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The main aim

Fix k a field. We assume to work in the category 91 := Vecty of k-vector spaces.

H bialgebra = the category My of H-modules is monoidal. The category 9 of

Hopf modules is the category of comodules on the H-module coalgebra H: (E)J?H)H.

Our aim is to extend the following result to the framework of quasi-bialgebras.

T.F.A.E. for a bialgebra H:
Q the functor (—) ® H : I — MY} is an equivalence of categories with
quasi-inverse (=) - MM — M, where M™H .= {m e M | p(m) = m® 1};
@ H is a Hopf algebra, i.e. it admits an antipode s : H — H.
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The main aim

Fix k a field. We assume to work in the category 91 := Vecty of k-vector spaces.

H bialgebra = the category My of H-modules is monoidal. The category 9 of

Hopf modules is the category of comodules on the H-module coalgebra H: (E)J?H)H.

Our aim is to extend the following result to the framework of quasi-bialgebras.

T.F.A.E. for a bialgebra H:

Q the functor (—) ® H : I — MY} is an equivalence of categories with
quasi-inverse (=) - MM — M, where M™H .= {m e M | p(m) = m® 1};
@ H is a Hopf algebra, i.e. it admits an antipode s : H — H.

Sketch of proof.

The assignment [m — 7,(mo) ® my ], where 7, : M — MH [m — mqg - s(my)],
defines the inverse for the counit ¥y : M @ H — M,[m & h+ m- h]. The unit
is always invertible. ]
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Monoidal categories

Definition (Benabou/Mac Lane, 1963)

A monoidal category (M, ®,1, , ¢, p) is a category M endowed with a functor
® : M x M — M (tensor product), an object I (unit) and 3 natural isomorphisms:

apne: (MRN)®P - M®® (N®P) (associativity constraint)

Iy I M— M, on NI — N (unit constraints)

P. Saracco (University of Turin) The preantipode and the Structure Theorem September 9, 2015



Monoidal categories

Definition (Benabou/Mac Lane, 1963)

A monoidal category (M, ®,1, , ¢, p) is a category M endowed with a functor
® : M x M — M (tensor product), an object I (unit) and 3 natural isomorphisms:

apne: (MRN)®P - M®® (N®P) (associativity constraint)

Iy I M— M, on NI — N (unit constraints)
such that the following diagrams commute (pentagon and triangle axioms):
(MBN)RP)®Q —> (MON)3(P@Q) (MEDRN —=—> Me(I2N)
/
;@Q \“\ >®N M®t/
(M&(N®P))®Q Me(N®(PRQ)) Vel
\a M®/ ?

N

MR((N®P)RQ)
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Example

Recall that a bialgebra is an algebra (H, m, u) endowed with two algebra maps
A: H— H®H and ¢: H — k such that the following diagrams commute

HoHoH="22 HeoH koH<" HoH "%, Hok

ac] fa I

H®H<A7H H

The category (My, ®, k) of (right) H-modules is monoidal. The H-module
structure on the tensor product is given by the diagonal action:

MN)H—-MN: (m@n)@h— (m-h)® (n- h)
and the one on the base field via the trivial action:

k@ H—k: k® hw— ke(h).
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Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])
A quasi-bialgebra is a datum (A, m, u, A, e, ®) where:

v

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no.
6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.
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@ (A, m,u) is an associative and unital algebra;

v

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no.
6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.

P. Saracco (University of Turin) The preantipode and the Structure Theorem September 9, 2015



Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])
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Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum (A, m, u, A, e, ®) where:
@ (A, m,u) is an associative and unital algebra;
Q@ A:A— A® A (comultiplication) and e : A — k (counit) are algebra maps;
Q@ € A® A® A s an invertible element (reassociator) that satisfies:

(ARARA)D)- (ARARA)(P)=(12) (A® A® A)(®) (¢®1),
(ARe®A)(®) =11

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no.
6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.
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Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])
A quasi-bialgebra is a datum (A, m, u, A, e, ®) where:
@ (A, m,u) is an associative and unital algebra;
Q@ A:A— A® A (comultiplication) and e : A — k (counit) are algebra maps;
Q@ € A® A® A s an invertible element (reassociator) that satisfies:
(ARARA)P) (ARARA)N(P)=(129)- (ARARA)(P) - (P®1),
(AReA)(P)=1x1.

Moreover, ¢ is a counit for A and A is quasi-coassociative, i.e.

- (AR A)oA)=((A®A)oA)- b,

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no.
6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.
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Quasi-bialgebras

If A is a quasi-bialgebra then a4 is a monoidal category:
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Quasi-bialgebras

If A is a quasi-bialgebra then a4 is a monoidal category:
o forall M, N € ;0Ma, M@ N € 204 via

a-(m@n)-b=(ay-m-b)R(ar-n-b);
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Quasi-bialgebras

If A is a quasi-bialgebra then a4 is a monoidal category:
o forall M, N € ;0Ma, M@ N € 204 via

a-(m@n)-b=(a;-m-b)®(az-n-by);
o ke Myviaa-1-b=ce(a)e(b)l;
e forallme M, ne N, p € P, the associativity constraint is given by

aca((m@n)@p)=¢- (ma(n®p)) ¢
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Quasi-bialgebras

If A is a quasi-bialgebra then a4 is a monoidal category:
o forall M, N € ;0Ma, M@ N € 204 via

a-(m@n)-b=(a;-m-b)®(az-n-by);
o ke Myviaa-1-b=ce(a)e(b)l;
e forallme M, ne N, p € P, the associativity constraint is given by

aca((m@n)@p)=¢- (ma(n®p)) ¢

Proposition/Definition (Hausser and Nill, [HN, 1999])

((A, m, m), A,e) is a coassociative A-bimodule coalgebra. lts category of (right)

. . . . A
quasi-Hopf bimodules is the category of A-comodules in A9a: A% = (49Na)".

[HN] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint
(arXiv:math/9904164v2).
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An adjunction between 9 and 904
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An adjunction between 9 and 904

Henceforth, let us fix a quasi-bialgebra (A, m, u, A, e, ®) and denote by
AT := ker(e) its augmentation ideal.
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An adjunction between 9 and 904

Henceforth, let us fix a quasi-bialgebra (A, m, u, A, e, ®) and denote by
AT := ker(e) its augmentation ideal.
The subsequent result is contained in the proof of Theorem 3.1 in

[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J.
Algebra 273 (2004), no. 2, 538-550.

Theorem
Set M := M € , 9. We have that the functor R := (—) @ A: ;0 — ,IM4 is

right adjoint to the functor L := (=) : ;294 — ,9%. Unit and counit are given by:

m:M—MeA [m—mg@m] and ey: N®A— N, [n®a ne(a)]

respectively. Moreover € is always a natural isomorphism.
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An adjunction between 9 and 904

Henceforth, let us fix a quasi-bialgebra (A, m, u, A, e, ®) and denote by
AT := ker(e) its augmentation ideal.
The subsequent result is contained in the proof of Theorem 3.1 in

[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J.
Algebra 273 (2004), no. 2, 538-550.

Theorem

Set M := M € , 9. We have that the functor R := (—) @ A: ;0 — ,IM4 is

right adjoint to the functor L := (=) : ;294 — ,9%. Unit and counit are given by:

m:M—MeA [m—mg@m] and ey: N®A— N, [n®a ne(a)]

respectively. Moreover € is always a natural isomorphism.

Main question: When is R an equivalence of categories?
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Answering the main question (1)

Consider the quasi-Hopf bimodule A® A with underling vector space A® A and
structures given explicitly by:

a-(x®y)=x® ay, (x®y) a=xa ® ya,
px@y)=((x©n)@y)
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Ta =50 ARA = ARA®A, [a® b adl © b ®2 @ byd?]
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Consider the quasi-Hopf bimodule A® A with underling vector space A® A and
structures given explicitly by:

a-(x®y)=x® ay, (x®y) a=xa ® ya,
px@y)=((x©n)@y)

The component of the unit associated to A® A satisfies:

Ta =50 ARA = ARA®A, [a® b adl © b ®2 @ byd?]

Definition
A preantipode for a quasi-bialgebra (A, ®) is a linear map S: A — A that satisfies:

(P1) b1S(aby) = S(a)e(b), Va,b € A;
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(P3) $15(d?)d3 =1, where ® = ¢! ® $2 @ ®3 (summation understood).
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Answering the main question (1)

Consider the quasi-Hopf bimodule A® A with underling vector space A® A and
structures given explicitly by:

a-(x®y)=x® ay, (x®y) a=xa ® ya,
px@y)=((x©n)@y)

The component of the unit associated to A® A satisfies:

Ta =50 ARA = ARA®A, [a® b adl © b ®2 @ byd?]

Definition

A preantipode for a quasi-bialgebra (A, ®) is a linear map S: A — A that satisfies:
(P1) b1S(aby) = S(a)e(b), Va,b € A; % by S(by) = S(1)e(b)
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Answering the main question (I1)

Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m,u, A e, ®) be a quasi-bialgebra. T.F.A.E.:
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Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m,u, A e, ®) be a quasi-bialgebra. T.F.A.E.:
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Answering the main question (I1)

Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m,u, A e, ®) be a quasi-bialgebra. T.F.A.E.:
(i) (L, R,n,€) is an equivalence of categories;

(i) a: AR A — AR A® A is an isomorphism;
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Answering the main question (I1)

Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m,u, A e, ®) be a quasi-bialgebra. T.F.A.E.:
(i) (L, R,n,€) is an equivalence of categories;
(i) fa: AR A — ABA® A is an isomorphism;
(iii) A admits a preantipode;
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Answering the main question (I1)

Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m,u, A e, ®) be a quasi-bialgebra. T.F.A.E.:
(i) (L, R,n,€) is an equivalence of categories;
(i) fa: AR A — ABA® A is an isomorphism;
(iii) A admits a preantipode;
(iv) for every M € ,90) there exists a linear map 7,: M — M such that

(M) -m=m and Tu(M)o@Tu(M)1=mMx1 (Vme M).
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Answering the main question (I1)

Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m,u, A e, ®) be a quasi-bialgebra. T.F.A.E.:
(i) (L,R,m,€) is an equivalence of categories;
(ii) Ma: A DA ADADA is an isomorphism;
(iii) A admits a preantipode;
(iv) for every M € ,94 there exists a linear map 7,,: M — M such that

Tu(T) - my = m and Tu(M)o @ Tu(M):1 =mM®1 (VYme M).

Proof.
(i) = (ii) Trivial.
(i) = (iii) S(a):=(A®e)(My ' T®a®1)).
)
)

| A

(i) = (iv) T ( ) ==L mg - S(®2my)®3 factors through 7, M — M.
(iv) = (i) mp! (M ® a) := 7 () - 2. O
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Answering the main question (I1)

Theorem (Structure Theorem for quasi-Hopf bimodules)
Let (A,m,u, A e, ®) be a quasi-bialgebra. T.F.A.E.:
(i) (L,R,m,€) is an equivalence of categories;
(ii) Ma: A DA ADADA is an isomorphism;
(iii) A admits a preantipode;
(iv) for every M € ,94 there exists a linear map 7,,: M — M such that

Tu(T) - my = m and Tu(M)o @ Tu(M):1 =mM®1 (VYme M).

Proof.
(i) = (ii) Trivial.
(i) = (iii) S(a):=(A®e)(My ' T®a®1)).
)
)

| A

(i) = (iv) T ( ) ==L mg - S(®2my)®3 factors through 7, M — M.
(iv) = (i) mp! (M ® a) := 7 () - 2. O

As a consequence: the preantipode, when it exists, is unique.
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Revisiting classical results (1)

Let (H, m, u, A ) be an ordinary bialgebra.
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Revisiting classical results (1)

Let (H, m, u, A ) be an ordinary bialgebra.

o (H,s) is a Hopf algebra with antipode s if and only if (H, m,u, A,e,®,s) is a
quasi-bialgebra with preantipode s and reassociator  =1® 1 ® 1.

P. Saracco (University of Turin) The preantipode and the Structure Theorem September 9, 2015 10 / 15



Revisiting classical results (1)

Let (H, m, u, A ) be an ordinary bialgebra.

o (H,s) is a Hopf algebra with antipode s if and only if (H, m,u, A,e,®,s) is a
quasi-bialgebra with preantipode s and reassociator  =1® 1 ® 1.
One checks that the two maps 7, coincide for all M € 9} and then the
inverse to the original counit is given by:

It me (T @ H) (nu(m)) = 1(mo) ® my.
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Revisiting classical results (1)

Let (H, m, u, A ) be an ordinary bialgebra.

o (H,s) is a Hopf algebra with antipode s if and only if (H, m,u, A,e,®,s) is a
quasi-bialgebra with preantipode s and reassociator  =1® 1 ® 1.
One checks that the two maps 7, coincide for all M € 9} and then the
inverse to the original counit is given by:

It me (T @ H) (nu(m)) = 1(mo) ® my.

o If every H-Hopf module satisfies the Fundamental Theorem, then one can
verify that for every M € ,H

Tu(m) := (M @) (9, (m))

factors through 7, : M — M<°" and that it satisfies condition (iv) of the
Structure Theorem.
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Revisiting classical results (1)

Let (H, m, u, A ) be an ordinary bialgebra.

o (H,s) is a Hopf algebra with antipode s if and only if (H, m,u, A,e,®,s) is a
quasi-bialgebra with preantipode s and reassociator  =1® 1 ® 1.
One checks that the two maps 7, coincide for all M € 9} and then the
inverse to the original counit is given by:

It me (T @ H) (nu(m)) = 1(mo) ® my.

o If every H-Hopf module satisfies the Fundamental Theorem, then one can
verify that for every M € ,H

Tu(m) := (M @) (9, (m))

factors through 7, : M — M<°" and that it satisfies condition (iv) of the
Structure Theorem.

In this context, the Structure Theorem for quasi-Hopf bimodules reduces to the
classical Fundamental Theorem of Hopf modules.
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Revisiting classical results (1)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra (A, m, u, A, e, ®) is a quasi-Hopf algebra if it is
endowed with an algebra anti-homomorphism s: A — A and two distinguished
elements o and 8 such that:

s(a1)aa, = ae(a) a1fs(a2) = Be(a)

d1Bs(P?)ad® =1 s(¢')ag?Bs(¢®) =1

The triple (s, «, 8) is called quasi-antipode.
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Revisiting classical results (1)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra (A, m, u, A, e, ®) is a quasi-Hopf algebra if it is
endowed with an algebra anti-homomorphism s: A — A and two distinguished
elements « and 3 such that:

s(a1)aa, = ae(a) a1fs(a2) = Be(a)

d1Bs(P?)ad® =1 s(¢')ag?Bs(¢®) =1

The triple (s, «, 8) is called quasi-antipode.

Quasi-Hopf case
@ Every quasi-Hopf algebra (H, m, u, A, e, ®, s, , ) admits a preantipode:
S(-) = Bs(-)a.
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Revisiting classical results (1)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra (A, m, u, A, e, ®) is a quasi-Hopf algebra if it is
endowed with an algebra anti-homomorphism s: A — A and two distinguished
elements « and 3 such that:

s(a1)aa, = ae(a) a1fs(a2) = Be(a)

d1Bs(P?)ad® =1 s(¢')ag?Bs(¢®) =1

The triple (s, «, 8) is called quasi-antipode.

Quasi-Hopf case
@ Every quasi-Hopf algebra (H, m, u, A, e, ®, s, , ) admits a preantipode:
S(-) = Bs(-)a.
QIfs isinvertible, then Hausser and Nill's M<H is isomorphic as left module
with M and their projection corresponds to our map 7.
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Revisiting classical results (1)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra (A, m, u, A, e, ®) is a quasi-Hopf algebra if it is
endowed with an algebra anti-homomorphism s: A — A and two distinguished
elements « and 3 such that:

s(a1)aa, = ae(a) a1fs(a2) = Be(a)

d1Bs(P?)ad® =1 s(¢')ag?Bs(¢®) =1

The triple (s, «, 8) is called quasi-antipode.

Quasi-Hopf case
@ Every quasi-Hopf algebra (H, m, u, A, e, ®, s, , ) admits a preantipode:
S(-) = Bs(-)a.

QIfs isinvertible, then Hausser and Nill's M<H is isomorphic as left module
with M and their projection corresponds to our map 7.

It is then possible to obtain Hausser and Nill's result from our Structure Theorem.

o’
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From preantipodes to quasi-antipodes (1)

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we
have implicitly seen the case of ordinary bialgebras.
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From preantipodes to quasi-antipodes (1)

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we
have implicitly seen the case of ordinary bialgebras.

Proposition

If (A,m,u, A e,d,S) is a commutative quasi-bialgebra with preantipode, then A is
an Hopf algebra with antipode s(a) = ®1S(a®2)®3 and (A, m, u, A, e, ®,s,1,5(1))
is a quasi-Hopf algebra.
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From preantipodes to quasi-antipodes (1)

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we
have implicitly seen the case of ordinary bialgebras.

Proposition

If (A,m,u, A e,d,S) is a commutative quasi-bialgebra with preantipode, then A is
an Hopf algebra with antipode s(a) = ®1S(a®2)®3 and (A, m, u, A, e, ®,s,1,5(1))
is a quasi-Hopf algebra.

v

Theorem (Theorem 3.1 in [Sc])

For a finite dimensional quasi-bialgebra (A, m,u, A e, ®), T.F.A.E.:
@ A is a quasi-Hopf algebra.

@ The adjunction (L, R,n,¢€) is an equivalence of categories.

[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J.
Algebra 273 (2004), no. 2, 538-550.
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From preantipodes to quasi-antipodes (II)

A key point in the proof of (2 = 1) of Schauenburg's result is the existence (derived
by applying Krull-Schmidt Theorem) of an isomorphism 7: A ®@ A —— (A of left
A-modules and of a linear morphism v: A — A, [a— 7(1® a)] that satisfy also

Y(a®b) =ay(b) and ay(a) =e(a)y(1).

P. Saracco (University of Turin) The preantipode and the Structure Theorem September 9, 2015

13 /15



From preantipodes to quasi-antipodes (II)

A key point in the proof of (2 = 1) of Schauenburg's result is the existence (derived
by applying Krull-Schmidt Theorem) of an isomorphism 7: A ®@ A —— (A of left
A-modules and of a linear morphism v: A — A, [a— 7(1® a)] that satisfy also

Y(a®b) =ay(b) and ay(a) =e(a)y(1).
Consider £ (a® b) := (A®¢) (74 '(a®@b®1)). The maps ¢ and S satisfy
¢(a®b) =aS(b) and a15(ax) =e(a)S(1).
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From preantipodes to quasi-antipodes (II)

A key point in the proof of (2 = 1) of Schauenburg's result is the existence (derived
by applying Krull-Schmidt Theorem) of an isomorphism 7: A ®@ A —— (A of left
A-modules and of a linear morphism v: A — A, [a— 7(1® a)] that satisfy also

Y(a®b) =ay(b) and ay(a) =e(a)y(1).
Consider £ (a® b) := (A®¢) (74 '(a®@b®1)). The maps ¢ and S satisfy
¢(a®b) =aS(b) and a15(ax) =e(a)S(1).

However, a posteriori, 7(a ® b) = afs(b) while {(a ® b) = afs(b)a and a cannot
be expected to be invertible in general.
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From preantipodes to quasi-antipodes (II)

A key point in the proof of (2 = 1) of Schauenburg's result is the existence (derived
by applying Krull-Schmidt Theorem) of an isomorphism 7: A ®@ A —— (A of left
A-modules and of a linear morphism v: A — A, [a— 7(1® a)] that satisfy also

Y(a®b) =ay(b) and ay(a) =e(a)y(1).
Consider £ (a® b) := (A®¢) (74 '(a®@b®1)). The maps ¢ and S satisfy
¢(a®b) =aS(b) and a15(ax) =e(a)S(1).

However, a posteriori, 7(a ® b) = afs(b) while {(a ® b) = afs(b)a and a cannot
be expected to be invertible in general.

Proposition

If € is invertible then (( ars 115(a12) ), 1, 5(1)), where L@ 12 = £-1(1),
defines a quasi-antipode (without any hypothesis on the dimension of A).
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From preantipodes to quasi-antipodes (II)

A key point in the proof of (2 = 1) of Schauenburg's result is the existence (derived
by applying Krull-Schmidt Theorem) of an isomorphism 7: A ®@ A —— (A of left
A-modules and of a linear morphism v: A — A, [a— 7(1® a)] that satisfy also

Y(a®b) =ay(b) and ay(a) =e(a)y(1).
Consider £ (a® b) := (A®¢) (74 '(a®@b®1)). The maps ¢ and S satisfy
¢(a®b) =aS(b) and a15(ax) =e(a)S(1).

However, a posteriori, 7(a ® b) = afs(b) while {(a ® b) = afs(b)a and a cannot
be expected to be invertible in general.

Proposition

|

If € is invertible then (( a5 115(a12) ), 1, 5(1) ), where TL @ 12 = £71(1),
defines a quasi-antipode (without any hypothesis on the dimension of A).

| A

Corollary

If (A, myu, Ae, ®, s, B) is a finite dimensional quasi-Hopf algebra and « is
invertible, then we can recover explicitly the quasi-antipode from the preantipode.
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Concluding example

Example (Preliminaries 2.3 in [EG])

Let G; = (g) be the cyclic group of order 2 and let H(2) := k(;, be its group
algebra (char(k) # 2):

mpRq)=p-q, u(ly)=1lg, A(p)=p®p, ep)=1,k (Vp,ge &)

o

[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of
codimension 2. Math. Res. Lett.11 (2004) no. 5-6, 685-696.
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Let G; = (g) be the cyclic group of order 2 and let H(2) := k(;, be its group
algebra (char(k) # 2):

mpRq)=p-q, u(ly)=1lg, AP)=p®p, ep)=k (Yp,q€ &)
Let us consider the non trivial reassociator:

1
P =(1®1®1)—-2(A®A®)\) where \:= 5(1—g).

o

[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of
codimension 2. Math. Res. Lett.11 (2004) no. 5-6, 685-696.
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Concluding example

Example (Preliminaries 2.3 in [EG])

Let G; = (g) be the cyclic group of order 2 and let H(2) := k(;, be its group
algebra (char(k) # 2):

mpRq)=p-q, u(ly)=1lg, AP)=p®p, ep)=k (Yp,q€ &)
Let us consider the non trivial reassociator:
1
P =(1®1®1)—-2(A®A®)\) where \:= 5(1—g).

One can verify that (H(2), m, u, A, e, ®,1dy(2), g, 1) is a quasi-Hopf algebra.

o

[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of
codimension 2. Math. Res. Lett.11 (2004) no. 5-6, 685-696.
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Concluding example

Example (Preliminaries 2.3 in [EG])

Let G; = (g) be the cyclic group of order 2 and let H(2) := k(;, be its group
algebra (char(k) # 2):

mpRq)=p-q, u(ly)=1lg, AP)=p®p, ep)=k (Yp,q€ &)
Let us consider the non trivial reassociator:
1
P =(1®1®1)—-2(A®A®)\) where \:= 5(1—g).

One can verify that (H(2), m, u, A, e, ®,1dy(2), g, 1) is a quasi-Hopf algebra.
Therefore S: H(2) — H(2),[z — z - g] provides a preantipode for H(2) and

o

[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of
codimension 2. Math. Res. Lett.11 (2004) no. 5-6, 685-696.
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Concluding example

Example (Preliminaries 2.3 in [EG])

Let G; = (g) be the cyclic group of order 2 and let H(2) := k(;, be its group
algebra (char(k) # 2):

mpRq)=p-q, u(ly)=1lg, AP)=p®p, ep)=k (Yp,q€ &)
Let us consider the non trivial reassociator:
1
P =(1®1®1)—-2(A®A®)\) where \:= 5(1—g).

One can verify that (H(2), m, u, A, e, ®,1dy(2), g, 1) is a quasi-Hopf algebra.
Therefore S: H(2) — H(2),[z — z - g] provides a preantipode for H(2) and

£ H2)®@ H?2) = H?2), [x®@y — x-y-g]

is easily checked to be invertible with inverse £ 1(x) = x ® g.

o

[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of
codimension 2. Math. Res. Lett.11 (2004) no. 5-6, 685-696.
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Concluding example

Example (Preliminaries 2.3 in [EG])

Let G; = (g) be the cyclic group of order 2 and let H(2) := k(;, be its group
algebra (char(k) # 2):

mpRq)=p-q, u(ly)=1lg, AP)=p®p, ep)=k (Yp,q€ &)
Let us consider the non trivial reassociator:
1
P =(1®1®1)—-2(A®A®)\) where \:= 5(1—g).

One can verify that (H(2), m, u, A, e, ®,1dy(2), g, 1) is a quasi-Hopf algebra.
Therefore S: H(2) — H(2),[z — z - g] provides a preantipode for H(2) and

£ H2)®@ H?2) = H?2), [x®@y — x-y-g]

is easily checked to be invertible with inverse £ 1(x) = x ® g.
A quasi-antipode for H(2) is given then by (Id,g),1,g).

o

[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of
codimension 2. Math. Res. Lett.11 (2004) no. 5-6, 685-696.
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Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.
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Work in progress

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.

We firmly believe that such an example should exist. The dual notion of a
preantipode for a coquasi-bialgebra has been introduced and studied in

[AP] A. Ardizzoni, A. Pavarin, Preantipodes for Dual Quasi-Bialgebras. Israel J.
Math. 192 (2012), no. 1, 281-295,

and in the dual case an example of a coquasi-bialgebra without quasi-antipode but

such that the Structure Theorem is satisfied can be found in

[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New
Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43,
Cambridge Univ. Press, Cambridge, 2002.
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Work in progress

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.

We firmly believe that such an example should exist. The dual notion of a
preantipode for a coquasi-bialgebra has been introduced and studied in

[AP] A. Ardizzoni, A. Pavarin, Preantipodes for Dual Quasi-Bialgebras. Israel J.
Math. 192 (2012), no. 1, 281-295,

and in the dual case an example of a coquasi-bialgebra without quasi-antipode but

such that the Structure Theorem is satisfied can be found in

[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New
Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43,
Cambridge Univ. Press, Cambridge, 2002.

Our next aim will be to find a significant example for the case of quasi-bialgebras.
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