A duality result for (dual) quasi-bialgebras

Paolo Saracco

University of Turin, Italy

Instituto Español de Matemáticas

Universidad de Granada

Report of:

A. Ardizzoni, L. El Kaoutit, P. Saracco, Functorial Constructions for Non-associative Algebras with Applications to Quasi-bialgebras,

arXiv:1507.02402

Fix k a field. We assume to work in the category $\mathfrak{M} := \operatorname{Vect}_{k}$ of k-vector spaces. An associative algebra is a triple $(A, m : A \otimes A \to A, u : k \to A)$ s.t.

 $m \circ (m \otimes A) = m \circ (A \otimes m), \quad m \circ (u \otimes A) = \mathrm{id}_A = m \circ (A \otimes u).$

A coassociative coalgebra is a triple $(C, \Delta : C \to C \otimes C, \varepsilon : \mathbb{k} \to C)$ s.t.

 $(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \quad (\varepsilon \otimes C) \circ \Delta = \mathrm{id}_C = (C \otimes \varepsilon) \circ \Delta.$

If C is a coassociative coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an associative algebra. The finite (or Sweedler, or restricted) dual

 $A^{\circ} = \{f \in A^* \mid \text{Ker}(f) \text{ contains a finite-codimensional ideal of } A\}$

of A is the largest subspace of A^* for which $\Delta_{A^\circ} = m^* : A^* \to (A \otimes A)^*$ defines a comultiplication. The pair of functors

Fix \Bbbk a field. We assume to work in the category $\mathfrak{M} := \operatorname{Vect}_{\Bbbk}$ of \Bbbk -vector spaces. An associative algebra is a triple $(A, m : A \otimes A \to A, u : \Bbbk \to A)$ s.t.

 $m \circ (m \otimes A) = m \circ (A \otimes m), \quad m \circ (u \otimes A) = \mathrm{id}_A = m \circ (A \otimes u).$

A coassociative coalgebra is a triple $(C, \Delta : C \to C \otimes C, \varepsilon : \mathbb{k} \to C)$ s.t.

 $(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \quad (\varepsilon \otimes C) \circ \Delta = \mathrm{id}_C = (C \otimes \varepsilon) \circ \Delta.$

If C is a coassociative coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an associative algebra. The finite (or Sweedler, or restricted) dual

 $A^{\circ} = \{f \in A^* \mid \text{Ker}(f) \text{ contains a finite-codimensional ideal of } A\}$

of A is the largest subspace of A^* for which $\Delta_{A^\circ} = m^* : A^* \to (A \otimes A)^*$ defines a comultiplication. The pair of functors

Fix \Bbbk a field. We assume to work in the category $\mathfrak{M} := \operatorname{Vect}_{\Bbbk}$ of \Bbbk -vector spaces. An associative algebra is a triple $(A, m : A \otimes A \to A, u : \Bbbk \to A)$ s.t.

$$m \circ (m \otimes A) = m \circ (A \otimes m), \quad m \circ (u \otimes A) = \mathrm{id}_A = m \circ (A \otimes u).$$

A coassociative coalgebra is a triple $(C, \Delta : C \to C \otimes C, \varepsilon : \Bbbk \to C)$ s.t.

$$(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \quad (\varepsilon \otimes C) \circ \Delta = \mathrm{id}_C = (C \otimes \varepsilon) \circ \Delta.$$

If C is a coassociative coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an associative algebra. The finite (or Sweedler, or restricted) dual

 $A^{\circ} = \{f \in A^* \mid \text{Ker}(f) \text{ contains a finite-codimensional ideal of } A\}$

of A is the largest subspace of A^* for which $\Delta_{A^\circ} = m^* : A^* \to (A \otimes A)^*$ defines a comultiplication. The pair of functors

Fix \Bbbk a field. We assume to work in the category $\mathfrak{M} := \operatorname{Vect}_{\Bbbk}$ of \Bbbk -vector spaces. An associative algebra is a triple $(A, m : A \otimes A \to A, u : \Bbbk \to A)$ s.t.

$$m \circ (m \otimes A) = m \circ (A \otimes m), \quad m \circ (u \otimes A) = \mathrm{id}_A = m \circ (A \otimes u).$$

A coassociative coalgebra is a triple $(C, \Delta : C \to C \otimes C, \varepsilon : \Bbbk \to C)$ s.t.

$$(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \quad (\varepsilon \otimes C) \circ \Delta = \mathrm{id}_C = (C \otimes \varepsilon) \circ \Delta.$$

If C is a coassociative coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an associative algebra. The finite (or Sweedler, or restricted) dual

 $A^{\circ} = \{f \in A^* \mid \text{Ker}(f) \text{ contains a finite-codimensional ideal of } A\}$

of A is the largest subspace of A^* for which $\Delta_{A^\circ} = m^* : A^* \to (A \otimes A)^*$ defines a comultiplication. The pair of functors

Fix \Bbbk a field. We assume to work in the category $\mathfrak{M} := \operatorname{Vect}_{\Bbbk}$ of \Bbbk -vector spaces. An associative algebra is a triple $(A, m : A \otimes A \to A, u : \Bbbk \to A)$ s.t.

$$m \circ (m \otimes A) = m \circ (A \otimes m), \quad m \circ (u \otimes A) = \mathrm{id}_A = m \circ (A \otimes u).$$

A coassociative coalgebra is a triple $(C, \Delta : C \to C \otimes C, \varepsilon : \Bbbk \to C)$ s.t.

$$(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \quad (\varepsilon \otimes C) \circ \Delta = \mathrm{id}_C = (C \otimes \varepsilon) \circ \Delta.$$

If C is a coassociative coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an associative algebra. The finite (or Sweedler, or restricted) dual

 $A^\circ = \{f \in A^* \mid \operatorname{Ker}(f) \text{ contains a finite-codimensional ideal of } A\}$

of A is the largest subspace of A^* for which $\Delta_{A^\circ} = m^* : A^* \to (A \otimes A)^*$ defines a comultiplication. The pair of functors

Fix \Bbbk a field. We assume to work in the category $\mathfrak{M} := \operatorname{Vect}_{\Bbbk}$ of \Bbbk -vector spaces. An associative algebra is a triple $(A, m : A \otimes A \to A, u : \Bbbk \to A)$ s.t.

$$m \circ (m \otimes A) = m \circ (A \otimes m), \quad m \circ (u \otimes A) = \mathrm{id}_A = m \circ (A \otimes u).$$

A coassociative coalgebra is a triple $(C, \Delta : C \to C \otimes C, \varepsilon : \Bbbk \to C)$ s.t.

$$(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \quad (\varepsilon \otimes C) \circ \Delta = \mathrm{id}_C = (C \otimes \varepsilon) \circ \Delta.$$

If C is a coassociative coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an associative algebra. The finite (or Sweedler, or restricted) dual

 $A^\circ = \{f \in A^* \mid \operatorname{Ker}(f) \text{ contains a finite-codimensional ideal of } A\}$

of A is the largest subspace of A^* for which $\Delta_{A^\circ} = m^* : A^* \to (A \otimes A)^*$ defines a comultiplication. The pair of functors

$$\operatorname{Alg}_{\Bbbk} \xrightarrow{(-)^{\circ}} \operatorname{Coalg}_{\Bbbk}$$

Definition

- A bialgebra is a datum $(H, m, u, \Delta, \varepsilon)$ where
 - (*H*, *m*, *u*) is an associative algebra;
 - Δ and ε are algebra maps s.t. (H, Δ, ε) is a coassociative coalgebra;

If further we have $S : H \to H$ s.t. $m \circ (S \otimes H) \circ \Delta = u \circ \varepsilon = m \circ (H \otimes S) \circ \Delta$ then S is called the antipode and $(H, m, u, \Delta, \varepsilon, S)$ is a Hopf algebra.

Theorem (Sweedler, 1960)

If H is a Hopf algebra then H° is a Hopf algebra.

- The set G(H) = {h ∈ H | ∆(h) = h ⊗ h} of group-like elements is a group with product induced by H, unit 1_H and inverse h⁻¹ := S(h).
- The space P(H) = {h ∈ H | Δ(h) = h ⊗ 1 + 1 ⊗ h} of primitive elements is a Lie algebra with bracket [f, g] := fg − gf.

Definition

A bialgebra is a datum $(H, m, u, \Delta, \varepsilon)$ where

- (H, m, u) is an associative algebra;
- Δ and ε are algebra maps s.t. (H, Δ, ε) is a coassociative coalgebra;

If further we have $S : H \to H$ s.t. $m \circ (S \otimes H) \circ \Delta = u \circ \varepsilon = m \circ (H \otimes S) \circ \Delta$ then S is called the antipode and $(H, m, u, \Delta, \varepsilon, S)$ is a Hopf algebra.

Theorem (Sweedler, 1960)

If H is a Hopf algebra then H° is a Hopf algebra.

- The set G(H) = {h ∈ H | ∆(h) = h ⊗ h} of group-like elements is a group with product induced by H, unit 1_H and inverse h⁻¹ := S(h).
- The space P(H) = {h ∈ H | Δ(h) = h ⊗ 1 + 1 ⊗ h} of primitive elements is a Lie algebra with bracket [f, g] := fg − gf.

Definition

A bialgebra is a datum $(H, m, u, \Delta, \varepsilon)$ where

- (H, m, u) is an associative algebra;
- Δ and ε are algebra maps s.t. (H, Δ, ε) is a coassociative coalgebra;

If further we have $S : H \to H$ s.t. $m \circ (S \otimes H) \circ \Delta = u \circ \varepsilon = m \circ (H \otimes S) \circ \Delta$ then S is called the antipode and $(H, m, u, \Delta, \varepsilon, S)$ is a Hopf algebra.

Theorem (Sweedler, 1960)

If H is a Hopf algebra then H° is a Hopf algebra.

- The set G(H) = {h ∈ H | ∆(h) = h ⊗ h} of group-like elements is a group with product induced by H, unit 1_H and inverse h⁻¹ := S(h).
- The space P(H) = {h ∈ H | Δ(h) = h ⊗ 1 + 1 ⊗ h} of primitive elements is a Lie algebra with bracket [f, g] := fg − gf.

Definition

A bialgebra is a datum $(H, m, u, \Delta, \varepsilon)$ where

- (H, m, u) is an associative algebra;
- Δ and ε are algebra maps s.t. (H, Δ, ε) is a coassociative coalgebra;

If further we have $S : H \to H$ s.t. $m \circ (S \otimes H) \circ \Delta = u \circ \varepsilon = m \circ (H \otimes S) \circ \Delta$ then S is called the antipode and $(H, m, u, \Delta, \varepsilon, S)$ is a Hopf algebra.

Theorem (Sweedler, 1960)

If H is a Hopf algebra then H° is a Hopf algebra.

- The set G(H) = {h ∈ H | Δ(h) = h ⊗ h} of group-like elements is a group with product induced by H, unit 1_H and inverse h⁻¹ := S(h).
- The space P(H) = {h ∈ H | ∆(h) = h ⊗ 1 + 1 ⊗ h} of primitive elements is a Lie algebra with bracket [f, g] := fg − gf.

Definition

A bialgebra is a datum $(H, m, u, \Delta, \varepsilon)$ where

- (H, m, u) is an associative algebra;
- Δ and ε are algebra maps s.t. (H, Δ, ε) is a coassociative coalgebra;

If further we have $S : H \to H$ s.t. $m \circ (S \otimes H) \circ \Delta = u \circ \varepsilon = m \circ (H \otimes S) \circ \Delta$ then S is called the antipode and $(H, m, u, \Delta, \varepsilon, S)$ is a Hopf algebra.

Theorem (Sweedler, 1960)

If H is a Hopf algebra then H° is a Hopf algebra.

- The set G(H) = {h ∈ H | Δ(h) = h ⊗ h} of group-like elements is a group with product induced by H, unit 1_H and inverse h⁻¹ := S(h).
- The space P(H) = {h ∈ H | Δ(h) = h ⊗ 1 + 1 ⊗ h} of primitive elements is a Lie algebra with bracket [f, g] := fg − gf.

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of $G, v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

• $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$

•
$$\varepsilon: \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R} \ , \ f \mapsto f(e)$$

•
$$S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto f \circ \iota$$

where $\sum_{i} g_{i} \otimes h_{i}$ is defined uniquely by the relation $\sum_{i} g_{i}(x)h_{i}(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)} \mathsf{CHopf}_{\mathbb{R}}$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

- $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$
- $\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R}, \ f \mapsto f(e)$
- $S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto f \circ \iota$

where $\sum_{i} g_{i} \otimes h_{i}$ is defined uniquely by the relation $\sum_{i} g_{i}(x)h_{i}(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)}{\overset{\mathcal{G}(-)}{\overset{\mathcal$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

• $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$

•
$$\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R} \ , \ f \mapsto f(e)$$

• $S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G), f \mapsto f \circ \iota$

where $\sum_{i} g_i \otimes h_i$ is defined uniquely by the relation $\sum_{i} g_i(x)h_i(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)} \mathcal{G}(-^{\circ}) \mathsf{CHopf}_{\mathbb{R}}$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

- $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$
- $\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R}, f \mapsto f(e)$
- $S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G), f \mapsto f \circ \iota$

where $\sum_{i} g_i \otimes h_i$ is defined uniquely by the relation $\sum_{i} g_i(x)h_i(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)} \mathcal{G}(-^{\circ}) \mathsf{CHopf}_{\mathbb{R}}$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

• $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , f \mapsto \sum_{i} g_{i} \otimes h_{i}$

•
$$\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R} , f \mapsto f(e)$$

• $S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) , f \mapsto f \circ \iota$

where $\sum_{i} g_i \otimes h_i$ is defined uniquely by the relation $\sum_{i} g_i(x)h_i(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)} \mathcal{G}(-^{\circ}) \mathsf{CHopf}_{\mathbb{R}}$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

• $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$

•
$$\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R} , f \mapsto f(e)$$

•
$$S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G), f \mapsto f \circ \iota$$

where $\sum_{i} g_i \otimes h_i$ is defined uniquely by the relation $\sum_{i} g_i(x)h_i(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)}{\mathcal{G}(-^{\circ})} \mathsf{CHopf}_{\mathbb{R}}$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

• $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$

•
$$\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R}$$
, $f \mapsto f(e)$

•
$$S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G), f \mapsto f \circ \iota$$

where $\sum_{i} g_i \otimes h_i$ is defined uniquely by the relation $\sum_{i} g_i(x)h_i(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)} \mathsf{CHopf}_{\mathbb{R}}$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

• $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$

•
$$\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R}$$
, $f \mapsto f(e)$

•
$$S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G), f \mapsto f \circ \iota$$

where $\sum_{i} g_i \otimes h_i$ is defined uniquely by the relation $\sum_{i} g_i(x)h_i(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)} \mathsf{CHopf}_{\mathbb{R}}$$

Example (Hopf a. of representative functions on a topological group)

Let (G, μ, ι, e) be a topological group and $C_{\mathbb{R}}(G)$ be the algebra of real-valued continuous functions on G. A $f \in C_{\mathbb{R}}(G)$ is a representative function iff there exists V fin. dim. representation of G, $v \in V$ and $\varphi \in V^*$ s.t. $f(x) = \varphi(x \cdot v)$ for all $x \in G$. Let $\mathcal{R}_{\mathbb{R}}(G)$ be the algebra of representative functions. The maps

• $\Delta : \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G) \otimes \mathcal{R}_{\mathbb{R}}(G) , \ f \mapsto \sum_{i} g_{i} \otimes h_{i}$

•
$$\varepsilon : \mathcal{R}_{\mathbb{R}}(G) \to \mathbb{R}$$
, $f \mapsto f(e)$

•
$$S: \mathcal{R}_{\mathbb{R}}(G) \to \mathcal{R}_{\mathbb{R}}(G), f \mapsto f \circ \iota$$

where $\sum_{i} g_i \otimes h_i$ is defined uniquely by the relation $\sum_{i} g_i(x)h_i(y) = f(xy)$, endow $\mathcal{R}_{\mathbb{R}}(G)$ with an Hopf algebra structure.

Conversely, if *H* is Hopf then $\mathcal{G}(H^{\circ}) = \operatorname{Alg}_{\mathbb{R}}(H, \mathbb{R})$ is a topological group. The pair of functors

$$\mathsf{TopGrp} \xrightarrow{\mathcal{R}_{\mathbb{R}}(-)} \mathsf{CHopf}_{\mathbb{R}}$$

Let us denote by (G, μ, ι, e) an (affine) algebraic group over an algebraically closed field k. The algebra k[G] of global regular functions on G has the same Hopf algebra structure of the previous example, i.e.

- $\Delta : \Bbbk[G] \to \Bbbk[G] \otimes \Bbbk[G]$ induced by μ ,
- $\varepsilon : \Bbbk[G] \to \Bbbk$ induced by e and
- $S : \Bbbk[G] \to \Bbbk[G]$ induced by ι .

Conversely, if H is a finitely generated reduced commutative Hopf algebra over an algebraically closed field \Bbbk then $\mathcal{G}(H^\circ)$ is an affine algebraic group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \underset{\ll}{\overset{\Bbbk[-]}{\prec}}{\longrightarrow} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories. $\mathcal{P}(H^\circ)$ is the Lie algebra of $\mathcal{G}(H^\circ)$.

Let us denote by (G, μ, ι, e) an (affine) algebraic group over an algebraically closed field k. The algebra $\Bbbk[G]$ of global regular functions on G has the same Hopf algebra structure of the previous example, i.e.

- $\Delta : \Bbbk[G] \to \Bbbk[G] \otimes \Bbbk[G]$ induced by μ ,
- $\varepsilon : \Bbbk[G] \to \Bbbk$ induced by e and
- $S : \Bbbk[G] \to \Bbbk[G]$ induced by ι .

Conversely, if H is a finitely generated reduced commutative Hopf algebra over an algebraically closed field \Bbbk then $\mathcal{G}(H^\circ)$ is an affine algebraic group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \xrightarrow{\Bbbk[-]} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories. $\mathcal{P}(H^\circ)$ is the Lie algebra of $\mathcal{G}(H^\circ)$.

Let us denote by (G, μ, ι, e) an (affine) algebraic group over an algebraically closed field k. The algebra $\Bbbk[G]$ of global regular functions on G has the same Hopf algebra structure of the previous example, i.e.

- $\Delta: \Bbbk[G] \to \Bbbk[G] \otimes \Bbbk[G]$ induced by μ ,
- $\varepsilon : \Bbbk[G] \to \Bbbk$ induced by e and
- $S : \Bbbk[G] \to \Bbbk[G]$ induced by ι .

Conversely, if *H* is a finitely generated reduced commutative Hopf algebra over an algebraically closed field \Bbbk then $\mathcal{G}(H^\circ)$ is an affine algebraic group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \xrightarrow{\Bbbk[-]} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories. $\mathcal{P}\left(H^{\circ}
ight)$ is the Lie algebra of $\mathcal{G}\left(H^{\circ}
ight).$

Let us denote by (G, μ, ι, e) an (affine) algebraic group over an algebraically closed field k. The algebra $\Bbbk[G]$ of global regular functions on G has the same Hopf algebra structure of the previous example, i.e.

- $\Delta : \Bbbk[G] \to \Bbbk[G] \otimes \Bbbk[G]$ induced by μ ,
- $\varepsilon : \Bbbk[G] \to \Bbbk$ induced by e and
- $S : \Bbbk[G] \to \Bbbk[G]$ induced by ι .

Conversely, if *H* is a finitely generated reduced commutative Hopf algebra over an algebraically closed field \Bbbk then $\mathcal{G}(H^\circ)$ is an affine algebraic group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \xrightarrow{\Bbbk[-]} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories. $\mathcal{P}(H^{\circ})$ is the Lie algebra of $\mathcal{G}(H^{\circ})$.

Let us denote by (G, μ, ι, e) an (affine) algebraic group over an algebraically closed field k. The algebra k[G] of global regular functions on G has the same Hopf algebra structure of the previous example, i.e.

- $\Delta : \Bbbk[G] \to \Bbbk[G] \otimes \Bbbk[G]$ induced by μ ,
- $\varepsilon : \Bbbk[G] \to \Bbbk$ induced by e and
- $S : \Bbbk[G] \to \Bbbk[G]$ induced by ι .

Conversely, if *H* is a finitely generated reduced commutative Hopf algebra over an algebraically closed field \Bbbk then $\mathcal{G}(H^\circ)$ is an affine algebraic group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \xrightarrow{\Bbbk[-]} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories. $\mathcal{P}(H^{\circ})$ is the Lie algebra of $\mathcal{G}(H^{\circ})$.

A (non-associative) algebra is simply a (unital) algebra (A, m, u).

Dually, a (non-coassociative) coalgebra is a (counital) coalgebra (C, Δ, ε) . If C is a coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an algebra.

Obstruction

In general we have:

where for every $V, W \in \mathfrak{M}$

 $arphi_{V,W}: V^*\otimes W^*
ightarrow (V\otimes W)^* \ , \ f\otimes g\mapsto m_{\Bbbk}\circ (f\otimes g).$

Definition (cf. [Mi1, page 13])

A subspace $V \subseteq A^*$ is good if $m^*(V) \subseteq \varphi_{A,A}(V \otimes V)$.

[Mi1] W. Michaelis, *Lie coalgebras*. Adv. in Math. **38** (1980), no. 1, 1–54.

A (non-associative) algebra is simply a (unital) algebra (A, m, u). Dually, a (non-coassociative) coalgebra is a (counital) coalgebra (C, Δ, ε) . If C is a coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an algebra.

Obstruction

In general we have:

where for every $V, W \in \mathfrak{M}$

 $arphi_{V,W}: V^*\otimes W^*
ightarrow (V\otimes W)^* \ , \ f\otimes g\mapsto m_{\Bbbk}\circ (f\otimes g).$

Definition (cf. [Mi1, page 13])

A subspace $V \subseteq A^*$ is good if $m^*(V) \subseteq \varphi_{A,A}(V \otimes V)$.

[Mi1] W. Michaelis, Lie coalgebras. Adv. in Math. 38 (1980), no. 1, 1–54.

A (non-associative) algebra is simply a (unital) algebra (A, m, u). Dually, a (non-coassociative) coalgebra is a (counital) coalgebra (C, Δ, ε) . If C is a coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an algebra.

Obstruction

In general we have:

where for every $V, W \in \mathfrak{M}$

 $arphi_{V,W}: V^*\otimes W^*
ightarrow (V\otimes W)^* \ , \ f\otimes g\mapsto m_{\Bbbk}\circ (f\otimes g).$

Definition (cf. [Mi1, page 13])

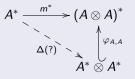
A subspace $V \subseteq A^*$ is good if $m^*(V) \subseteq \varphi_{A,A}(V \otimes V)$.

[Mi1] W. Michaelis, *Lie coalgebras*. Adv. in Math. **38** (1980), no. 1, 1–54.

A (non-associative) algebra is simply a (unital) algebra (A, m, u). Dually, a (non-coassociative) coalgebra is a (counital) coalgebra (C, Δ, ε) . If C is a coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an algebra.

Obstruction

In general we have:



where for every $V, W \in \mathfrak{M}$

 $\varphi_{V,W}: V^*\otimes W^*
ightarrow (V\otimes W)^* \ , \ f\otimes g\mapsto m_{\Bbbk}\circ (f\otimes g).$

Definition (cf. [Mi1, page 13])

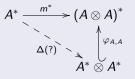
A subspace $V \subseteq A^*$ is good if $m^*(V) \subseteq \varphi_{A,A}(V \otimes V)$.

[Mi1] W. Michaelis, Lie coalgebras. Adv. in Math. 38 (1980), no. 1, 1–54.

A (non-associative) algebra is simply a (unital) algebra (A, m, u). Dually, a (non-coassociative) coalgebra is a (counital) coalgebra (C, Δ, ε) . If C is a coalgebra, then $(C^*, \Delta^*, \varepsilon^*)$ is an algebra.

Obstruction

In general we have:



where for every $V, W \in \mathfrak{M}$

 $arphi_{V,W}: V^*\otimes W^*
ightarrow (V\otimes W)^* \ , \ f\otimes g\mapsto m_{\Bbbk}\circ (f\otimes g).$

Definition (cf. [Mi1, page 13])

A subspace $V \subseteq A^*$ is good if $m^*(V) \subseteq \varphi_{A,A}(V \otimes V)$.

[Mi1] W. Michaelis, Lie coalgebras. Adv. in Math. 38 (1980), no. 1, 1-54.

On a good subspace $V \subseteq A^*$ we can define $\Delta_V(f) = \sum_{i=1}^m g_i \otimes h_i$, uniquely determined by $f(ab) = \sum_{i=1}^m g_i(a)h_i(b)$.

Remark

```
The maximal good subspace of A^*,
```

$$A^{\bullet} := \sum_{V \text{ good}} V,$$

turns out to be a (non-coassociative and counital) coalgebra.

Definition (cf. [ACM, section 2])

The coalgebra A^{\bullet} is the finite dual coalgebra of A.

[ACM] J. A. Anquela, T. Cortés, F. Montaner, *Nonassociative coalgebras*. Comm. Algebra 22 (1994), no. 12, 4693-4716.

On a good subspace $V \subseteq A^*$ we can define $\Delta_V(f) = \sum_{i=1}^m g_i \otimes h_i$, uniquely determined by $f(ab) = \sum_{i=1}^m g_i(a)h_i(b)$.

Remark

The maximal good subspace of A^* ,

$$A^{\bullet} := \sum_{V \text{ good}} V,$$

turns out to be a (non-coassociative and counital) coalgebra.

Definition (cf. [ACM, section 2])

The coalgebra A^{\bullet} is the finite dual coalgebra of A.

[ACM] J. A. Anquela, T. Cortés, F. Montaner, *Nonassociative coalgebras*. Comm. Algebra 22 (1994), no. 12, 4693-4716.

On a good subspace $V \subseteq A^*$ we can define $\Delta_V(f) = \sum_{i=1}^m g_i \otimes h_i$, uniquely determined by $f(ab) = \sum_{i=1}^m g_i(a)h_i(b)$.

Remark

The maximal good subspace of A^* ,

$$A^{\bullet} := \sum_{V \text{ good}} V,$$

turns out to be a (non-coassociative and counital) coalgebra.

Definition (cf. [ACM, section 2])

The coalgebra A^{\bullet} is the finite dual coalgebra of A.

[ACM] J. A. Anquela, T. Cortés, F. Montaner, Nonassociative coalgebras. Comm. Algebra 22 (1994), no. 12, 4693-4716.

Example

Let A be an algebra and $A^{\circ} = \{f \in A^* \mid \operatorname{Ker}(f) \supseteq I \text{ s.t. } \dim_{\mathbb{k}} \left(\frac{A}{I}\right) < \infty\}$ its Sweedler dual. Then $A^{\circ} \subseteq A^{\bullet}$. If moreover A is associative, then $A^{\circ} = A^{\bullet}$.

C coalgebra is locally finite if every $x \in C$ lies in a finite-dimensional subcoalgebra.

Example

Let *C* be a non-locally finite coalgebra and $A := C^*$. Since $C \hookrightarrow C^{*\bullet}$, A^{\bullet} is non-locally finite. On the other hand, $A^{\circ} = \text{Loc}(A^{\bullet})$, the biggest locally finite subcoalgebra. Hence $A^{\circ} \subsetneq A^{\bullet}$. An example of such *C* is given by $\Bbbk[X]$ with

> $\Delta(1) = 1 \otimes 1, \qquad \Delta(X) = X \otimes 1 + 1 \otimes X,$ $\Delta(X^n) = X^n \otimes 1 + 1 \otimes X^n + X^{n+1} \otimes X + X \otimes X^{n+1}.$

 X^2 does not lie in any finite-dimensional subcoalgebra.

Example

Let A be an algebra and $A^{\circ} = \{f \in A^* \mid \operatorname{Ker}(f) \supseteq I \text{ s.t. } \dim_{\mathbb{k}} \left(\frac{A}{I}\right) < \infty\}$ its Sweedler dual. Then $A^{\circ} \subseteq A^{\bullet}$. If moreover A is associative, then $A^{\circ} = A^{\bullet}$.

C coalgebra is locally finite if every $x \in C$ lies in a finite-dimensional subcoalgebra.

Example

Let C be a non-locally finite coalgebra and $A := C^*$. Since $C \hookrightarrow C^{*\bullet}$, A^{\bullet} is non-locally finite. On the other hand, $A^{\circ} = \text{Loc}(A^{\bullet})$, the biggest locally finite subcoalgebra. Hence $A^{\circ} \subsetneq A^{\bullet}$. An example of such C is given by $\Bbbk[X]$ with

> $\Delta(1) = 1 \otimes 1, \qquad \Delta(X) = X \otimes 1 + 1 \otimes X,$ $\Delta(X^n) = X^n \otimes 1 + 1 \otimes X^n + X^{n+1} \otimes X + X \otimes X^{n+1}.$

 X^2 does not lie in any finite-dimensional subcoalgebra.

Example

Let A be an algebra and $A^{\circ} = \{f \in A^* \mid \operatorname{Ker}(f) \supseteq I \text{ s.t. } \dim_{\mathbb{k}} \left(\frac{A}{I}\right) < \infty\}$ its Sweedler dual. Then $A^{\circ} \subseteq A^{\bullet}$. If moreover A is associative, then $A^{\circ} = A^{\bullet}$.

C coalgebra is locally finite if every $x \in C$ lies in a finite-dimensional subcoalgebra.

Example

Let *C* be a non-locally finite coalgebra and $A := C^*$. Since $C \hookrightarrow C^{*\bullet}$, A^{\bullet} is non-locally finite. On the other hand, $A^{\circ} = \text{Loc}(A^{\bullet})$, the biggest locally finite subcoalgebra. Hence $A^{\circ} \subsetneq A^{\bullet}$.

An example of such C is given by k[X] with

 $\Delta(1) = 1 \otimes 1, \qquad \Delta(X) = X \otimes 1 + 1 \otimes X,$ $\Delta(X^n) = X^n \otimes 1 + 1 \otimes X^n + X^{n+1} \otimes X + X \otimes X^{n+1}.$

 X^2 does not lie in any finite-dimensional subcoalgebra.

Example

Let A be an algebra and $A^{\circ} = \{f \in A^* \mid \operatorname{Ker}(f) \supseteq I \text{ s.t. } \dim_{\mathbb{k}} \left(\frac{A}{I}\right) < \infty\}$ its Sweedler dual. Then $A^{\circ} \subseteq A^{\bullet}$. If moreover A is associative, then $A^{\circ} = A^{\bullet}$.

C coalgebra is locally finite if every $x \in C$ lies in a finite-dimensional subcoalgebra.

Example

Let *C* be a non-locally finite coalgebra and $A := C^*$. Since $C \hookrightarrow C^{*\bullet}$, A^{\bullet} is non-locally finite. On the other hand, $A^{\circ} = \text{Loc}(A^{\bullet})$, the biggest locally finite subcoalgebra. Hence $A^{\circ} \subsetneq A^{\bullet}$. An example of such *C* is given by $\Bbbk[X]$ with

$$\begin{split} \Delta(1) &= 1 \otimes 1, \qquad \Delta(X) = X \otimes 1 + 1 \otimes X, \\ \Delta(X^n) &= X^n \otimes 1 + 1 \otimes X^n + X^{n+1} \otimes X + X \otimes X^{n+1} \end{split}$$

 X^2 does not lie in any finite-dimensional subcoalgebra.

The first adjunction

Set $\operatorname{NAlg}_{\Bbbk}$ and $\operatorname{NCoalg}_{\Bbbk}$ for the categories of algebras and coalgebras respectively. $(-)^* : \operatorname{Coalg}_{\Bbbk} \to \operatorname{Alg}_{\Bbbk}$ extends to a contravariant functor $(-)^* : \operatorname{NCoalg}_{\Bbbk} \to \operatorname{NAlg}_{\Bbbk}$ and the finite dual induces $(-)^{\bullet} : \operatorname{NAlg}_{\Bbbk} \to \operatorname{NCoalg}_{\Bbbk}$.

Theorem (cf. [ACM, section 2])

For every $A \in \mathsf{NAlg}_{\Bbbk}$ and $C \in \mathsf{NCoalg}_{\Bbbk}$ we have a natural isomorphism

 $\operatorname{NAlg}_{\Bbbk}(A, C^*) \cong \operatorname{NCoalg}_{\Bbbk}(C, A^{\bullet}).$

I.e. we have a duality

$$\mathsf{NAlg}_{\Bbbk} \xrightarrow{(-)^{\bullet}} \left(\mathsf{NCoalg}_{\Bbbk}\right)^{\mathrm{op}}.$$

[ACM] J. A. Anquela, T. Cortés, F. Montaner, *Nonassociative coalgebras*. Comm. Algebra 22 (1994), no. 12, 4693-4716.

Proposition

The canonical injection $arphi_{A,B}: A^*\otimes B^* o (A\otimes B)^*$ induces a natural isomorphism

 $A^{\bullet} \otimes B^{\bullet} \cong (A \otimes B)^{\bullet}.$

The first adjunction

Set NAlg_{\Bbbk} and NCoalg_{\Bbbk} for the categories of algebras and coalgebras respectively. $(-)^* : \mathsf{Coalg}_{\Bbbk} \to \mathsf{Alg}_{\Bbbk}$ extends to a contravariant functor $(-)^* : \mathsf{NCoalg}_{\Bbbk} \to \mathsf{NAlg}_{\Bbbk}$ and the finite dual induces $(-)^{\bullet} : \mathsf{NAlg}_{\Bbbk} \to \mathsf{NCoalg}_{\Bbbk}$.

Theorem (cf. [ACM, section 2])

For every $A\in\mathsf{NAlg}_\Bbbk$ and $C\in\mathsf{NCoalg}_\Bbbk$ we have a natural isomorphism

$$\operatorname{NAlg}_{\mathbb{k}}(A, C^*) \cong \operatorname{NCoalg}_{\mathbb{k}}(C, A^{\bullet}).$$

I.e. we have a duality

$$\mathsf{NAlg}_{\Bbbk} \xrightarrow{(-)^{\bullet}} (\mathsf{NCoalg}_{\Bbbk})^{\mathrm{op}}.$$

[ACM] J. A. Anquela, T. Cortés, F. Montaner, Nonassociative coalgebras. Comm. Algebra 22 (1994), no. 12, 4693-4716.

Proposition

The canonical injection $arphi_{A,B}: A^*\otimes B^* o (A\otimes B)^*$ induces a natural isomorphism

 $A^{\bullet} \otimes B^{\bullet} \cong (A \otimes B)^{\bullet}.$

The first adjunction

Set NAlg_{\Bbbk} and NCoalg_{\Bbbk} for the categories of algebras and coalgebras respectively. $(-)^* : \mathsf{Coalg}_{\Bbbk} \to \mathsf{Alg}_{\Bbbk}$ extends to a contravariant functor $(-)^* : \mathsf{NCoalg}_{\Bbbk} \to \mathsf{NAlg}_{\Bbbk}$ and the finite dual induces $(-)^{\bullet} : \mathsf{NAlg}_{\Bbbk} \to \mathsf{NCoalg}_{\Bbbk}$.

Theorem (cf. [ACM, section 2])

For every $A\in\mathsf{NAlg}_\Bbbk$ and $C\in\mathsf{NCoalg}_\Bbbk$ we have a natural isomorphism

$$\operatorname{NAlg}_{\mathbb{k}}(A, C^*) \cong \operatorname{NCoalg}_{\mathbb{k}}(C, A^{\bullet}).$$

I.e. we have a duality

$$\mathsf{NAlg}_{\Bbbk} \xrightarrow{(-)^{\bullet}} (\mathsf{NCoalg}_{\Bbbk})^{\mathrm{op}}.$$

[ACM] J. A. Anquela, T. Cortés, F. Montaner, *Nonassociative coalgebras*. Comm. Algebra 22 (1994), no. 12, 4693-4716.

Proposition

The canonical injection $\varphi_{A,B}: A^* \otimes B^* \to (A \otimes B)^*$ induces a natural isomorphism

$$A^{ullet}\otimes B^{ullet}\cong (A\otimes B)^{ullet}.$$

An intermediate step between (co)algebras and (dual) quasi-bialgebras is given by:

DefinitionA associative algebra with comultiplication and counit is a datum $(A, m, u, \Delta, \varepsilon)$ s.t• $(A, m, u) \in Alg_k$;• $\Delta : C \to C \otimes C$ and $\varepsilon : C \to k$ are algebra maps s.t. $(A, \Delta, \varepsilon) \in NCoalg_k$.DuallyDefinitionA coassociative coalgebra with multiplication and unit is a datum $(C, \Delta, \varepsilon, m, u)$ s.t• $(C, \Delta, \varepsilon) \in Coalg_k$;

• $m: C \otimes C \rightarrow C$ and $u: \mathbb{k} \rightarrow C$ are coalgebra maps s.t. $(C, m, u) \in \mathsf{NAlg}_{\mathbb{k}}$.

An intermediate step between (co)algebras and (dual) quasi-bialgebras is given by:

Definition A associative algebra with comultiplication and counit is a datum $(A, m, u, \Delta, \varepsilon)$ s.t • $(A, m, u) \in Alg_k$; • $\Delta : C \to C \otimes C$ and $\varepsilon : C \to \Bbbk$ are algebra maps s.t. $(A, \Delta, \varepsilon) \in NCoalg_k$. Dually

Definition

A coassociative coalgebra with multiplication and unit is a datum $(C, \Delta, \varepsilon, m, u)$ s.t

•
$$(C, \Delta, \varepsilon) \in \mathsf{Coalg}_{\Bbbk};$$

• $m: C \otimes C \rightarrow C$ and $u: \Bbbk \rightarrow C$ are coalgebra maps s.t. $(C, m, u) \in \mathsf{NAlg}_{\Bbbk}$.

The second adjunction II

The finite dual functor $(-)^{\bullet}$ restricts to a contravariant functor $(-)^{\bullet} : \mathsf{NAlg}(\mathsf{Coalg}_{\Bbbk}) \to \mathsf{NCoalg}(\mathsf{Alg}_{\Bbbk}).$

On the other hand, $(-)^\circ: \mathsf{Alg}_\Bbbk \to \mathsf{Coalg}_\Bbbk$ lifts to a contravariant functor

 $(-)^{\circ}:\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)\to\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right).$

Theorem

There is a natural isomorphism:

$$\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)\left(\mathcal{A}, \mathcal{C}^{\bullet}\right) \cong \mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right)\left(\mathcal{C}, \mathcal{A}^{\circ}\right)$$

for every pair $A \in \mathsf{NCoalg}(\mathsf{Alg}_{\Bbbk})$ and $C \in \mathsf{NAlg}(\mathsf{Coalg}_{\Bbbk})$. I.e. we have a duality

$$\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right) \xrightarrow[(-)^{\circ}]{} \left(\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)\right)^{\mathrm{op}}.$$

The second adjunction II

The finite dual functor $(-)^{\bullet}$ restricts to a contravariant functor

 $(-)^{\bullet}:\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right)\to\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right).$

On the other hand, $(-)^\circ:\mathsf{Alg}_\Bbbk\to\mathsf{Coalg}_\Bbbk$ lifts to a contravariant functor

 $(-)^{\circ}:\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)\to\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right).$

Theorem

There is a natural isomorphism:

$$\operatorname{NCoalg}\left(\operatorname{Alg}_{\Bbbk}\right)\left(A, C^{\bullet}\right) \cong \operatorname{NAlg}\left(\operatorname{Coalg}_{\Bbbk}\right)\left(C, A^{\circ}\right)$$

for every pair $A \in \mathsf{NCoalg}(\mathsf{Alg}_{\Bbbk})$ and $C \in \mathsf{NAlg}(\mathsf{Coalg}_{\Bbbk})$. I.e. we have a duality

$$\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right) \xrightarrow{(-)^{\circ}} \left(\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)\right)^{\mathrm{op}}$$

The second adjunction II

The finite dual functor $(-)^{\bullet}$ restricts to a contravariant functor

 $(-)^{\bullet}:\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right)\to\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right).$

On the other hand, $(-)^{\circ}$: Alg_k \rightarrow Coalg_k lifts to a contravariant functor

 $(-)^{\circ}: \mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right) \to \mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right).$

Theorem

There is a natural isomorphism:

$$\mathsf{NCoalg}(\mathsf{Alg}_{\Bbbk})(A, C^{\bullet}) \cong \mathsf{NAlg}(\mathsf{Coalg}_{\Bbbk})(C, A^{\circ})$$

for every pair $A \in \mathsf{NCoalg}(\mathsf{Alg}_{\Bbbk})$ and $C \in \mathsf{NAlg}(\mathsf{Coalg}_{\Bbbk})$. I.e. we have a duality

$$\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right) \xrightarrow[(-)^{\circ}]{} \left(\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)\right)^{\mathrm{op}}.$$

(Dual) quasi-bialgebras

Definition (Drinfel'd, 1989)

A quasi-bialgebra is an object $(H, m, u, \Delta, \varepsilon)$ in the category NCoalg (Alg_k) , endowed with a counital 3-cocycle $\Phi = \sum \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ called the reassociator, i.e. an invertible element in the algebra $H \otimes H \otimes H$ that satisfies

$$\begin{aligned} (H \otimes H \otimes \Delta) \, (\Phi) \cdot (\Delta \otimes H \otimes H) \, (\Phi) &= (1 \otimes \Phi) \cdot (H \otimes \Delta \otimes H) (\Phi) \cdot (\Phi \otimes 1), \\ (\varepsilon \otimes H \otimes H) (\Phi) &= (H \otimes \varepsilon \otimes H) (\Phi) = (H \otimes H \otimes \varepsilon) (\Phi) = 1 \otimes 1, \\ \Phi \cdot (\Delta \otimes H) (\Delta(h)) = (H \otimes \Delta) (\Delta(h)) \cdot \Phi. \end{aligned}$$

Definition (Majid, 1990)

A dual quasi-bialgebra is an object $(U, \Delta, \varepsilon, m, u)$ in the category NAIg (Coalg_k), endowed with a unital 3-cocycle ω called the reassociator, i.e. a convolution invertible element $\omega \in (U \otimes U \otimes U)^*$ that satisfies

 $(\omega \circ (U \otimes U \otimes m)) * (\omega \circ (m \otimes U \otimes U)) = (\varepsilon \otimes \omega) * (\omega \circ (U \otimes m \otimes U)) * (\omega \otimes \varepsilon)$ $\omega (h \otimes k \otimes l) = \varepsilon (h) \varepsilon (k) \varepsilon (l), \quad \text{whenever } 1_U \in \{h, k, l\}$

 $(u \circ \omega) * (m \circ (m \otimes U)) = (m \circ (U \otimes m)) * (u \circ \omega).$

(Dual) quasi-bialgebras

Definition (Drinfel'd, 1989)

A quasi-bialgebra is an object $(H, m, u, \Delta, \varepsilon)$ in the category NCoalg (Alg_k), endowed with a counital 3-cocycle $\Phi = \sum \Phi^1 \otimes \Phi^2 \otimes \Phi^3$ called the reassociator, i.e. an invertible element in the algebra $H \otimes H \otimes H$ that satisfies

$$\begin{aligned} (H \otimes H \otimes \Delta) \, (\Phi) \cdot (\Delta \otimes H \otimes H) \, (\Phi) &= (1 \otimes \Phi) \cdot (H \otimes \Delta \otimes H) (\Phi) \cdot (\Phi \otimes 1), \\ (\varepsilon \otimes H \otimes H) (\Phi) &= (H \otimes \varepsilon \otimes H) (\Phi) = (H \otimes H \otimes \varepsilon) (\Phi) = 1 \otimes 1, \\ \Phi \cdot (\Delta \otimes H) (\Delta(h)) = (H \otimes \Delta) (\Delta(h)) \cdot \Phi. \end{aligned}$$

Definition (Majid, 1990)

A dual quasi-bialgebra is an object $(U, \Delta, \varepsilon, m, u)$ in the category NAlg (Coalg_k), endowed with a unital 3-cocycle ω called the reassociator, i.e. a convolution invertible element $\omega \in (U \otimes U \otimes U)^*$ that satisfies

$$(\omega \circ (U \otimes U \otimes m)) * (\omega \circ (m \otimes U \otimes U)) = (\varepsilon \otimes \omega) * (\omega \circ (U \otimes m \otimes U)) * (\omega \otimes \varepsilon)$$
$$\omega (h \otimes k \otimes l) = \varepsilon (h) \varepsilon (k) \varepsilon (l), \quad \text{whenever } 1_U \in \{h, k, l\}$$
$$(u \circ \omega) * (m \circ (m \otimes U)) = (m \circ (U \otimes m)) * (u \circ \omega).$$

The last adjunction I

Lemma

 $(-)^\circ:\mathsf{NCoalg}\,(\mathsf{Alg}_\Bbbk)\to\mathsf{NAlg}\,(\mathsf{Coalg}_\Bbbk)$ restricts further to a contravariant functor

 $(-)^{\circ}:\mathsf{QBialg}_{\Bbbk}\to\mathsf{DQBialg}_{\Bbbk}.$

If $(H, \Phi = \sum \Phi^1 \otimes \Phi^2 \otimes \Phi^3)$ is a quasi-bialgebra and η denotes the unit of the adjunction $\operatorname{Alg}_{\Bbbk} \xrightarrow{(-)^{\circ}} (\operatorname{Coalg}_{\Bbbk})^{\operatorname{op}}$ then we have an algebra map

$$\eta_{H^{\otimes 3}}: H^{\otimes 3} \longrightarrow \left((H^{\otimes 3})^{\circ} \right)^* \cong \left((H^{\circ})^{\otimes 3} \right)^*, \ \Phi \longmapsto \omega_{3}$$

whence $\omega(f \otimes g \otimes h) = \sum f(\Phi^1) g(\Phi^2) h(\Phi^3)$ defines a reassociator for H° .

Remark

$$\omega = \sum \operatorname{ev}_{\Phi^1} \otimes \operatorname{ev}_{\Phi^2} \otimes \operatorname{ev}_{\Phi^3} \in (H^\circ)^* \otimes (H^\circ)^* \otimes (H^\circ)^* \,.$$

The last adjunction I

Lemma

 $(-)^\circ:\mathsf{NCoalg}\,(\mathsf{Alg}_\Bbbk)\to\mathsf{NAlg}\,(\mathsf{Coalg}_\Bbbk)$ restricts further to a contravariant functor

 $(-)^{\circ}:\mathsf{QBialg}_{\Bbbk}\to\mathsf{DQBialg}_{\Bbbk}.$

If $(H, \Phi = \sum \Phi^1 \otimes \Phi^2 \otimes \Phi^3)$ is a quasi-bialgebra and η denotes the unit of the adjunction $\operatorname{Alg}_{\Bbbk} \xrightarrow{(-)^{\circ}} (\operatorname{Coalg}_{\Bbbk})^{\operatorname{op}}$ then we have an algebra map

$$\eta_{H^{\otimes 3}}: H^{\otimes 3} \longrightarrow \left(\left(H^{\otimes 3} \right)^{\circ} \right)^{*} \cong \left(\left(H^{\circ} \right)^{\otimes 3} \right)^{*}, \Phi \longmapsto \omega$$

whence $\omega(f \otimes g \otimes h) = \sum f(\Phi^1) g(\Phi^2) h(\Phi^3)$ defines a reassociator for H° .

Remark

$$\omega = \sum \operatorname{ev}_{\Phi^1} \otimes \operatorname{ev}_{\Phi^2} \otimes \operatorname{ev}_{\Phi^3} \in (H^\circ)^* \otimes (H^\circ)^* \otimes (H^\circ)^* \,.$$

The last adjunction I

Lemma

 $(-)^\circ:\mathsf{NCoalg}\,(\mathsf{Alg}_\Bbbk)\to\mathsf{NAlg}\,(\mathsf{Coalg}_\Bbbk)$ restricts further to a contravariant functor

 $(-)^{\circ}:\mathsf{QBialg}_{\Bbbk}\to\mathsf{DQBialg}_{\Bbbk}.$

If $(H, \Phi = \sum \Phi^1 \otimes \Phi^2 \otimes \Phi^3)$ is a quasi-bialgebra and η denotes the unit of the adjunction $\operatorname{Alg}_{\Bbbk} \xrightarrow{(-)^{\circ}} (\operatorname{Coalg}_{\Bbbk})^{\operatorname{op}}$ then we have an algebra map

$$\eta_{H^{\otimes 3}} : H^{\otimes 3} \longrightarrow \left(\left(H^{\otimes 3} \right)^{\circ} \right)^* \cong \left(\left(H^{\circ} \right)^{\otimes 3} \right)^*, \ \Phi \longmapsto \omega$$

whence $\omega(f \otimes g \otimes h) = \sum f(\Phi^1) g(\Phi^2) h(\Phi^3)$ defines a reassociator for H° .

Remark

$$\omega = \sum \operatorname{ev}_{\Phi^1} \otimes \operatorname{ev}_{\Phi^2} \otimes \operatorname{ev}_{\Phi^3} \in \left(H^\circ
ight)^* \otimes \left(H^\circ
ight)^* \otimes \left(H^\circ
ight)^*.$$

The last adjunction II

Proposition

Let $(U, \Delta, \varepsilon, m, u, \omega) \in \mathsf{DQBialg}_k$ and assume that the following holds:

(*) $\exists \Phi \in (U^{\bullet})^{\otimes 3}$ invertible s.t. ω is the image of Φ via $\zeta_U : (U^{\bullet})^{\otimes 3} \hookrightarrow (U^{\otimes 3})^*$.

Then $(U^{\bullet}, m^{\bullet}, u^{\bullet}, \Delta^{\bullet}, \varepsilon^{\bullet}, \Phi)$ is a quasi-bialgebra.

Definition

A dual quasi-bialgebra that satisfies (*) is called a split dual quasi-bialgebra.

Split dual quasi-bialgebras form a full subcategory $SDQBialg_{\Bbbk}$ of $DQBialg_{\Bbbk}$ and $(-)^{\bullet}$ yields a contravariant functor $(-)^{\bullet}$: $SDQBialg_{\Bbbk} \rightarrow QBialg_{\Bbbk}$.

Theorem

The duality between $\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right)$ and $\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)$ induces the adjunction

$$\mathsf{SDQBialg}_{\Bbbk} \xrightarrow{(-)^{\circ}} \left(\mathsf{QBialg}_{\Bbbk} \right)^{\mathrm{op}}.$$

The last adjunction II

Proposition

Let $(U, \Delta, \varepsilon, m, u, \omega) \in \mathsf{DQBialg}_{\Bbbk}$ and assume that the following holds:

(*) $\exists \Phi \in (U^{\bullet})^{\otimes 3}$ invertible s.t. ω is the image of Φ via $\zeta_U : (U^{\bullet})^{\otimes 3} \hookrightarrow (U^{\otimes 3})^*$.

Then $(U^{\bullet}, m^{\bullet}, u^{\bullet}, \Delta^{\bullet}, \varepsilon^{\bullet}, \Phi)$ is a quasi-bialgebra.

Definition

A dual quasi-bialgebra that satisfies (*) is called a split dual quasi-bialgebra.

Split dual quasi-bialgebras form a full subcategory $SDQBialg_k$ of $DQBialg_k$ and $(-)^{\bullet}$ yields a contravariant functor $(-)^{\bullet}$: $SDQBialg_k \rightarrow QBialg_k$.

Theorem

The duality between NAlg (Coalg_k) and NCoalg (Alg_k) induces the adjunction

$$\mathsf{SDQBialg}_{\Bbbk} \xrightarrow{(-)^{\circ}} \left(\mathsf{QBialg}_{\Bbbk} \right)^{\mathrm{op}}.$$

The last adjunction II

Proposition

Let $(U, \Delta, \varepsilon, m, u, \omega) \in \mathsf{DQBialg}_k$ and assume that the following holds:

(*) $\exists \Phi \in (U^{\bullet})^{\otimes 3}$ invertible s.t. ω is the image of Φ via $\zeta_U : (U^{\bullet})^{\otimes 3} \hookrightarrow (U^{\otimes 3})^*$.

Then $(U^{\bullet}, m^{\bullet}, u^{\bullet}, \Delta^{\bullet}, \varepsilon^{\bullet}, \Phi)$ is a quasi-bialgebra.

Definition

A dual quasi-bialgebra that satisfies (*) is called a split dual quasi-bialgebra.

Split dual quasi-bialgebras form a full subcategory SDQBialg_k of DQBialg_k and $(-)^{\bullet}$ yields a contravariant functor $(-)^{\bullet}$: SDQBialg_k \rightarrow QBialg_k.

Theorem

The duality between $\mathsf{NAlg}\left(\mathsf{Coalg}_{\Bbbk}\right)$ and $\mathsf{NCoalg}\left(\mathsf{Alg}_{\Bbbk}\right)$ induces the adjunction

$$\mathsf{SDQBialg}_{\Bbbk} \xrightarrow{(-)^{\circ}} \left(\mathsf{QBialg}_{\Bbbk} \right)^{\mathrm{op}}.$$

 $SDQBialg_{\Bbbk}$ is closed under sources in $DQBialg_{\Bbbk}$, i.e. if $f : (U', \omega') \to (U, \omega)$ is a morphism in $DQBialg_{\Bbbk}$ and $(U, \omega) \in SDQBialg_{\Bbbk}$, then $(U', \omega') \in SDQBialg_{\Bbbk}$.

Example (SDQBialg_k is a proper subcategory)

Let $\Bbbk[X]$ be the polynomial algebra in one indeterminate X with the monoid bialgebra structure, i.e. $\Delta(X) = X \otimes X$ and $\varepsilon(X) = 1$. Let $\varphi : \Bbbk[X] \to \Bbbk$ not in $\Bbbk[X]^{\circ}$ ($= \Bbbk[X]^{\circ}$). E.g. $\varphi(X^n) = n!$. For all $m, n, k \ge 0$ we can define inductively

$$\omega(1 \otimes X^n \otimes X^m) = \omega(X^n \otimes 1 \otimes X^m) = \omega(X^n \otimes X^m \otimes 1) := 1,$$

$$\omega(X^n \otimes X^{k+1} \otimes X^m) := \varphi(X^k)^{-2}\varphi(X^{n+k})\varphi(X^{m+k}).$$

The constructed ω is a reassociator. If $\omega \in \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet}$, then

 $\varphi = \omega(-\otimes X \otimes X) = (\Bbbk[X]^{\bullet} \otimes \operatorname{ev}_X \otimes \operatorname{ev}_X) (\omega) \in \Bbbk[X]^{\bullet},$

which is a contradiction. $(\Bbbk[X], \Delta, \varepsilon, \omega)$ is a dual quasi-bialgebra that is not split.

 $SDQBialg_{\Bbbk}$ is closed under sources in $DQBialg_{\Bbbk}$, i.e. if $f : (U', \omega') \to (U, \omega)$ is a morphism in $DQBialg_{\Bbbk}$ and $(U, \omega) \in SDQBialg_{\Bbbk}$, then $(U', \omega') \in SDQBialg_{\Bbbk}$.

Example (SDQBialg_k is a proper subcategory)

Let $\Bbbk[X]$ be the polynomial algebra in one indeterminate X with the monoid bialgebra structure, i.e. $\Delta(X) = X \otimes X$ and $\varepsilon(X) = 1$. Let $\varphi : \Bbbk[X] \to \Bbbk$ not in $\Bbbk[X]^{\circ}$ ($= \Bbbk[X]^{\circ}$). E.g. $\varphi(X^n) = n!$. For all $m, n, k \ge 0$ we can define inductively

$$\begin{split} \omega(1\otimes X^n\otimes X^m) &= \omega(X^n\otimes 1\otimes X^m) = \omega(X^n\otimes X^m\otimes 1) := 1,\\ \omega(X^n\otimes X^{k+1}\otimes X^m) &:= \varphi(X^k)^{-2}\varphi(X^{n+k})\varphi(X^{m+k}). \end{split}$$

The constructed ω is a reassociator. If $\omega \in \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet}$, then

 $\varphi = \omega(-\otimes X \otimes X) = (\Bbbk[X]^{\bullet} \otimes \operatorname{ev}_X \otimes \operatorname{ev}_X) (\omega) \in \Bbbk[X]^{\bullet},$

which is a contradiction. $(\Bbbk[X], \Delta, \varepsilon, \omega)$ is a dual quasi-bialgebra that is not split.

 $SDQBialg_{\Bbbk}$ is closed under sources in $DQBialg_{\Bbbk}$, i.e. if $f : (U', \omega') \to (U, \omega)$ is a morphism in $DQBialg_{\Bbbk}$ and $(U, \omega) \in SDQBialg_{\Bbbk}$, then $(U', \omega') \in SDQBialg_{\Bbbk}$.

Example (SDQBialg_k is a proper subcategory)

Let $\Bbbk[X]$ be the polynomial algebra in one indeterminate X with the monoid bialgebra structure, i.e. $\Delta(X) = X \otimes X$ and $\varepsilon(X) = 1$. Let $\varphi : \Bbbk[X] \to \Bbbk$ not in $\Bbbk[X]^{\circ}$ ($= \Bbbk[X]^{\bullet}$). E.g. $\varphi(X^n) = n!$. For all $m, n, k \ge 0$ we can define inductively

$$egin{aligned} &\omega(1\otimes X^n\otimes X^m)=\omega(X^n\otimes 1\otimes X^m)=\omega(X^n\otimes X^m\otimes 1):=1,\ &\omega(X^n\otimes X^{k+1}\otimes X^m):=arphi(X^k)^{-2}arphi(X^{n+k})arphi(X^{m+k}). \end{aligned}$$

The constructed ω is a reassociator. If $\omega \in \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet}$, then

 $\varphi = \omega(-\otimes X \otimes X) = (\Bbbk[X]^{\bullet} \otimes \operatorname{ev}_X \otimes \operatorname{ev}_X) (\omega) \in \Bbbk[X]^{\bullet},$

which is a contradiction. $(\Bbbk[X],\Delta,arepsilon,\omega)$ is a dual quasi-bialgebra that is not split.

 $SDQBialg_{\Bbbk}$ is closed under sources in $DQBialg_{\Bbbk}$, i.e. if $f : (U', \omega') \to (U, \omega)$ is a morphism in $DQBialg_{\Bbbk}$ and $(U, \omega) \in SDQBialg_{\Bbbk}$, then $(U', \omega') \in SDQBialg_{\Bbbk}$.

Example (SDQBialg_k is a proper subcategory)

Let $\Bbbk[X]$ be the polynomial algebra in one indeterminate X with the monoid bialgebra structure, i.e. $\Delta(X) = X \otimes X$ and $\varepsilon(X) = 1$. Let $\varphi : \Bbbk[X] \to \Bbbk$ not in $\Bbbk[X]^{\circ}$ ($= \Bbbk[X]^{\bullet}$). E.g. $\varphi(X^n) = n!$. For all $m, n, k \ge 0$ we can define inductively

$$egin{aligned} &\omega(1\otimes X^n\otimes X^m)=\omega(X^n\otimes 1\otimes X^m)=\omega(X^n\otimes X^m\otimes 1):=1,\ &\omega(X^n\otimes X^{k+1}\otimes X^m):=arphi(X^k)^{-2}arphi(X^{n+k})arphi(X^{m+k}). \end{aligned}$$

The constructed ω is a reassociator. If $\omega \in \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet} \otimes \Bbbk[X]^{\bullet}$, then

$$\varphi = \omega(-\otimes X \otimes X) = (\Bbbk[X]^{\bullet} \otimes \operatorname{ev}_X \otimes \operatorname{ev}_X) (\omega) \in \Bbbk[X]^{\bullet},$$

which is a contradiction. $(\Bbbk[X], \Delta, \varepsilon, \omega)$ is a dual quasi-bialgebra that is not split.

Alternative descriptions

Lemma

Let A be associative and set $(a \rightarrow f)(b) := f(ba)$ and $(f \leftarrow a)(b) := f(ab)$. The following are equivalent for $f \in A^*$:

- $f \in A^{\circ}$;
- $\dim(A \rightharpoonup f \leftarrow A) < \infty;$
- $\ker(f) \supseteq I \text{ s.t. } \dim\left(\frac{A}{I}\right) < \infty.$

Let A be any algebra. $A^e := A \otimes A^{\text{op}}$. Consider the left action of $T(A^e)$ on A^* and the right one on A respectively induced by

 $(l \otimes r) \triangleright f := (l \rightharpoonup (f \leftarrow r))$ and $a \blacktriangleleft (l \otimes r) := r(al)$.

Lemma

The following are equivalent for $f \in A^*$:

- $f \in A^{\bullet};$
- $\dim((A^e)^{\otimes n} \triangleright f) < \infty \ (\forall n \in \mathbb{N});$
- exists a family $\{I_n \mid n \in \mathbb{N}\}$ of finite-codimensional subspaces of A such that $f(I_0) = 0$ and $(I_n \blacktriangleleft A^e) \subseteq I_{n-1} \ (\forall n \ge 1)$.

Alternative descriptions

Lemma

Let A be associative and set $(a \rightarrow f)(b) := f(ba)$ and $(f \leftarrow a)(b) := f(ab)$. The following are equivalent for $f \in A^*$:

• $f \in A^{\circ}$;

•
$$\dim(A \rightharpoonup f \leftharpoonup A) < \infty;$$

•
$$\ker(f) \supseteq I \text{ s.t. } \dim\left(\frac{A}{I}\right) < \infty.$$

Let A be any algebra. $A^e := A \otimes A^{\text{op}}$. Consider the left action of $T(A^e)$ on A^* and the right one on A respectively induced by

$$(I \otimes r) \triangleright f := (I \rightharpoonup (f \leftarrow r))$$
 and $a \blacktriangleleft (I \otimes r) := r(aI)$.

Lemma

The following are equivalent for $f \in A^*$:

- $f \in A^{\bullet}$;
- $\dim((A^e)^{\otimes n} \triangleright f) < \infty \ (\forall n \in \mathbb{N});$
- exists a family $\{I_n \mid n \in \mathbb{N}\}$ of finite-codimensional subspaces of A such that $f(I_0) = 0$ and $(I_n \blacktriangleleft A^e) \subseteq I_{n-1} \ (\forall n \ge 1)$.

Alternative descriptions

Lemma

Let A be associative and set $(a \rightarrow f)(b) := f(ba)$ and $(f \leftarrow a)(b) := f(ab)$. The following are equivalent for $f \in A^*$:

• $f \in A^{\circ}$;

•
$$\dim(A \rightharpoonup f \leftharpoonup A) < \infty;$$

•
$$\ker(f) \supseteq I \text{ s.t. } \dim\left(\frac{A}{I}\right) < \infty.$$

Let A be any algebra. $A^e := A \otimes A^{\text{op}}$. Consider the left action of $T(A^e)$ on A^* and the right one on A respectively induced by

$$(I \otimes r) \triangleright f := (I \rightharpoonup (f \leftarrow r))$$
 and $a \blacktriangleleft (I \otimes r) := r(aI)$.

Lemma

The following are equivalent for $f \in A^*$:

- $f \in A^{\bullet}$;
- $\dim((A^e)^{\otimes n} \succ f) < \infty \ (\forall n \in \mathbb{N});$
- exists a family $\{I_n \mid n \in \mathbb{N}\}$ of finite-codimensional subspaces of A such that $f(I_0) = 0$ and $(I_n \blacktriangleleft A^e) \subseteq I_{n-1} \ (\forall n \ge 1)$.

Thank you