On the Structure Theorem for Quasi-Hopf Bimodules

Paolo Saracco

University of Turin, Italy

Congreso de Jóvenes Investigadores de la RSME

Universidad de Murcia
September 7-11, 2015

The main aim

Fix \mathbb{k} a field. We assume to work in the category $\mathfrak{N}:=$ Vect $\mathbb{k}_{\mathbb{k}}$ of \mathbb{k}-vector spaces.

Fact

H bialgebra \Rightarrow the category \mathbf{N}_{H} of H-modules is monoidal. The category \boldsymbol{N}_{H}^{H} of Hopf modules is the category of comodules on the H-module coalgebra $H:\left(\mathfrak{N}_{H}\right)^{H}$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H:
(1) the functor $(-) \otimes H: \mathfrak{M} \rightarrow \mathfrak{M}_{H}^{H}$ is an equivalence of categories with quasi-inverse $(-)^{\mathrm{coH}}: \mathfrak{M}_{H}^{H} \rightarrow \mathfrak{M}$, where $M^{\mathrm{co} H}:=\{m \in M \mid \rho(m)=m \otimes 1\}$;
(2) H is a Hopf algebra, i.e. it admits an antipode s: $\rightarrow H$.

Sketch of proof.

The assignment $\left[m \mapsto \tau_{M}\left(m_{0}\right) \otimes m_{1}\right]$, where $\tau_{M}: M \rightarrow M^{c o H},\left[m \mapsto m_{0} \cdot s\left(m_{1}\right)\right]$, defines the inverse for the counit $\vartheta_{M}: M^{c o H} \otimes H \rightarrow M,[m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

The main aim

Fix \mathbb{k} a field. We assume to work in the category $\mathfrak{M}:=$ Vect $_{\mathbb{k}}$ of \mathbb{k}-vector spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_{H} of H-modules is monoidal. The category \mathfrak{M}_{H}^{H} of Hopf modules is the category of comodules on the H-module coalgebra $H:\left(\mathfrak{M}_{H}\right)^{H}$. Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H
© the functor $(-) \otimes \mathrm{H}: \mathfrak{N} \rightarrow \mathfrak{N}_{H}^{H}$ is an equivalence of categories with quasi-inverse $(-)^{\mathrm{coH}}: \mathfrak{M}_{H}^{H} \rightarrow \mathfrak{M}$, where $M^{\mathrm{co} H}:=\{m \in M \mid \rho(m)=m \otimes 1\}$
© H is a Hopf algebra, i.e. it admits an antipode $s: H \rightarrow H$

Sketch of proof.

The assignment $\left[m \mapsto \tau_{M}\left(m_{0}\right) \otimes m_{1}\right.$], where defines the inverse for the counit $\vartheta_{M}: M^{\mathrm{coH}} \otimes H \rightarrow M,[m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

The main aim

Fix \mathbb{k} a field. We assume to work in the category $\mathfrak{M}:=$ Vect $_{\mathbb{k}}$ of \mathbb{k}-vector spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_{H} of H-modules is monoidal. The category \mathfrak{M}_{H}^{H} of Hopf modules is the category of comodules on the H-module coalgebra $H:\left(\mathfrak{M}_{H}\right)^{H}$.

Theorem

\square
(1) the functor $(-) \otimes H: \mathfrak{N} \rightarrow \mathfrak{N H}_{H}^{H}$ is an equivalence of categories with quasi-inverse $(-)^{\mathrm{coH}}: \mathfrak{M}_{H}^{H} \rightarrow \mathfrak{M}$, where $M^{\mathrm{coH}}:=\{m \in M \mid \rho(m)=m$ (2) H is a Hopf algebra i.e it admits an antinode $s: H \rightarrow H$

Sketch of proof.

The assignment $\left[m \longmapsto \tau_{M}\left(m_{0}\right) \otimes m_{1}\right]$, where defines the inverse for the counit $\vartheta_{M}: M^{\mathrm{coH}} \otimes H \rightarrow M,[m$ is always invertible

The main aim

Fix \mathbb{k} a field. We assume to work in the category $\mathfrak{M}:=$ Vect $_{\mathbb{k}}$ of \mathbb{k}-vector spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_{H} of H-modules is monoidal. The category \mathfrak{M}_{H}^{H} of Hopf modules is the category of comodules on the H-module coalgebra $H:\left(\mathfrak{M}_{H}\right)^{H}$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H :
(1) the functor $(-) \otimes H: \mathfrak{M} \rightarrow \mathfrak{M}_{H}^{H}$ is an equivalence of categories with quasi-inverse $(-)^{\mathrm{coH}}: \mathfrak{M}_{H}^{H} \rightarrow \mathfrak{M}$, where $M^{\mathrm{coH}}:=\{m \in M \mid \rho(m)=m \otimes 1\}$;
(2) H is a Hopf algebra, i.e. it admits an antipode $s: H \rightarrow H$.

Sketch of proof.

The assignment [$m \mapsto \tau_{M}\left(m_{0}\right) \otimes m_{1}$], where defines the inverse for the counit $\vartheta_{M}: M^{\mathrm{coH}} \otimes H \rightarrow M,[m$ is always invertible

The main aim

Fix \mathbb{k} a field. We assume to work in the category $\mathfrak{M}:=V_{\text {Vect }}^{k}$ of \mathbb{k}-vector spaces.

Fact

H bialgebra \Rightarrow the category \mathfrak{M}_{H} of H-modules is monoidal. The category \mathfrak{M}_{H}^{H} of Hopf modules is the category of comodules on the H-module coalgebra $H:\left(\mathfrak{M}_{H}\right)^{H}$.

Our aim is to extend the following result to the framework of quasi-bialgebras.

Theorem

T.F.A.E. for a bialgebra H :
(1) the functor $(-) \otimes H: \mathfrak{M} \rightarrow \mathfrak{M}_{H}^{H}$ is an equivalence of categories with quasi-inverse $(-)^{\mathrm{coH}}: \mathfrak{M}_{H}^{H} \rightarrow \mathfrak{M}$, where $M^{\mathrm{coH}}:=\{m \in M \mid \rho(m)=m \otimes 1\}$;
(2) H is a Hopf algebra, i.e. it admits an antipode $s: H \rightarrow H$.

Sketch of proof.

The assignment $\left[m \mapsto \tau_{M}\left(m_{0}\right) \otimes m_{1}\right]$, where $\tau_{M}: M \rightarrow M^{\mathrm{coH}},\left[m \mapsto m_{0} \cdot s\left(m_{1}\right)\right]$, defines the inverse for the counit $\vartheta_{M}: M^{\mathrm{coH}} \otimes H \rightarrow M,[m \otimes h \mapsto m \cdot h]$. The unit is always invertible.

Monoidal categories

Definition (Benabou/Mac Lane, 1963)

A monoidal category $(\mathcal{M}, \otimes, \mathbb{I}, \alpha, \ell, \wp)$ is a category \mathcal{M} endowed with a functor $\otimes: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ (tensor product), an object \mathbb{I} (unit) and 3 natural isomorphisms:

$$
\begin{array}{lc}
\alpha_{M, N, P}:(M \otimes N) \otimes P \rightarrow M \otimes(N \otimes P) & \text { (associativity constraint) } \\
\ell_{M}: \mathbb{I} \otimes M \rightarrow M, \quad \wp_{N}: N \otimes \mathbb{I} \rightarrow N & \text { (unit constraints) }
\end{array}
$$

such that the following diagrams commute (pentagon and triangle axioms):

Monoidal categories

Definition (Benabou/Mac Lane, 1963)

A monoidal category $(\mathcal{M}, \otimes, \mathbb{I}, \alpha, \ell, \wp)$ is a category \mathcal{M} endowed with a functor $\otimes: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ (tensor product), an object \mathbb{I} (unit) and 3 natural isomorphisms:

$$
\begin{array}{lc}
\alpha_{M, N, P}:(M \otimes N) \otimes P \rightarrow M \otimes(N \otimes P) & \text { (associativity constraint) } \\
\ell_{M}: \mathbb{I} \otimes M \rightarrow M, \quad \wp_{N}: N \otimes \mathbb{I} \rightarrow N & \text { (unit constraints) }
\end{array}
$$

such that the following diagrams commute (pentagon and triangle axioms):

$(M \otimes \mathbb{I}) \otimes N \xrightarrow{\alpha} M \otimes(\mathbb{I} \otimes N)$

Example

Recall that a bialgebra is an algebra (H, m, u) endowed with two algebra maps $\Delta: H \rightarrow H \otimes H$ and $\varepsilon: H \rightarrow \mathbb{k}$ such that the following diagrams commute

Example

The category $\left(\mathfrak{M}_{H}, \otimes, \mathbb{k}\right)$ of (right) H-modules is monoidal. The H-module structure on the tensor product is given by the diagonal action:

$$
(M \otimes N) \otimes H \rightarrow M \otimes N:(m \otimes n) \otimes h \mapsto\left(m \cdot h_{1}\right) \otimes\left(n \cdot h_{2}\right)
$$

and the one on the base field via the trivial action:

$$
\mathbb{k} \otimes H \rightarrow \mathbb{k}: k \otimes h \mapsto k \varepsilon(h) .
$$

Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no. 6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.

Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:
(1) (A, m, u) is an associative and unital algebra;

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no. 6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.

Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:
(1) (A, m, u) is an associative and unital algebra;
(2) $\Delta: A \rightarrow A \otimes A$ (comultiplication) and $\varepsilon: A \rightarrow \mathbb{k}$ (counit) are algebra maps;

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no. 6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.

Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:
(1) (A, m, u) is an associative and unital algebra;
(2) $\Delta: A \rightarrow A \otimes A$ (comultiplication) and $\varepsilon: A \rightarrow \mathbb{k}$ (counit) are algebra maps;
($\Phi \in A \otimes A \otimes A$ is an invertible element (reassociator) that satisfies:

$$
\begin{gathered}
(A \otimes A \otimes \Delta)(\Phi) \cdot(\Delta \otimes A \otimes A)(\Phi)=(1 \otimes \Phi) \cdot(A \otimes \Delta \otimes A)(\Phi) \cdot(\Phi \otimes 1), \\
(A \otimes \varepsilon \otimes A)(\Phi)=1 \otimes 1
\end{gathered}
$$

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.
[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no. 6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.

Quasi-bialgebras

Definition (Drinfel'd, [Dr, 1989])

A quasi-bialgebra is a datum $(A, m, u, \Delta, \varepsilon, \Phi)$ where:
(1) (A, m, u) is an associative and unital algebra;
(2) $\Delta: A \rightarrow A \otimes A$ (comultiplication) and $\varepsilon: A \rightarrow \mathbb{k}$ (counit) are algebra maps;
(0) $\Phi \in A \otimes A \otimes A$ is an invertible element (reassociator) that satisfies:

$$
\begin{gathered}
(A \otimes A \otimes \Delta)(\Phi) \cdot(\Delta \otimes A \otimes A)(\Phi)=(1 \otimes \Phi) \cdot(A \otimes \Delta \otimes A)(\Phi) \cdot(\Phi \otimes 1), \\
(A \otimes \varepsilon \otimes A)(\Phi)=1 \otimes 1
\end{gathered}
$$

Moreover, ε is a counit for Δ and Δ is quasi-coassociative, i.e.

$$
\Phi \cdot((\Delta \otimes A) \circ \Delta)=((A \otimes \Delta) \circ \Delta) \cdot \Phi .
$$

[Dr] V. G. Drinfel'd, Quasi-Hopf algebras. (Russian) Algebra i Analiz 1 (1989), no. 6, 114-148; translation in Leningrad Math. J. 1 (1990), no. 6, 1419-1457.

Quasi-bialgebras

Fact

If A is a quasi-bialgebra then $A \mathfrak{M}_{A}$ is a monoidal category:

- for all $M, N \in \mathcal{N}_{A}, M \otimes N \in \mathcal{N}_{A}$ via

$$
a \cdot(m \otimes n) \cdot b=\left(a_{1} \cdot m \cdot b_{1}\right) \otimes\left(a_{2} \cdot n \cdot b_{2}\right)
$$

- $\mathbb{k} \in A_{M_{A}}$ via $a \cdot 1 \cdot b=\varepsilon(a) \varepsilon(b) 1$;
- for all $m \in M, n \in N, p \in P$, the associativity constraint is given by $A \alpha_{A}((m \otimes n) \otimes p)=\Phi \cdot(m \otimes(n \otimes p)) \cdot \phi^{-1}$.

Proposition/Definition (Hausser and Nill, [HN, 1999])

$((A, m, m), \Delta, \varepsilon)$ is a coassociative A-bimodule coalgebra. Its category of (right)
quasi-Hopf bimodules is the category of A-comodules in $A \mathfrak{M}_{A}: \mathfrak{M}_{A}^{A}:=\left(A \mathfrak{M}_{A}\right)^{A}$.
[HN] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint (arXiv:math/9904164v2).

Quasi-bialgebras

Fact

If A is a quasi-bialgebra then ${ }_{A} \mathfrak{M}_{A}$ is a monoidal category:

- for all $M, N \in{ }_{A} \mathfrak{M}_{A}, M \otimes N \in{ }_{A} \mathfrak{M}_{A}$ via

$$
a \cdot(m \otimes n) \cdot b=\left(a_{1} \cdot m \cdot b_{1}\right) \otimes\left(a_{2} \cdot n \cdot b_{2}\right) ;
$$

- $\mathbb{k} \in \mathcal{M N}_{A}$ via a $\cdot 1 \cdot b=\varepsilon(a) \varepsilon(b) 1$;
- for all $m \in M, n \in N, p \in P$, the associativity constraint is given by

Proposition/Definition (Hausser and Nill, [HN, 1999])

\square quasi-Hopf bimodules is the category of A-comodules in $A \mathfrak{M}_{A}: A_{\mathfrak{M}_{A}^{A}}:=\left(A \mathfrak{M}_{A}\right)^{A}$ [HN] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint (arXiv:math/9904164v2)

Quasi-bialgebras

Fact

If A is a quasi-bialgebra then ${ }_{A} \mathfrak{M}_{A}$ is a monoidal category:

- for all $M, N \in{ }_{A} \mathfrak{M}_{A}, M \otimes N \in{ }_{A} \mathfrak{M}_{A}$ via

$$
a \cdot(m \otimes n) \cdot b=\left(a_{1} \cdot m \cdot b_{1}\right) \otimes\left(a_{2} \cdot n \cdot b_{2}\right) ;
$$

- $\mathbb{k} \in A_{A} \mathfrak{M}_{A}$ via $a \cdot 1 \cdot b=\varepsilon(a) \varepsilon(b) 1$;
- for all $m \in M, n \in N, p \in P$, the associativity constraint is given by

Proposition/Definition (Hausser and Nill, [HN, 1999])

\square quasi-Hopf bimodules is the category of A-comodules in $A_{\mathfrak{M}_{A}}: \mathfrak{N}^{\prime} \mathfrak{M}_{A}^{A}:=\left({ }_{A} \mathfrak{M}_{A}\right)^{A}$ [HN] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint (arXiv:math/9904164v2)

Quasi-bialgebras

Fact

If A is a quasi-bialgebra then $A_{M_{A}}$ is a monoidal category:

- for all $M, N \in{ }_{A} \mathfrak{M}_{A}, M \otimes N \in{ }_{A} \mathfrak{M}_{A}$ via

$$
a \cdot(m \otimes n) \cdot b=\left(a_{1} \cdot m \cdot b_{1}\right) \otimes\left(a_{2} \cdot n \cdot b_{2}\right) ;
$$

- $\mathbb{k} \in{ }_{A} \mathfrak{M}_{A}$ via a $\cdot 1 \cdot b=\varepsilon(a) \varepsilon(b) 1$;
- for all $m \in M, n \in N, p \in P$, the associativity constraint is given by

$$
{ }_{A} \alpha_{A}((m \otimes n) \otimes p)=\Phi \cdot(m \otimes(n \otimes p)) \cdot \Phi^{-1}
$$

Proposition/Definition (Hausser and Nill, [HN, 1999])

\square quasi-Hopf bimodules is the category of A-comodules in $A_{\mathfrak{M}_{A}}: \mathfrak{N}^{\prime} \mathfrak{M}_{A}^{A}:=\left({ }_{A} \mathfrak{M}_{A}\right)^{A}$ [HN] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint

Quasi-bialgebras

Fact

If A is a quasi-bialgebra then ${ }_{A} \mathfrak{M}_{A}$ is a monoidal category:

- for all $M, N \in{ }_{A} \mathfrak{M}_{A}, M \otimes N \in{ }_{A} \mathfrak{M}_{A}$ via

$$
a \cdot(m \otimes n) \cdot b=\left(a_{1} \cdot m \cdot b_{1}\right) \otimes\left(a_{2} \cdot n \cdot b_{2}\right) ;
$$

- $\mathbb{k} \in A_{A} \mathfrak{M}_{A}$ via a $\cdot 1 \cdot b=\varepsilon(a) \varepsilon(b) 1$;
- for all $m \in M, n \in N, p \in P$, the associativity constraint is given by

$$
{ }_{A} \alpha_{A}((m \otimes n) \otimes p)=\Phi \cdot(m \otimes(n \otimes p)) \cdot \Phi^{-1} .
$$

Proposition/Definition (Hausser and Nill, [HN, 1999])

$((A, m, m), \Delta, \varepsilon)$ is a coassociative A-bimodule coalgebra. Its category of (right) quasi-Hopf bimodules is the category of A-comodules in ${ }_{A} \mathfrak{M}_{A}:{ }_{A} \mathfrak{M}_{A}^{A}:=\left({ }_{A} \mathfrak{M}_{A}\right)^{A}$.
[HN] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, preprint (arXiv:math/9904164v2).

An adjunction between ${ }_{A} \mathfrak{M}$ and ${ }_{A} \mathfrak{M}_{A}^{A}$

Henceforth, let us fix a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ and denote by
$A^{+}:=\operatorname{ker}(\varepsilon)$ its augmentation ideal.
The subsequent result is contained in the proof of Theorem 3.1 in
[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004), no. 2, 538-550.

Theorem

Set $\bar{M}:=\frac{M}{M A^{+}} \in{ }_{A} \mathfrak{M}$. We have that the functor $R:=(-) \otimes A: A_{A} \mathfrak{M} \rightarrow A_{A} \mathfrak{M}_{A}^{A}$ is right adjoint to the functor $L:=\overline{(-)}: A^{M} M_{A}^{A} \rightarrow A^{M}$. Unit and counit are given by: $\eta_{M}: M \rightarrow \bar{M} \otimes A,\left[m \mapsto \overline{m_{0}} \otimes m_{1}\right] \quad$ and $\quad \epsilon_{N}: \bar{N} \otimes A \rightarrow N,[\overline{n \otimes a} \mapsto n \varepsilon(a)]$
respectively. Moreover ϵ is always a natural isomorphism.
Main question: When is R an equivalence of categories?

An adjunction between ${ }_{A} \mathfrak{M}$ and ${ }_{A} \mathfrak{M}_{A}^{A}$

Henceforth, let us fix a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ and denote by $A^{+}:=\operatorname{ker}(\varepsilon)$ its augmentation ideal.

> The subsequent result is contained in the proof of Theorem 3.1 in
> [Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J Algebra 273 (2004), no. 2, 538-550

Theorem

Set $\bar{M}:=\frac{M}{M A^{+}} \in A_{A} \mathfrak{M}$. We have that the functor $R:=(-) \otimes A: A_{A} \rightarrow A_{M^{A}}^{A}$ is right adjoint to the functor $L:=(-):{ }_{A} \mathfrak{M}_{A}^{A} \rightarrow{ }_{A} \mathfrak{M}$. Unit and counit are given by: $\eta_{M}: M \rightarrow \bar{M} \otimes A,\left[m \mapsto \overline{m_{0}} \otimes m_{1}\right] \quad$ and $\quad \epsilon_{N}: \overline{N \otimes A} \rightarrow N,[\overline{n \otimes a} \mapsto n \varepsilon(a)]$ respectively. Moreover ϵ is always a natural isomorphism.

An adjunction between ${ }_{A} \mathfrak{M}$ and ${ }_{A} \mathfrak{M}_{A}^{A}$

Henceforth, let us fix a quasi-bialgebra ($A, m, u, \Delta, \varepsilon, \Phi)$ and denote by $A^{+}:=\operatorname{ker}(\varepsilon)$ its augmentation ideal.
The subsequent result is contained in the proof of Theorem 3.1 in
[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004), no. 2, 538-550.

Theorem

Set $\bar{M}:=\frac{M}{M A^{+}} \in{ }_{A} \mathfrak{M}$. We have that the functor $R:=(-) \otimes A:{ }_{A} \mathfrak{M} \rightarrow{ }_{A} \mathfrak{M}_{A}^{A}$ is right adjoint to the functor $L:=\overline{(-)}: A_{A} \mathfrak{M}_{A}^{A} \rightarrow{ }_{A} \mathfrak{M}$. Unit and counit are given by:

$$
\eta_{M}: M \rightarrow \bar{M} \otimes A,\left[m \mapsto \overline{m_{0}} \otimes m_{1}\right] \quad \text { and } \quad \epsilon_{N}: \overline{N \otimes A} \rightarrow N,[\overline{n \otimes a} \mapsto n \varepsilon(a)]
$$

respectively. Moreover ϵ is always a natural isomorphism.

Main question: When is R an equivalence of categories?

An adjunction between ${ }_{A} \mathfrak{M}$ and ${ }_{A} \mathfrak{M}_{A}^{A}$

Henceforth, let us fix a quasi-bialgebra ($A, m, u, \Delta, \varepsilon, \Phi)$ and denote by $A^{+}:=\operatorname{ker}(\varepsilon)$ its augmentation ideal.
The subsequent result is contained in the proof of Theorem 3.1 in
[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004), no. 2, 538-550.

Theorem

Set $\bar{M}:=\frac{M}{M A^{+}} \in{ }_{A} \mathfrak{M}$. We have that the functor $R:=(-) \otimes A:{ }_{A} \mathfrak{M} \rightarrow{ }_{A} \mathfrak{M}_{A}^{A}$ is right adjoint to the functor $L:=\overline{(-)}:{ }_{A} \mathfrak{M}_{A}^{A} \rightarrow{ }_{A} \mathfrak{M}$. Unit and counit are given by:

$$
\eta_{M}: M \rightarrow \bar{M} \otimes A,\left[m \mapsto \overline{m_{0}} \otimes m_{1}\right] \quad \text { and } \quad \epsilon_{N}: \overline{N \otimes A} \rightarrow N,[\overline{n \otimes a} \mapsto n \varepsilon(a)]
$$

respectively. Moreover ϵ is always a natural isomorphism.
Main question: When is R an equivalence of categories?

Answering the main question (I)

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$
\begin{gathered}
a \cdot(x \otimes y)=x \otimes a y, \quad(x \otimes y) \cdot a=x a_{1} \otimes y a_{2}, \\
\rho(x \otimes y)=\left(\left(x \otimes y_{1}\right) \otimes y_{2}\right) \cdot \Phi
\end{gathered}
$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

```
Definition
A preantipode for a quasi-bialgebra \((A, \Phi)\) is a linear map \(S: A \rightarrow A\) that satisfies:
(P1) \(b_{1} S\left(a b_{2}\right)=S(a) \varepsilon(b), \forall a, b \in A\);
(P2) \(S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in A\);
(P3) \(\Phi^{1} S\left(\Phi^{2}\right) \Phi^{3}=1\), where \(\Phi=\Phi^{1} \otimes \Phi^{2} \otimes \Phi^{3}\) (summation understood).
```


Answering the main question (I)

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$
\begin{gathered}
a \cdot(x \otimes y)=x \otimes a y, \quad(x \otimes y) \cdot a=x a_{1} \otimes y a_{2}, \\
\rho(x \otimes y)=\left(\left(x \otimes y_{1}\right) \otimes y_{2}\right) \cdot \Phi
\end{gathered}
$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$
\widehat{\eta}_{A}:=\eta_{A \widehat{\otimes} A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A,\left[a \otimes b \mapsto \overline{a^{1} \otimes b_{1} \Phi^{2}} \otimes b_{2} \Phi^{3}\right]
$$

Definition

\square
A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \rightarrow A$ that satisfies:
(P1) $b_{1} S\left(a b_{2}\right)=S(a) \varepsilon(b), \forall a, b \in A$;
(P2) $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in A$;
(P3) $\Phi^{1} S\left(\Phi^{2}\right) \Phi^{3}=1$, where $\Phi=\Phi^{1} \otimes \Phi^{2} \otimes \Phi^{3}$ (summation understood).

Answering the main question (I)

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$
\begin{gathered}
a \cdot(x \otimes y)=x \otimes a y, \quad(x \otimes y) \cdot a=x a_{1} \otimes y a_{2}, \\
\rho(x \otimes y)=\left(\left(x \otimes y_{1}\right) \otimes y_{2}\right) \cdot \Phi
\end{gathered}
$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$
\widehat{\eta}_{A}:=\eta_{A \widehat{\otimes} A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A,\left[a \otimes b \mapsto \overline{a \Phi^{1} \otimes b_{1} \Phi^{2}} \otimes b_{2} \Phi^{3}\right]
$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \rightarrow A$ that satisfies:

$$
\begin{aligned}
& b_{1} S\left(a b_{2}\right)=S(a) \varepsilon(b), \forall a, b \in A ; \\
& S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in A ; \\
& \Phi^{1} S\left(\Phi^{2}\right) \Phi^{3}=1, \text { where } \Phi=\Phi^{1} \otimes \Phi^{2} \otimes \Phi^{3} \text { (summation understood). }
\end{aligned}
$$

Answering the main question (I)

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$
\begin{gathered}
a \cdot(x \otimes y)=x \otimes a y, \quad(x \otimes y) \cdot a=x a_{1} \otimes y a_{2}, \\
\rho(x \otimes y)=\left(\left(x \otimes y_{1}\right) \otimes y_{2}\right) \cdot \Phi
\end{gathered}
$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$
\widehat{\eta}_{A}:=\eta_{A \widehat{\otimes} A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A,\left[a \otimes b \mapsto \overline{a \Phi^{1} \otimes b_{1} \Phi^{2}} \otimes b_{2} \Phi^{3}\right]
$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \rightarrow A$ that satisfies:
(P1) $b_{1} S\left(a b_{2}\right)=S(a) \varepsilon(b), \forall a, b \in A$;
(P2) $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in A$;
(P3) $\Phi^{1} S\left(\Phi^{2}\right) \Phi^{3}=1$, where $\Phi=\Phi^{1} \otimes \Phi^{2} \otimes \Phi^{3}$ (summation understood).

Answering the main question (I)

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$
\begin{gathered}
a \cdot(x \otimes y)=x \otimes a y, \quad(x \otimes y) \cdot a=x a_{1} \otimes y a_{2}, \\
\rho(x \otimes y)=\left(\left(x \otimes y_{1}\right) \otimes y_{2}\right) \cdot \Phi
\end{gathered}
$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$
\widehat{\eta}_{A}:=\eta_{A \widehat{\otimes} A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A,\left[a \otimes b \mapsto \overline{a \Phi^{1} \otimes b_{1} \Phi^{2}} \otimes b_{2} \Phi^{3}\right]
$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \rightarrow A$ that satisfies:
(P1) $b_{1} S\left(a b_{2}\right)=S(a) \varepsilon(b), \forall a, b \in A$;
(P2) $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in A$;

Answering the main question (I)

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$
\begin{gathered}
a \cdot(x \otimes y)=x \otimes a y, \quad(x \otimes y) \cdot a=x a_{1} \otimes y a_{2}, \\
\rho(x \otimes y)=\left(\left(x \otimes y_{1}\right) \otimes y_{2}\right) \cdot \Phi
\end{gathered}
$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$
\widehat{\eta}_{A}:=\eta_{A \widehat{\otimes} A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A,\left[a \otimes b \mapsto \overline{a \Phi^{1} \otimes b_{1} \Phi^{2}} \otimes b_{2} \Phi^{3}\right]
$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \rightarrow A$ that satisfies:
(P1) $b_{1} S\left(a b_{2}\right)=S(a) \varepsilon(b), \forall a, b \in A ;{ }^{a=1} \leadsto b_{1} S\left(b_{2}\right)=S(1) \varepsilon(b)$
$\Phi^{1} S\left(\Phi^{2}\right) \Phi^{3}=1$, where $\Phi=\Phi^{1} \otimes \Phi^{2} \otimes \Phi^{3}$ (summation understood).

Answering the main question (I)

Consider the quasi-Hopf bimodule $A \widehat{\otimes} A$ with underling vector space $A \otimes A$ and structures given explicitly by:

$$
\begin{gathered}
a \cdot(x \otimes y)=x \otimes a y, \quad(x \otimes y) \cdot a=x a_{1} \otimes y a_{2}, \\
\rho(x \otimes y)=\left(\left(x \otimes y_{1}\right) \otimes y_{2}\right) \cdot \Phi
\end{gathered}
$$

The component of the unit associated to $A \widehat{\otimes} A$ satisfies:

$$
\widehat{\eta}_{A}:=\eta_{A \widehat{\otimes} A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A,\left[a \otimes b \mapsto \overline{a \Phi^{1} \otimes b_{1} \Phi^{2}} \otimes b_{2} \Phi^{3}\right]
$$

Definition

A preantipode for a quasi-bialgebra (A, Φ) is a linear map $S: A \rightarrow A$ that satisfies:
(P1) $b_{1} S\left(a b_{2}\right)=S(a) \varepsilon(b), \forall a, b \in A$;
(P2) $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in A$;
(P3) $\Phi^{1} S\left(\Phi^{2}\right) \Phi^{3}=1$, where $\Phi=\Phi^{1} \otimes \Phi^{2} \otimes \Phi^{3}$ (summation understood).

Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:
(L, R, η, ϵ) is an equivalence of categories;
$\widehat{\eta}_{A}: A \widehat{\otimes} A \rightarrow A \widehat{\otimes} A \otimes A$ is an isomorphism;
A admits a preantipode:
for every $M \in \mathfrak{M}_{A}^{A}$ there exists a linear map $\widetilde{\tau}_{M}: \bar{M} \rightarrow M$ such that $\widetilde{\tau}_{M}\left(\overline{m_{0}}\right) \cdot m_{1}=m \quad$ and $\quad \overline{\tau_{M}}(\bar{m})_{0} \otimes \widetilde{\tau}_{M}(\bar{m})_{1}=\bar{m} \otimes 1 \quad(\forall m \in M)$

Proof.

[^0]
Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:
(i) (L, R, η, ϵ) is an equivalence of categories;

\square

Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:
(i) (L, R, η, ϵ) is an equivalence of categories;
(ii) $\widehat{\eta}_{A}: A \widehat{\otimes} A \rightarrow \bar{A} \widehat{\otimes} \otimes A$ is an isomorphism;
A admits a preantipode;
for every $M \in{ }_{A} \mathfrak{M}_{A}^{A}$ there exists a linear map $\widetilde{\tau}_{M}: \bar{M} \rightarrow M$ such that $\widetilde{\tau}_{M}\left(\overline{m_{0}}\right) \cdot m_{1}=m \quad$ and $\quad \bar{\tau}_{M}(\bar{m})_{n} \otimes \widetilde{\tau}_{M}(\bar{m})_{1}=\bar{m} \otimes 1 \quad(\forall m \in M)$

Proof.

Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:
(i) (L, R, η, ϵ) is an equivalence of categories;
(ii) $\widehat{\eta}_{A}: A \widehat{\otimes} A \rightarrow \bar{A} \widehat{\otimes} \otimes A$ is an isomorphism;
(iii) A admits a preantipode;

$$
\widetilde{\tau}_{M}\left(\overline{m_{0}}\right) \cdot m_{1}=m \quad \text { and } \quad \widetilde{\tau}_{M}(\bar{m})_{0} \otimes \widetilde{\tau}_{M}(\bar{m})_{1}=\bar{m} \otimes 1 \quad(\forall m \in M)
$$

Proof.

Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:
(i) (L, R, η, ϵ) is an equivalence of categories;
(ii) $\widehat{\eta}_{A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A$ is an isomorphism;
(iii) A admits a preantipode;
(iv) for every $M \in{ }_{A} \mathfrak{M}_{A}^{A}$ there exists a linear $\operatorname{map} \widetilde{\tau}_{M}: \bar{M} \rightarrow M$ such that

$$
\widetilde{\tau}_{M}\left(\overline{m_{0}}\right) \cdot m_{1}=m \quad \text { and } \quad \widetilde{\tau}_{M}(\bar{m})_{0} \otimes \widetilde{\tau}_{M}(\bar{m})_{1}=\bar{m} \otimes 1 \quad(\forall m \in M)
$$

Proof.

Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:
(i) (L, R, η, ϵ) is an equivalence of categories;
(ii) $\widehat{\eta}_{A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A$ is an isomorphism;
(iii) A admits a preantipode;
(iv) for every $M \in{ }_{A} \mathfrak{M}_{A}^{A}$ there exists a linear $\operatorname{map} \widetilde{\tau}_{M}: \bar{M} \rightarrow M$ such that

$$
\widetilde{\tau}_{M}\left(\overline{m_{0}}\right) \cdot m_{1}=m \quad \text { and } \quad \overline{\tau_{M}}(\bar{m})_{0} \otimes \widetilde{\tau}_{M}(\bar{m})_{1}=\bar{m} \otimes 1 \quad(\forall m \in M)
$$

Proof.

(i) \Rightarrow (ii) Trivial.
(ii) \Rightarrow (iii) $S(a):=(A \otimes \varepsilon)\left(\widehat{\eta}_{A}^{-1}(\overline{1 \otimes a} \otimes 1)\right)$.
(iii) \Rightarrow (iv) $\tau_{M}(m):=\Phi^{1} \cdot m_{0} \cdot S\left(\Phi^{2} m_{1}\right) \Phi^{3}$ factors through $\widetilde{\tau}_{M}: \bar{M} \rightarrow M$.
(iv) \Rightarrow (i) $\eta_{M}^{-1}(\bar{m} \otimes a):=\widetilde{\tau}_{M}(\bar{m}) \cdot a$.

Answering the main question (II)

Theorem (Structure Theorem for quasi-Hopf bimodules)

Let $(A, m, u, \Delta, \varepsilon, \Phi)$ be a quasi-bialgebra. T.F.A.E.:
(i) (L, R, η, ϵ) is an equivalence of categories;
(ii) $\widehat{\eta}_{A}: A \widehat{\otimes} A \rightarrow \overline{A \widehat{\otimes} A} \otimes A$ is an isomorphism;
(iii) A admits a preantipode;
(iv) for every $M \in{ }_{A} \mathfrak{M}_{A}^{A}$ there exists a linear $\operatorname{map} \widetilde{\tau}_{M}: \bar{M} \rightarrow M$ such that

$$
\widetilde{\tau}_{M}\left(\overline{m_{0}}\right) \cdot m_{1}=m \quad \text { and } \quad \overline{\tau_{M}}(\bar{m})_{0} \otimes \widetilde{\tau}_{M}(\bar{m})_{1}=\bar{m} \otimes 1 \quad(\forall m \in M)
$$

Proof.

(i) \Rightarrow (ii) Trivial.
(ii) \Rightarrow (iii) $S(a):=(A \otimes \varepsilon)\left(\widehat{\eta}_{A}^{-1}(\overline{1 \otimes a} \otimes 1)\right)$.
(iii) \Rightarrow (iv) $\tau_{M}(m):=\Phi^{1} \cdot m_{0} \cdot S\left(\Phi^{2} m_{1}\right) \Phi^{3}$ factors through $\widetilde{\tau}_{M}: \bar{M} \rightarrow M$.

$$
\text { (iv) } \Rightarrow\left(\text { i) } \eta_{M}^{-1}(\bar{m} \otimes a):=\widetilde{\tau}_{M}(\bar{m}) \cdot a .\right.
$$

As a consequence: the preantipode, when it exists, is unique.

Revisiting classical results (I)

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

- (H, s) is a Hopf algebra with antipode s if and only if $(H, m, u, \Delta, \varepsilon, \Phi, s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1 \otimes 1 \otimes 1$. One checks that the two maps τ_{M} coincide for all $M \in \mathfrak{M}_{H}^{H}$ and then the inverse to the original counit is given by:

$$
\vartheta_{M}^{-1}: m \mapsto\left(\widetilde{\tau}_{M} \otimes H\right)\left(\eta_{M}(m)\right)=\tau_{M}\left(m_{0}\right) \otimes m_{1} .
$$

- If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in{ }_{H} \mathfrak{M}_{H}^{H}$

$$
\tau_{M}(m):=\left(M^{\mathrm{coH}} \otimes \varepsilon\right)\left(\vartheta_{M}^{-1}(m)\right)
$$

factors through $\widetilde{\tau}_{M}: \bar{M} \rightarrow M^{\mathrm{coH}}$ and that it satisfies condition (iv) of the Structure Theorem.
In this context, the Structure Theorem for quasi-Hopf bimodules reduces to the classical Fundamental Theorem of Hopf modules.

Revisiting classical results (I)

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

- (H, s) is a Hopf algebra with antipode s if and only if $(H, m, u, \Delta, \varepsilon, \Phi, s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1 \otimes 1 \otimes 1$.
One checks that the two maps τ_{M} coincide for all $M \in \mathfrak{M}_{H}^{H}$ and then the inverse to the original counit is given by:

$$
\vartheta_{M}^{-1}: m \mapsto\left(\tilde{\tau}_{M} \otimes H\right)(\eta M(m))=\tau_{M}\left(m_{0}\right) \otimes m_{1} .
$$

- If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in{ }_{H} \mathfrak{M}_{H}^{H}$

$$
\tau_{M}(m):=\left(M^{\mathrm{coH}} \otimes \varepsilon\right)\left(\vartheta_{M}^{-1}(m)\right)
$$

factors through $\widetilde{\tau}_{M}: \bar{M} \rightarrow M^{\mathrm{coH}}$ and that it satisfies condition (iv) of the Structure Theorem

In this context, the Structure Theorem for quasi-Hopf bimodules reduces to the classical Fundamental Theorem of Hopf modules.

Revisiting classical results (I)

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

- (H, s) is a Hopf algebra with antipode s if and only if $(H, m, u, \Delta, \varepsilon, \Phi, s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1 \otimes 1 \otimes 1$.
One checks that the two maps τ_{M} coincide for all $M \in \mathfrak{M}_{H}^{H}$ and then the inverse to the original counit is given by:

$$
\vartheta_{M}^{-1}: m \mapsto\left(\widetilde{\tau}_{M} \otimes H\right)\left(\eta_{M}(m)\right)=\tau_{M}\left(m_{0}\right) \otimes m_{1} .
$$

- If every H-Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in{ }_{H} \mathfrak{M}_{H}^{H}$

factors through $\widetilde{\tau}_{M}: \bar{M} \rightarrow M^{\text {coH }}$ and that it satisfies condition (iv) of the Structure Theorem.

In this context, the Structure Theorem for quasi-Hopf bimodules reduces to the classical Fundamental Theorem of Hopf modules.

Revisiting classical results (I)

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

- (H, s) is a Hopf algebra with antipode s if and only if $(H, m, u, \Delta, \varepsilon, \Phi, s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1 \otimes 1 \otimes 1$.
One checks that the two maps τ_{M} coincide for all $M \in \mathfrak{M}_{H}^{H}$ and then the inverse to the original counit is given by:

$$
\vartheta_{M}^{-1}: m \mapsto\left(\widetilde{\tau}_{M} \otimes H\right)\left(\eta_{M}(m)\right)=\tau_{M}\left(m_{0}\right) \otimes m_{1}
$$

- If every H -Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in{ }_{H} \mathfrak{M}_{H}^{H}$

$$
\tau_{M}(m):=\left(M^{\mathrm{coH}} \otimes \varepsilon\right)\left(\vartheta_{M}^{-1}(m)\right)
$$

factors through $\widetilde{\tau}_{M}: \bar{M} \rightarrow M^{\text {coH }}$ and that it satisfies condition (iv) of the Structure Theorem.

In this context, the Structure Theorem for quasi-Hopf bimodules reduces to the classical Fundamental Theorem of Hopf modules.

Revisiting classical results (I)

Hopf case

Let $(H, m, u, \Delta, \varepsilon)$ be an ordinary bialgebra.

- (H, s) is a Hopf algebra with antipode s if and only if $(H, m, u, \Delta, \varepsilon, \Phi, s)$ is a quasi-bialgebra with preantipode s and reassociator $\Phi=1 \otimes 1 \otimes 1$.
One checks that the two maps τ_{M} coincide for all $M \in \mathfrak{M}_{H}^{H}$ and then the inverse to the original counit is given by:

$$
\vartheta_{M}^{-1}: m \mapsto\left(\widetilde{\tau}_{M} \otimes H\right)\left(\eta_{M}(m)\right)=\tau_{M}\left(m_{0}\right) \otimes m_{1} .
$$

- If every H -Hopf module satisfies the Fundamental Theorem, then one can verify that for every $M \in{ }_{H} \mathfrak{M}_{H}^{H}$

$$
\tau_{M}(m):=\left(M^{\mathrm{coH}} \otimes \varepsilon\right)\left(\vartheta_{M}^{-1}(m)\right)
$$

factors through $\widetilde{\tau}_{M}: \bar{M} \rightarrow M^{\mathrm{coH}}$ and that it satisfies condition (iv) of the Structure Theorem.

In this context, the Structure Theorem for quasi-Hopf bimodules reduces to the classical Fundamental Theorem of Hopf modules.

Revisiting classical results (II)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s: A \rightarrow A$ and two distinguished elements α and β such that:

$$
\begin{array}{lc}
s\left(a_{1}\right) \alpha a_{2}=\alpha \varepsilon(a) & a_{1} \beta s\left(a_{2}\right)=\beta \varepsilon(a) \\
\Phi^{1} \beta s\left(\Phi^{2}\right) \alpha \Phi^{3}=1 & s\left(\phi^{1}\right) \alpha \phi^{2} \beta s\left(\phi^{3}\right)=1
\end{array}
$$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

(1) Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode:
© If s is invertible, then Hausser and Nill's M^{coH} is isomorphic as left module with \bar{M} and their projection corresponds to our map τ_{M}.

It is then possible to obtain Hausser and Nill's result from our Structure Theorem.

Revisiting classical results (II)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s: A \rightarrow A$ and two distinguished elements α and β such that:

$$
\begin{array}{lc}
s\left(a_{1}\right) \alpha a_{2}=\alpha \varepsilon(a) & a_{1} \beta s\left(a_{2}\right)=\beta \varepsilon(a) \\
\Phi^{1} \beta s\left(\Phi^{2}\right) \alpha \Phi^{3}=1 & s\left(\phi^{1}\right) \alpha \phi^{2} \beta s\left(\phi^{3}\right)=1
\end{array}
$$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

(1) Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode:

$$
S(\cdot):=\beta s(\cdot) \alpha .
$$

(3) If s is invertible, then Hausser and Nill's M^{coH} is isomorphic as left module with \bar{M} and their projection corresponds to our map τ_{M}.

It is 'hen possible to obtain 'rausser and NN:"'s result from our Structure Theorem

Revisiting classical results (II)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s: A \rightarrow A$ and two distinguished elements α and β such that:

$$
\begin{array}{lc}
s\left(a_{1}\right) \alpha a_{2}=\alpha \varepsilon(a) & a_{1} \beta s\left(a_{2}\right)=\beta \varepsilon(a) \\
\Phi^{1} \beta s\left(\Phi^{2}\right) \alpha \Phi^{3}=1 & s\left(\phi^{1}\right) \alpha \phi^{2} \beta s\left(\phi^{3}\right)=1
\end{array}
$$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

(1) Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode:

$$
S(\cdot):=\beta s(\cdot) \alpha .
$$

(2) If s is invertible, then Hausser and Nill's M^{coH} is isomorphic as left module with \bar{M} and their projection corresponds to our map τ_{M}.
t is then possible to obtain Hausser and Nill's result from our Structure Theorem.

Revisiting classical results (II)

Definition (Drinfel'd, 1989)

We say that a quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$ is a quasi-Hopf algebra if it is endowed with an algebra anti-homomorphism $s: A \rightarrow A$ and two distinguished elements α and β such that:

$$
\begin{array}{lc}
s\left(a_{1}\right) \alpha a_{2}=\alpha \varepsilon(a) & a_{1} \beta s\left(a_{2}\right)=\beta \varepsilon(a) \\
\Phi^{1} \beta s\left(\Phi^{2}\right) \alpha \Phi^{3}=1 & s\left(\phi^{1}\right) \alpha \phi^{2} \beta s\left(\phi^{3}\right)=1
\end{array}
$$

The triple (s, α, β) is called quasi-antipode.

Quasi-Hopf case

(1) Every quasi-Hopf algebra $(H, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ admits a preantipode:

$$
S(\cdot):=\beta s(\cdot) \alpha .
$$

(2) If s is invertible, then Hausser and Nill's M^{coH} is isomorphic as left module with \bar{M} and their projection corresponds to our map τ_{M}.

It is then possible to obtain Hausser and Nill's result from our Structure Theorem.

From preantipodes to quasi-antipodes (I)

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we have implicitly seen the case of ordinary bialgebras.

Theorem (Theorem 3.1 in [Sc])

For a finite dimensional quasi-bialgebra ($A, m, u, \Delta, \varepsilon, \Phi$), T.F.A.E.
(1) A is a quasi-Hopf algebra.
(3) The adjunction (L, R, η, ϵ) is an equivalence of categories.
[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004), no. 2, 538-550

From preantipodes to quasi-antipodes (I)

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we have implicitly seen the case of ordinary bialgebras.

Proposition

If $(A, m, u, \Delta, \varepsilon, \Phi, S)$ is a commutative quasi-bialgebra with preantipode, then A is an Hopf algebra with antipode $s(a)=\Phi^{1} S\left(a \Phi^{2}\right) \Phi^{3}$ and $(A, m, u, \Delta, \varepsilon, \Phi, s, 1, S(1))$ is a quasi-Hopf algebra.

From preantipodes to quasi-antipodes (I)

It is sometimes possible to produce a quasi-antipode given a preantipode. E.g. we have implicitly seen the case of ordinary bialgebras.

Proposition

If $(A, m, u, \Delta, \varepsilon, \Phi, S)$ is a commutative quasi-bialgebra with preantipode, then A is an Hopf algebra with antipode $s(a)=\Phi^{1} S\left(a \Phi^{2}\right) \Phi^{3}$ and $(A, m, u, \Delta, \varepsilon, \Phi, s, 1, S(1))$ is a quasi-Hopf algebra.

Theorem (Theorem 3.1 in [Sc])

For a finite dimensional quasi-bialgebra $(A, m, u, \Delta, \varepsilon, \Phi)$, T.F.A.E.:
(1) A is a quasi-Hopf algebra.
(2) The adjunction (L, R, η, ϵ) is an equivalence of categories.
[Sc] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004), no. 2, 538-550.

From preantipodes to quasi-antipodes (II)

A key point in the proof of $(2 \Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}: \overline{\bullet A \otimes A} \xrightarrow{\sim} . A$ of left A-modules and of a linear morphism $\gamma: A \rightarrow A,[a \mapsto \widetilde{\gamma}(\overline{1 \otimes a})]$ that satisfy also

$$
\widetilde{\gamma}(\overline{a \otimes b})=a \gamma(b) \quad \text { and } \quad a_{1} \gamma\left(a_{2}\right)=\varepsilon(a) \gamma(1) .
$$

Consider $\xi(\overline{a \otimes b}):=(A \otimes \varepsilon)\left(\widehat{\eta}_{A}^{-1}(\overline{a \otimes b} \otimes 1)\right)$. The maps ξ and S satisfy $\xi(\overline{a \otimes b})=a S(b) \quad$ and $\quad a_{1} S\left(a_{2}\right)=\varepsilon(a) S(1)$

However, a posteriori,
 while
 and α cannot

be expected to be invertible in general
Proposition
If ξ is invertible then $\left(\left(a \stackrel{s}{s}^{1} S\left(a 1^{2}\right)\right), 1, S(1)\right)$, where $\overline{1^{1} \otimes 1^{2}}=\xi^{-1}(1)$
defines a quasi-antipode (without any hypothesis on the dimension of A)
\square invertible, then we can recover explicitly the quasi-antipode from the preantipode.

From preantipodes to quasi-antipodes (II)

A key point in the proof of $(2 \Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}: \bar{\bullet} \otimes A \xrightarrow{\sim} . A$ of left A-modules and of a linear morphism $\gamma: A \rightarrow A,[a \mapsto \widetilde{\gamma}(\overline{1 \otimes a})]$ that satisfy also

$$
\widetilde{\gamma}(\overline{a \otimes b})=a \gamma(b) \quad \text { and } \quad a_{1} \gamma\left(a_{2}\right)=\varepsilon(a) \gamma(1) .
$$

Consider $\xi(\overline{a \otimes b}):=(A \otimes \varepsilon)\left(\widehat{\eta}_{A}^{-1}(\overline{a \otimes b} \otimes 1)\right)$. The maps ξ and S satisfy

$$
\xi(\overline{a \otimes b})=a S(b) \quad \text { and } \quad a_{1} S\left(a_{2}\right)=\varepsilon(a) S(1) .
$$

However, a posteriori,

while
and α cannot
be expected to be invertible in general.

Proposition

> defines a quasi-antipode (without any hypothesis on the dimension of A)

\square invertible, then we can recover explicitly the quasi-antipode from the preantipode.

From preantipodes to quasi-antipodes (II)

A key point in the proof of $(2 \Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}: \bar{\bullet} \otimes A \xrightarrow{\sim} . A$ of left A-modules and of a linear morphism $\gamma: A \rightarrow A,[a \mapsto \widetilde{\gamma}(\overline{1 \otimes a})]$ that satisfy also

$$
\widetilde{\gamma}(\overline{a \otimes b})=a \gamma(b) \quad \text { and } \quad a_{1} \gamma\left(a_{2}\right)=\varepsilon(a) \gamma(1) .
$$

Consider $\xi(\overline{a \otimes b}):=(A \otimes \varepsilon)\left(\widehat{\eta}_{A}^{-1}(\overline{a \otimes b} \otimes 1)\right)$. The maps ξ and S satisfy

$$
\xi(\overline{a \otimes b})=a S(b) \quad \text { and } \quad a_{1} S\left(a_{2}\right)=\varepsilon(a) S(1) .
$$

However, a posteriori, $\widetilde{\gamma}(\overline{a \otimes b})=a \beta s(b)$ while $\xi(\overline{a \otimes b})=a \beta s(b) \alpha$ and α cannot be expected to be invertible in general.
\qquad

From preantipodes to quasi-antipodes (II)

A key point in the proof of $(2 \Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}: \overline{\boldsymbol{A} \otimes A} \xrightarrow{\sim} \boldsymbol{\bullet} A$ of left A-modules and of a linear morphism $\gamma: A \rightarrow A,[a \mapsto \widetilde{\gamma}(\overline{1 \otimes a})]$ that satisfy also

$$
\widetilde{\gamma}(\overline{a \otimes b})=a \gamma(b) \quad \text { and } \quad a_{1} \gamma\left(a_{2}\right)=\varepsilon(a) \gamma(1) .
$$

Consider $\xi(\overline{a \otimes b}):=(A \otimes \varepsilon)\left(\widehat{\eta}_{A}^{-1}(\overline{a \otimes b} \otimes 1)\right)$. The maps ξ and S satisfy

$$
\xi(\overline{a \otimes b})=a S(b) \quad \text { and } \quad a_{1} S\left(a_{2}\right)=\varepsilon(a) S(1) .
$$

However, a posteriori, $\widetilde{\gamma}(a \otimes b)=a \beta s(b)$ while $\xi(a \otimes b)=a \beta s(b) \alpha$ and α cannot be expected to be invertible in general.

Proposition

If ξ is invertible then $\left(\left(a \stackrel{s}{\longmapsto} 1^{1} S\left(a 1^{2}\right)\right), 1, S(1)\right)$, where $\overline{1^{1} \otimes 1^{2}}=\xi^{-1}(1)$, defines a quasi-antipode (without any hypothesis on the dimension of A).

[^1]
From preantipodes to quasi-antipodes (II)

A key point in the proof of $(2 \Rightarrow 1)$ of Schauenburg's result is the existence (derived by applying Krull-Schmidt Theorem) of an isomorphism $\widetilde{\gamma}: \bar{\bullet} \otimes A \xrightarrow{\sim} . A$ of left A-modules and of a linear morphism $\gamma: A \rightarrow A,[a \mapsto \widetilde{\gamma}(\overline{1 \otimes a})]$ that satisfy also

$$
\widetilde{\gamma}(\overline{a \otimes b})=a \gamma(b) \quad \text { and } \quad a_{1} \gamma\left(a_{2}\right)=\varepsilon(a) \gamma(1) .
$$

Consider $\xi(\overline{a \otimes b}):=(A \otimes \varepsilon)\left(\widehat{\eta}_{A}^{-1}(\overline{a \otimes b} \otimes 1)\right)$. The maps ξ and S satisfy

$$
\xi(\overline{a \otimes b})=a S(b) \quad \text { and } \quad a_{1} S\left(a_{2}\right)=\varepsilon(a) S(1) .
$$

However, a posteriori, $\widetilde{\gamma}(\overline{a \otimes b})=a \beta s(b)$ while $\xi(\overline{a \otimes b})=a \beta s(b) \alpha$ and α cannot be expected to be invertible in general.

Proposition

If ξ is invertible then $\left(\left(a \stackrel{s}{\longmapsto} 1^{1} S\left(a 1^{2}\right)\right), 1, S(1)\right)$, where $\overline{1^{1} \otimes 1^{2}}=\xi^{-1}(1)$, defines a quasi-antipode (without any hypothesis on the dimension of A).

Corollary

If $(A, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ is a finite dimensional quasi-Hopf algebra and α is invertible, then we can recover explicitly the quasi-antipode from the preantipode.

Concluding example

Example (Preliminaries 2.3 in [EG])

Let $C_{2}=\langle g\rangle$ be the cyclic group of order 2 and let $H(2):=\mathbb{k} C_{2}$ be its group algebra $(\operatorname{char}(\mathbb{k}) \neq 2)$:

$$
m(p \otimes q)=p \cdot q, \quad u\left(1_{k_{k}}\right)=1_{c_{2}}, \quad \Delta(p)=p \otimes p, \quad \varepsilon(p)=1_{\mathbb{k}} \quad\left(\forall p, q \in C_{2}\right) .
$$

Let us consider the non trivial reassociator:

One can verify that $\left(H(2), m, u, \Delta, \varepsilon, \Phi, \mathrm{Id}_{H(2)}, g, 1\right)$ is a quasi-Hopf algebra. Therefore $S: H(2) \rightarrow H(2),[z \mapsto z \cdot g]$ provides a preantipode for $H(2)$ and $\xi: \overline{H(2) \otimes H(2)} \rightarrow H(2),[\overline{x \otimes y} \mapsto x \cdot y \cdot g]$

is easily checked to be invertible with inverse $\xi^{-1}(x)=\overline{x \otimes g}$

\square
[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett. 11 (2004) no. 5-6, 685-696.

Concluding example

Example (Preliminaries 2.3 in [EG])

Let $C_{2}=\langle g\rangle$ be the cyclic group of order 2 and let $H(2):=\mathbb{k} C_{2}$ be its group algebra $(\operatorname{char}(\mathbb{k}) \neq 2)$:

$$
m(p \otimes q)=p \cdot q, \quad u\left(1_{k_{k}}\right)=1_{c_{2}}, \quad \Delta(p)=p \otimes p, \quad \varepsilon(p)=1_{\mathbb{k}} \quad\left(\forall p, q \in C_{2}\right) .
$$

Let us consider the non trivial reassociator:

$$
\phi:=(1 \otimes 1 \otimes 1)-2(\lambda \otimes \lambda \otimes \lambda) \quad \text { where } \quad \lambda:=\frac{1}{2}(1-g)
$$

One can verify that $\left(H(2), m, u, \Delta, \varepsilon, \Phi, \operatorname{Id}_{H(2)}, g, 1\right)$ is a quasi-Hopf algebra. Therefore $S: H(2) \rightarrow H(2),[z \mapsto z \cdot g]$ provides a preantipode for $H(2)$ and ૬. $\overline{\mu(2) \otimes H(2)}, H(2)\left[\overline{x \otimes y} \cdot x \cdot y \cdot g^{7}\right.$
is easily checked to be invertible with inverse $\xi^{-1}(x)=\overline{x \otimes g}$
A quasi-antipode for $H(2)$ is given then by $\left(\operatorname{Id}_{H(2)}, 1, g\right)$.
[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett. 11 (2004) no. 5-6, 685-696.

Concluding example

Example (Preliminaries 2.3 in [EG])

Let $C_{2}=\langle g\rangle$ be the cyclic group of order 2 and let $H(2):=\mathbb{k} C_{2}$ be its group algebra $(\operatorname{char}(\mathbb{k}) \neq 2)$:

$$
m(p \otimes q)=p \cdot q, \quad u\left(1_{k_{k}}\right)=1_{c_{2}}, \quad \Delta(p)=p \otimes p, \quad \varepsilon(p)=1_{\mathbb{k}} \quad\left(\forall p, q \in C_{2}\right) .
$$

Let us consider the non trivial reassociator:

$$
\Phi:=(1 \otimes 1 \otimes 1)-2(\lambda \otimes \lambda \otimes \lambda) \quad \text { where } \quad \lambda:=\frac{1}{2}(1-g) .
$$

One can verify that $\left(H(2), m, u, \Delta, \varepsilon, \Phi, \operatorname{Id}_{H(2)}, g, 1\right)$ is a quasi-Hopf algebra.
\square
\square
[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett. 11 (2004) no. 5-6, 685-696.

Concluding example

Example (Preliminaries 2.3 in [EG])

Let $C_{2}=\langle g\rangle$ be the cyclic group of order 2 and let $H(2):=\mathbb{k} C_{2}$ be its group algebra $(\operatorname{char}(\mathbb{k}) \neq 2)$:

$$
m(p \otimes q)=p \cdot q, \quad u\left(1_{\mathbb{k}}\right)=1_{c_{2}}, \quad \Delta(p)=p \otimes p, \quad \varepsilon(p)=1_{\mathbb{k}} \quad\left(\forall p, q \in C_{2}\right) .
$$

Let us consider the non trivial reassociator:

$$
\Phi:=(1 \otimes 1 \otimes 1)-2(\lambda \otimes \lambda \otimes \lambda) \quad \text { where } \quad \lambda:=\frac{1}{2}(1-g) .
$$

One can verify that $\left(H(2), m, u, \Delta, \varepsilon, \Phi, \operatorname{Id}_{H(2)}, g, 1\right)$ is a quasi-Hopf algebra. Therefore $S: H(2) \rightarrow H(2),[z \mapsto z \cdot g]$ provides a preantipode for $H(2)$ and
\square A quasi-antipode for $H(2)$ is given then by $\left(\operatorname{Id}_{H(2)}, 1, g\right)$.
[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett. 11 (2004) no. 5-6, 685-696.

Concluding example

Example (Preliminaries 2.3 in [EG])

Let $C_{2}=\langle g\rangle$ be the cyclic group of order 2 and let $H(2):=\mathbb{k} C_{2}$ be its group algebra $(\operatorname{char}(\mathbb{k}) \neq 2)$:

$$
m(p \otimes q)=p \cdot q, \quad u\left(1_{\mathbb{k}}\right)=1_{c_{2}}, \quad \Delta(p)=p \otimes p, \quad \varepsilon(p)=1_{\mathbb{k}} \quad\left(\forall p, q \in C_{2}\right) .
$$

Let us consider the non trivial reassociator:

$$
\Phi:=(1 \otimes 1 \otimes 1)-2(\lambda \otimes \lambda \otimes \lambda) \quad \text { where } \quad \lambda:=\frac{1}{2}(1-g) .
$$

One can verify that $\left(H(2), m, u, \Delta, \varepsilon, \Phi, \operatorname{Id}_{H(2)}, g, 1\right)$ is a quasi-Hopf algebra. Therefore $S: H(2) \rightarrow H(2),[z \mapsto z \cdot g]$ provides a preantipode for $H(2)$ and

$$
\xi: \overline{H(2) \otimes H(2)} \rightarrow H(2),[\overline{x \otimes y} \mapsto x \cdot y \cdot g]
$$

is easily checked to be invertible with inverse $\xi^{-1}(x)=\overline{x \otimes g}$.
[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett. 11 (2004) no. 5-6, 685-696.

Concluding example

Example (Preliminaries 2.3 in [EG])

Let $C_{2}=\langle g\rangle$ be the cyclic group of order 2 and let $H(2):=\mathbb{k} C_{2}$ be its group algebra $(\operatorname{char}(\mathbb{k}) \neq 2)$:

$$
m(p \otimes q)=p \cdot q, \quad u\left(1_{\mathbb{k}}\right)=1_{c_{2}}, \quad \Delta(p)=p \otimes p, \quad \varepsilon(p)=1_{\mathbb{k}} \quad\left(\forall p, q \in C_{2}\right) .
$$

Let us consider the non trivial reassociator:

$$
\Phi:=(1 \otimes 1 \otimes 1)-2(\lambda \otimes \lambda \otimes \lambda) \quad \text { where } \quad \lambda:=\frac{1}{2}(1-g) .
$$

One can verify that $\left(H(2), m, u, \Delta, \varepsilon, \Phi, \operatorname{Id}_{H(2)}, g, 1\right)$ is a quasi-Hopf algebra. Therefore $S: H(2) \rightarrow H(2),[z \mapsto z \cdot g]$ provides a preantipode for $H(2)$ and

$$
\xi: \overline{H(2) \otimes H(2)} \rightarrow H(2),[\overline{x \otimes y} \mapsto x \cdot y \cdot g]
$$

is easily checked to be invertible with inverse $\xi^{-1}(x)=\overline{x \otimes g}$.
A quasi-antipode for $H(2)$ is given then by $\left(\operatorname{Id}_{\left.H_{(2)}, 1, g\right)}\right.$.
[EG] P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett. 11 (2004) no. 5-6, 685-696.

Work in progress

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.
We firmly believe that such an example should exist. The dual notion of a preantipode for a coquasi-bialgebra has been introduced and studied in
[AD] A. Ardizzoni, A. Pavarin, Preantipodes for Dual Quasi-Bialgebras. Israel J. Math. 192 (2012), no. 1, 281-295,
and in the dual case an example of a coquasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in
[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.
Our next aim will be to find a significant example for the case of quasi-bialgebras.

Work in progress

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.

> We firmly believe that such an example should exist. The dual notion of a preantipode for a coquasi-bialgebra has been introduced and studied in
> [AP] A. Ardizzoni, A. Pavarin, Preantipodes for Dual Quasi-Bialgebras. Israel J. Math. 192 (2012), no. 1, 281-295,
> and in the dual case an example of a coquasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in
> [Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New
> Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43,
> Cambridge Univ. Press, Cambridge, 2002.
\qquad

Work in progress

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.
We firmly believe that such an example should exist. The dual notion of a preantipode for a coquasi-bialgebra has been introduced and studied in
[AP] A. Ardizzoni, A. Pavarin, Preantipodes for Dual Quasi-Bialgebras. Israel J. Math. 192 (2012), no. 1, 281-295, and in the dual case an example of a coquasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in
[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.

Work in progress

Missing example

A quasi-bialgebra with preantipode that is not a quasi-Hopf algebra.
We firmly believe that such an example should exist. The dual notion of a preantipode for a coquasi-bialgebra has been introduced and studied in
[AP] A. Ardizzoni, A. Pavarin, Preantipodes for Dual Quasi-Bialgebras. Israel J. Math. 192 (2012), no. 1, 281-295, and in the dual case an example of a coquasi-bialgebra without quasi-antipode but such that the Structure Theorem is satisfied can be found in
[Sc] P. Schauenburg, Hopf algebra extensions and monoidal categories, in New Directions in Hopf Algebras, 321-381, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002.
Our next aim will be to find a significant example for the case of quasi-bialgebras.

[^0]: As a consequence: the preantipode, when it exists, is unique

[^1]: Corollary
 If $(A, m, u, \Delta, \varepsilon, \Phi, s, \alpha, \beta)$ is a finite dimensional quasi-Hopf algebra and α is invertible, then we can recover explicitly the quasi-antipode from the preantipode.

