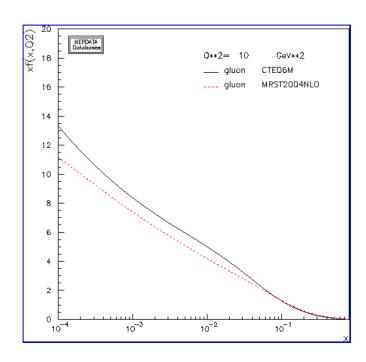

Tevatron qg dominate

LHC gg dominate



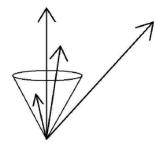
dijet production = important backgroundto large mass Z production2 jets mistaken as electron : rare, butenormous jet cross section

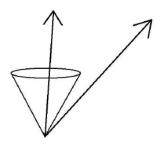




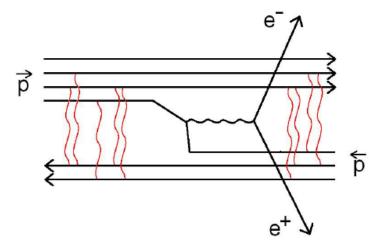
top pair production

Depends on gluon pdf's

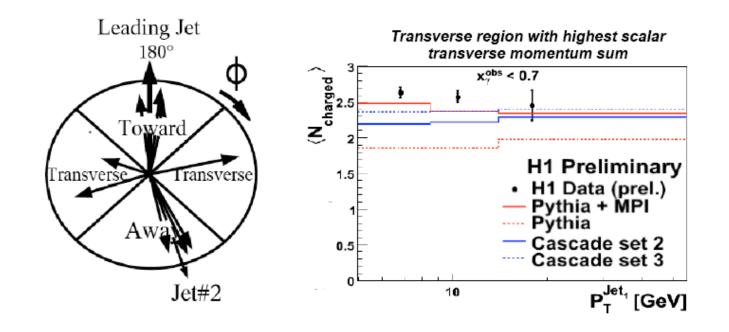




[dominant background to large mass Z production $t \to W^+ b$ and $W^+ \to e^+ \nu_e$ and similar for that => true $e^+ e^-$ pair]


underlying event (soft physics)

Electron identification against jet background : isolation criteria



- « Hard » $q\overline{q} \rightarrow \gamma / Z \rightarrow e^+ e^-$ interaction
- + proton remnant jets
- +« soft » interactions between proton remnants = high density colour fields
 - -> additional tracks with limited p_T

Coupures	Nombre moyen de particules	
	A une masse de 200 GeV A une masse de 2000 GeV	
Pas de coupure	359	351
$ \eta < 2.4$	159	162
$p_t > 1 \ GeV$	58	63
$ \eta < 2.4 \text{ et } p_t > 1 \text{ GeV}$	35	40

III.3 Parton distribution parameterisations

Parameterising pdf's

Choose a starting parameterisation for the various parton species (quarks, antiquarks, gluons)

```
at a given \mu scale (usually \mu_F = \mu)
```

in a given factorisation scheme (usually MS-bar)

- with a number of parameters sufficiently large to describe the data
- but sufficiently <u>small</u> to be really constraint by physics and not artefacts
- Decide upon simplification hypotheses to decrease number of degrees of freedom
 - isospin (u(x) in proton = d(x) in neutron; u sea in proton = d sea in neutron, but u sea in proton might be different form u sea in neutron)
 - x-distributions of quark and antiquark seas : have to be the same in total, but what about x dependences ?
 - s(x) sea versus u(x), d(x) seas
- Choose experimental data
 - theoretically relevant (be sure factorisation applies!)
 - theoretically under control e.g.

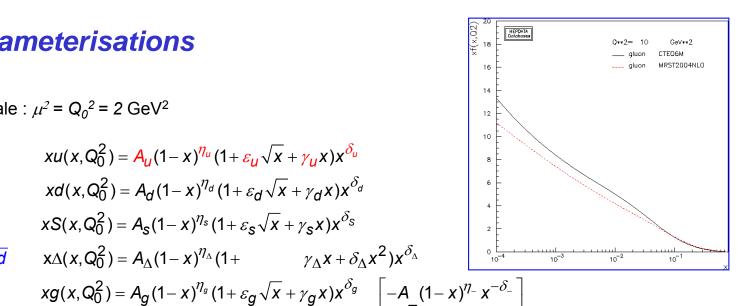
```
higher order effects (NLO / LO; NNLO / NLO)
```

treatment of nuclear effects (in extracting neutron pdf's from eA and μ A scattering)

experimentally reliable

(e.g. phase space extrapolations for HERA charmed meson production)

... and fit


■ (for errors – see below!)

Main parameterisations

MRST

starting scale :
$$\mu^2 = Q_0^2 = 2 \text{ GeV}^2$$

$$\begin{array}{ll} \textit{u quark} & \textit{xu}(x,Q_0^2) = \textit{A}_{\textit{u}}(1-x)^{\eta_{\textit{u}}}(1+\varepsilon_{\textit{u}}\sqrt{x}+\gamma_{\textit{u}}x)x^{\delta_{\textit{u}}} \\ \textit{d quark} & \textit{xd}(x,Q_0^2) = \textit{A}_{\textit{d}}(1-x)^{\eta_{\textit{d}}}(1+\varepsilon_{\textit{d}}\sqrt{x}+\gamma_{\textit{d}}x)x^{\delta_{\textit{d}}} \\ \textit{sea} & \textit{xS}(x,Q_0^2) = \textit{A}_{\textit{s}}(1-x)^{\eta_{\textit{s}}}(1+\varepsilon_{\textit{s}}\sqrt{x}+\gamma_{\textit{s}}x)x^{\delta_{\textit{s}}} \\ \Delta q = \overline{\textit{u}} - \overline{\textit{d}} & \textit{x}\Delta(x,Q_0^2) = \textit{A}_{\Delta}(1-x)^{\eta_{\Delta}}(1+\gamma_{\Delta}x+\delta_{\Delta}x^2)x^{\delta_{\Delta}} \end{array}$$

strange sea
$$\kappa = \frac{s(x)}{\overline{u}(x) + \overline{d}(x)} \approx 0.4$$

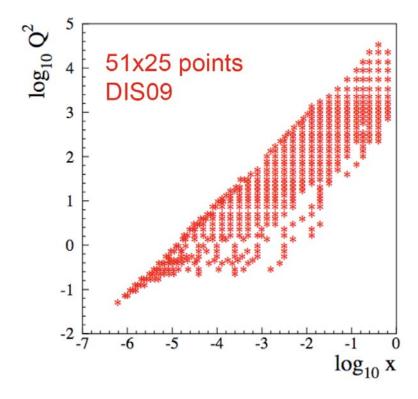
sea asymm. $\Delta s(x) = s(x) - \overline{s}(x)$

DIS (H1, ZEUS)

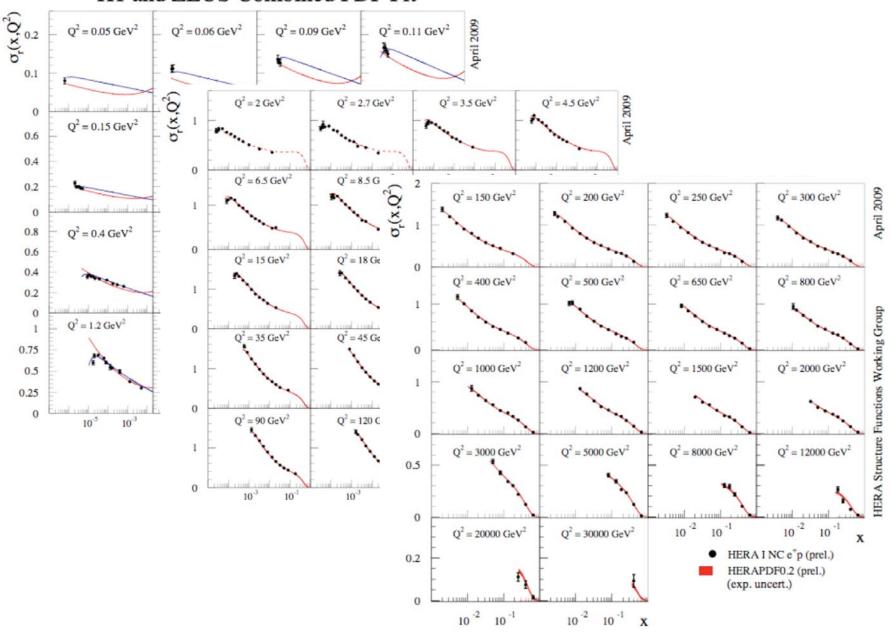
gluons

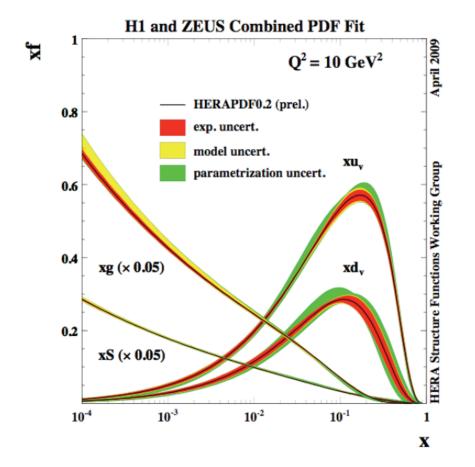
around 20 free parameters (or even more) for some 2000 data points

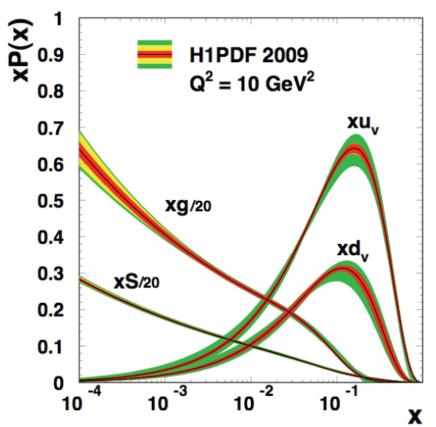
 $(A_u \text{ and } A_d \text{ fixed by valence quark counting}, A_d \text{ fixed by momentum sum rule})$


Parameterisations differ in detailed form of parameterisation at starting scale, data sets included, factorisation / renormalisation scale Q_0^2 and scheme, value of $\alpha_s(Q_0^2)$, assumptions on κ , sea asymmetry, possible negative gluon

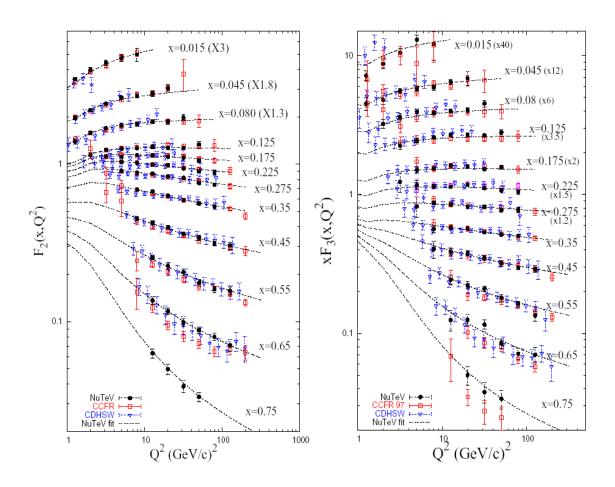
Data sets


DIS (1) fixed target μp , μn BCDMS, NMC, SLAC, E665 $x > 10^{-2}$ $e^+ p$, $e^- p$ (NC and CC) H1, ZEUS $x > 10^{-5}$ quarks, gluons (through evolution) $e^+ p$, $e^- p$ CC $\rightarrow u / d$ at large x (without nucl. tgt problems) $F_{cc}^2 F_{b\overline{b}}^2 \rightarrow$ direct access to gluons (photon gluon fusion)


2009 joint analysis by H1 and ZEUS of1995-2000 data set110 point-to-point correlated error sources


 χ^2 / dof = 576 / 592

H1 and ZEUS Combined PDF Fit

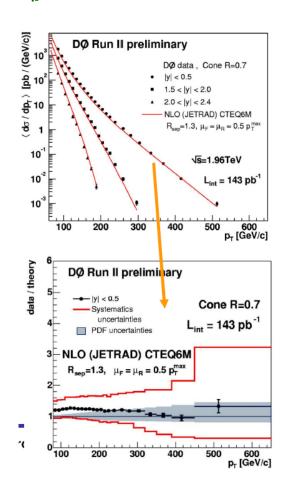


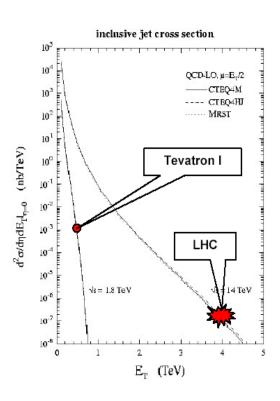
Data sets (2)

DIS (2) $vp \ vn \ \overline{v}p \ \overline{v}n$ CCFR $x > 10^{-2}$: total quarks, valence NuTeV + strange sea (dimuon events from CC charm prod.)

Data sets (3)

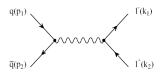
Jets

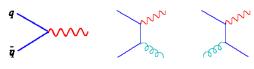

Tevatron collider


CDF, D0 \rightarrow constraints on high x gluon

Jets in DIS at HERA ZEUS

Sample of LO diagrams:

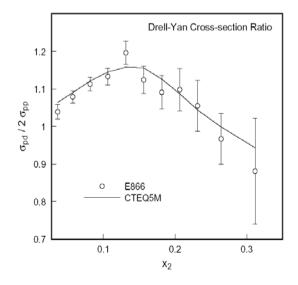


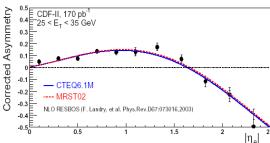


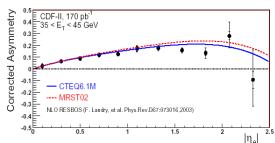
Data sets (4)

Drell-Yan (muon pair production): Fermilab, *p* and *n*

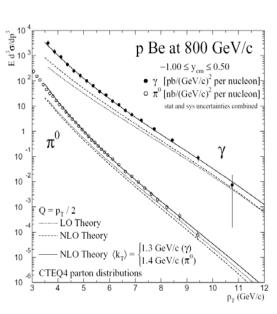



 $\rightarrow u$, d valence; \overline{u} , \overline{d}


Large K-factor (= NLO / LO) \rightarrow convergence ? factorisation true ? now understood : $\alpha(\mu\mu)$ not small

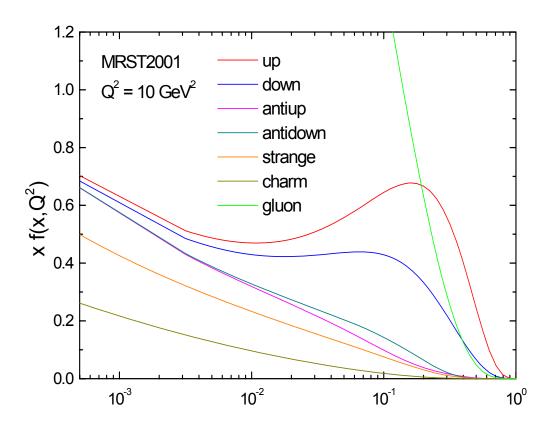

E605 (p Cu $\rightarrow \mu^+\mu^- X$) $p_{LAB} = 800 \text{ GeV}$

W asymmetry (CDF)
u/d ratio at high x



Data sets (5)

Prompt photon production


Sensitive to primordial k_T of quarks inside nucleon (i.e. higher orders

Results...

$$\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{qq} \otimes q(x,Q^2) + P_{qg} \otimes g(x,Q^2) \right]$$

$$\frac{dg(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{gq} \otimes q(x,Q^2) + P_{gg} \otimes g(x,Q^2) \right]$$

III.4 Parton distribution uncertainties

Experimental uncertainties

- □ selection of data choice of accepted Q², W domain
- effect of experimental errors ?correlated / uncorrelated systematics
- □ how to combine « poorely compatible » experiments ?
- Hessian estimate of errors (correlation matrix)

deviation in χ^2 of the global fit from the minimum χ^2 value is assumed to be quadratic in the deviation of the fitted parameters errors from their best value \rightarrow errors obtained from the covariance matrix, with $\Delta\chi^2 = 1$

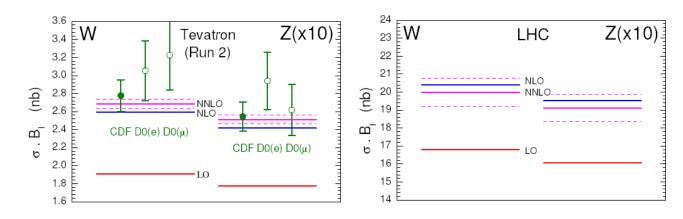
- BUT hypothesis on the quadratic behaviour of uncertainties : (very) questionable
 - (there may exist) strong correlations between parameters (if larger number than necessary)
 - inconsistencies between experiments
- \rightarrow which tolerance to define errors on pdf's ? $\Delta \chi^2$ = 100 (CTEQ), 50 (MRST), 1 (H1 only DIS) ?
- Lagrange multipliers: a series of global fits using Lagrange parameters attached to each given measurement, constraining the measured cross sections by the quoted errors → how does the global description deteriorates as one moves away from the unconstrianed best fit while spanning a range of Lagrange multipliers

But very heavy procedure

Theoretical uncertainties

higher QCD orders – in DIS: NNLO log (1/x) and log (1-x) effects absorptive corrections – parton recombinations other higher twist contributions form of the parameterisation at starting scale number of parameters? ... and relevance of the chosen factorisation scheme for the chosen parameterisation form choice of starting scale of evolution choice of $\alpha_{\rm S}$ simplification assumptions isospin violation $S \neq \overline{S}$ treatment of heavy flavours nuclear effects inclusion of e-w corrections (significant at NNLO)

Remark : pdf's in Monte Carlos


Present Monte Carlos are generally LO + simulation of higher orders through parton shower (JETSET)

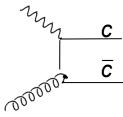
JETSET follows DGLAP evolution – HERWIG is believed to be closer to BFKL evolution

Higher orders

All order summation is finite (factorisation theorem) but how fast is the convergence?

trust convergence if corrections decrease when computing next order

sensitivity to scale = indication of size of next order contribution


$$\mu \frac{d}{d\mu} C^{(n)}(x, Q^2, \mu) \sim O(\alpha_s^{n+1})$$

small scale sensitivity at NL for DIS and D-Y large for heavy quarks and prompt photon

Heavy quarks

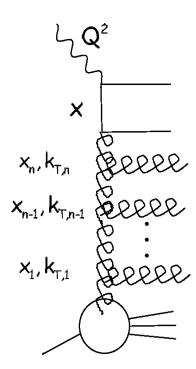
No HQ in the nucleon at small scale

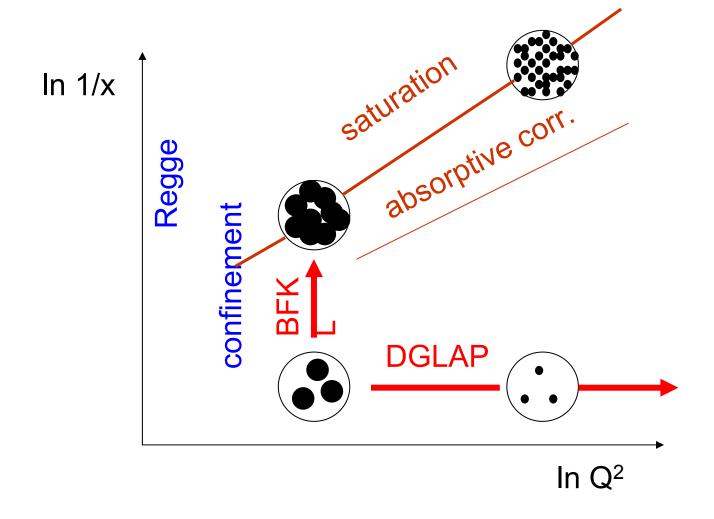
dynamically generated (photon gluon fusion)

Works at not too large Q² but logarithmic divergence at large Q² $\approx \log \frac{Q}{m_q}$

- > at large Q², treated as massless quarks
- → Fixed / variable flavour number scheme

Jets


full NNLO calculations not available yet

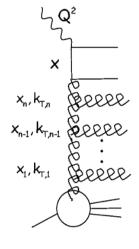

→ estimated through scale dependence :

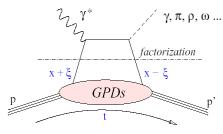
 μ often varied from 0.5 E_T to 2 E_T

Resummations

- Fixed order calculations ←→ resummation of all order contributions : leading logarithms
 Necessary when 2 scales, e.g. Q² and jet E_T
 ! double counting !
- BFKL evolution: in DIS domain (sufficiently large Q^2), very high energy resums $\alpha_S^n \log^n \frac{1}{x}$ terms corresponds to strong parton ordering in x (long. momentum) but not necessarily in k_T Predicts fast increase
- CCFM evolution : connexion between DGLAP and BFKL angular ordering : $\theta = \frac{k_T}{xp}$

III.5 (Some of many) uncovered topics


Other parton distributions


 \Box unintegrated k_T distributions

relevant at very high energy, and when no strong k_T ordering (BFKL domain)

e.g. large k_T jet or particle at large x

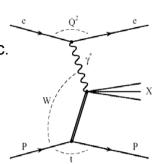
generalised parton distributions correlations between partons

vector meson and real photon production (DVCS) most relevant for large mass difference between initial and final state

spin parton distributions
dedicated experiments (HERMES, COMPAS, etc.)

Other hadrons or hadronic objects

photon


 $\gamma \gamma$ scattering at LEP, hard photoproduction at HERA i.e. measurement of the hadronic structure of the photon (« resolved » photon \longleftrightarrow « direct » photon = pointlike) $\gamma \to q \bar{q} + \text{evolution}$, including gluon content of the photon

NB in DGLAP evolution, inhomogeneous component (cf. NS SF)

pion

Drell-Yan, leading neutron final states at HERA (interactions on the pion virtual cloud around the proton)

pomeron : hadronic structure of diffractive exchange
 HERA (total diffractive production, vector mesons, charm, jets, etc.
 Tevatron (diffractive jet and W production)
 LHC : diffractive Higgs production

Factorisation theorem proved

but strong higher twist contributions

+ effects on evolution equations

+ underlying interaction → breaks simple application of of pdf transportation from HERA to Tevatron (« survival probability »)

Some references

- Introduction on DIS, SF, etc.F. Halzen, A.D. Martin, Quarks and Leptons, Wiley
- Introduction to pdf's and QCD

 CTEQ site http://www.phys.psu.edu/~cteq/ in particular

 QCD Handbook http://www.phys.psu.edu/~cteq/#Handbook

 W.K. Tung, Perturbative QCD and the parton structure of the nucleon see also: J.C. Collins, What exactly is a parton density? arXiv:hep-ph/0304122
- Present status of pdf's draw your favourite pdf's MRST site http://durpdg.dur.ac.uk/hepdata/
- Pdf uncertainties: see e.g. (+ ref. therein)
 A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne
 Uncertainties of predictions from parton distributions
 I. Experimental errors arXiv:hep-ph/0211080
 II. Theoretical errors arXiv:hep-ph/0308087
- > CERN PDFLIB manual http://consult.cern.ch/writeup/pdflib/