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Abstract. The aim of this paper is to establish a contravariant adjunction between the category of quasi-
bialgebras and a suitable full subcategory of dual quasi-bialgebras, adapting the notion of finite dual to this
framework. Various functorial constructions involving non-associative algebras and non-coassociative coalge-
bras are then carried out. Several examples illustrating our methods are expounded as well.

1. Introduction

Algebras and coalgebras are dual notions, in the sense that the latter ones are obtained from the first ones
by reversing the structure arrows, that is using the opposite base category. Furthermore, over vector spaces
there is a contravariant adjunction (or duality) between the category of algebras and that of coalgebras,
whose functors are described as follows. In one direction, to each coalgebra one associates, in a functorial
way, its convolution algebra. In the other direction, to each algebra one associates, in a similar way, its
topological dual (i.e. finite dual) coalgebra. This adjunction descends in fact to the category of bialgebras
(and in particular to Hopf algebras), and also establishes a contravariant adjunction between the category
of Lie algebras and the category of Lie coalgebras. All these adjunctions and other ones are captured by
the following diagram

Algk
(−)◦ // Coalgk
(−)∗

oo

Bialgk

OO

(−)◦ //

P

��

Bialgk

Pc

��

OO

(−)◦
oo

Liek

U

OO

(−)• // LieCok
(−)∗

oo

Uc

OO

(1)

where k denotes the base field, and the notations for the involved categories as well as the ones used in the
sequel, are summarized in Table 1 below.

It is noteworthy to mention that in diagram (1), the functor P : Bialgk → Liek associates to each
bialgebra its Lie algebra of primitive elements, and its left adjoint U : Liek → Bialgk is the universal
enveloping algebra functor. Note that in characteristic zero there is a natural isomorphism PU � idLiek

,
see [MM, Theorem 5.18]. The functor Pc is the one given by the vector space of indecomposables, see
e.g. [Mi2, Definition 1.9] where this functor is denoted by Q, and Uc is a functor defined by Michaelis.
The adjunction Pc a Uc is established in [Mi2, Theorem 3.11] for Hopf algebras instead of bialgebras
(the same proof can be adapted to our case, as the antipode is not used therein). The bottom contravariant
adjunction is established in [Mi2, Theorem 3.7]. For the top horizontal adjunction see e.g. [Sw, Theorem
6.0.5]. Concerning the middle horizontal adjunction, the finite dual yields an endofunctor of Bialgk in view
of [Sw, Section 6.2]. Moreover, this comes out to be adjoint to itself as in case of Hopf algebras (cf. e.g.
[Ab, page 87]).
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Table 1. Notations for the handled categories.

Abbreviation The category of
Vectk · · · · · · vector spaces
Algk · · · · · · associative algebras
Coalgk · · · · · · coassociative coalgebras
Bialgk · · · · · · bialgebras
Liek · · · · · · Lie algebras
LieCok · · · · · · Lie coalgebras
NAlgk · · · · · · non-associative algebras
NCoalgk · · · · · · non-coassociative coalgebras
NAlg

(
Coalgk

)
· · · · · · non-associative algebras inside the monoidal category of coalgebras

NCoalg
(
Algk

)
· · · · · · non-coassociative coalgebras inside the monoidal category of algebras

QBialgk · · · · · · quasi-bialgebras
DQBialgk · · · · · · dual quasi-bialgebras
SDQBialgk · · · · · · split dual quasi-bialgebras

(i.e. the 3-cocycle splits as a finite sum of tensor products of linear maps)

Quasi-bialgebras are generalization of ordinary bialgebras, in which the constraint of coassociativity at
the coalgebra level is weakened. Dual quasi-bialgebras are in a certain sense a dual notion, which can also
be seen as a generalization of bialgebras, by affecting this time the associativity constraint.

The main aim of this paper is to investigate the second horizontal adjunction of diagram (1) in the context
of quasi and dual quasi-bialgebras. Explicitly, we establish a contravariant adjunction between the category
of quasi-bialgebras and the one of split dual quasi-bialgebras (a certain full subcategory of the category of
dual quasi-bialgebras) here introduced. To do so, we investigate how some of the adjunctions represented
in diagram (1) extend to the wider framework of non-(co)associative (co)algebras, as in diagram (2). We
just point out here that the upper adjunction in diagram (2) already appeared in [ACM, page 4700].

NAlgk
(−)• //

NCoalgk(−)∗
oo

Liek

88

(−)• //
LieCok(−)∗

oo

99

NAlg
(
Coalgk

)

OO

(−)• //
NCoalg

(
Algk

)
(−)◦

oo

OO

DQBialgk

99

QBialgk(−)◦
oo

99

SDQBialgk
3 S

ff

(−)• // QBialgk
(−)◦

oo

(2)

By a non-associative algebra we mean a unital but not necessarily associative algebra over k, i.e. a
vector space A endowed with two linear maps m : A ⊗ A −→ A, a ⊗ b 7−→ ab (the multiplication) and
u : k −→ A, k 7−→ k1A (the unit) such that a1A = a = 1Aa, for every a ∈ A. A similar terminology is used
for coalgebras.
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2. The construction of the finite dual of a non-associative algebra and examples.

In this section we give the main construction of the paper. More explicitly, starting from a non-
associative algebra, we are able to construct a non-coassociative coalgebra, which in the associative case
coincides with the so called finite dual coalgebra, see [Ab, Mo, Sw] and [AGW] for coalgebras over com-
mutative rings. This is the largest coalgebra inside the linear dual of the underlying vector space of the
initial algebra. To illustrate our techniques, we include two basic examples concerning alternative and
(special) Jordan algebras.

Given a vector space V , we denote by V∗ B Homk (V, k) its linear dual. The unadorned tensor product
⊗ stands for ⊗k. The identity morphism of a vector space V will be denoted by idV or by V itself.

2.1. Good subspace of linear dual vector space. Given two vector spaces V and W, we can consider the
canonical natural injection

ϕV,W : V∗ ⊗W∗ −→ (V ⊗W)∗ ,
(

f ⊗ g 7−→
[
v ⊗ w 7→ f (v)g(w)

])
, (3)

which is clearly a natural isomorphism over finite-dimensional vector spaces.
Let (A,m, u) be a non-associative algebra, see e.g. [Bo, page 428]. Mimicking [Mi1, page 13], a

subspace V ⊆ A∗ is called good in case m∗ (V) ⊆ ϕA, A (V ⊗ V), where m∗ : A∗ → (A ⊗ A)∗ is the dual of
the multiplication map m. For instance, let I be an ideal of A, that is a vector subspace of A stable under
both left and right A-actions: for every a ∈ A, we have aI ⊆ I, Ia ⊆ I, see [Bo, page 430]. Assume that A/I
is finite dimensional as a vector space. Set V = (A/I)∗ which we identify with a subspace of A∗. One can
show that V is a good subspace of A∗.

Let G denote the set of all good subspaces of A∗ and set

A• B
∑
V∈G

V. (4)

By the same proof of [Mi1, Proposition, page 13], one gets that A• is a good subspace of A∗ and hence it is
the maximal good subspace of A∗.

Given two non-associative algebras A and B and a linear map f : A→ B such that f ∗(B•) ⊆ A•, then we
can consider the linear map f • : B• → A•, h 7→ f ∗(h), which is uniquely determined by the commutativity
of the following diagram:

B•
f • //� _

jB ��

A•� _
jA��

B∗
f ∗ // A∗

(5)

where the vertical arrows are the canonical injections.
If we consider a good subspace V ⊆ A∗, then we may define a unique map ∆V : V → V ⊗ V such that

ϕA,A (∆V ( f )) = m∗ ( f ) , for every f ∈ V.

In particular, for every f ∈ A•, a, b ∈ A, ∆A• ( f ) =
∑

f1 ⊗ f2 is uniquely determined by

f (ab) = m∗ ( f ) (a ⊗ b) = ϕA,A (∆A• ( f )) (a ⊗ b) =
∑

f1 (a) f2 (b) . (6)

2.2. The coalgebra structure of A• and examples. Parts of the subsequent lemma find their analogues
for associative algebras in [Sw, Lemma 6.0.1] and for Lie algebras in [Mi1, pages 14-15].

Lemma 2.1. For every pair of non-associative algebras (A,m, u) and (B,m′, u′) and for any morphism
f : A −→ B, denote with f ∗ : B∗ −→ A∗ the dual map. Then the dual map m∗ : A∗ → (A ⊗ A)∗ induces
a map ∆A• B m∗ : A• → A• ⊗ A• and the dual map u∗ : A∗ → k∗ � k : f 7→ f (1) restricts to a map
εA• B u∗ : A• → k such that (A•,∆A• , εA• ) becomes a non-coassociative coalgebra.

Proof. First observe that ∆A• exists by definition of the finite dual and satisfies (6). Therefore, let us show
that εA• is a counit for ∆A• . Pick an element f ∈ A•. For every a ∈ A we have that:

(((εA• ⊗ A•) ◦ ∆A• )( f )) (a) =
(
(εA• ⊗ A•)

(∑
f1 ⊗ f2

))
(a) =

(∑
f1(1) f2

)
(a)

=
∑

f1(1) f2(a)
(6)
= f (a),

(((A• ⊗ εA• ) ◦ ∆A• )( f )) (a) =
(
(A• ⊗ εA• )

(∑
f1 ⊗ f2

))
(a) =

(∑
f2(1) f1

)
(a)
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=
∑

f2(1) f1(a)
(6)
= f (a).

whence (A•,∆A• , εA• ) is a non-coassociative coalgebra in Vectk. �

Remark 2.2. Let A be an object in NAlgk and set

A◦ =
{
g ∈ A∗ | ker(g) contains a finite-codimensional ideal of A

}
. (7)

Here an ideal I of A is of finite codimension, means that A/I is a finite-dimensional vector space. For any
f ∈ A◦, there exists a finite-codimensional ideal I such that f (I) = 0. Then f belongs to the space (A/I)∗,
which is identified with a good subspace of A∗ as in subsection 2.1. By equation (4), this means that f ∈ A•.
We have so proved that A◦ ⊆ A•. This fact can also be seen as a consequence of [ACM, Theorem (2.6)]
which asserts that A◦ = Loc(A•), where the latter denotes the sum of all locally finite subcoalgebras of A•

(recall that a non-coassociative coalgebra C is named locally finite if and only if any x ∈ C lies in some
finite-dimensional subcoalgebra D ⊂ C).

For any A in Algk the finite dual A• coincides with A◦. By the foregoing A◦ ⊆ A•. Conversely, identifying
A∗⊗A∗ with ϕA, A(A∗⊗A∗), if V ⊆ A∗ is any good subspace then for every v ∈ V , m∗(v) ∈ A∗⊗A∗. Therefore,
in view of [Sw, Proposition 6.0.3], v ∈ A◦ and hence V ⊆ A◦. Thus A• ⊆ A◦ so that A• = A◦.

We now provide two examples of finite dual of a non-associative algebra.

Example 2.3. Coalternative coalgebras. Assume k has a characteristic , 2. Let A be an alternative algebra,
that is a not necessarily associative algebra over k, which satisfies the following identity

x(yx) = (xy)x, for every x, y ∈ A.

Replacing x by x + z one sees that the last equality is equivalent to the identity

x(yz) + z(yx) = (xy)z + (zy)x, for every x, y, z ∈ A.

Denote by τ : V ⊗ W → W ⊗ V the natural flip map, and set τ1 = τ ⊗ id and τ2 = id ⊗ τ. Consider the
finite dual coalgebra C = A• as in Lemma 2.1. Then the comultiplication of C satisfies the identity(

id +
(
τ1 ◦ τ2 ◦ τ1

))
◦
(
(∆ ⊗ C) − (C ⊗ ∆)

)
◦ ∆ = 0, (8)

which, over elements, says that for any function f ∈ C we have∑
f1,1 ⊗ f1,2 ⊗ f2 +

∑
f2 ⊗ f1,2 ⊗ f1,1 =

∑
f1 ⊗ f2,1 ⊗ f2,2 +

∑
f2,2 ⊗ f2,1 ⊗ f1. (9)

A coalgebra C which satisfies the identity (8) is called a coalternative coalgebra.

Example 2.4. Jordan coalgebra. Assume k has a characteristic , {2, 3}. Let A be a (special) Jordan
algebra, that is a not necessarily associative algebra over k, which satisfies the following identities

xy = yx, x2(yx) = (x2y)x, for every x, y ∈ A.

The second equality above comes out to be equivalent to

((xy)z)t + ((xt)z)y + ((ty)z)x = (xy)(zt) + (xt)(zy) + (ty)(zx).

Denote by τ : V ⊗ W → W ⊗ V the natural flip map, and set τ1 = τ ⊗ id ⊗ id, τ2 = id ⊗ τ ⊗ id and
τ3 = id ⊗ id ⊗ τ. Following [ACM, Example (3) page 4709], we can consider the finite dual coalgebra
C = A• as in Lemma 2.1. Then the comultiplication of C is cocommutative and satisfies the identity[

id +
(
τ3 ◦ τ2 ◦ τ3

)
+

(
τ3 ◦ τ2 ◦ τ1 ◦ τ2 ◦ τ3

)]
◦
[
(∆ ⊗ C ⊗ C) − (C ⊗ C ⊗ ∆)

]
◦ (∆ ⊗ C) ◦ ∆ = 0, (10)

which, over elements, says that for any function f ∈ C we have∑
f1,1,1 ⊗ f1,1,2 ⊗ f1,2 ⊗ f2 +

∑
f1,1,1 ⊗ f2 ⊗ f1,2 ⊗ f1,1,2 +

∑
f2 ⊗ f1,1,2 ⊗ f1,2 ⊗ f1,1,1

=
∑

f1,1 ⊗ f1,2 ⊗ f2,1 ⊗ f2,2 +
∑

f1,1 ⊗ f2,2 ⊗ f2,1 ⊗ f1,2 +
∑

f2,2 ⊗ f1,2 ⊗ f2,1 ⊗ f1,1. (11)

A cocommutative coalgebra C which satisfies the identity (10) is called a Jordan coalgebra.
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3. Contravariant adjunction between non-associative algebras and non-coassociative coalgebras.

In [ACM, page 4700] it is claimed that the contravariant functor (−)• is the right adjoint of the functor
(−)∗ from the category NCoalgk of non-coassociative coalgebras to the category NAlgk of non-associative
algebras (we just point out that their (co)algebras have no (co)unit). Such an adjunction extends the usual
contravariant adjunction between algebras and coalgebras, that is the first horizontal adjunction in diagram
(1). For the sake of completeness, and as reference for the sequel, we decided to detail the relevant proofs.
We first check that the construction A 7−→ A• of Section 2 defines a contravariant functor from the category
NAlgk to the category NCoalgk. Next we show that it is adjoint to the functor (−)∗ defined as in the classical
case by using the convolution product. In addition, we prove that (A ⊗ B)• � A• ⊗ B•, for every A, B in
NAlgk.

3.1. The functorial construction. Keep the notations of Section 2.

Lemma 3.1. Let f : A → B be a morphism of non-associative algebras and f ∗ : B∗ −→ A∗ its linear dual
map. Then f ∗(B•) ⊆ A•, whence f ∗ induces a map f • : B• → A•, which comes out to be a morphism in
NCoalgk. Moreover, the assignments A 7−→ A• and f 7−→ f • establish a functor

(−)• : NAlgk −→ NCoalgk
op.

Proof. Since f is multiplicative, the left-hand side diagram below commutes, so that, by functoriality of
(−)∗, the right-hand side one commutes, too.

A ⊗ A
mA //

f⊗ f
��

A

f

��
B ⊗ B mB

// B

A∗
m∗A // (A ⊗ A)∗

B∗
m∗B
//

f ∗

OO

(B ⊗ B)∗

( f⊗ f )∗

OO

The latter diagram is part of the following bigger one:

A∗
m∗A // (A ⊗ A)∗

B∗
m∗B

//

f ∗
::

(B ⊗ B)∗

( f⊗ f )∗
88

A∗ ⊗ A∗

ϕA,A

OO

B•
∆B•

//?�

jB

OO

B• ⊗ B• �
�

jB⊗ jB

// B∗ ⊗ B∗

ϕB,B

OO

f ∗⊗ f ∗

88

which still commutes by definition of ∆B• and by naturality of ϕ−,−. In particular, for every g ∈ B•

m∗A ( f ∗(g)) = ϕA,A (( f ∗ ⊗ f ∗) (∆B• (g))) ∈ ϕA,A ( f ∗ (B•) ⊗ f ∗ (B•))

so that f ∗ (B•) is a good subspace of A∗. Furthermore, the commutativity of all the other quads in the sub-
sequent diagram implies the commutativity of the one at the bottom, which encodes the comultiplicativity
of f •:

B∗
m∗B //

f ∗ %%

(B ⊗ B)∗

( f⊗ f )∗vv
A∗

m∗A // (A ⊗ A)∗

A•
?�

jA

OO

∆A•

// A• ⊗ A•
ϕA,A◦( jA⊗ jA)

OO

B•
∆B•

//

f •
88

?�

jB

OO

B• ⊗ B•

ϕB,B◦( jB⊗ jB)

OO

f •⊗ f •
hh
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Moreover, f • is counital, since εA• ◦ f • = (uA)• ◦ f • = ( f ◦ uA)• = (uB)• = εB• . By Lemma 2.1 it follows
that (−)• actually defines a contravariant functor from NAlgk to NCoalgk. �

3.2. The contravariant adjunction. Recall that the assignment (−)∗ : Coalgk −→ Algk defines a con-
travariant functor between the category of coassociative k-coalgebras and the category of associative k-
algebras (cf., e.g., [Sw, Theorem 6.0.5]) that easily extends to a contravariant functor (−)∗ : NCoalgk −→
NAlgk. In this way, we will show that this functor is in fact an adjoint to the functor (−)• of subsection
3.1. By adapting this construction to the categories Liek and LieCok, one recovers Michaelis’ result [Mi1,
Theorem on page 15].

Proposition 3.2. Let (A,m, u) be a non-associative algebra and (C,∆, ε) a non-coassociative coalgebra.
We have a natural isomorphism

Φ(A,C) : NAlgk(A,C
∗) −→ NCoalgk(C, A

•). (12)

Therefore the functor (−)• : NAlgk −→ (NCoalgk)
op is left adjoint to (−)∗ : (NCoalgk)

op −→ NAlgk.

Proof. Denote by χV : V −→ V∗∗ the canonical injection, defined for every vector space V by χV (v)( f ) =

f (v) for all v ∈ V and f ∈ V∗. Recall that χ : (−) −→ (−)∗∗ is a natural transformation and let us check that
if C is a coalgebra then χC (C) ⊆ C∗• (compare with [Mi1, Note on page 15]). This follows once proved
that χC (C) is a good subspace of C∗∗. Given c ∈ C and φ, ψ ∈ C∗ we have that:

(mC∗ )∗(χC (c))(φ ⊗ ψ) = χC (c) (mC∗ (φ ⊗ ψ)) = mC∗ (φ ⊗ ψ)(c)

=
∑

φ(c1)ψ(c2) =
∑

χC (c1) (φ)χC (c2) (ψ)

= ϕC∗,C∗
(∑

χC (c1) ⊗ χC (c2)
)

(φ ⊗ ψ)

so that (mC∗ )∗(χC (c)) = ϕC∗,C∗ (
∑
χC (c1) ⊗ χC (c2)) for all c ∈ C and

(mC∗ )∗(χC (C)) ⊆ ϕC∗,C∗ (χC (C) ⊗ χC (C))

so that χC(C) is good by definition. Note also that we have just proved that

(mC∗ )∗ ◦ χC = ϕC∗,C∗ ◦ (χC ⊗ χC) ◦ ∆. (13)

If we denote by jA : A• −→ A∗ the inclusion of the finite dual of a non-associative algebra A into its
ordinary dual, then we have just shown that for any non-coassociative coalgebra C, χC induces a k-linear
map εC : C −→ C∗• that is still natural in C and it satisfies

jC∗ ◦ εC = χC . (14)

Let us check that εC actually is a comultiplicative and counital map. Denote by ∆C∗• the comultiplication
of C∗•. This is the only map that satisfies ϕC∗,C∗ ◦ ( jC∗ ⊗ jC∗ ) ◦ ∆C∗• = (mC∗ )∗ ◦ jC∗ .

As a consequence:

ϕC∗,C∗ ◦ ( jC∗ ⊗ jC∗ ) ◦ ∆C∗• ◦ εC = (mC∗ )∗ ◦ jC∗ ◦ εC
(14)
= (mC∗ )∗ ◦ χC

(13)
= ϕC∗,C∗ ◦ (χC ⊗ χC) ◦ ∆

(14)
= ϕC∗,C∗ ◦ ( jC∗ ⊗ jC∗ ) ◦ (εC ⊗ εC) ◦ ∆

and, by injectivity of ϕC∗,C∗ and of jC∗ , we have that ∆C∗• ◦ εC = (εC ⊗ εC) ◦ ∆. Moreover,

εC∗• (εC(c))
(†)
=

(
u•C∗ (εC(c))

)
(1k) = (εC(c)) (uC∗ (1k)) = (εC(c)) (εC) = εC(c)

for any c ∈ C, where in (†) we identified k∗ with k. Hence, εC is comultiplicative and counital.
On the other hand, the injection jA : A• ↪→ A∗ induces a map ηA : A→ A•∗ given by

ηA B j∗A ◦ χA. (15)

We claim that this is an algebra morphism. Set η = ηA for shortness. Then, for all a, b ∈ A and for any
f ∈ A•:

mA•∗ (η(a) ⊗ η(b))( f ) = ϕA•, A•
(
η(a) ⊗ η(b)

)
(∆A• ( f )) =

∑
η(a) ( f1) η(b) ( f2)

=
∑

f1(a) f2(b)
(6)
= f (ab) = η(ab)( f ).
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Moreover, η(u(1))( f ) = f (1A) = εA• ( f ) = (εA• )∗(1)( f ) = uA•∗ (1)( f ), for all f ∈ A•.
Let us check finally that η and ε satisfy the conditions to be the unit and the counit of the adjunction,

respectively. By a direct calculation:

jA ◦ η
•
A ◦ εA•

(5)
= η∗A ◦ jA•∗ ◦ εA•

(14)
= η∗A ◦ χA•

(15)
= χ∗A ◦ j∗∗A ◦ χA•

(∗)
= χ∗A ◦ χA∗ ◦ jA = jA

where in (∗) we used the naturality of j and the last equality follows from the fact the (−)∗ is adjoint to
itself at the level of vector spaces. Therefore, by injectivity of jA, we have that η•A ◦ εA• = idA• . For the other
composition, let us compute

ε∗C ◦ ηC∗
(15)
= ε∗C ◦ j∗C∗ ◦ χC∗

(14)
= χ∗C ◦ χC∗ = idC∗

and this concludes the proof. �

3.3. The functor (−)• and the tensor product. Next we study how the functor (−)• behaves with respect
to the tensor product of two algebras.

Proposition 3.3. Let A and B be in NAlgk. Then the canonical injection ϕA, B : A∗ ⊗ B∗ −→ (A ⊗ B)∗ of
equation (3) induces the natural isomorphism in NCoalgk

ϕ′A,B B (ϕA•,B• ◦ (ηA ⊗ ηB))• ◦ ε(A•⊗B•) : A• ⊗ B•
�
−→ (A ⊗ B)•. (16)

Proof. Observe that for any C,D in NCoalgk, ϕC,D : C∗ ⊗ D∗ → (C ⊗ D)∗ is a morphism in NAlgk. Thus
the morphism defined in equation (16) is well-defined. For all f ∈ A•, g ∈ B•, a ∈ A, b ∈ B we have that

((ϕA•,B• ◦ (ηA ⊗ ηB))• ◦ ε(A•⊗B•))( f ⊗ g)(a ⊗ b) = (ϕA•,B• )•(ε(A•⊗B•)( f ⊗ g))(ηA(a) ⊗ ηB(b))
= ε(A•⊗B•)( f ⊗ g)(ϕA•,B• (ηA(a) ⊗ ηB(b)))
= ϕA•,B• (ηA(a) ⊗ ηB(b))( f ⊗ g)

= ηA(a)( f )ηB(b)(g)
(15)
= f (a)g(b)

=
(
ϕA,B( f ⊗ g)

)
(a ⊗ b).

Therefore jA⊗B ◦ ϕ
′
A,B = ϕA,B ◦ ( jA ⊗ jB) and in particular ϕ′A,B is injective. It remains to find an inverse for

ϕ′A,B. To this aim consider the algebra morphisms

iA : A −→ A ⊗ B : a 7−→ a ⊗ 1 and iB : B −→ A ⊗ B : b 7−→ 1 ⊗ b.

Then we can consider the map

ψA,B B (A ⊗ B)•
∆(A⊗B)• // (A ⊗ B)• ⊗ (A ⊗ B)•

(iA)•⊗(iB)• // A• ⊗ B•.

Note that ψA,B satisfies, for all f ∈ (A ⊗ B)•, a ∈ A, b ∈ B:

ϕ′A,B(ψA,B( f ))(a ⊗ b) B ϕ′A,B(((iA)• ⊗ (iB)•)(∆(A⊗B)• ( f )))(a ⊗ b) = ϕ′A,B
(∑

f1 ⊗ f2
)

(iA(a) ⊗ iB(b))

=
∑

f1(a ⊗ 1) f2(1 ⊗ b)
(6)
= f ((a ⊗ 1) · (1 ⊗ b)) = f (a ⊗ b).

This means that ϕ′A,B is also surjective and hence, a fortiori, it is an isomorphism with inverse ψA,B. �

Remark 3.4. Let A be in NAlgk. We can consider A◦ as defined in (7). It should be observed that in general
A◦ is strictly contained in A•. To show this take A = C∗ for a non-coassociative coalgebra C that is not
locally finite, then A• cannot be locally finite (since εC : C −→ C∗• is injective). At the same time, in
view of Remark 2.2, A◦ = Loc(A•) so that it is locally finite and hence it cannot coincide with A•. We now
provide an example of a coalgebra which is not locally finite. Explicitly, consider C = k[X] the polynomial
ring in the indeterminate X endowed with the comultiplication given by

∆(1) = 1 ⊗ 1, ∆(X) = X ⊗ 1 + 1 ⊗ X, ∆(Xn) = Xn ⊗ 1 + 1 ⊗ Xn + Xn+1 ⊗ X + X ⊗ Xn+1, n ≥ 2

and the counit given by ε(Xn) = δn,0 for all n ≥ 0. It is easy to check that (C,∆, ε) belongs to NCoalgk.
Note that factoring out by the coideal k1 and denoting, for n ≥ 0, by xn the class of Xn+1 in the quotient
yields the Lie coalgebra E considered in [Mi1, page 9]. As for E, one easily proves that X2 does not lie in
any finite-dimensional subcoalgebra of C. Thus C is not locally finite.
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4. Contravariant adjunction between the categories NAlg
(
Coalgk

)
and NCoalg

(
Algk

)
.

In this section we recall the definitions of the category of coalgebras with multiplication and unit and of
that of algebras with comultiplication and counit, denoted by NAlg

(
Coalgk

)
and NCoalg

(
Algk

)
respectively.

For an object C ∈ NAlg
(
Coalgk

)
, we investigate some basic properties of C•. The key result will be that, in

this context, C• is an algebra with comultiplication and counit. This will allow us to extend the contravariant
adjunction of the previous section to a contravariant adjunction between the categories NAlg

(
Coalgk

)
and

NCoalg
(
Algk

)
.

Let us start be recalling from [Ma, Preliminaries], [Ka, Definition XV.1.1 and Proposition XV.1.2], the
following definitions.

Definition 4.1. A coalgebra with multiplication and unit is a datum (C,∆, ε,m, u) where
(1) the triple (C,∆, ε) is in Coalgk;
(2) the maps m : C ⊗ C → C and u : k → C are morphisms in Coalgk, called multiplication and unit

respectively, such that m is unital with unit u.

In other words this is a not necessarily associative monoid (or algebra) inside the monoidal category of
coassociative and counital coalgebras. A morphism of coalgebras with multiplication and unit is a linear
map which is compatible with both structures, that is, simultaneously a morphism of coalgebras and of
algebras. The category so obtained will be denoted by NAlg

(
Coalgk

)
.

Dualizing Definition 4.1 leads to the construction of the category of algebras with comultiplication
and counit denoted by NCoalg

(
Algk

)
, whose objects are denoted by (A,m, u,∆, ε). Thus, an object in

NCoalg
(
Algk

)
is a not necessarily coassociative comonoid inside the monoidal category of associative and

unital algebras.

Proposition 4.2. Let (C,∆, ε,m, u) be a coalgebra with multiplication and unit. Then (C•,∆•, ε•,m•, u•)
is an algebra with comultiplication and counit. Moreover, this establishes a well-defined contravariant
functor

(−)• : NAlg
(
Coalgk

)
−→ NCoalg

(
Algk

)
.

Proof. For the reader’s sake, in this proof we will write explicitly the isomorphism ϕ′C,D : C• ⊗ D• →
(C ⊗ D)• of equation (16), although in the statement we identified the domain and the codomain of this
map. For this reason the multiplication of C• is more precisely mC• B ∆• ◦ ϕ′C,C while its comultiplication

is ∆C• B
(
ϕ′C,C

)−1
◦ m•. We compute

jC ◦ mC• = jC ◦ ∆• ◦ ϕ′C,C
(5)
= ∆∗ ◦ jC⊗C ◦ ϕ

′
C,C

(16)
= ∆∗ ◦ ϕC,C ◦ ( jC ⊗ jC) = mC∗ ◦ ( jC ⊗ jC).

Furthermore, since idk ∈ k∗ = k•, we can compute ε•C(idk) obtaining εC = ε•C(idk) ∈ C•. Thus we can
set 1C• B εC and we have that jC(1C• ) = 1C∗ . Since jC is injective, we deduce that C• is an algebra.
Explicitly, for every f , g ∈ C• we have that mC• ( f ⊗ g) equals the convolution product f ∗ g. Moreover
u∗ : C∗ → k∗ � k : f 7→ f (1) restricts to a map εC• B u∗ : C• → k.

For all x, y ∈ C and f , g ∈ C•, we have∑
( f ∗ g)1 (x) · ( f ∗ g)2 (y) = ( f ∗ g) (xy) =

∑
f
(
(xy)1

)
· g

(
(xy)2

)
=

∑
f (x1y1) · g (x2y2) =

∑
f1 (x1) · f2 (y1) · g1 (x2) · g2 (y2)

=
∑

( f1 ∗ g1) (x) · ( f2 ∗ g2) (y) ,

and
∑
ε1 (x) · ε2 (y) = ε (xy) = ε (x) · ε (y). This implies that∑

( f ∗ g)1 ⊗ ( f ∗ g)2 =
∑

( f1 ∗ g1) ⊗ ( f2 ∗ g2) and
∑

ε1 ⊗ ε2 = ε ⊗ ε.

Thus ∆C• is multiplicative and unital. Moreover

εC• ( f ∗ g) = ( f ∗ g) (1) = f (1) · g (1) = εC• ( f ) · εC• (g)

and εC• (ε) = ε (1) = 1 so that εC• is multiplicative and unital as well.
Take a morphism f : C → D in NAlg

(
Coalgk

)
. By Lemma 3.1, we know that f • : D• → C• is a

coalgebra map. It remains to check that it is multiplicative and unital. For every x ∈ C,

f • (1D• ) (x) = 1D•
(
f (x)

)
= εD

(
f (x)

)
= εC (x) = 1C• (x) ,
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where in the third equality we used the fact that f is a counital map. Furthermore, for every α and β in D•

f • (α ∗ β) (x) = (α ∗ β)
(
f (x)

)
=

∑
α
(
f (x)1

)
β
(
f (x)2

)
=

∑
α
(
f (x1)

)
β
(
f (x2)

)
=

(
f • (α) ∗ f • (β)

)
(x),

where we have used the fact that f is comultiplicative. This establishes the stated functor which is clearly
a contravariant one. �

As we have mentioned in Remark 2.2, see also the references quoted therein, there is a functor

(−)◦ : Algk −→ Coalgk, (17)

which is the restriction of the functor (−)• defined in subsection 3.1. Even thought we could use the same
notation for these two functors without ambiguity, we preferred to keep different notations, in order to
make clear the distinction between the associative and the non-associative case.

Lemma 4.3. The functor (−)◦ is lifted to a functor (−)◦ : NCoalg
(
Algk

)
→ NAlg

(
Coalgk

)
. That is, we have

a commutative diagram

NCoalg
(
Algk

) (−)◦ //

��

NAlg
(
Coalgk

)
��

Algk
(−)◦ // Coalgk

where the vertical functors are the forgetful ones.

Proof. Take an object (A,m, u,∆, ε) in NCoalg
(
Algk

)
. Analogously to subsection 3.3, we can consider the

datum (A◦,m◦, u◦,∆◦, ε◦), where (A◦,m◦, u◦), ∆◦ and ε◦ are the images, up to the natural isomorphism of
Proposition 3.3, through the functor (17) of (A,m, u), ∆ and ε, respectively. We know that (A◦,m◦, u◦) is
coassociative counital coalgebra, and also that ∆◦ and ε◦ are coalgebra maps. The unital property of ∆◦

with respect to ε◦ is automatically derived from the counitality of ∆ with respect to ε. Summing up, we
have that (A◦,m◦, u◦,∆◦, ε◦) is an object in the category NAlg

(
Coalgk

)
. To check that the stated functor is

well-defined on morphisms one mimics the last part of the proof of Proposition 4.2. �

The following is our first main result.

Theorem 4.4. There is a natural isomorphism:

NCoalg
(
Algk

)(
A,C•

)
� NAlg

(
Coalgk

)(
C, A◦

)
for every pair of objects A in NCoalg

(
Algk

)
and C in NAlg

(
Coalgk

)
. That is, there is a contravariant

adjunction

NAlg
(
Coalgk

) (−)• //
NCoalg

(
Algk

)
(−)◦

oo

where the contravariant functor (−)◦ is defined by Lemma 4.3 and (−)• by Proposition 4.2.

Proof. In order to prove the theorem let us consider the unit ηA : A → A◦∗ and the counit εC : C → C∗◦

defined in (15) and (14) respectively, where A is in NCoalg
(
Algk

)
and C is in NAlg

(
Coalgk

)
.

We already know that ηA is multiplicative and unital. We claim that it lands into A◦•, indeed let us show
that Im(ηA) is a good subspace of A◦∗. For all a ∈ A and f , g ∈ A◦ we have that

m◦∗ (ηA(a)) ( f ⊗ g) = ηA(a)( f ∗ g) = ( f ∗ g)(a) =
∑

f (a1)g(a2)

=
∑

ηA(a1)( f )ηA(a2)(g) =
(∑

ηA(a1) ⊗ ηA(a2)
)

( f ⊗ g)

i.e. for all a ∈ A, m◦∗(ηA(a)) ∈ ϕA◦, A◦ (Im(ηA) ⊗ Im(ηA)) where ϕ−,− is the canonical inclusion of equation
(3). Therefore we denote by ξA : A → A◦• the corestriction of ηA. Observe further that, in particular, this
means that ηA (and hence ξA) is comultiplicative. Moreover, ξA is also counital since

u◦ (ξA(a)) = ξA(a) (1A◦ ) = ξA(a) (ε) = ε(a)
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for all a ∈ A. By the foregoing, ξA is a morphism in the category NCoalg
(
Algk

)
. Now we can check the

naturality in A of ξA: pick a morphism f : A→ B in NCoalg
(
Algk

)
and consider the diagram

A
ξA //

f

��

A◦•

f ◦•

��

jA◦ // A◦∗

f ◦∗

��
B

ξB

// B◦•
jB◦

// B◦∗

The commutativity of the outer diagram encodes the naturality of η, while the right-hand side diagram
follows by (5). Hence the left-hand side diagram commutes too whence the naturality of ξ is settled.
To construct the counit one proceeds in a very similar way. Explicitly, for an object (C,∆, ε,m, u) in
NAlg

(
Coalgk

)
, the map εC induces the counit which is given by

ϑC : C −→ C•◦, x 7−→
[
C• → k, g 7→ g(x)

]
. (18)

It remains to check the commutativity of the following two diagrams

C•◦•
(ϑC )• // C•

C•

ηC•

OO

=

99 A◦•◦

(ηA)◦

��

A◦
ϑA◦oo

=
yy

A◦

As for the first one, for every g ∈ C• and for every c ∈ C a direct calculation shows that

(ϑC)• (ηC• (g)) (c) = ηC• (g) (ϑC(c)) = ϑC(c)(g) = g(c)

while for the second one, for every f ∈ A◦ and for every a ∈ A,

(ξA)◦ (ϑA◦ ( f )) (a) = ϑA◦ ( f ) (ξA(a)) = ξA(a) ( f ) = f (a).

This finishes the proof. �

5. Contravariant adjunction between quasi-bialgebras and split dual quasi-bialgebras.

This section contains our main result. We show that the contravariant adjunction of Theorem 4.4 can be
restricted to an adjunction between the category of quasi-bialgebras and that of split dual quasi-bialgebras.
The latter is a full subcategory of the category of dual quasi-bialgebras characterized by the fact that the
3-cocycle (i.e. the reassociator) splits as a finite sum of tensor products of linear maps.

5.1. Quasi-bialgebras and dual quasi-bialgebras: definitions and examples. We start by recalling the
definition of the main objects of this section. The definitions presented here are quoted form [Dr, Ma, Ka].

Definition 5.1 ([Dr]). A quasi-bialgebra is an object (H,m, u,∆, ε) in the category NCoalg
(
Algk

)
(see after

Definition 4.1), endowed with a counital 3-cocycle Φ, i.e. an invertible element in the algebra H ⊗ H ⊗ H
that satisfies

(H ⊗ H ⊗ ∆) (Φ) · (∆ ⊗ H ⊗ H) (Φ) = (1 ⊗ Φ) · (H ⊗ ∆ ⊗ H)(Φ) · (Φ ⊗ 1), (19)
(ε ⊗ H ⊗ H)(Φ) = (H ⊗ ε ⊗ H)(Φ) = (H ⊗ H ⊗ ε)(Φ) = 1 ⊗ 1, (20)

Φ · (∆ ⊗ H)(∆(h)) = (H ⊗ ∆)(∆(h)) · Φ. (21)

The element Φ is called the reassociator(1) of the quasi-bialgebra. Obviously, if Φ = 1 ⊗ 1 ⊗ 1, then
(H,m, u,∆, ε) is a usual bialgebra.

A linear map f : (H,m, u,∆, ε,Φ) → (H′,m′, u′,∆′, ε′,Φ′) is a morphism of quasi-bialgebras if it is a
morphism in NCoalg

(
Algk

)
such that

(f ⊗ f ⊗ f) (Φ) = Φ′. (22)

The category of quasi-bialgebras and their morphisms will be denoted by QBialgk.

(1) In [Ka, page 369] this is called the Drinfeld associator.
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Example 5.2. Let C be in NCoalgk and consider the tensor algebra T (C). By the universal property of the
tensor algebra, the comultiplication and the counit of C induce a comultiplication and a counit on T = T (C)
respectively that make it into an object in NCoalg

(
Algk

)
. Suppose that T is in QBialgk. Then it admits a

reassociator Φ ∈ T⊗3 but, in view of Corollary B.4, Φ ∈ k · 1 ⊗ 1 ⊗ 1. By (20), Φ = 1 ⊗ 1 ⊗ 1 which means
that T is in Bialgk. This forces C to be in Coalgk. Therefore, if we consider C in NCoalgk but not in Coalgk,
then T (C) is in NCoalg

(
Algk

)
but not in QBialgk.

We now give an explicit example of such a C. Consider the alternative algebra A, see Example 2.3,
constructed as follows. As a vector space, A = ke ⊕ kx ⊕ ky, with multiplication table given as follows:

· e x y
e e x y
x x y x
y y x x

This is a unital, commutative but not associative algebra. Let us take its ordinary linear dual C = A∗ =

kE ⊕ kX ⊕ kY where {E, X,Y} is the dual basis. It comes out to be a counital, cocommutative but not
coassociative coalgebra. The induced comultiplication and counit are given by

∆(X) = X ⊗ Y + Y ⊗ X + Y ⊗ Y + X ⊗ E + E ⊗ X, ε(X) = 0,
∆(Y) = X ⊗ X + Y ⊗ E + E ⊗ Y, ε(Y) = 0,

∆(E) = E ⊗ E, ε(E) = 1.

Observe further that cocommutativity ensures that T (C) satisfies the condition to be a coalternative
coalgebra, as given explicitly in Example 2.3 equation (8).

Besides algebras with comultiplication and counit that are not quasi-bialgebras, we also have quasi-
bialgebras that are not bialgebras.

Example 5.3. Let us retrieve a couple of examples. First we exhibit a way to produce non-trivial quasi-
bialgebras from ordinary bialgebras. Following [Dr], we consider a quasi-bialgebra (H,m, u,∆, ε,Φ) and
we recall that a twist on H (also referred to as gauge transformation, cf. [Ka, Definition XV.3.1]) is an
invertible element F of H ⊗ H such that

(H ⊗ ε)(F) = 1 = (ε ⊗ H)(F).

Given a twist, we can construct the twisted quasi-bialgebra HF B (H,m, u,∆F , ε,ΦF) where

∆F(a) B F · ∆(a) · F−1 and ΦF B (1 ⊗ F) · (A ⊗ ∆)(F) · Φ · (∆ ⊗ A)(F−1) · (F−1 ⊗ 1).

This is still a quasi-bialgebra (cf. [Ka, Proposition XV.3.2], [Dr, page 1422]). Now, assume we have
(G,m, u,∆, ε) an ordinary bialgebra. We can endow it with a trivial structure of quasi-bialgebra by con-
sidering Φ = 1 ⊗ 1 ⊗ 1. If we take a non-trivial twist F on G, then GF is a quasi-bialgebra, but it is not
necessarily an ordinary bialgebra. Indeed:

ΦF = (1 ⊗ F) · (G ⊗ ∆)(F) · (∆ ⊗G)(F−1) · (F−1 ⊗ 1)

does not equal 1 ⊗ 1 ⊗ 1 in general, and ∆F is not coassociative. In such cases, GF is a non-trivial example
of quasi-bialgebra.

Next, let us show a case in which an ordinary bialgebra can be endowed with a non-trivial structure of
quasi-bialgebra without changing its underlying structure. This example comes from [EG, Preliminaries
2.3] (see also [BCT, Example 2.5]). Let C2 = 〈g〉 be the cyclic group of order 2 with generator g and let
k be a field of characteristic different from 2. Consider the group algebra H(2) B kC2 with its ordinary
bialgebra structure, i.e., ∆(g) = g ⊗ g and ε(g) = 1. Observe that H(2) is a two-dimensional commutative
algebra. Now, set p B 1

2 (1 − g) and consider the non-trivial reassociator

Ψ B (1 ⊗ 1 ⊗ 1) − 2(p ⊗ p ⊗ p).

It can be easily verified that (H(2),m, u,∆, ε,Ψ) satisfies the conditions to be a quasi-bialgebra.
Actually this example can tell us more: H(2) with this non-trivial quasi-bialgebra structure turns out

to be not twist equivalent to any ordinary bialgebra (by twist equivalent to a bialgebra G′ we mean that
there exists a twist F on H(2) and an isomorphism of quasi-bialgebras G′ � H(2)F ; cf. [Dr, page 1422]).
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Hence this is a genuine example of a quasi-bialgebra. To see this note that H(2) can be endowed with a
quasi-antipode, i.e. a triple (s, α, β) composed by an algebra anti-homomorphism s : H(2) → H(2) and
two distinguished elements α and β such that∑

s(a1)αa2 = ε(a)α,
∑

a1βs(a2) = ε(a) β,
∑

Φ1βs(Φ2)αΦ3 = 1,
∑

s(φ1)αφ2βs(φ3) = 1.

where
∑

Φ1 ⊗ Φ2 ⊗ Φ3 B Φ and
∑
φ1 ⊗ φ2 ⊗ φ3 B Φ−1 (a quasi-bialgebra with quasi-antipode is usually

called a quasi-Hopf algebra; cf. [Dr, page 1424]). In particular, H(2) can be endowed with the quasi-
antipode (idH(2), g, 1). By [Dr, page 1425], it is possible to twist a quasi-Hopf algebra too, and get again a
quasi-Hopf algebra. As a consequence, if there were a twist F on H(2) such that H(2)F � G′ where G′ is
an ordinary bialgebra, then H(2)F would turn out to be an ordinary Hopf algebra. In particular βF ·αF = 1.
However, writing F B

∑
F1 ⊗ F2, F−1 B

∑
f 1 ⊗ f 2 and recalling that H(2) is commutative we get

βF B
∑

F1 · β · s(F2) =
∑

F1 · F2, αF B
∑

s( f 1) · α · f 2 =
∑

f 1 · f 2 · g,

and
βF · αF =

(∑
F1 · F2

)
·
(∑

f 1 · f 2 · g
)

=
∑

F1 · f 1 · F2 · f 2 · g = g , 1.

Therefore, H(2) cannot be twist equivalent to any ordinary bialgebra.

For any quasi-bialgebra (H,m, u,∆, ε,Φ), we denote by

Φ B
∑

Φ1 ⊗ Φ2 ⊗ Φ3 =
∑

Ψ1 ⊗ Ψ2 ⊗ Ψ3 =
∑

Θ1 ⊗ Θ2 ⊗ Θ3,

the reassociator Φ of Definition 5.1, whose inverse is

φ :=
∑

φ1 ⊗ φ2 ⊗ φ3 =
∑

ψ1 ⊗ ψ2 ⊗ ψ3 =
∑

θ1 ⊗ θ2 ⊗ θ3.

This notations will be soon understood. Explicitly, equations (19), (20) and (21) can be rewritten as∑
Φ1 · Ψ1

1 ⊗ Φ2 · Ψ1
2 ⊗ Φ3

1 · Ψ
2 ⊗ Φ3

2 · Ψ
3 =

∑
Ψ1 · Θ1 ⊗ Φ1 · Ψ2

1 · Θ
2 ⊗ Φ2 · Ψ2

2 · Θ
3 ⊗ Φ3 · Ψ3,∑

Φ1ε(Φ2) ⊗ Φ3 = 1 ⊗ 1,∑
Φ1h1, 1 ⊗ Φ2h1, 2 ⊗ Φ3h2 =

∑
h1Φ

1 ⊗ h2, 1Φ
2 ⊗ h2, 2Φ

3.

The dual version of Definition 5.1, led in [Ma] to the notion of dual quasi-bialgebra, which, for sake of
reader convenience, we recall here with details.

Definition 5.4. A dual quasi-bialgebra is an object (U,∆, ε,m, u) in the category NAlg
(
Coalgk

)
, endowed

with a unital 3-cocycle ω, i.e. a convolution invertible element ω : U ⊗ U ⊗ U → k that satisfies(
ω ◦ (U ⊗ U ⊗ m)

)
∗
(
ω ◦ (m ⊗ U ⊗ U)

)
=

(
ε ⊗ ω

)
∗

(
ω ◦ (U ⊗ m ⊗ U)

)
∗

(
ω ⊗ ε

)
(23)

ω (h ⊗ k ⊗ l) = ε (h) ε (k) ε (l) , whenever 1U ∈ {h, k, l} ⊂ U (24)(
u ◦ ω

)
∗
(
m ◦ (m ⊗ U)

)
=

(
m ◦ (U ⊗ m)

)
∗
(
u ◦ ω

)
, (25)

where the star ∗ in equation (23) stands for the convolution product of the algebra (U⊗4)∗, while in equation
(25) it is the convolution product of the non-associative algebra Vectk

(
U⊗3,U

)
. The map ω is also called the

reassociator of the dual quasi-bialgebra (this is an invertible element in the convolution algebra (U⊗3)∗).

A linear map g : (U,m, u,∆, ε, ω)→ (U′,m′, u′,∆′, ε′, ω′) is a morphism of dual quasi-bialgebras if it is
a morphism in the category NAlg

(
Coalgk

)
satisfying:

ω′ ◦ (g ⊗ g ⊗ g) = ω. (26)

The category of dual quasi-bialgebras and their morphisms will be denoted by DQBialgk.
On elements, the equations (23), (24) and (25) are written, for all x, y, z, t ∈ U, as∑

ω
(
x1 ⊗ y1 ⊗ z1t1

)
ω
(
x2y2 ⊗ z2 ⊗ t2

)
=

∑
ω
(
y1 ⊗ z1 ⊗ t1

)
ω
(
x1 ⊗ y2z2 ⊗ t2

)
ω
(
x2 ⊗ y3 ⊗ z3

)
,

ω(x ⊗ y ⊗ 1) = ω(x ⊗ 1 ⊗ y) = ω(1 ⊗ x ⊗ y) = ε(x)ε(y),∑
ω
(
x1 ⊗ y1 ⊗ z1

)(
x2y2

)
z2 =

∑
x1

(
y1z1

)
ω
(
x2 ⊗ y2 ⊗ z2

)
.
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5.2. The contravariant adjunction. We first check that the functor of Lemma 4.3, leads to a functor
from the category QBialgk to DQBialgk. Consider a quasi-bialgebra (H,m, u,∆, ε,Φ). Since the underlying
object (H,m, u,∆, ε) is in NCoalg

(
Algk

)
, we can consider its image (H◦,m◦, u◦,∆◦, ε◦) in NAlg

(
Coalgk

)
by

the functor of Lemma 4.3. Set U = H◦ and consider the natural transformation of (15) at H⊗3

H⊗3
ηH⊗3 //

((
H⊗3

)◦)∗ (16)
�

((
H◦

)⊗3
)∗

=
(
U⊗3

)∗
,

which by construction is an algebra map. Therefore, the following k-linear map

ω B ηH⊗3 (Φ) : U⊗3 −→ k,
(

f ⊗ g ⊗ h 7−→
∑

f (Φ1)g(Φ2)h(Φ3)
)
, (27)

is an invertible element in the convolution algebra
(
U⊗3

)∗, since Φ is so in the algebra H⊗3.
We claim that (U,m◦, u◦,∆◦, ε◦, ω) is now a dual quasi-bialgebra. Taken an element x ∈ H, we can

compute(∑
ω( f1 ⊗ g1 ⊗ h1

)(
f2g2

)
h2

)
(x) =

∑
f1(Φ1)g1(Φ2)h1(Φ3) f2(x1, 1)g2(x1, 2)h2(x2)

(21)
=

∑
f1(Φ1)g1(Φ2)h1(Φ3) f2(φ1x1Φ

1)g2(φ2x2, 1Φ
2)h2(φ3x2, 2Φ

3)
(6)
=

∑
f (Φ1φ1x1Φ

1)g(Φ2φ2x2, 1Φ
2)h(Φ3φ3x2, 2Φ

3)

=
∑

f (x1Φ
1)g(x2, 1Φ

2)h(x2, 2Φ
3)

(6)
=

∑
f1(x1)g1(x2, 1)h1(x2, 2) f2(Φ1)g2(Φ2)h2(Φ3)

=
∑

f1(x1)g1(x2, 1)h1(x2, 2)ω
(
f2 ⊗ g2 ⊗ h2

)
=

(∑
f1

(
g1h1

)
ω
(
f2 ⊗ g2 ⊗ h2

))
(x).

This gives equation (25) for (U, ω). Equation (24) for (U, ω), follows by:

ω( f ⊗ 1 ⊗ h) = f (Φ1)ε(Φ2)h(Φ3)
(20)
= f (1)h(1) = ε( f )ε(h),

and similarly when 1 appears in the other entries.
Let us check equation (23) for (U, ω). Considered f , g, h, e ∈ U, we have∑

ω
(
f1 ⊗ g1 ⊗ h1e1

)
ω
(
f2g2 ⊗ h2 ⊗ e2

)
=

∑
f1(Φ1)g1(Φ2)

(
h1e1

)
(Φ3)

(
f2g2

)
(Ψ1)h2(Ψ2)e2(Ψ3)

=
∑

f1(Φ1)g1(Φ2)h1(Φ3
1)e1(Φ3

2) f2(Ψ1
1)g2(Ψ1

2)h2(Ψ2)e2(Ψ3)

=
∑

f
(
Φ1Ψ1

1

)
g
(
Φ2Ψ1

2

)
h
(
Φ3

1Ψ
2)e(Φ3

2Ψ
3)

(20)
=

∑
f
(
Ψ1Θ1)g(Φ1Ψ2

1Θ
2)h(Φ2Ψ2

2Θ
3)e(Φ3Ψ3)

=
∑

f1(Ψ1) f2(Θ1) g1(Φ1)g2(Ψ2
1)g3(Θ2) h1(Φ2)h2(Ψ2

2)h3(Θ3) e1(Φ3)e2(Ψ3)

=
∑(

g1(Φ1)h1(Φ2)e1(Φ3)
)(

f1(Ψ1)g2(Ψ2
1)h2(Ψ2

2)e2(Ψ3)
)(

f2(Θ1)g3(Θ2)h3(Θ3)
)

=
∑(

g1(Φ1)h1(Φ2)e1(Φ3)
)(

f1(Ψ1)(g2h2)(Ψ2)e2(Ψ3)
)(

f2(Θ1)g3(Θ2)h3(Θ3)
)

=
∑

ω
(
g1 ⊗ h1 ⊗ e1

)
ω
(
f1 ⊗ g2h2 ⊗ e2

)
ω
(
f2 ⊗ g3 ⊗ h3

)
,

where we have used the convolution product and the formula (6). This completes the proof of the claim.
Furthermore, it is by definition that any morphism f : (H,m, u,∆, ε,Φ) −→ (H′,m′, u′,∆′, ε′,Φ′) of

quasi-bialgebras, is a morphism in the category NCoalg
(
Algk

)
. Then, by applying the functor (−)◦ of

Lemma 4.3, we get that f◦ : (H′◦,∆′◦, ε′◦,m′◦, u′◦) −→ (H◦,∆◦, ε◦,m◦, u◦) is a morphism in the category
NAlg

(
Coalgk

)
. Therefore, we only need to check the compatibility condition with reassociators constructed

in equation (27), which is derived as follows:

ω
(

(f◦ ⊗ f◦ ⊗ f◦) ( f ⊗ g ⊗ h)
)

= ω
(

( f ◦ f) ⊗ (g ◦ f) ⊗ (h ◦ f)
)

= ( f ⊗ g ⊗ h)
(

(f ⊗ f ⊗ f) (Φ)
)

(22)
= ( f ⊗ g ⊗ h)

(
Φ′

)
= ω′ ( f ⊗ g ⊗ h) .
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Hence f satisfies (26) and it is a morphism of dual quasi-bialgebras. Then, we have established a contravari-
ant functor

(−)◦ : QBialgk −→ DQBialgk, (28)
which obviously converts the following diagram

NCoalg
(
Algk

) (−)◦ // NAlg
(
Coalgk

)

QBialgk
(−)◦ //

OO

DQBialgk

OO

commutative, where the vertical functors are the canonical forgetful functors.
In the other way around, take an object (U,∆, ε,m, u, ω) in the category DQBialgk. Thus, we can

take the image of its underlying object (U,∆, ε,m, u) by the functor of Proposition 4.2, that is the ob-
ject (U•,m•, u•,∆•, ε•) of the category NCoalg

(
Algk

)
. The problem now is to construct a reassociator Φ

for U•, i.e. a unital 3-cocycle. It seems that a priori there is no obvious way to deduce this cocycle di-
rectly from the starting datum (U,∆, ε,m, u, ω). To this aim, an assumption should be postulated. First, we
consider the following natural transformation:

ζ :
(
U•

)
⊗3 �
� ( jU )⊗3

// (U∗)⊗3 ϕU,U⊗U∗ // (U ⊗ U
)∗
⊗ U∗

ϕU⊗U,U // (U⊗3
)∗
, (29)

which, up to the isomorphism
(
U⊗3

)
• �

(
U•

)
⊗3 of equation (16), coincides with the canonical injection of

the total good subspace of
(
U⊗3

)∗. Notice that ζ is an algebra map, as it is a composition of algebra maps.
Moreover, it is easily seen that ζ is in fact a natural transformation at U.

Proposition 5.5. Let (U,∆, ε,m, u, ω) be a dual quasi-bialgebra. Assume there exists an invertible element
Φ ∈ (U•)⊗3 such that ζ (Φ) = ω, then (U•,m•, u•,∆•, ε•,Φ) is a quasi-bialgebra.

Proof. Write Φ =
∑

Φ1 ⊗ Φ2 ⊗ Φ3. Then ω(x ⊗ y ⊗ z) =
∑

Φ1(x)Φ2(y)Φ3(z), for every x, y, z ∈ U.
Using this equality, equations (23),(24)) and (25) are easily transferred to equations (19), (20) and (21),
respectively. This concludes the proof. �

Corollary 5.6. Let (H,m, u,∆, ε,Φ) be a quasi-bialgebra. Then (H◦•,m◦•, u◦•,∆◦•, ε◦•) is still a quasi-
bialgebra with reassociator Ψ B (ξH)⊗3 (Φ), where ξ is the unit of the adjunction of Theorem 4.4.

Proof. We already know from (28) that (H◦,m◦, u◦,∆◦, ε◦, ω) is a dual quasi-bialgebra with reassociator
given by ω = ζ

(
(ξH)⊗3 (Φ)

)
. Now apply Proposition 5.5 to conclude. �

Let us denote by SDQBialgk the full subcategory of the category DQBialgk whose objects are split dual
quasi-bialgebras, i.e. dual quasi-bialgebras (U,∆, ε,m, u, ω) such that there exists an invertible element
Φ ∈ (U•)⊗3 with ζ (Φ) = ω. In this way the assignment described in Proposition 5.5 yields the functor

(−)• : SDQBialgk −→ QBialgk, (30)

acting on morphisms as in Proposition 4.2 (the compatibility with reassociators follows by using the natural
transformation of (29)). We are led to the following main result.

Theorem 5.7. The contravariant adjunction of Theorem 4.4 induces the contravariant adjunction

SDQBialgk
(−)• //

QBialgk(−)◦
oo

where the contravariant functor (−)◦ is the one of (28), and (−)• is the one of (30).

Proof. The only thing we need to check is that the unit and the counit of the adjunction of Theorem 4.4
preserve the reassociator of a quasi-bialgebra and the one of a dual quasi-bialgebra respectively. For the
unit, which is given by

ξ : id
NCoalg

(
Algk

) −→ (−)• ◦ (−)◦

as in the proof of Theorem 4.4, this follows directly from Corollary 5.6.
As for the counit

ϑ : id
NAlg

(
Coalgk

) −→ (−)◦ ◦ (−)•
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which is given by (18), consider a dual quasi-bialgebra (U,∆, ε,m, u, ω) in SDQBialgk; this means that
there exists an element Φ ∈ (U•)⊗3 such that ζ(Φ) = ω and that (U•,∆•, ε•,m•, u•,Φ) is a quasi-bialgebra,
where ζ is the natural transformation of (29). From the definition of the functor in (28), we have that the
reassociator for the dual quasi-bialgebra (U•◦,∆•◦, ε•◦,m•◦, u•◦) is clearly given by ζ

(
(ξU• )⊗3 (Φ)

)
. Now

observe that the following computation

ζ
((
ξU•

)⊗3(Φ)
)
◦ (ϑU)⊗3 =

(
(ϑU)⊗3

)∗ (
ζ
((
ξU•

)⊗3(Φ)
)) (nat. of ζ)

= ζ
((

(ϑU)•
)⊗3

((
ξU•

)⊗3(Φ)
))

= ζ
((

(ϑU)• ◦ ξU•
)⊗3(Φ)

)
= ζ(Φ) = ω

shows that ϑ preserves reassociators as desired. Hence, the unit comes out to be a quasi-bialgebra map and
the counit a dual quasi-bialgebra map, settling the adjunction. �

Remark 5.8. Recall that a subcategory B of a category A is closed under sources whenever for any mor-
phism f : a → b in A, if b is in B then a is in B. Let us check that SDQBialgk is closed under sources
when regarded as a subcategory of DQBialgk. Let g : (U′, ω′) → (U, ω) be a morphism in DQBialgk such
that (U, ω) is an object in SDQBialgk. By assumption, there exists Φ =

∑
Φ1 ⊗Φ2 ⊗Φ3 ∈

(
U•

)⊗3 such that
ω = ζ (Φ). Since g preserves the reassociator, we have that

ω′ = ω◦
(
g
⊗3

)
= ζ(Φ)◦

(
g
⊗3

)
= ϕ′U′⊗U′ ,U′◦

(
ϕ′U′ ,U′ ⊗ U′∗

) ( (
Φ1 ◦ g

)
⊗
(
Φ2 ◦ g

)
⊗
(
Φ3 ◦ g

) )
= ζ

((
g
•)⊗3 (Φ)

)
,

where ϕ′−,− is the natural transformation of equation (16). This means that ω′ itself comes out to be the
image by ζ of

(
g•

)⊗3 (Φ) that lies in
(
U′

)•. Therefore, (U′, ω′) belongs to SDQBialgk.
Let us observe briefly that SDQBialgk is a proper subcategory of DQBialgk: in fact the subsequent

example exhibits a dual quasi-bialgebra whose reassociator does not split. This means moreover that this
particular dual quasi-bialgebra cannot be the finite dual of a quasi-bialgebra (in view of the definition of
the reassociator given in (27)).

Example 5.9. Let k be a field and consider k[X] the ring of polynomials in one indeterminate X with the
monoid bialgebra structure, i.e. ∆ (X) = X ⊗ X, ε (X) = 1. Let us consider a map ϕ : k[X] −→ k not in
k[X]◦, the ordinary finite dual of k[X] (which, in this case, coincides with k[X]•), and such that ϕ(1) = 1,
ϕ (Xn) , 0 for all n ≥ 1. Let us build a 3-cocycle ω that does not split by mean of ϕ. Recalling that a basis
for k[X] ⊗ k[X] ⊗ k[X] is given by the elements Xn ⊗ Xk ⊗ Xm for m, k, n ≥ 0, let us define ω on this basis
as follows, and then extend it by linearity. For all m, n, k ≥ 0 let us set:

ω (1 ⊗ Xn ⊗ Xm) = ω (Xn ⊗ 1 ⊗ Xm) = ω (Xn ⊗ Xm ⊗ 1) B 1;

ω
(
Xn ⊗ Xk+1 ⊗ Xm

)
B ϕ

(
Xk

)−2
ϕ
(
Xn+k

)
ϕ
(
Xm+k

)
.

Observe that the given comultiplication ensures that we have

ω−1
(
Xn ⊗ Xk ⊗ Xm

)
= ω

(
Xn ⊗ Xk ⊗ Xm

)−1
=

1
ω

(
Xn ⊗ Xk ⊗ Xm)

for all m, k, n ≥ 0. Now, let us show that ω is actually a unital 3-cocycle. It is unital by definition. If
0 ∈ {m, n, r, s} then we trivially have

ω (Xm ⊗ Xr ⊗ Xs)ω
(
Xn ⊗ Xm+r ⊗ Xs)ω (Xn ⊗ Xm ⊗ Xr) = ω

(
Xn ⊗ Xm ⊗ Xr+s)ω (

Xn+m ⊗ Xr ⊗ Xs) .
For all m, n, r, s ≥ 1 we have

ω (Xm ⊗ Xr ⊗ Xs)ω
(
Xn ⊗ Xm+r ⊗ Xs)ω (Xn ⊗ Xm ⊗ Xr)

= ϕ
(
Xr−1

)
−2
ϕ
(
Xm+r−1

)
ϕ
(
Xs+r−1

)
ϕ
(
Xm+r−1

)
−2
ϕ
(
Xn+m+r−1

)
ϕ
(
Xs+m+r−1

)
ϕ
(
Xm−1

)
−2
ϕ
(
Xn+m−1

)
ϕ
(
Xr+m−1

)
= ϕ

(
Xm−1

)
−2
ϕ
(
Xn+m−1

)
ϕ
(
Xs+m+r−1

)
ϕ
(
Xr−1

)
−2
ϕ
(
Xs+r−1

)
ϕ
(
Xn+m+r−1

)
= ω

(
Xn ⊗ Xm ⊗ Xr+s)ω (

Xn+m ⊗ Xr ⊗ Xs) .
This proves that ω is a 3-cocycle. If ω ∈ k[X]• ⊗ k[X]• ⊗ k[X]•, then

ϕ = ω(− ⊗ X ⊗ X) = (k[X]• ⊗ η(X) ⊗ η(X)) (ω) ∈ k[X]•
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where η = ηk[X] is the map defined in equation (15), a contradiction. Since the comultiplication ∆ is
cocommutative, the datum (k[X],m, u,∆, ε, ω) defines a dual quasi-bialgebra whose reassociator does not
split, as desired. An example of a map ϕ as above is exhibited in Lemma B.6.

Remark 5.10. As we mentioned above, starting from a quasi-bialgebra (U,∆, ε,m, u, ω), the construction
of a reassociator for U• is not at all clear and perhaps an impossible task. This in fact is connected to a
certain problem of localization in non-commutative algebras as follows. Precisely, we are asking for the
construction of an invertible element Φ in a certain algebra R (in our case R = (U•)⊗3), by only knowing
the existence of an invertible element ω in an algebra extension T of R (in our case T = (U⊗3)∗ using the
algebra map ζ : R → T of equation (29)). In our opinion this construction is not at all realistic except
perhaps in some very concrete situation. This is why we think that Theorem 5.7 was not established in a
naive way and that it is the best result which can be extracted from this theory.

Appendix A. New characterization

In this section we give an alternative description of the finite dual in the non-associative case. Given a
linear map, several useful criteria are shown in order to guarantee that this map belongs to the finite dual.
Further characterizations can be found in [ACM].

Given a vector space V and S ⊆ V∗, we denote by

S ⊥ B
{
v ∈ V | s(v) = 0,∀s ∈ S

}
.

For every a ∈ A in an algebra A and f ∈ A∗, we define in A∗ the elements a ⇀ f and f ↼ a by setting,
for every b ∈ A

(a ⇀ f ) (b) B f (ba) and ( f ↼ a) (b) B f (ab) . (31)
Furthermore, the vector subspace of A∗ generated by the set {a ⇀ f | a ∈ A} will be simply denoted by
A ⇀ f . A similar notation will be adopted for the right action ↼. The subsequent lemma is an analogue
of [Sw, Proposition 6.0.3] or [Mo, Lemma 9.1.1] and can be proved by the same argument.

Lemma A.1. Let f ∈ A∗. Then the following are equivalent.
(1) m∗ ( f ) ∈ Im

(
ϕA, A

)
.

(2) dimk
(
A ⇀ f

)
< ∞.

(3) dimk
(
f ↼ A

)
< ∞.

One cannot expect, as in the case of associative algebras [Mo, Lemma 9.1.1], that the equivalent condi-
tions (1)-(3) in Lemma A.1, imply either that dimk

(
A ⇀ ( f ↼ A)

)
< ∞ or that dimk

(
(A ⇀ f ) ↼ A

)
< ∞.

Nevertheless, the converse remains true.

A.1. The tensor algebra and finite codimensional subspaces. Let V and W be vector spaces endowed
with a k-linear map φ1

V,W : V → Endk (W) . Then this map induces a unique algebra map φV,W : T (V) →
Endk (W)op such that

(
φV,W

)
|V = φ1

V,W and
(
φV,W

)
|k is the unit k → Endk (W)op : k 7→ kidW , where T (−)

stands for the tensor algebra functor.
Then W becomes a right T (V)-module via J defined, for every z ∈ T (V) ,w ∈ W, by setting

w J z B φV,W (z) (w) .

Hence we can consider the left T (V)-module structure on W∗ uniquely defined by setting

(z I f ) (w) B f (w J z) , for every z ∈ T (V) ,w ∈ W, f ∈ W∗.

Example A.2. Consider the so-called enveloping algebra Ae B A ⊗ Aop as V and A as W. Then one can
consider the map

φ1
V,W : Ae → Endk (A) : l ⊗ r 7→ [a 7→ r (al)] .

For shortness, we set
φ1

A B φ1
V,W and φA B φV,W .

In particular, for every l, r ∈ A, we get

x J (l ⊗ r) = φA (l ⊗ r) (x) = φ1
A (l ⊗ r) (x) = r (xl) (32)

and
((l ⊗ r) I f ) (a) = f (a J (l ⊗ r))

(32)
= f (r (al)) = (l ⇀ ( f ↼ r)) (a)
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so that
((l ⊗ r) I f ) = (l ⇀ ( f ↼ r)) . (33)

For a subset S ⊆ T (Ae) and an element f ∈ A∗, we denote by S I f the vector subspace of A∗ spanned
by the set of elements {s I f | s ∈ S }.

Proposition A.3. Let (A,m, u) be in NAlgk . Then

A•
(4)
=

∑
V∈G

V =
{
f ∈ A∗ | dimk

((
Ae)⊗n I f

)
< ∞, for every n ∈ N

}
.

Proof. Set T B T (Ae). We write a generator of (Ae)⊗i in the form (l1 ⊗ r1)⊗· · ·⊗(li ⊗ ri) where l1, . . . , li ∈ A
and r1, . . . , ri ∈ Aop. Note that[

φA (1 ⊗ r) ◦ φA (l ⊗ 1)
]
(a) =

[
φ1

A (1 ⊗ r) ◦ φ1
A (l ⊗ 1)

]
(a)

= φ1
A (1 ⊗ r) (al) = r (al)

= φ1
A (l ⊗ r) (a) = φA (l ⊗ r) (a)

and hence
φA (l ⊗ r) = φA (1 ⊗ r) ◦ φA (l ⊗ 1) = φA (l ⊗ 1) ◦op φA (1 ⊗ r) ,

where the notation ◦op stands for the multiplication of Endk (A)op. Thus

φA [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)] = φA [(l1 ⊗ r1) ·T · · · ·T (li ⊗ ri)]
= φA (l1 ⊗ r1) ◦op · · · ◦op φA (li ⊗ ri)

= φA (l1 ⊗ 1) ◦op φA (1 ⊗ r1) ◦op · · · ◦op φA (li ⊗ 1) ◦op φA (1 ⊗ ri)

= φA [(l1 ⊗ 1) ·T (1 ⊗ r1) ·T · · · ·T (li ⊗ 1) ·T (1 ⊗ ri)]
= φA [(l1 ⊗ 1) ⊗ (1 ⊗ r1) · · · ⊗ (li ⊗ 1) ⊗ (1 ⊗ ri)]

where the notation .T stands for the multiplication of T . Therefore

a J [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)] = φA [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)] (a)

= φA [(l1 ⊗ 1) ⊗ (1 ⊗ r1) · · · ⊗ (li ⊗ 1) ⊗ (1 ⊗ ri)] (a)

= a J [(l1 ⊗ 1) ·T (1 ⊗ r1) ·T · · · ·T (li ⊗ 1) ·T (1 ⊗ ri)]

Set L B A⊗ 1 and R B 1⊗ Aop. For shortness we write l ∈ L for l⊗ 1 and r ∈ R for 1⊗ r. We also omit the
product over T. Using this notation, we obtain

a J [(l1 ⊗ r1) ⊗ · · · ⊗ (li ⊗ ri)] = a J (l1r1 · · · liri) .

For every n ≥ 1, f ∈ A∗, we set

Wn ( f ) B Spank
{

(a1a2 · · · an−1an) I f | a1, . . . , an ∈ L ∪ R
}
.

Set also W0 ( f ) B k f . Since both A and Aop contain 1, it is clear that Wi ( f ) ⊆ W j ( f ) for i ≤ j.
Note further that Wi ( f ) ⊆

(
(Ae)⊗i I f

)
⊆ W2i ( f ) for every i ∈ N so that dimk

(
(Ae)⊗n I f

)
< ∞ if and

only if dimk (Wn ( f )) < ∞ for every n ∈ N. Set

B B
{
f ∈ A∗ | dimk (Wn ( f )) < ∞ for every n ∈ N

}
.

It remains to prove that A• = B.
⊆) It suffices to prove that V ⊆ B for every V ∈ G. Let us prove that Wn ( f ) is finite dimensional for

every f ∈ V by induction on n ∈ N. For n = 0 there is nothing to prove.
Let n > 0 be such that Wn−1 (v) is finite-dimensional for every v ∈ V . Let f ∈ V. Write ∆V ( f ) =∑t

i=1 gi ⊗ hi ∈ V ⊗ V. Let a1, . . . , an ∈ L ∪ R and w B a1a2 · · · an−1. Then

((wan) I f ) (x) = f (x J (wan)) = f ((x J w) J an)

If an = l ∈ L, then

((wan) I f ) (x) = f ((x J w) J l)
(32)
= f ((x J w) l) =

t∑
i=1

gi (x J w) hi (l) =

t∑
i=1

(w I gi) (x) hi (l)
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so that (wan) I f =
∑n

i=1 hi (l) · (w I gi) ∈
∑n

i=1 Wn−1 (gi) . If an = r ∈ R, then

((wan) I f ) (x) = f ((x J w) J r)
(32)
= f (r (x J w)) =

t∑
i=1

gi (r) hi (x J w) =

t∑
i=1

gi (r) (w I hi) (x)

so that

((wan) I f ) =

t∑
i=1

gi (r) · (w I hi) ∈
t∑

i=1

Wn−1 (hi)

Thus

(a1a2a3a4 · · · an−1an) I f ∈
t∑

i=1

Wn−1 (gi) +

t∑
i=1

Wn−1 (hi)

for every a1, . . . , an ∈ L ∪ R, which means that

Wn ( f ) ⊆
t∑

i=1

Wn−1 (gi) +

t∑
i=1

Wn−1 (hi) .

Since, by inductive hypothesis, the latter is finite-dimensional so is Wn ( f ).
⊇) Let f ∈ B and let us prove that V B (T I f ) is good (this implies f = (1 I f ) ∈ V ⊆ A•). Consider

an element v ∈ V . Then there is z ∈ T such that v = z I f . Write z B
∑n

i=0 zi with zi ∈ (Ae)⊗i so that

v = z I f =

n∑
i=0

zi I f ∈
n∑

i=0

((
Ae)⊗i I f

)
⊆

((
Ae)⊗n I f

)
.

Henceforth it is not restrictive to assume z ∈ (Ae)⊗n . We have then that

(A ⇀ v)
(33)
⊆

(
Ae) I v ⊆

(
Ae) I (z I f ) ⊆

(
Ae) I ((

Ae)⊗n I f
)
⊆

(
Ae)⊗(n+1) I f

and the latter is finite-dimensional. Hence (A ⇀ v) is finite-dimensional and, by Lemma A.1, we have that
m∗ (v) ∈ Im

(
ϕA,A

)
. Write m∗ (v) =

∑n
i=1 gi ⊗ hi ∈ A∗ ⊗ A∗. By the proof of the same lemma, we can choose

g1, . . . , gn to form a basis of (A ⇀ v) . Thus there exist a1, . . . , an ∈ A such that gi

(
a j

)
= δi, j. We compute((

1 ⊗ a j

)
I v

)
(x)

(33)
=

(
v ↼ a j

)
(x) = v

(
a jx

)
=

n∑
i=1

gi

(
a j

)
hi (x) = h j (x)

so that h j =
(
1 ⊗ a j

)
I v ∈ (Ae I v) ⊆ V. We have so proved that m∗ (v) =

∑n
i=1 gi ⊗ hi ∈ A∗ ⊗ V. A similar

argument shows that m∗ (v) ∈ V ⊗ A∗ and hence m∗ (v) ∈ (A∗ ⊗ V) ∩ (V ⊗ A∗) = V ⊗ V. �

Remark A.4. Let f ∈ A∗ be such that f (I) = 0 for some finite codimensional ideal in A (an ideal in a
non-associative algebra is just a k-vector subspace such that aI ⊆ I and Ia ⊆ I for all a ∈ A). Let l ⊗ r ∈ Ae

and let x ∈ I. We have that
((l ⊗ r) I f ) (x) = f (r(xl)) ⊆ f (I) = 0.

Inductively, if z ∈ (Ae)⊗n, z = (l1 ⊗ r1) ⊗ · · · ⊗ (ln−1 ⊗ rn−1) ⊗ (ln ⊗ rn) = w ⊗ (ln ⊗ rn), then

(z I f ) (x) = ((ln ⊗ rn) I f ) (x J w) = f (rn ((x J w) ln)) ⊆ f (rn (Iln)) ⊆ f (I) = 0.

Therefore (Ae)⊗n I f is contained in I⊥, that injects into
(

A
I

)∗
, which has finite dimension for all n ∈ N.

Hence, if f vanishes on a finite codimensional ideal of A, then f ∈ A•. This is an alternative way to show
that A◦ is contained in A•, see Remark 2.2.

Remark A.5. Another description of A• by using the so-called standard filtration
(
T(n)

)
n∈N of T B T (Ae),

is also possible. Precisely, this filtration is defined by setting T(n) B
⊕n

i=0 (Ae)⊗i, where (Ae)⊗0 B k. Then

A• =
{
f ∈ A∗ | dimk

(
T(n) I f

)
< ∞ for every n ∈ N

}
.

In fact (
T(n) I f

)
⊆

 n⊕
i=0

(
Ae)⊗i

 I f

 ⊆ n∑
i=0

((
Ae)⊗i I f

)
⊆

((
Ae)⊗n I f

)
so that

(
T(n) I f

)
=

(
(Ae)⊗n I f

)
.
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We now give a characterization of A• in the spirit of [Mo, Definition 1.2.3].

Proposition A.6. Let (A,m, u) be in NAlgk and let f ∈ A∗. Then the following are equivalent
(i) f ∈ A•;

(ii) There is a family (In)n∈N of subspaces of A of finite codimension such that, for each n ≥ 1,(
In J Ae) ⊆ In−1, and f (I0) = 0.

Moreover, if one the these conditions holds true, then we can choose

I0 = Ker( f ) and In =
{
a ∈ A | a J Ae ⊆ In−1

}
, for every n > 0.

Proof. (⇒). Assume f ∈ A• and set In B
(
(Ae)⊗n I f

)⊥
. For every n ≥ 1, u ∈ In, z ∈ Ae,w ∈ (Ae)⊗(n−1) ,

(w I f ) (u J z) = (z I (w I f )) (u) = ((zw) I f ) (u) ∈
((

Ae)⊗n I f
)

(u) = 0

so that u J z ∈
(
(Ae)⊗(n−1) I f

)⊥
= In−1 and hence (In J Ae) ⊆ In−1. Since

(
(Ae)⊗0 I f

)
= (k I f ) = k f we

get that f (I0) = 0.
(⇐) . Inductively one proves that

(
In J (Ae)⊗n

)
⊆ I0 so that we have((

Ae)⊗n I f
)

(In) ⊆ f
(
In J

(
Ae)⊗n

)
⊆ f (I0) = 0.

Therefore
(
(Ae)⊗n I f

)
⊆ I

⊥

n which is finite-dimensional as In has finite codimension, which by Proposition
A.3 implies that f ∈ A•.

Let us check the last statement. For n = 0 we have that

I0 =
((

Ae)⊗0 I f
)⊥

= (k I f )⊥ = (k f )⊥ = Ker( f ),

and for n > 0 we have:

In B
((

Ae)⊗n I f
)⊥

=
{
a ∈ A |

((
Ae)⊗n I f

)
(a) = 0

}
=

{
a ∈ A |

((
Ae)⊗(n−1) I f

)
(a J Ae) = 0

}
=

{
a ∈ A | (a J Ae) ⊆

((
Ae)⊗(n−1) I f

)⊥ }
=

{
a ∈ A | (a J Ae) ⊆ In−1

}
,

and this finishes the proof. �

Let C be a coalgebra. Then the coalgebra structure of C, through the universal property of the tensor
algebra, induces a bialgebra structure on T (C) so that it makes sense to use the notation ∆T (C)(z) B

∑
z1⊗z2

for any z ∈ T (C), for the comultiplication of T (C); see e.g. [Ra, Theorem 5.3.1].

Lemma A.7. Let C and D be two coalgebras with a k-linear map φ1
C,D : C → Endk (D) as in subsection

A.1. Assume that D ⊗ C → D : d ⊗ c 7→ d J c is a coalgebra map. Then D is a right T (C)-module
coalgebra through J and (D∗,mD∗ , uD∗ ) is a left T (C)-module algebra through I where

mD∗ ( f ⊗ g) = f ∗ g (convolution product), and uD∗ (k) = kεD

for every f , g ∈ D∗, k ∈ k.

Proof. By hypothesis for every c ∈ C, d ∈ D, we have that

(d1 J c1) ⊗ (d2 J c2) = (d J c)1 ⊗ (d J c)2 ,

εD (d) εC (c) = εD (d J c) .

We need to prove that for every z ∈ T (C) , d ∈ D, we have

(d1 J z1) ⊗ (d2 J z2) = (d J z)1 ⊗ (d J z)2 ,

εD (d) εT (C) (z) = εD (d J z) .

For k ∈ k we have
d J k = φC,D (k) (d) = (kidD) (d) = kd.
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Then, for every z ∈ k we have

(d1 J z1) ⊗ (d2 J z2) = (d1 J z1) ⊗ (d2 J 1) = zd1 ⊗ d2

= (zd)1 ⊗ (zd)2 = (d J z)1 ⊗ (d J z)2 ,

and
εD (d) εT (C) (z) = εD (d) z = εD (dz) = εD (d J z) .

Let c1, . . . , cn ∈ C. Let us prove, by induction on n ≥ 1, that

(d1 J z1) ⊗ (d2 J z2) = (d J z)1 ⊗ (d J z)2 and εD (d) εT (C) (z) = εD (d J z) ,

where z B c1 · · · cn is the multiplication of the ci’s, each one viewed as an element in T (C).
For n = 1 there is nothing to prove. Let n > 1 and assume the statement true for n − 1. If we set

z′ B c1 · · · cn−1, then we get from the one hand that

(d1 J z1) ⊗ (d2 J z2) =
(
d1 J

(
z′cn

)
1
)
⊗

(
d2 J

(
z′cn

)
2
)

=
(
d1 J z′1 (cn)1

)
⊗

(
d2 J z′2 (cn)2

)
=

((
d1 J z′1

)
J (cn)1

)
⊗

((
d2 J z′2

)
J (cn)2

)
=

((
d J z′

)
1 J (cn)1

)
⊗

((
d J z′

)
2 J (cn)2

)
=

((
d J z′

)
J cn

)
1 ⊗

((
d J z′

)
J cn

)
2

=
(
d J

(
z′cn

))
1 ⊗

(
d J

(
z′cn

))
2 = (d J z)1 ⊗ (d J z)2

and from the other hand that

εD (d) εT (C) (z) = εD (d) εT (C)
(
z′cn

)
= εD (d) εT (C)

(
z′
)
εT (C) (cn)

= εD
(
d J z′

)
εT (C) (cn) = εD

((
d J z′

)
J cn

)
= εD

(
d J

(
z′cn

))
= εD (d J z) .

This shows the claimed formulae for every z ∈ T (C). Therefore D is a right T (C)-module coalgebra
through J. Since (D,∆D, εD) is a coassociative coalgebra, we know that (D∗,mD∗ , uD∗ ) is an associative
algebra. Let us check that it is a left T (C)-module algebra through I. For all f , g ∈ D∗, z ∈ T (C) , d ∈ D
we have∑[

(z1 I f ) ∗ (z2 I g)
]

(d) =
∑

(z1 I f ) (d1) (z2 I g) (d2)

=
∑

f (d1 J z1) g (d2 J z2) =
∑

f
(

(d J z)1

)
g
(

(d J z)2

)
= ( f ∗ g) (d J z) = (z I ( f ∗ g)) (d)

so that
∑

(z1 I f ) ∗ (z2 I g) = (z I ( f ∗ g)) . Moreover

(z I εD) (d) = εD (d J z) = εD (d) εT (C) (z)

so that z I εD = εT (C) (z) εD. This proves that (D∗,mD∗ , uD∗ ) is a left T (C)-module algebra through I. �

Remark A.8. More generally, given a bialgebra B, the obvious contravariant functor (−)∗ : MB → BM,
from the category of right to the category of left B-modules, is lax monoidal so that it induces the co-
variant functor (−)∗ : MB → (BM)op which is colax monoidal. Thus the latter functor induces a functor
Coalg((−)∗) : Coalg (MB) → Coalg

(
(BM)op) ≡ (

Alg (BM)
)op which means that (−)∗ maps right B-module

coalgebras to left B-module algebras as in the particular case of Lemma A.7.

Appendix B. Complementary results

The following result is probably well-known but we were not able to find a reference.

Lemma B.1. Let A =
⊕

n∈N An be an N-graded ring. Suppose that the product of two non-zero homoge-
neous elements is non-zero. Then the invertible element of A are concentrated in A0. Moreover, A is a
domain.

Proof. Let x, y ∈ A be non-zero elements. Write x = x0+x1+· · ·+xs, where xi ∈ Ai, and y = y0+y1+· · ·+yt,
where yi ∈ Ai, with xs , 0 and yt , 0. By assumption, xsyt , 0 and it is clearly the homogeneous element
with greatest degree of xy.

If xy = 1, then the only possibility is s + t = 0 whence s = 0 which means x ∈ A0.
If xy = 0, then we must have xsyt = 0, which is a contradiction. �



FUNCTORIAL CONSTRUCTIONS FOR NON-ASSOCIATIVE ALGEBRAS 21

Corollary B.2. Given a vector space V, the group of units of the tensor algebra T (V) is k \ {0} and T (V)
is a domain.

Proof. We have that T = T (V) is graded with respect to Tn B V⊗n. Given x ∈ Ts and y ∈ Tt non-zero
elements, we have that x · y = x ⊗ y which is non-zero. �

Lemma B.3. Let R be a k-algebra that is also a domain. Then T (V) ⊗ R is a domain.

Proof. Set T = T (V). By the Axiom of Choice we can choose a totally ordered basis BV B {vi | i ∈ I} for
V . Mimicking [Gr, Example 2 and 3] we can construct an admissible graded lexicographic order on the
basis BT B {vi1 vi2 · · · vin | n ≥ 1 and i1, . . . , in ∈ I} ∪ {1k} of T (V) as follows

vi1 vi2 · · · vin < v j1 v j2 · · · v jm

if n < m or n = m, vis = v js for 0 ≤ s ≤ (t − 1) < n and vit < v jt with respect to the total order on B. Let
x, y ∈ T ⊗R with x , 0 and y , 0. We can write x = bi1 ⊗ x1 + · · ·+bis ⊗ xs where x1, . . . , xs ∈ R with xs , 0,
bi1 , · · · , bis ∈ BT and bi1 < · · · < bis . Analogously write y = b j1 ⊗ y1 + · · · + b jt ⊗ yt where y1, . . . , yt ∈ R
with yt , 0, b j1 , · · · , b jt ∈ BT and b j1 < · · · < b jt . Since R is a domain, xsyt , 0. Moreover, bis b jt ∈ BT

whence
(
bis ⊗ xs

) (
b jt ⊗ yt

)
= bis b jt ⊗ xsyt , 0. Note that xy = bi1 b j1 ⊗ x1y1 + · · · + bis b jt ⊗ xsyt where bis b jt

is the greatest of all the first entries of the summands involved. Thus xy , 0. �

Corollary B.4. Given a vector space V and n ∈ N, the group of units of the tensor algebra T (V)⊗n is
k \ {0} and T (V)⊗n is a domain.

Proof. By induction on n, in view of Lemma B.3, T (V)⊗n is a domain. Moreover, since T (V) is a graded
algebra, T (V)⊗n is graded too. By Lemma B.1, the group of units of T (V)⊗n is concentrated in degree
zero. �

Remark B.5. Obviously Corollary B.2 follows also by Corollary B.4.

Lemma B.6. Let k be a field and consider k[X] the (bi)algebra of polynomials in one indeterminate X. The
map ϕ : k[X] −→ k given by ϕ (Xn) B n! and extended by linearity does not belong to k[X]◦, the ordinary
finite dual of k[X].

Proof. Assume, by contradiction, that ϕ ∈ k[X]◦. Then there exists a (finite-codimensional) ideal I B
〈p (X)〉 in k[X] with ϕ (I) = 0. Consider the system of the equations ϕ

(
Xi p (X)

)
= 0 for i = 0, . . . , n. If

we write p (X) =
∑n

j=0 p jX j, these equations become
∑n

j=0 p jϕ
(
Xi+ j

)
= 0 for i = 0, . . . , n. The matrix

associated to this system is

T B



0! 1! · · · (n − 1)! n!
1! 2! · · · n! (n + 1)!
...

...
. . .

...
...

(n − 1)! n! · · · (2n − 2)! (2n − 1)!
n! (n + 1)! · · · (2n − 1)! (2n)!


Thus T =

(
(i + j)!

)
for i, j that run from 0 to n. We claim that det (T ) , 0, or equivalently that T is

invertible, which is impossible since p(X) , 0, as I is finite-codimensional. To show this, let us consider
the n-th Pascal matrix Qn =

(
qi j

)
, i.e. the matrix whose entries are given by the relation qi j B

(
i+ j

i

)
. Then:

det (T ) = det
(

(i + j)!
)

= det
(
i! j!qi j

)
=

n∏
i=0

i!
n∏

j=0

j! det (Qn) =
(
0!1! · · · (n − 1)!n!

)2
det (Qn) .

In view of [BP, Discussion preceding Theorem 4], we know that det (Qn) = 1, whence det(T ) , 0 and the
claim is proved. �

Remark B.7. The fact that the map ϕ (Xn) = n! is not in k[X]◦ seems to be well-known, see [FMT, Section
2]. This depends on the correspondence between elements in k[X]◦ and linearly recursive sequences, see
e.g. [LT]. Since we could not find an explicit proof that n! defines a non-linearly recursive sequence, we
included the previous lemma.
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