On the Structure Theorem for quasi-Hopf bimodules

Paolo Saracco

University of Turin, Italy

New trends in Hopf algebras and tensor categories

Royal Flemish Academy of Belgium for Science and the Arts - Brussels

June 2-5, 2015

Report of: P. Saracco, On the Structure Theorem for Quasi-Hopf Bimodules (arXiv:1501.06061)

Fix k a field. We assume to work in the category $\mathfrak{M} := \mathrm{Vect}_k$ of k-vector spaces

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_H of H-modules is monoidal. The category \mathfrak{M}_H^H of Hopf modules is the category of comodules on the H-module coalgebra H: $(\mathfrak{M}_H)^H$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H.

- the functor $(-) \otimes H : \mathfrak{M} \to \mathfrak{M}_H^H$ is an equivalence of categories with quasi-inverse $(-)^{\operatorname{co} H} : \mathfrak{M}_H^H \to \mathfrak{M}$, where $M^{\operatorname{co} H} := \{m \in M \mid \rho(m) = m \otimes 1\}$;
- ullet H is a Hopf algebra, i.e. it admits an antipode s:H o H

Sketch of proof.

The assignment $[m \mapsto \tau_M(m_0) \otimes m_1]$, where $\tau_M : M \to M^{\operatorname{co}H}, [m \mapsto m_0 \cdot s(m_1)]$, defines the inverse for the counit $\vartheta_M : M^{\operatorname{co}H} \otimes H \to M, [m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

Fix \Bbbk a field. We assume to work in the category $\mathfrak{M}:=\mathrm{Vect}_{\Bbbk}$ of $\Bbbk\text{-vector}$ spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_H of H-modules is monoidal. The category \mathfrak{M}_H^H of Hopf modules is the category of comodules on the H-module coalgebra H: $(\mathfrak{M}_H)^H$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H:

- the functor $(-) \otimes H : \mathfrak{M} \to \mathfrak{M}_H^n$ is an equivalence of categories with quasi-inverse $(-)^{\operatorname{co} H} : \mathfrak{M}_H^H \to \mathfrak{M}$, where $M^{\operatorname{co} H} := \{m \in M \mid \rho(m) = m \otimes 1\}$;
- ullet H is a Hopf algebra, i.e. it admits an antipode s:H o H

Sketch of proof.

The assignment $[m \mapsto \tau_{M}(m_{0}) \otimes m_{1}]$, where $\tau_{M}: M \to M^{\operatorname{co}H}, [m \mapsto m_{0} \cdot s(m_{1})]$, defines the inverse for the counit $\vartheta_{M}: M^{\operatorname{co}H} \otimes H \to M, [m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

Fix \Bbbk a field. We assume to work in the category $\mathfrak{M}:=\mathrm{Vect}_{\Bbbk}$ of \Bbbk -vector spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_H of H-modules is monoidal. The category \mathfrak{M}_H^H of Hopf modules is the category of comodules on the H-module coalgebra H: $(\mathfrak{M}_H)^H$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H:

- the functor $(-) \otimes H : \mathfrak{M} \to \mathfrak{M}_H^H$ is an equivalence of categories with quasi-inverse $(-)^{\operatorname{co} H} : \mathfrak{M}_H^H \to \mathfrak{M}$, where $M^{\operatorname{co} H} := \{ m \in M \mid \rho(m) = m \otimes 1 \}$;
- $ext{@}$ H is a Hopf algebra, i.e. it admits an antipode s:H o H

Sketch of proof.

The assignment $[m \mapsto \tau_M(m_0) \otimes m_1]$, where $\tau_M : M \to M^{\operatorname{co}H}, [m \mapsto m_0 \cdot s(m_1)]$, defines the inverse for the counit $\vartheta_M : M^{\operatorname{co}H} \otimes H \to M, [m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

Fix k a field. We assume to work in the category $\mathfrak{M}:=\mathrm{Vect}_k$ of k-vector spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_H of H-modules is monoidal. The category \mathfrak{M}_H^H of Hopf modules is the category of comodules on the H-module coalgebra H: $(\mathfrak{M}_H)^H$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H:

- the functor $(-) \otimes H : \mathfrak{M} \to \mathfrak{M}_H^H$ is an equivalence of categories with quasi-inverse $(-)^{\operatorname{co} H} : \mathfrak{M}_H^H \to \mathfrak{M}$, where $M^{\operatorname{co} H} := \{m \in M \mid \rho(m) = m \otimes 1\}$;
- **②** H is a Hopf algebra, i.e. it admits an antipode $s: H \to H$.

Sketch of proof

The assignment $[m \mapsto \tau_M(m_0) \otimes m_1]$, where $\tau_M : M \to M^{\operatorname{co}H}, [m \mapsto m_0 \cdot s(m_1)]$, defines the inverse for the counit $\vartheta_M : M^{\operatorname{co}H} \otimes H \to M, [m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

Fix k a field. We assume to work in the category $\mathfrak{M}:=\mathrm{Vect}_k$ of k-vector spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_H of H-modules is monoidal. The category \mathfrak{M}_H^H of Hopf modules is the category of comodules on the H-module coalgebra H: $(\mathfrak{M}_H)^H$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H:

- the functor $(-) \otimes H : \mathfrak{M} \to \mathfrak{M}_H^H$ is an equivalence of categories with quasi-inverse $(-)^{\operatorname{co} H} : \mathfrak{M}_H^H \to \mathfrak{M}$, where $M^{\operatorname{co} H} := \{m \in M \mid \rho(m) = m \otimes 1\}$;
- **②** H is a Hopf algebra, i.e. it admits an antipode $s: H \to H$.

Sketch of proof.

The assignment $[m \mapsto \tau_{M}(m_{0}) \otimes m_{1}]$, where $\tau_{M} : M \to M^{\operatorname{co}H}, [m \mapsto m_{0} \cdot s(m_{1})]$, defines the inverse for the counit $\vartheta_{M} : M^{\operatorname{co}H} \otimes H \to M, [m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

Monoidal categories

Definition (Benabou/Mac Lane, 1963)

A monoidal category $(\mathcal{M}, \otimes, \mathbb{I}, \alpha, \ell, \wp)$ is a category \mathcal{M} endowed with a functor $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ (tensor product), an object \mathbb{I} (unit) and 3 natural isomorphisms:

$$\alpha_{M,N,P}: (M \otimes N) \otimes P \to M \otimes (N \otimes P)$$
 (associativity constraint)

$$\ell_M: \mathbb{I} \otimes M \to M, \qquad \wp_N: N \otimes \mathbb{I} \to N \qquad \text{(unit constraints)}$$

such that the following diagrams commute (pentagon and triangle axioms):

$$((M \otimes N) \otimes P) \otimes Q \xrightarrow{\alpha} (M \otimes N) \otimes (P \otimes Q) \qquad (M \otimes \mathbb{I}) \otimes N \xrightarrow{\alpha} M \otimes (\mathbb{I} \otimes N)$$

$$(M \otimes (N \otimes P)) \otimes Q \qquad M \otimes (N \otimes (P \otimes Q)) \qquad M \otimes N$$

$$M \otimes ((N \otimes P) \otimes Q) \qquad M \otimes N$$

Monoidal categories

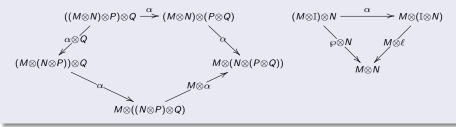
Definition (Benabou/Mac Lane, 1963)

A monoidal category $(\mathcal{M}, \otimes, \mathbb{I}, \alpha, \ell, \wp)$ is a category \mathcal{M} endowed with a functor $\otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ (tensor product), an object \mathbb{I} (unit) and 3 natural isomorphisms:

$$\alpha_{M,N,P}: (M \otimes N) \otimes P \to M \otimes (N \otimes P)$$
 (associativity constraint)

 $\ell_M: \mathbb{I} \otimes M \to M, \qquad \wp_N: N \otimes \mathbb{I} \to N \qquad \text{(unit constraints)}$

such that the following diagrams commute (pentagon and triangle axioms):



Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:

- \bigcirc (A, m, u) is an associative and unital algebra;
- ② $\Delta: A \to A \otimes A$ (comultiplication) and $\varepsilon: A \to \mathbb{k}$ (counit) are algebra maps
- $\bullet \Phi \in A \otimes A \otimes A$ is an invertible element (reassociator) that satisfies

$$\begin{split} (A \otimes A \otimes \Delta)(\Phi) \cdot (\Delta \otimes A \otimes A)(\Phi) &= (1 \otimes \Phi) \cdot (A \otimes \Delta \otimes A)(\Phi) \cdot (\Phi \otimes 1) \\ (A \otimes \varepsilon \otimes A)(\Phi) &= 1 \otimes 1. \end{split}$$

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

$$\Phi \cdot ((\Delta \otimes A) \circ \Delta) = ((A \otimes \Delta) \circ \Delta) \cdot \Phi.$$

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:

- $oldsymbol{0}$ (A, m, u) is an associative and unital algebra;
- ② $\Delta: A \to A \otimes A$ (comultiplication) and $\varepsilon: A \to \mathbb{k}$ (counit) are algebra maps
- $\bullet \Phi \in A \otimes A \otimes A$ is an invertible element (reassociator) that satisfies

$$(A \otimes A \otimes \Delta)(\Phi) \cdot (\Delta \otimes A \otimes A)(\Phi) = (1 \otimes \Phi) \cdot (A \otimes \Delta \otimes A)(\Phi) \cdot (\Phi \otimes 1),$$
$$(A \otimes \varepsilon \otimes A)(\Phi) = 1 \otimes 1.$$

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

$$\Phi \cdot ((\Delta \otimes A) \circ \Delta) = ((A \otimes \Delta) \circ \Delta) \cdot \Phi.$$

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:

- (A, m, u) is an associative and unital algebra;
- ② $\Delta: A \to A \otimes A$ (comultiplication) and $\varepsilon: A \to \mathbb{k}$ (counit) are algebra maps;
- \bullet $\Phi \in A \otimes A \otimes A$ is an invertible element (reassociator) that satisfies

$$(A \otimes A \otimes \Delta)(\Phi) \cdot (\Delta \otimes A \otimes A)(\Phi) = (1 \otimes \Phi) \cdot (A \otimes \Delta \otimes A)(\Phi) \cdot (\Phi \otimes 1),$$
$$(A \otimes \varepsilon \otimes A)(\Phi) = 1 \otimes 1.$$

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

$$\Phi \cdot ((\Delta \otimes A) \circ \Delta) = ((A \otimes \Delta) \circ \Delta) \cdot \Phi.$$

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:

- \bullet (A, m, u) is an associative and unital algebra;
- ② $\Delta: A \to A \otimes A$ (comultiplication) and $\varepsilon: A \to \mathbb{k}$ (counit) are algebra maps;
- $\bullet \ \Phi \in A \otimes A \otimes A \text{ is an invertible element (reassociator) that satisfies: }$

$$(A \otimes A \otimes \Delta)(\Phi) \cdot (\Delta \otimes A \otimes A)(\Phi) = (1 \otimes \Phi) \cdot (A \otimes \Delta \otimes A)(\Phi) \cdot (\Phi \otimes 1),$$

$$(A \otimes \varepsilon \otimes A)(\Phi) = 1 \otimes 1.$$

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

$$\Phi \cdot ((\Delta \otimes A) \circ \Delta) = ((A \otimes \Delta) \circ \Delta) \cdot \Phi.$$

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:

- \bullet (A, m, u) is an associative and unital algebra;
- ② $\Delta: A \to A \otimes A$ (comultiplication) and $\varepsilon: A \to \mathbb{k}$ (counit) are algebra maps;
- **③** $\Phi \in A \otimes A \otimes A$ is an invertible element (reassociator) that satisfies:

$$\begin{split} (A \otimes A \otimes \Delta)(\Phi) \cdot (\Delta \otimes A \otimes A)(\Phi) &= (1 \otimes \Phi) \cdot (A \otimes \Delta \otimes A)(\Phi) \cdot (\Phi \otimes 1), \\ (A \otimes \varepsilon \otimes A)(\Phi) &= 1 \otimes 1. \end{split}$$

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

$$\Phi \cdot ((\Delta \otimes A) \circ \Delta) = ((A \otimes \Delta) \circ \Delta) \cdot \Phi.$$

Fact

If A is a quasi-bialgebra then ${}_{A}\mathfrak{M}_{A}$ is a monoidal category:

• for all $M, N \in {}_{A}\mathfrak{M}_{A}$, $M \otimes N \in {}_{A}\mathfrak{M}_{A}$ via

$$a\cdot (m\otimes n)\cdot b=(a_1\cdot m\cdot b_1)\otimes (a_2\cdot n\cdot b_2);$$

- $k \in {}_{A}\mathfrak{M}_{A}$ via $a \cdot 1 \cdot b = \varepsilon(a)\varepsilon(b)1$;
- for all $m \in M$, $n \in N$, $p \in P$, the associativity constraint is given by

$$_{A}\alpha_{A}((m\otimes n)\otimes p)=\Phi\cdot (m\otimes (n\otimes p))\cdot \Phi^{-1}.$$

Proposition/Definition (Hausser and Nill, [HN, 1999])

 $((A,m,m),\Delta,\varepsilon)$ is a coassociative A-bimodule coalgebra. Its category of (right) quasi-Hopf bimodules is the category of A-comodules in ${}_A\mathfrak{M}_A$: ${}_A\mathfrak{M}_A^A:=({}_A\mathfrak{M}_A)^A$.

Fact

If A is a quasi-bialgebra then ${}_{A}\mathfrak{M}_{A}$ is a monoidal category:

• for all $M, N \in {}_{A}\mathfrak{M}_{A}$, $M \otimes N \in {}_{A}\mathfrak{M}_{A}$ via

$$a \cdot (m \otimes n) \cdot b = (a_1 \cdot m \cdot b_1) \otimes (a_2 \cdot n \cdot b_2);$$

- $\mathbb{k} \in {}_{A}\mathfrak{M}_{A}$ via $a \cdot 1 \cdot b = \varepsilon(a)\varepsilon(b)1$;
- for all $m \in M$, $n \in N$, $p \in P$, the associativity constraint is given by

$$_{A}\alpha_{A}((m\otimes n)\otimes p)=\Phi\cdot (m\otimes (n\otimes p))\cdot \Phi^{-1}.$$

Proposition/Definition (Hausser and Nill, [HN, 1999])

 $((A, m, m), \Delta, \varepsilon)$ is a coassociative A-bimodule coalgebra. Its category of (right) quasi-Hopf bimodules is the category of A-comodules in ${}_A\mathfrak{M}_A$: ${}_A\mathfrak{M}_A^A:=({}_A\mathfrak{M}_A)^A$.

Fact

If A is a quasi-bialgebra then ${}_{A}\mathfrak{M}_{A}$ is a monoidal category:

• for all $M, N \in {}_{A}\mathfrak{M}_{A}$, $M \otimes N \in {}_{A}\mathfrak{M}_{A}$ via

$$a \cdot (m \otimes n) \cdot b = (a_1 \cdot m \cdot b_1) \otimes (a_2 \cdot n \cdot b_2);$$

- $\mathbb{k} \in {}_{A}\mathfrak{M}_{A}$ via $a \cdot 1 \cdot b = \varepsilon(a)\varepsilon(b)1$;
- for all $m \in M$, $n \in N$, $p \in P$, the associativity constraint is given by

$$_{A}\alpha_{A}((m\otimes n)\otimes p)=\Phi\cdot (m\otimes (n\otimes p))\cdot \Phi^{-1}.$$

Proposition/Definition (Hausser and Nill, [HN, 1999])

 $((A,m,m),\Delta,\varepsilon)$ is a coassociative A-bimodule coalgebra. Its category of (right) quasi-Hopf bimodules is the category of A-comodules in ${}_A\mathfrak{M}_A$: ${}_A\mathfrak{M}_A^A:=\left({}_A\mathfrak{M}_A\right)^A$

Fact

If A is a quasi-bialgebra then ${}_{A}\mathfrak{M}_{A}$ is a monoidal category:

• for all $M, N \in {}_{A}\mathfrak{M}_{A}$, $M \otimes N \in {}_{A}\mathfrak{M}_{A}$ via

$$a \cdot (m \otimes n) \cdot b = (a_1 \cdot m \cdot b_1) \otimes (a_2 \cdot n \cdot b_2);$$

- $\mathbb{k} \in {}_{A}\mathfrak{M}_{A}$ via $a \cdot 1 \cdot b = \varepsilon(a)\varepsilon(b)1$;
- for all $m \in M$, $n \in N$, $p \in P$, the associativity constraint is given by

$$_{A}\alpha_{A}((m\otimes n)\otimes p)=\Phi\cdot (m\otimes (n\otimes p))\cdot \Phi^{-1}.$$

Proposition/Definition (Hausser and Nill, [HN, 1999])

 $((A,m,m),\Delta,\varepsilon)$ is a coassociative A-bimodule coalgebra. Its category of (right) quasi-Hopf bimodules is the category of A-comodules in ${}_A\mathfrak{M}_A$: ${}_A\mathfrak{M}_A^A:=\left({}_A\mathfrak{M}_A\right)^A$

Fact

If A is a quasi-bialgebra then ${}_{A}\mathfrak{M}_{A}$ is a monoidal category:

• for all $M, N \in {}_{A}\mathfrak{M}_{A}$, $M \otimes N \in {}_{A}\mathfrak{M}_{A}$ via

$$a \cdot (m \otimes n) \cdot b = (a_1 \cdot m \cdot b_1) \otimes (a_2 \cdot n \cdot b_2);$$

- $\mathbb{k} \in {}_{\mathcal{A}}\mathfrak{M}_{\mathcal{A}}$ via $a \cdot 1 \cdot b = \varepsilon(a)\varepsilon(b)1$;
- for all $m \in M$, $n \in N$, $p \in P$, the associativity constraint is given by

$$_{A}\alpha_{A}((m\otimes n)\otimes p)=\Phi\cdot (m\otimes (n\otimes p))\cdot \Phi^{-1}.$$

Proposition/Definition (Hausser and Nill, [HN, 1999])

 $((A,m,m),\Delta,\varepsilon)$ is a coassociative A-bimodule coalgebra. Its category of (right) quasi-Hopf bimodules is the category of A-comodules in ${}_A\mathfrak{M}_A$: ${}_A\mathfrak{M}_A^A:=({}_A\mathfrak{M}_A)^A$.

An adjunction between ${}_A\mathfrak{M}$ and ${}_A\mathfrak{M}^A$

Henceforth, let us fix a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ and denote by $A^+ := \ker(\varepsilon)$ its augmentation ideal.

The subsequent result is contained in the proof of Theorem 3.1 in

[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J Algebra 273 (2004), no. 2, 538-550.

Theorem

Set $\overline{M}:=\frac{M}{MA^+}\in {}_A\mathfrak{M}$. We have that the functor $R:=(-)\otimes A:{}_A\mathfrak{M}\to {}_A\mathfrak{M}^A$ is right adjoint to the functor $L:=\overline{(-)}:{}_A\mathfrak{M}^A_A\to {}_A\mathfrak{M}$. Unit and counit are given by:

$$\eta_M: M \to \overline{M} \otimes A, \left[m \mapsto \overline{m_0} \otimes m_1\right] \quad \text{and} \quad \epsilon_N: \overline{N \otimes A} \to N, \left[\overline{n \otimes a} \mapsto n \, \varepsilon(a)\right]$$

respectively. Moreover ϵ is always a natural isomorphism

An adjunction between ${}_{A}\mathfrak{M}$ and ${}_{A}\mathfrak{M}^{A}$

Henceforth, let us fix a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ and denote by $A^+ := \ker(\varepsilon)$ its augmentation ideal.

The subsequent result is contained in the proof of Theorem 3.1 in

[Sc] P. Schauenburg, *Two characterizations of finite quasi-Hopf algebras*. J Algebra **273** (2004), no. 2, 538-550.

Theorem

Set $\overline{M}:=\frac{M}{MA^+}\in {}_A\mathfrak{M}$. We have that the functor $R:=(-)\otimes A:{}_A\mathfrak{M}\to {}_A\mathfrak{M}^A$ is right adjoint to the functor $L:=\overline{(-)}:{}_A\mathfrak{M}^A_A\to {}_A\mathfrak{M}$. Unit and counit are given by

$$\eta_M: M o \overline{M} \otimes A, \left[m \mapsto \overline{m_0} \otimes m_1
ight] \quad ext{and} \quad \epsilon_N: \overline{N \otimes A} o N, \left[\overline{n \otimes a} \mapsto n \, \varepsilon(a)
ight]$$

respectively. Moreover ϵ is always a natural isomorphism

An adjunction between ${}_A\mathfrak{M}$ and ${}_A\mathfrak{M}^A$

Henceforth, let us fix a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ and denote by $A^+ := \ker(\varepsilon)$ its augmentation ideal. The subsequent result is contained in the proof of Theorem 3.1 in

[Sc] P. Schauenburg, *Two characterizations of finite quasi-Hopf algebras*. J. Algebra **273** (2004), no. 2, 538-550.

Theorem

Set $\overline{M}:=\frac{M}{MA^+}\in {}_A\mathfrak{M}$. We have that the functor $R:=(-)\otimes A:{}_A\mathfrak{M}\to {}_A\mathfrak{M}_A^A$ is right adjoint to the functor $L:=\overline{(-)}:{}_A\mathfrak{M}_A^A\to {}_A\mathfrak{M}$. Unit and counit are given by:

$$\eta_M: M \to \overline{M} \otimes A, \left[m \mapsto \overline{m_0} \otimes m_1 \right] \quad \text{and} \quad \epsilon_N: \overline{N \otimes A} \to N, \left[\overline{n \otimes a} \mapsto n \, \varepsilon(a) \right]$$

respectively. Moreover ϵ is always a natural isomorphism.

An adjunction between ${}_A\mathfrak{M}$ and ${}_A\mathfrak{M}^A$

Henceforth, let us fix a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ and denote by $A^+ := \ker(\varepsilon)$ its augmentation ideal.

The subsequent result is contained in the proof of Theorem 3.1 in

[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004), no. 2, 538-550.

Theorem

Set $\overline{M}:=\frac{M}{MA^+}\in {}_A\mathfrak{M}$. We have that the functor $R:=(-)\otimes A:{}_A\mathfrak{M}\to {}_A\mathfrak{M}_A^A$ is right adjoint to the functor $L:=\overline{(-)}:{}_A\mathfrak{M}_A^A\to {}_A\mathfrak{M}$. Unit and counit are given by:

$$\eta_M: M \to \overline{M} \otimes A, \left[m \mapsto \overline{m_0} \otimes m_1 \right] \quad \text{and} \quad \epsilon_N: \overline{N \otimes A} \to N, \left[\overline{n \otimes a} \mapsto n \, \varepsilon(a) \right]$$

respectively. Moreover ϵ is always a natural isomorphism.

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$a \cdot (x \otimes y) = x \otimes ay,$$
 $(x \otimes y) \cdot a = xa_1 \otimes ya_2,$
$$\rho(x \otimes y) = ((x \otimes y_1) \otimes y_2) \cdot \Phi$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$\widehat{\eta}_A := \eta_{A \, \widehat{\otimes} \, A} \colon A \, \widehat{\otimes} \, A \to \overline{A \, \widehat{\otimes} \, A} \otimes A, \left[a \otimes b \mapsto \overline{a \Phi^1 \otimes b_1 \Phi^2} \otimes b_2 \Phi^3 \right]$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \to A$ that satisfies

(P1)
$$b_1S(ab_2) = S(a)\varepsilon(b), \forall a, b \in A; \stackrel{a=1}{\leadsto} b_1S(b_2) = S(1)\varepsilon(b)$$

(P2)
$$S(a_1b)a_2 = \varepsilon(a)S(b)$$
, $\forall a, b \in A$;

(P3)
$$\Phi^1 S(\Phi^2) \Phi^3 = 1$$
, where $\Phi = \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ (summation understood).

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$a \cdot (x \otimes y) = x \otimes ay,$$
 $(x \otimes y) \cdot a = xa_1 \otimes ya_2,$
$$\rho(x \otimes y) = ((x \otimes y_1) \otimes y_2) \cdot \Phi$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$\widehat{\eta}_A := \eta_{A \mathbin{\widehat{\otimes}} A} \colon A \mathbin{\widehat{\otimes}} A \to \overline{A \mathbin{\widehat{\otimes}} A} \otimes A, \left[a \otimes b \mapsto \overline{a \Phi^1 \otimes b_1 \Phi^2} \otimes b_2 \Phi^3 \right]$$

Definition

A preantipode for a quasi-bialgebra (A,Φ) is a linear map $S\colon A\to A$ that satisfies

(P1)
$$b_1S(ab_2) = S(a)\varepsilon(b), \forall a, b \in A; \stackrel{a=1}{\leadsto} b_1S(b_2) = S(1)\varepsilon(b)$$

(P2)
$$S(a_1b)a_2 = \varepsilon(a)S(b)$$
, $\forall a, b \in A$;

(P3)
$$\Phi^1 S(\Phi^2) \Phi^3 = 1$$
, where $\Phi = \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ (summation understood).

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$a \cdot (x \otimes y) = x \otimes ay,$$
 $(x \otimes y) \cdot a = xa_1 \otimes ya_2,$
$$\rho(x \otimes y) = ((x \otimes y_1) \otimes y_2) \cdot \Phi$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$\widehat{\eta}_A := \eta_{A \mathbin{\widehat{\otimes}} A} \colon A \mathbin{\widehat{\otimes}} A \to \overline{A \mathbin{\widehat{\otimes}} A} \otimes A, \left[a \otimes b \mapsto \overline{a \Phi^1 \otimes b_1 \Phi^2} \otimes b_2 \Phi^3 \right]$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \to A$ that satisfies:

- $(P1) \ b_1S(ab_2) = S(a)\varepsilon(b), \ \forall \ a,b \in A;$
- (P2) $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in A;$
- (P3) $\Phi^1 S(\Phi^2) \Phi^3 = 1$, where $\Phi = \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ (summation understood).

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$a \cdot (x \otimes y) = x \otimes ay,$$
 $(x \otimes y) \cdot a = xa_1 \otimes ya_2,$
$$\rho(x \otimes y) = ((x \otimes y_1) \otimes y_2) \cdot \Phi$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$\widehat{\eta}_A := \eta_{A \mathbin{\widehat{\otimes}} A} \colon A \mathbin{\widehat{\otimes}} A \to \overline{A \mathbin{\widehat{\otimes}} A} \otimes A, \left[a \otimes b \mapsto \overline{a \Phi^1 \otimes b_1 \Phi^2} \otimes b_2 \Phi^3 \right]$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \to A$ that satisfies:

- $(P1) \ b_1S(ab_2) = S(a)\varepsilon(b), \ \forall \ a,b \in A; \ \stackrel{\beta=1}{\leadsto} \ b_1S(b_2) = S(1)\varepsilon(b)$
- (P2) $S(a_1b)a_2 = \varepsilon(a)S(b)$, $\forall a, b \in A$;
- (P3) $\Phi^1 S(\Phi^2) \Phi^3 = 1$, where $\Phi = \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ (summation understood).

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$a \cdot (x \otimes y) = x \otimes ay,$$
 $(x \otimes y) \cdot a = xa_1 \otimes ya_2,$
$$\rho(x \otimes y) = ((x \otimes y_1) \otimes y_2) \cdot \Phi$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$\widehat{\eta}_A := \eta_{A \mathbin{\widehat{\otimes}} A} \colon A \mathbin{\widehat{\otimes}} A \to \overline{A \mathbin{\widehat{\otimes}} A} \otimes A, \left[a \otimes b \mapsto \overline{a \Phi^1 \otimes b_1 \Phi^2} \otimes b_2 \Phi^3 \right]$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S \colon A \to A$ that satisfies:

$$(P1) \ b_1S(ab_2) = S(a)\varepsilon(b), \ \forall \ a,b \in A; \ \stackrel{\beta=1}{\leadsto} \ b_1S(b_2) = S(1)\varepsilon(b)$$

(P2)
$$S(a_1b)a_2 = \varepsilon(a)S(b)$$
, $\forall a, b \in A$;

(P3)
$$\Phi^1 S(\Phi^2) \Phi^3 = 1$$
, where $\Phi = \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ (summation understood).

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$a \cdot (x \otimes y) = x \otimes ay,$$
 $(x \otimes y) \cdot a = xa_1 \otimes ya_2,$
$$\rho(x \otimes y) = ((x \otimes y_1) \otimes y_2) \cdot \Phi$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$\widehat{\eta}_A := \eta_{A \mathbin{\widehat{\otimes}} A} \colon A \mathbin{\widehat{\otimes}} A \to \overline{A \mathbin{\widehat{\otimes}} A} \otimes A, \left[a \otimes b \mapsto \overline{a \Phi^1 \otimes b_1 \Phi^2} \otimes b_2 \Phi^3 \right]$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \to A$ that satisfies:

$$(P1) \ b_1S(ab_2) = S(a)\varepsilon(b), \ \forall \ a,b \in A; \stackrel{a=1}{\leadsto} b_1S(b_2) = S(1)\varepsilon(b)$$

(P2)
$$S(a_1b)a_2 = \varepsilon(a)S(b)$$
, $\forall a, b \in A$;

(P3)
$$\Phi^1 S(\Phi^2) \Phi^3 = 1$$
, where $\Phi = \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ (summation understood).

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$a \cdot (x \otimes y) = x \otimes ay,$$
 $(x \otimes y) \cdot a = xa_1 \otimes ya_2,$
$$\rho(x \otimes y) = ((x \otimes y_1) \otimes y_2) \cdot \Phi$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$\widehat{\eta}_A := \eta_{A \mathbin{\widehat{\otimes}} A} \colon A \mathbin{\widehat{\otimes}} A \to \overline{A \mathbin{\widehat{\otimes}} A} \otimes A, \left[a \otimes b \mapsto \overline{a \Phi^1 \otimes b_1 \Phi^2} \otimes b_2 \Phi^3 \right]$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \to A$ that satisfies:

- $(P1) \ b_1S(ab_2) = S(a)\varepsilon(b), \ \forall \ a,b \in A; \ \stackrel{\beta=1}{\leadsto} \ b_1S(b_2) = S(1)\varepsilon(b)$
- (P2) $S(a_1b)a_2 = \varepsilon(a)S(b)$, $\forall a, b \in A$;
- (P3) $\Phi^1 S(\Phi^2) \Phi^3 = 1$, where $\Phi = \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ (summation understood).

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:

- (i) (L, R, η, ϵ) is an equivalence of categories;
- (ii) $\widehat{\eta}_A \colon A \widehat{\otimes} A \to A \widehat{\otimes} A \otimes A$ is an isomorphism;
- (iii) A admits a preantipode
- (iv) for every $M\in {}_A\mathfrak{M}^A_A$ there exists a linear map $\widetilde{ au}_{{}_M}\colon \overline{M} o M$ such that

$$\widetilde{\tau}_{M}(\overline{m_{0}}) \cdot m_{1} = m$$
 and $\overline{\widetilde{\tau}_{M}(\overline{m})_{0}} \otimes \widetilde{\tau}_{M}(\overline{m})_{1} = \overline{m} \otimes 1$ $(\forall m \in M)$

Proof

- $(i) \Rightarrow (ii)$ Trivial.
- (ii) \Rightarrow (iii) $S(a) := (A \otimes \varepsilon) (\widehat{\eta}_A^{-1} (\overline{1 \otimes a} \otimes 1)).$
- $(\mathsf{iii}) \Rightarrow (\mathsf{iv}) \ \tau_{\scriptscriptstyle M}(m) := \Phi^1 \cdot m_0 \cdot S(\Phi^2 m_1) \Phi^3 \ \mathsf{factors} \ \mathsf{through} \ \widetilde{ au}_{\scriptscriptstyle M} \colon \overline{M} o M.$
- $(iv) \Rightarrow (i) \ \eta_M^{-1}(\overline{m} \otimes a) := \widetilde{\tau}_M(\overline{m}) \cdot a.$

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:

- (i) (L, R, η, ϵ) is an equivalence of categories;
- (ii) $\widehat{\eta}_A : A \widehat{\otimes} A \to A \widehat{\otimes} A \otimes A$ is an isomorphism;
- (iii) A admits a preantipode,
- (iv) for every $M\in {}_A\mathfrak{M}_A^A$ there exists a linear map $\widetilde{ au}_{{}_M}\colon \overline{M} o M$ such that

$$\widetilde{\tau}_{\scriptscriptstyle M}(\overline{m_0}) \cdot m_1 = m$$
 and $\overline{\widetilde{\tau}_{\scriptscriptstyle M}(\overline{m})_0} \otimes \widetilde{\tau}_{\scriptscriptstyle M}(\overline{m})_1 = \overline{m} \otimes 1$ $(\forall m \in M)$

Proof

- (i) \Rightarrow (ii) Trivial.
- (ii) \Rightarrow (iii) $S(a) := (A \otimes \varepsilon) (\widehat{\eta}_A^{-1} (\overline{1 \otimes a} \otimes 1)).$
- $(iii) \Rightarrow (iv) \ \tau_{\scriptscriptstyle M}(m) := \Phi^1 \cdot m_0 \cdot S(\Phi^2 m_1) \Phi^3 \text{ factors through } \widetilde{\tau}_{\scriptscriptstyle M} \colon \overline{M} \to M.$
- $(iv) \Rightarrow (i) \ \eta_M^{-1}(\overline{m} \otimes a) := \widetilde{\tau}_{\scriptscriptstyle M}(\overline{m}) \cdot a$

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:

- (i) (L, R, η, ϵ) is an equivalence of categories;
- (ii) $\widehat{\eta}_A \colon A \widehat{\otimes} A \to A \widehat{\otimes} A \otimes A$ is an isomorphism;
- (iii) A admits a preantipode
- (iv) for every $M\in {}_A\mathfrak{M}^A_A$ there exists a linear map $\widetilde{ au}_{{}_M}\colon \overline{M} o M$ such that

$$\widetilde{\tau}_{M}(\overline{m_{0}}) \cdot m_{1} = m$$
 and $\widetilde{\widetilde{\tau}_{M}}(\overline{m})_{0} \otimes \widetilde{\tau}_{M}(\overline{m})_{1} = \overline{m} \otimes 1$ $(\forall m \in M)$

Proof.

- $(i) \Rightarrow (ii)$ Trivial.
- (ii) \Rightarrow (iii) $S(a) := (A \otimes \varepsilon) (\widehat{\eta}_A^{-1} (\overline{1 \otimes a} \otimes 1)).$
- $(\mathsf{iii}) \Rightarrow (\mathsf{iv}) \ \tau_{\scriptscriptstyle M}(m) := \Phi^1 \cdot m_0 \cdot S(\Phi^2 m_1) \Phi^3 \ \mathsf{factors} \ \mathsf{through} \ \widetilde{ au}_{\scriptscriptstyle M} \colon \overline{M} o M.$
- $(iv) \Rightarrow (i) \ \eta_M^{-1}(\overline{m} \otimes a) := \widetilde{\tau}_M(\overline{m}) \cdot a.$

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:

- (i) (L, R, η, ϵ) is an equivalence of categories;
- (ii) $\widehat{\eta}_A \colon A \widehat{\otimes} A \to A \widehat{\otimes} A \otimes A$ is an isomorphism;
- (iii) A admits a preantipode;
- (iv) for every $M\in {}_A\mathfrak{M}^A_A$ there exists a linear map $\widetilde{ au}_{{}_M}\colon \overline{M} o M$ such that

$$\widetilde{\tau}_{\scriptscriptstyle M}(\overline{m_0}) \cdot m_1 = m$$
 and $\widetilde{\widetilde{\tau}_{\scriptscriptstyle M}}(\overline{m})_0 \otimes \widetilde{\tau}_{\scriptscriptstyle M}(\overline{m})_1 = \overline{m} \otimes 1$ $(\forall m \in M)$

Proof

- $(i) \Rightarrow (ii)$ Trivial.
- (ii) \Rightarrow (iii) $S(a) := (A \otimes \varepsilon) (\widehat{\eta}_A^{-1} (\overline{1 \otimes a} \otimes 1)).$
- $(\mathsf{iii}) \Rightarrow (\mathsf{iv}) \ \tau_{\scriptscriptstyle M}(m) := \Phi^1 \cdot m_0 \cdot S(\Phi^2 m_1) \Phi^3 \ \mathsf{factors} \ \mathsf{through} \ \widetilde{ au}_{\scriptscriptstyle M} \colon \overline{M} o M.$
- $(iv) \Rightarrow (i) \ \eta_M^{-1}(\overline{m} \otimes a) := \widetilde{\tau}_M(\overline{m}) \cdot a.$

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:

- (i) (L, R, η, ϵ) is an equivalence of categories;
- (ii) $\widehat{\eta}_A \colon A \widehat{\otimes} A \to \overline{A \widehat{\otimes} A} \otimes A$ is an isomorphism;
- (iii) A admits a preantipode;
- (iv) for every $M \in {}_A\mathfrak{M}^A_A$ there exists a linear map $\widetilde{ au}_{\scriptscriptstyle{M}} \colon \overline{M} \to M$ such that

$$\widetilde{ au}_{\scriptscriptstyle M}(\overline{m_0})\cdot m_1=m \qquad ext{and} \qquad \overline{\widetilde{ au}_{\scriptscriptstyle M}(\overline{m})_0}\otimes \widetilde{ au}_{\scriptscriptstyle M}(\overline{m})_1=\overline{m}\otimes 1 \qquad (\forall\, m\in M)\,.$$

Proof

- $(i) \Rightarrow (ii)$ Trivial.
- (ii) \Rightarrow (iii) $S(a) := (A \otimes \varepsilon) (\widehat{\eta}_A^{-1} (\overline{1 \otimes a} \otimes 1)).$
- $(\mathrm{iii}) \Rightarrow (\mathrm{iv}) \ au_{\scriptscriptstyle M}(m) := \Phi^1 \cdot m_0 \cdot S(\Phi^2 m_1) \Phi^3 \ \mathrm{factors} \ \mathrm{through} \ \widetilde{ au}_{\scriptscriptstyle M} \colon \overline{M} o M.$
- $(iv) \Rightarrow (i) \ \eta_M^{-1}(\overline{m} \otimes a) := \widetilde{\tau}_{\scriptscriptstyle M}(\overline{m}) \cdot a$

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:

- (i) (L, R, η, ϵ) is an equivalence of categories;
- (ii) $\widehat{\eta}_A \colon A \widehat{\otimes} A \to A \widehat{\otimes} A \otimes A$ is an isomorphism;
- (iii) A admits a preantipode;
- (iv) for every $M \in {}_A\mathfrak{M}^A_A$ there exists a linear map $\widetilde{ au}_{\scriptscriptstyle{M}} \colon \overline{M} \to M$ such that

$$\widetilde{ au}_{\scriptscriptstyle M}(\overline{m_0})\cdot m_1=m \qquad {
m and} \qquad \overline{\widetilde{ au}_{\scriptscriptstyle M}(\overline{m})_0}\otimes \widetilde{ au}_{\scriptscriptstyle M}(\overline{m})_1=\overline{m}\otimes 1 \qquad (\forall\, m\in M)\,.$$

Proof.

- (i) \Rightarrow (ii) Trivial.
- (ii) \Rightarrow (iii) $S(a) := (A \otimes \varepsilon) (\widehat{\eta}_A^{-1} (\overline{1 \otimes a} \otimes 1)).$
- (iii) \Rightarrow (iv) $\tau_{\scriptscriptstyle M}(m) := \Phi^1 \cdot m_0 \cdot S(\Phi^2 m_1) \Phi^3$ factors through $\widetilde{\tau}_{\scriptscriptstyle M} \colon \overline{M} \to M$.
 - (iv) \Rightarrow (i) $\eta_M^{-1}(\overline{m} \otimes a) := \widetilde{\tau}_M(\overline{m}) \cdot a$.

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:

- (i) (L, R, η, ϵ) is an equivalence of categories;
- (ii) $\widehat{\eta}_A \colon A \widehat{\otimes} A \to A \widehat{\otimes} A \otimes A$ is an isomorphism;
- (iii) A admits a preantipode;
- (iv) for every $M \in {}_A\mathfrak{M}_A^A$ there exists a linear map $\widetilde{ au}_{\scriptscriptstyle M} \colon \overline{M} \to M$ such that

$$\widetilde{ au}_{\scriptscriptstyle M}(\overline{m_0})\cdot m_1=m \qquad {
m and} \qquad \overline{\widetilde{ au}_{\scriptscriptstyle M}(\overline{m})_0}\otimes \widetilde{ au}_{\scriptscriptstyle M}(\overline{m})_1=\overline{m}\otimes 1 \qquad (\forall\, m\in M)\,.$$

Proof.

- (i) \Rightarrow (ii) Trivial.
- (ii) \Rightarrow (iii) $S(a) := (A \otimes \varepsilon) (\widehat{\eta}_A^{-1} (\overline{1 \otimes a} \otimes 1)).$
- (iii) \Rightarrow (iv) $\tau_{\scriptscriptstyle M}(m) := \Phi^1 \cdot m_0 \cdot S(\Phi^2 m_1) \Phi^3$ factors through $\widetilde{\tau}_{\scriptscriptstyle M} \colon \overline{M} \to M$.
 - (iv) \Rightarrow (i) $\eta_M^{-1}(\overline{m} \otimes a) := \widetilde{\tau}_M(\overline{m}) \cdot a$.

Let $(A, m, u, \Delta, \varepsilon, \Phi, S)$ be a quasi-bialgebra with preantipode and $M \in {}_A\mathfrak{M}_A^A$.

Definition

The space of coinvariant elements of a $M\in {}_A\mathfrak{M}^A_A$ is $M^{\mathrm{co} A}:= au_{{}^M}(M).$

Proposition

- M^{coA} is a left A-module via $a \triangleright m := \tau_M(a \cdot m)$, $\forall a \in A, m \in M$.
- The map $\widetilde{\tau}_{\scriptscriptstyle M} \colon \overline{M} \xrightarrow{\sim} M^{{\rm co}A}$ is an isomorphism in ${}_{A}\mathfrak{M}$ with inverse map $\sigma_{\scriptscriptstyle M} \colon M^{{\rm co}A} \to \overline{M}, \left[m \mapsto \overline{m}\right].$

Corollary

Every $M \in {}_A\mathfrak{M}_A^A$ is of the form $M^{coA} \otimes A$.

Let $(A, m, u, \Delta, \varepsilon, \Phi, S)$ be a quasi-bialgebra with preantipode and $M \in {}_A\mathfrak{M}_A^A$.

Definition

The space of coinvariant elements of a $M \in {}_A\mathfrak{M}_A^A$ is $M^{coA} := \tau_{\scriptscriptstyle M}(M)$.

Proposition

- M^{coA} is a left A-module via $a \triangleright m := \tau_M(a \cdot m)$, $\forall a \in A, m \in M$.
- The map $\widetilde{\tau}_{\scriptscriptstyle M} \colon \overline{M} \xrightarrow{\sim} M^{{\operatorname{co}} A}$ is an isomorphism in ${}_{\mathcal A} \mathfrak M$ with inverse map $\sigma_{\scriptscriptstyle M} \colon M^{{\operatorname{co}} A} \to \overline{M}, \left[m \mapsto \overline{m}\right].$

Corollary

Every $M \in {}_A\mathfrak{M}_A^A$ is of the form $M^{coA} \otimes A$.

Let $(A, m, u, \Delta, \varepsilon, \Phi, S)$ be a quasi-bialgebra with preantipode and $M \in {}_A\mathfrak{M}_A^A$.

Definition

The space of coinvariant elements of a $M \in {}_A\mathfrak{M}_A^A$ is $M^{coA} := \tau_{\scriptscriptstyle M}(M)$.

Proposition

- M^{coA} is a left A-module via $a \triangleright m := \tau_M(a \cdot m)$, $\forall a \in A, m \in M$.
- The map $\widetilde{\tau}_{\scriptscriptstyle M} \colon \overline{M} \xrightarrow{\sim} M^{{
 m co}A}$ is an isomorphism in ${}_A\mathfrak{M}$ with inverse map $\sigma_{\scriptscriptstyle M} \colon M^{{
 m co}A} o \overline{M}, \big[m \mapsto \overline{m}\big].$

Corollary

Every $M \in {}_A\mathfrak{M}_A^A$ is of the form $M^{\mathrm{co}A} \otimes A$.

Let $(A, m, u, \Delta, \varepsilon, \Phi, S)$ be a quasi-bialgebra with preantipode and $M \in {}_A\mathfrak{M}_A^A$.

Definition

The space of coinvariant elements of a $M \in {}_{A}\mathfrak{M}^{A}_{A}$ is $M^{coA} := \tau_{M}(M)$.

Proposition

- M^{coA} is a left A-module via $a \triangleright m := \tau_M(a \cdot m)$, $\forall a \in A, m \in M$.
- The map $\widetilde{\tau}_{\scriptscriptstyle M} \colon \overline{M} \xrightarrow{\sim} M^{{\rm co}A}$ is an isomorphism in ${}_A\mathfrak{M}$ with inverse map $\sigma_{\scriptscriptstyle M} \colon M^{{\rm co}A} \to \overline{M}, \left[m \mapsto \overline{m}\right].$

Corollary

Every $M \in {}_A\mathfrak{M}^A_A$ is of the form $M^{\mathrm{co}A} \otimes A$.

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

• (H,s) is a Hopf algebra with antipode s if and only if $(H,m,u,\Delta,\varepsilon,\Phi,s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1\otimes 1\otimes 1$. One checks that the two maps $\tau_{\scriptscriptstyle M}$ coincide for all $M\in\mathfrak{M}_{\scriptscriptstyle H}^H$ and then the inverse to the original counit is given by:

$$\vartheta_{M}^{-1} \colon m \mapsto (\widetilde{\tau}_{M} \otimes H) (\eta_{M}(m)) = \tau_{M}(m_{0}) \otimes m_{1}.$$

• If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in {}_H\mathfrak{M}_H^H$

$$au_{\scriptscriptstyle M}(m) := \left(M^{\operatorname{co} H} \otimes \varepsilon\right) \left(\vartheta_M^{-1}(m)\right)$$

factors through $\widetilde{\tau}_{\scriptscriptstyle M}:\overline{M}\to M^{{\rm co}H}$ and that it satisfies condition (iv) of the Structure Theorem.

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

• (H,s) is a Hopf algebra with antipode s if and only if $(H,m,u,\Delta,\varepsilon,\Phi,s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1\otimes 1\otimes 1$.

One checks that the two maps $\tau_{\scriptscriptstyle M}$ coincide for all $M\in\mathfrak{M}_H^H$ and then the inverse to the original counit is given by:

$$\vartheta_{M}^{-1} \colon m \mapsto (\widetilde{\tau}_{M} \otimes H) (\eta_{M}(m)) = \tau_{M}(m_{0}) \otimes m_{1}.$$

• If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in {}_H\mathfrak{M}_H^H$

$$\tau_{\scriptscriptstyle M}(m) := \left(M^{\operatorname{co}H} \otimes \varepsilon\right) \left(\vartheta_M^{-1}(m)\right)$$

factors through $\widetilde{\tau}_{\scriptscriptstyle M}:\overline{M}\to M^{{\rm co}H}$ and that it satisfies condition (iv) of the Structure Theorem.

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

• (H,s) is a Hopf algebra with antipode s if and only if $(H,m,u,\Delta,\varepsilon,\Phi,s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1\otimes 1\otimes 1$. One checks that the two maps $\tau_{\scriptscriptstyle M}$ coincide for all $M\in\mathfrak{M}_H^H$ and then the inverse to the original counit is given by:

$$\vartheta_M^{-1}$$
: $m \mapsto (\widetilde{\tau}_M \otimes H) (\eta_M(m)) = \tau_M(m_0) \otimes m_1$.

• If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in {}_H\mathfrak{M}_H^H$

$$\tau_{\scriptscriptstyle M}(m) := \left(M^{\operatorname{co}H} \otimes \varepsilon\right) \left(\vartheta_M^{-1}(m)\right)$$

factors through $\widetilde{\tau}_{\scriptscriptstyle M}:\overline{M}\to M^{{\rm co}H}$ and that it satisfies condition (iv) of the Structure Theorem.

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

• (H,s) is a Hopf algebra with antipode s if and only if $(H,m,u,\Delta,\varepsilon,\Phi,s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1\otimes 1\otimes 1$. One checks that the two maps $\tau_{\scriptscriptstyle M}$ coincide for all $M\in\mathfrak{M}_H^H$ and then the inverse to the original counit is given by:

$$\vartheta_M^{-1} \colon m \mapsto (\widetilde{\tau}_M \otimes H) (\eta_M(m)) = \tau_M(m_0) \otimes m_1.$$

• If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in {}_H\mathfrak{M}_H^H$

$$au_{\scriptscriptstyle{M}}(m) := \left(M^{\operatorname{co} H} \otimes \varepsilon\right) \left(\vartheta_{\scriptscriptstyle{M}}^{-1}(m)\right)$$

factors through $\widetilde{\tau}_{\scriptscriptstyle M}:\overline{M}\to M^{{\rm co}H}$ and that it satisfies condition (iv) of the Structure Theorem.

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

• (H,s) is a Hopf algebra with antipode s if and only if $(H,m,u,\Delta,\varepsilon,\Phi,s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1\otimes 1\otimes 1$. One checks that the two maps $\tau_{\scriptscriptstyle M}$ coincide for all $M\in\mathfrak{M}_H^H$ and then the inverse to the original counit is given by:

$$\vartheta_M^{-1} \colon m \mapsto (\widetilde{\tau}_{\scriptscriptstyle M} \otimes H) (\eta_M(m)) = \tau_{\scriptscriptstyle M}(m_0) \otimes m_1.$$

• If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in {}_H\mathfrak{M}_H^H$

$$au_{\scriptscriptstyle{M}}(m) := \left(M^{\operatorname{co}H} \otimes \varepsilon\right) \left(\vartheta_{\scriptscriptstyle{M}}^{-1}(m)\right)$$

factors through $\widetilde{\tau}_{\scriptscriptstyle M}:\overline{M}\to M^{{\rm co}H}$ and that it satisfies condition (iv) of the Structure Theorem.

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s \colon A \to A$ and two distinguished elements α and β such that:

$$s(a_1)\alpha a_2 = \alpha \varepsilon(a)$$
 $a_1\beta s(a_2) = \beta \varepsilon(a)$ $\Phi^1\beta s(\Phi^2)\alpha \Phi^3 = 1$ $s(\phi^1)\alpha \phi^2\beta s(\phi^3) = 1$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

- ① Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode: $S(\cdot) := \beta s(\cdot) \alpha.$
- ② If s is invertible, then τ_{M} coincides with the projection E of Hausser and Nill: $\tau(m) = \Phi^{1} \cdot m_{0} \cdot \beta s(\Phi^{2}m_{1})\alpha \Phi^{3} = \Phi^{1} \cdot m_{0} \cdot \beta s(s^{-1}(\alpha \Phi^{3})\Phi^{2}m_{1}) = E(m).$

is then possible to obtain Hausser and Nill's result from our Structure Theorem

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s: A \to A$ and two distinguished elements α and β such that:

$$s(a_1)\alpha a_2 = \alpha \varepsilon(a)$$
 $a_1\beta s(a_2) = \beta \varepsilon(a)$ $\Phi^1\beta s(\Phi^2)\alpha \Phi^3 = 1$ $s(\phi^1)\alpha \phi^2\beta s(\phi^3) = 1$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

• Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode:

$$S(\cdot) := \beta s(\cdot) \alpha$$
.

② If s is invertible, then τ_M coincides with the projection E of Hausser and Nill: $\tau(m) = \Phi^1 \cdot m_0 \cdot \beta s(\Phi^2 m_1) \alpha \Phi^3 = \Phi^1 \cdot m_0 \cdot \beta s(s^{-1}(\alpha \Phi^3) \Phi^2 m_1) = E(m)$.

is then possible to obtain Hausser and Nill's result from our Structure Theorem

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s: A \to A$ and two distinguished elements α and β such that:

$$s(a_1)\alpha a_2 = \alpha \varepsilon(a)$$
 $a_1\beta s(a_2) = \beta \varepsilon(a)$ $\Phi^1\beta s(\Phi^2)\alpha \Phi^3 = 1$ $s(\phi^1)\alpha \phi^2\beta s(\phi^3) = 1$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

• Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode:

$$S(\cdot) := \beta s(\cdot) \alpha.$$

If s is invertible, then τ_M coincides with the projection E of Hausser and Nill: $\tau(m) = \Phi^1 \cdot m_0 \cdot \beta s(\Phi^2 m_1) \alpha \Phi^3 = \Phi^1 \cdot m_0 \cdot \beta s(s^{-1}(\alpha \Phi^3) \Phi^2 m_1) = E(m)$.

than possible to obtain Hausser and Nill's result from our Structure Theorem

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s: A \to A$ and two distinguished elements α and β such that:

$$s(a_1)\alpha a_2 = \alpha \varepsilon(a)$$
 $a_1\beta s(a_2) = \beta \varepsilon(a)$ $\Phi^1\beta s(\Phi^2)\alpha \Phi^3 = 1$ $s(\phi^1)\alpha \phi^2\beta s(\phi^3) = 1$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

• Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode:

$$S(\cdot) := \beta s(\cdot) \alpha$$
.

② If s is invertible, then τ_M coincides with the projection E of Hausser and Nill: $\tau(m) = \Phi^1 \cdot m_0 \cdot \beta s(\Phi^2 m_1) \alpha \Phi^3 = \Phi^1 \cdot m_0 \cdot \beta s(s^{-1}(\alpha \Phi^3) \Phi^2 m_1) = E(m)$.

It is then possible to obtain Hausser and Nill's result from our Structure Theorem.

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we have implicitly seen the case of ordinary bialgebras.

Proposition

If $(A, m, u, \Delta, \varepsilon, \Phi, S)$ is a commutative quasi-bialgebra with preantipode, then A is an Hopf algebra with antipode $s(a) = \Phi^1 S(a\Phi^2)\Phi^3$ and $(A, m, u, \Delta, \varepsilon, \Phi, s, 1, S(1))$ is a quasi-Hopf algebra.

Theorem (Theorem 3.1 in [Sc]] $\,$

For a finite dimensional quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$, T.F.A.E.:

- A is a quasi-Hopf algebra
- ② The adjunction (L, R, η, ϵ) is an equivalence of categories.
- [Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004), no. 2, 538-550.

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we have implicitly seen the case of ordinary bialgebras.

Proposition

If $(A, m, u, \Delta, \varepsilon, \Phi, S)$ is a commutative quasi-bialgebra with preantipode, then A is an Hopf algebra with antipode $s(a) = \Phi^1 S(a\Phi^2)\Phi^3$ and $(A, m, u, \Delta, \varepsilon, \Phi, s, 1, S(1))$ is a quasi-Hopf algebra.

Theorem (Theorem 3.1 in [Sc]

For a finite dimensional quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$, T.F.A.E.:

- A is a quasi-Hopf algebra
- ② The adjunction (L, R, η, ϵ) is an equivalence of categories.
- [Sc] P. Schauenburg, *Two characterizations of finite quasi-Hopf algebras*. J. Algebra **273** (2004), no. 2, 538-550.

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we have implicitly seen the case of ordinary bialgebras.

Proposition

If $(A, m, u, \Delta, \varepsilon, \Phi, S)$ is a commutative quasi-bialgebra with preantipode, then A is an Hopf algebra with antipode $s(a) = \Phi^1 S(a\Phi^2)\Phi^3$ and $(A, m, u, \Delta, \varepsilon, \Phi, s, 1, S(1))$ is a quasi-Hopf algebra.

Theorem (Theorem 3.1 in [Sc])

For a finite dimensional quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$, T.F.A.E.:

- A is a quasi-Hopf algebra.
- **②** The adjunction (L, R, η, ϵ) is an equivalence of categories.
- [Sc] P. Schauenburg, *Two characterizations of finite quasi-Hopf algebras*. J. Algebra **273** (2004), no. 2, 538-550.

A key point in the proof of $(2\Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}\colon \overbrace{{}_{\bullet}A\otimes A}\stackrel{\sim}{\longrightarrow} {}_{\bullet}A$ of left A-modules and of a linear morphism $\gamma\colon A\to A, \left[a\mapsto \widetilde{\gamma}(\overline{1\otimes a})\right]$ that satisfy also

$$\widetilde{\gamma}ig(\overline{a\otimes b}ig)=a\gamma(b)\quad ext{ and }\quad a_1\gamma(a_2)=arepsilon(a)\gamma(1).$$

Consider $\xi\left(\overline{a\otimes b}\right):=\left(A\otimes\varepsilon\right)\left(\widehat{\eta}_A^{-1}(\overline{a\otimes b}\otimes 1)\right)$. The maps ξ and S satisfy $\xi\left(\overline{a\otimes b}\right)=aS(b)$ and $a_1S(a_2)=\varepsilon(a)S(1)$.

However, a posteriori, $\widetilde{\gamma}(a \otimes b) = a\beta s(b)$ while $\xi(a \otimes b) = a\beta s(b)\alpha$ and α cannot be expected to be invertible in general.

Proposition

If ξ is invertible then $\left(\left(a \overset{s}{\longmapsto} 1^1 S(a1^2)\right), 1, S(1)\right)$, where $\overline{1^1 \otimes 1^2} = \xi^{-1}(1)$, defines a quasi-antipode (without any hypothesis on the dimension of A).

Corollary

A key point in the proof of $(2\Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}\colon \overline{{}_{\bullet}A\otimes A}\stackrel{\sim}{\longrightarrow} {}_{\bullet}A$ of left A-modules and of a linear morphism $\gamma\colon A\to A, \left[a\mapsto \widetilde{\gamma}(\overline{1}\otimes a)\right]$ that satisfy also

$$\widetilde{\gamma}ig(\overline{a\otimes b}ig)=a\gamma(b) \quad ext{ and } \quad a_1\gamma(a_2)=arepsilon(a)\gamma(1).$$

Consider $\xi\left(\overline{a\otimes b}\right):=\left(A\otimes\varepsilon\right)\left(\widehat{\eta}_A^{-1}(\overline{a\otimes b}\otimes 1)\right)$. The maps ξ and S satisfy $\xi\left(\overline{a\otimes b}\right)=aS(b)$ and $a_1S(a_2)=\varepsilon(a)S(1)$.

However, a posteriori, $\widetilde{\gamma}(a \otimes b) = a\beta s(b)$ while $\xi(a \otimes b) = a\beta s(b)\alpha$ and α cannot be expected to be invertible in general.

Proposition

If ξ is invertible then $\left(\left(a \overset{s}{\longmapsto} 1^1 S(a1^2)\right), 1, S(1)\right)$, where $\overline{1^1 \otimes 1^2} = \xi^{-1}(1)$, defines a quasi-antipode (without any hypothesis on the dimension of A).

Corollary

A key point in the proof of $(2\Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}\colon \overbrace{{}_{\bullet}A\otimes A}\stackrel{\sim}{\longrightarrow} {}_{\bullet}A$ of left A-modules and of a linear morphism $\gamma\colon A\to A, \left[a\mapsto \widetilde{\gamma}(\overline{1\otimes a})\right]$ that satisfy also

$$\widetilde{\gamma}ig(\overline{a\otimes b}ig)=a\gamma(b) \quad \text{ and } \quad a_1\gamma(a_2)=arepsilon(a)\gamma(1).$$

Consider $\xi\left(\overline{a\otimes b}\right):=\left(A\otimes\varepsilon\right)\left(\widehat{\eta}_A^{-1}(\overline{a\otimes b}\otimes 1)\right)$. The maps ξ and S satisfy $\xi\left(\overline{a\otimes b}\right)=aS(b)$ and $a_1S(a_2)=\varepsilon(a)S(1)$.

However, a posteriori, $\widetilde{\gamma}(\overline{a \otimes b}) = a\beta s(b)$ while $\xi(\overline{a \otimes b}) = a\beta s(b)\alpha$ and α cannot be expected to be invertible in general.

Proposition

If ξ is invertible then $\left(\left(a \overset{s}{\longmapsto} 1^1 S(a1^2)\right), 1, S(1)\right)$, where $\overline{1^1 \otimes 1^2} = \xi^{-1}(1)$, defines a quasi-antipode (without any hypothesis on the dimension of A).

Corollary

A key point in the proof of $(2\Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}\colon \overline{\bullet A\otimes A}\stackrel{\sim}{\longrightarrow} \bullet A$ of left A-modules and of a linear morphism $\gamma\colon A\to A, \left[a\mapsto \widetilde{\gamma}(\overline{1\otimes a})\right]$ that satisfy also

$$\widetilde{\gamma}ig(\overline{a\otimes b}ig)=a\gamma(b)\quad ext{ and }\quad a_1\gamma(a_2)=arepsilon(a)\gamma(1).$$

Consider $\xi\left(\overline{a\otimes b}\right):=\left(A\otimes\varepsilon\right)\left(\widehat{\eta}_A^{-1}(\overline{a\otimes b}\otimes 1)\right)$. The maps ξ and S satisfy $\xi\left(\overline{a\otimes b}\right)=aS(b)$ and $a_1S(a_2)=\varepsilon(a)S(1)$.

However, a posteriori, $\widetilde{\gamma}(\overline{a \otimes b}) = a\beta s(b)$ while $\xi(\overline{a \otimes b}) = a\beta s(b)\alpha$ and α cannot be expected to be invertible in general.

Proposition

If ξ is invertible then $\left(\left(a \overset{s}{\longmapsto} 1^1 S(a 1^2)\right), 1, S(1)\right)$, where $\overline{1^1 \otimes 1^2} = \xi^{-1}(1)$, defines a quasi-antipode (without any hypothesis on the dimension of A).

Corollary

A key point in the proof of $(2\Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}\colon \overbrace{{}_{\bullet}A\otimes A}\stackrel{\sim}{\longrightarrow} {}_{\bullet}A$ of left A-modules and of a linear morphism $\gamma\colon A\to A, \left[a\mapsto \widetilde{\gamma}(\overline{1\otimes a})\right]$ that satisfy also

$$\widetilde{\gamma}ig(\overline{a\otimes b}ig)=a\gamma(b) \quad ext{ and } \quad a_1\gamma(a_2)=arepsilon(a)\gamma(1).$$

Consider $\xi\left(\overline{a\otimes b}\right):=\left(A\otimes\varepsilon\right)\left(\widehat{\eta}_A^{-1}(\overline{a\otimes b}\otimes 1)\right)$. The maps ξ and S satisfy

$$\xi\left(\overline{a\otimes b}\right) = aS(b)$$
 and $a_1S(a_2) = \varepsilon(a)S(1)$.

However, a posteriori, $\widetilde{\gamma}(\overline{a\otimes b})=a\beta s(b)$ while $\xi(\overline{a\otimes b})=a\beta s(b)\alpha$ and α cannot be expected to be invertible in general.

Proposition

If ξ is invertible then $\left(\left(a \overset{s}{\longmapsto} 1^1 S(a1^2)\right), 1, S(1)\right)$, where $\overline{1^1 \otimes 1^2} = \xi^{-1}(1)$, defines a quasi-antipode (without any hypothesis on the dimension of A).

Corollary

Example (Preliminaries 2.3 in [EG])

Let $C_2 = \langle g \rangle$ be the cyclic group of order 2 and let $H(2) := \mathbb{k} C_2$ be its group algebra (char(\mathbb{k}) \neq 2):

$$\mathit{m}(\mathit{p} \otimes \mathit{q}) = \mathit{p} \cdot \mathit{q}, \quad \mathit{u}(1_{\Bbbk}) = 1_{\mathit{C}_{2}}, \quad \Delta(\mathit{p}) = \mathit{p} \otimes \mathit{p}, \quad \varepsilon(\mathit{p}) = 1_{\Bbbk} \quad (\,\forall\, \mathit{p}, \mathit{q} \in \mathit{C}_{2}\,).$$

Let us consider the non trivial reassociator

$$\Phi := (1 \otimes 1 \otimes 1) - 2(\lambda \otimes \lambda \otimes \lambda)$$
 where $\lambda := \frac{1}{2}(1 - g)$.

One can verify that $(H(2), m, u, \Delta, \varepsilon, \Phi, \mathrm{Id}_{H(2)}, g, 1)$ is a quasi-Hopf algebra. Therefore $S: H(2) \to H(2), [z \mapsto z \cdot g]$ provides a preantipode for H(2) and

$$\xi \colon \overline{H(2) \otimes H(2)} \to H(2), [\overline{x \otimes y} \mapsto x \cdot y \cdot g]$$

is easily checked to be invertible with inverse $\xi^{-1}(x) = \overline{x \otimes g}$. A quasi-antipode for H(2) is given then by $(\mathrm{Id}_{H(2)}, 1, g)$.

Example (Preliminaries 2.3 in [EG])

Let $C_2 = \langle g \rangle$ be the cyclic group of order 2 and let $H(2) := \mathbb{k} C_2$ be its group algebra (char(\mathbb{k}) \neq 2):

$$\mathit{m}(\mathit{p} \otimes \mathit{q}) = \mathit{p} \cdot \mathit{q}, \quad \mathit{u}(1_{\Bbbk}) = 1_{C_2}, \quad \Delta(\mathit{p}) = \mathit{p} \otimes \mathit{p}, \quad \varepsilon(\mathit{p}) = 1_{\Bbbk} \quad (\, \forall \, \mathit{p}, \mathit{q} \in \mathit{C}_2 \,).$$

Let us consider the non trivial reassociator:

$$\Phi := (1 \otimes 1 \otimes 1) - 2(\lambda \otimes \lambda \otimes \lambda)$$
 where $\lambda := \frac{1}{2}(1 - g)$.

One can verify that $(H(2), m, u, \Delta, \varepsilon, \Phi, \mathrm{Id}_{H(2)}, g, 1)$ is a quasi-Hopf algebra. Therefore $S \colon H(2) \to H(2), [z \mapsto z \cdot g]$ provides a preantipode for H(2) and

$$\xi \colon \overline{H(2) \otimes H(2)} \to H(2), \left[\overline{x \otimes y} \mapsto x \cdot y \cdot g \right]$$

is easily checked to be invertible with inverse $\xi^{-1}(x) = \overline{x \otimes g}$. A quasi-antipode for H(2) is given then by $(\mathrm{Id}_{H(2)}, 1, g)$.

Example (Preliminaries 2.3 in [EG])

Let $C_2 = \langle g \rangle$ be the cyclic group of order 2 and let $H(2) := \mathbb{k} C_2$ be its group algebra (char(\mathbb{k}) \neq 2):

$$\mathit{m}(\mathit{p} \otimes \mathit{q}) = \mathit{p} \cdot \mathit{q}, \quad \mathit{u}(1_{\Bbbk}) = 1_{\mathit{C}_{2}}, \quad \Delta(\mathit{p}) = \mathit{p} \otimes \mathit{p}, \quad \varepsilon(\mathit{p}) = 1_{\Bbbk} \quad (\forall \mathit{p}, \mathit{q} \in \mathit{C}_{2}).$$

Let us consider the non trivial reassociator:

$$\Phi := (1 \otimes 1 \otimes 1) - 2(\lambda \otimes \lambda \otimes \lambda)$$
 where $\lambda := \frac{1}{2}(1 - g)$.

One can verify that $(H(2), m, u, \Delta, \varepsilon, \Phi, \operatorname{Id}_{H(2)}, g, 1)$ is a quasi-Hopf algebra.

Therefore $S: H(2) \to H(2), [z \mapsto z \cdot g]$ provides a preantipode for H(2) and

$$\xi \colon \overline{H(2) \otimes H(2)} \to H(2), [\overline{x \otimes y} \mapsto x \cdot y \cdot g]$$

is easily checked to be invertible with inverse $\xi^{-1}(x) = \overline{x \otimes g}$. A quasi-antipode for H(2) is given then by $(\mathrm{Id}_{H(2)}, 1, g)$.

Example (Preliminaries 2.3 in [EG])

Let $C_2 = \langle g \rangle$ be the cyclic group of order 2 and let $H(2) := \mathbb{k}C_2$ be its group algebra (char(\mathbb{k}) \neq 2):

$$\mathit{m}(\mathit{p} \otimes \mathit{q}) = \mathit{p} \cdot \mathit{q}, \quad \mathit{u}(1_{\Bbbk}) = 1_{\mathit{C}_{2}}, \quad \Delta(\mathit{p}) = \mathit{p} \otimes \mathit{p}, \quad \varepsilon(\mathit{p}) = 1_{\Bbbk} \quad (\,\forall\, \mathit{p}, \mathit{q} \in \mathit{C}_{2}\,).$$

Let us consider the non trivial reassociator:

$$\Phi := (1 \otimes 1 \otimes 1) - 2(\lambda \otimes \lambda \otimes \lambda)$$
 where $\lambda := \frac{1}{2}(1 - g)$.

One can verify that $(H(2), m, u, \Delta, \varepsilon, \Phi, \mathrm{Id}_{H(2)}, g, 1)$ is a quasi-Hopf algebra. Therefore $S: H(2) \to H(2), [z \mapsto z \cdot g]$ provides a preantipode for H(2) and

$$\xi \colon \overline{H(2) \otimes H(2)} \to H(2), \left[\overline{x \otimes y} \mapsto x \cdot y \cdot g \right]$$

is easily checked to be invertible with inverse $\xi^{-1}(x) = \overline{x \otimes g}$. A quasi-antipode for H(2) is given then by $(\mathrm{Id}_{H(2)}, 1, g)$.

Example (Preliminaries 2.3 in [EG])

Let $C_2 = \langle g \rangle$ be the cyclic group of order 2 and let $H(2) := \mathbb{k}C_2$ be its group algebra (char(\mathbb{k}) \neq 2):

$$\mathit{m}(\mathit{p} \otimes \mathit{q}) = \mathit{p} \cdot \mathit{q}, \quad \mathit{u}(1_{\Bbbk}) = 1_{\mathit{C}_{2}}, \quad \Delta(\mathit{p}) = \mathit{p} \otimes \mathit{p}, \quad \varepsilon(\mathit{p}) = 1_{\Bbbk} \quad (\forall \mathit{p}, \mathit{q} \in \mathit{C}_{2}).$$

Let us consider the non trivial reassociator:

$$\Phi := (1 \otimes 1 \otimes 1) - 2(\lambda \otimes \lambda \otimes \lambda)$$
 where $\lambda := \frac{1}{2}(1 - g)$.

One can verify that $(H(2), m, u, \Delta, \varepsilon, \Phi, \mathrm{Id}_{H(2)}, g, 1)$ is a quasi-Hopf algebra. Therefore $S: H(2) \to H(2), [z \mapsto z \cdot g]$ provides a preantipode for H(2) and

$$\xi \colon \overline{H(2) \otimes H(2)} \to H(2), \left[\overline{x \otimes y} \mapsto x \cdot y \cdot g \right]$$

is easily checked to be invertible with inverse $\xi^{-1}(x) = \overline{x \otimes g}$.

A quasi-antipode for H(2) is given then by $(\mathrm{Id}_{H(2)},1,g)$

Example (Preliminaries 2.3 in [EG])

Let $C_2 = \langle g \rangle$ be the cyclic group of order 2 and let $H(2) := \mathbb{k} C_2$ be its group algebra (char(\mathbb{k}) \neq 2):

$$\mathit{m}(\mathit{p} \otimes \mathit{q}) = \mathit{p} \cdot \mathit{q}, \quad \mathit{u}(1_{\Bbbk}) = 1_{C_2}, \quad \Delta(\mathit{p}) = \mathit{p} \otimes \mathit{p}, \quad \varepsilon(\mathit{p}) = 1_{\Bbbk} \quad (\, \forall \, \mathit{p}, \mathit{q} \in \mathit{C}_2 \,).$$

Let us consider the non trivial reassociator:

$$\Phi := (1 \otimes 1 \otimes 1) - 2(\lambda \otimes \lambda \otimes \lambda)$$
 where $\lambda := \frac{1}{2}(1 - g)$.

One can verify that $(H(2), m, u, \Delta, \varepsilon, \Phi, \mathrm{Id}_{H(2)}, g, 1)$ is a quasi-Hopf algebra. Therefore $S \colon H(2) \to H(2), [z \mapsto z \cdot g]$ provides a preantipode for H(2) and

$$\xi \colon \overline{H(2) \otimes H(2)} \to H(2), \left[\overline{x \otimes y} \mapsto x \cdot y \cdot g \right]$$

is easily checked to be invertible with inverse $\xi^{-1}(x) = \overline{x \otimes g}$. A quasi-antipode for H(2) is given then by $(\mathrm{Id}_{H(2)}, 1, g)$.

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra

We firmly believe that such an example should exist. In the dual case an example of a dual quasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in:

[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.

We firmly believe that such an example should exist. In the dual case an example of a dual quasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in:

[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.

We firmly believe that such an example should exist. In the dual case an example of a dual quasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in:

[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.

We firmly believe that such an example should exist. In the dual case an example of a dual quasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in:

[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.