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Fix an algebraically closed field k of characteristic 0.
Example (Coordinate ring of a group)
Let (G, u, e,¢) be an (affine) algebraic group and k[G] its coordinate ring:
e 4 induces a map A : k[G] — k[G x G] = k[G] ® k[G] such that
A(f)=>",8 @ h; iff 3. gi(x)hi(y) = f(xy) for all x,y € G;
e e induces ¢ : k[G] — k such that &(f) = f(e) and
e . induces S : k[G] — k[G] via pre-composition: S(f) = f 0.

What is a Hopf algebra?
A is a k-algebra H endowed with 3 additional structure maps
@
k<—H-—S>H®H
(A@H)A=(H®A)A (e@HA=H=(H®e)A

tisfyi
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Example (Coordinate ring of a group - continued)

For an (affine) algebraic group G, k[G] is a Hopf algebra.
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Example (Coordinate ring of a group - continued)

For an (affine) algebraic group G, k[G] is a Hopf algebra. Conversely, if
H is a Hopf algebra then Alg, (H, k) is a group. The pair of functors

-]
AffGrp, W CHopf, (4 -)
k\ ™

defines an anti-equivalence of categories.

Actions of groups on varieties G x X — X correspond to of the
Hopf algebras k[G] on k[X], i.e. k[X] — k[G] ® k[X].



Example (Hopf algebras of representative functions)

Let G be a group and R, (G) be the algebra of representative functions
on G (i.e. the algebra generated by those f : G — k that appear as
coefficients of finite-dimensional reprs p : G — GL,(k)).
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Example (Hopf algebras of representative functions)

Let G be a group and Ry(G) be the algebra of representative functions
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e ¢:Ry(G) — k induced by e,

e S:Ry(G) = Ri(G) induced by ¢.



Example (Hopf algebras of representative functions)

Let G be a group and Ry(G) be the algebra of representative functions
on G (i.e. the algebra generated by those f : G — k that appear as
coefficients of finite-dimensional reprs p : G — GL,(k)). It has the same
Hopf algebra structure of the previous example:

e A:R(G) = Riu(G) ® Ri(G) induced by p,
e ¢:Ry(G) — k induced by e,
e S:Ry(G) = Ri(G) induced by ¢.

The pair of functors

Ri(—)
Grp ——= CHopf,
Algy (—k)
induces between

e finite groups and f.d. semisimple commutative Hopf algebras;

e compact real Lie groups and f.g. commutative R-Hopf algebras (plus
other properties).
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Let g be a Lie algebra. Its universal enveloping algebra U(g) is a
co-commutative Hopf algebra where, for every X € g,
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Example (Universal enveloping Hopf algebras)

Let g be a Lie algebra. Its universal enveloping algebra U(g) is a
co-commutative Hopf algebra where, for every X € g,

AX)=X®1+1®X &X)=0 S(X)=-X.

If H is a Hopf algebra, P(H) ={he H|A(h) =h®1+1Q h} is the
Lie algebra of primitive elements. The pair of functors

(=)
Lie[k T ——— CCHOpfk(—i- v )
P

defines an equivalence of categories.

The finite (or Sweedler) dual
If H is a Hopf algebra, then H* is not a Hopf algebra in general. Instead,

H° :={f € H* | ker(f) contains a finite-codimensional ideal}

is a Hopf algebra. The image of kG°® C kG* = Fun(G, k) is Ry(G).

6
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Toward Hopf algebroids: Groupoids

What is a groupoid?

A (abstract) groupoid is a (small) category in which every arrow is
invertible, i.e. it is the datum of two sets Gy, G, together with functions

Go ==
S

G = G X Go G
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satisfying some reasonable properties.
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Toward Hopf algebroids: Groupoids

What is a groupoid?

A (abstract) groupoid is a (small) category in which every arrow is
invertible, i.e. it is the datum of two sets Gy, G, together with functions

G = Gi x @ G

L

Go ——id—;

satisfying some reasonable properties.

Example (The fundamental groupoid)

For a topological space X, the sets Gy = X, G; = {paths on X}/ homotopy)
with obvious source, target and composition maps give the fundamental
groupoid of X.

Example (The general linear groupoid)

The set GL, (k) of all invertible matrices of any order over k form a
groupoid (N, GL, (k)) with the ordinary matrix multiplication.



Example (Groupoids and partial actions)

A of a group G on a set X consists of a family
{X; | g € G} of subsets of X and a family {a, : X;-1 = X, | g € G} of
bijections such that

® Xe :X, O = Idx,
° 04;1(ng1 N Xh) = X(gh)—l N Xp-1,

® QO = Qigp ON Xigpy—1 N Xjp—1.



Example (Groupoids and partial actions)

A partial action of a group G on a set X consists of a family
{X; | g € G} of subsets of X and a family {a, : X;-1 = X, | g € G} of
bijections such that

e X, =X, a, = ldy,
o o, (X1 N Xp) = Xign—1 N Xy,
® QO = Qigp ON Xigpy—1 N Xjp—1.
Taking Go = X, G1 = {(g,x) € G x X | x € X,-1} and

(8.0 (hy) = { 1) T

provides a groupoid encoding the partial action.
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A commutative Hopf algebroid is a groupoid object in the category Affy or,
equivalently, a cogroupoid object in the category CAlg,.
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Commutative Hopf algebroids

A commutative Hopf algebroid is a groupoid object in the category Affy or,
equivalently, a cogroupoid object in the category CAlg,. Thus, it consists
of a pair of commutative algebras (A, H) together with structural algebra

morphisms
A=————ZH—"—>H®uH
(&)
such that

(Aos H)A=(HOaA)A (@ H)A = H = (H®a)A
Ss=t & =H mSE@H)A=tc m(H®,S8)A=se

Example (Hopf algebroid of pairs)
Let A be a commutative algebra and H = A® A. Then

s(a)=a®l A(a®b)=(a®1)®a(1®Db)
t(a)=1®a c(a®@b)=ab Sa®b)=>b®a

make of (A,A® A) a commutative Hopf algebroid.

9/23



First application: the integration problem

. Differentiation at the identity .
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First application: the integration problem

. Differentiation at the identity .
Lie Lie
Groups Algebras

Lie 3" Theorem

) Differentiation at the identities .
Lie Lie
Groupoids =™ ™~ ™ 7~ 77 Algebroids

Kapranov [K]: for a (suitable) Lie algebroid £, V4(L£)* is a topological
bialgebroid whose formal spectrum is a formal groupoid integrating L.

V(L) co-commutative Hopf algd ~» V4(L£)° commutative Hopf algd

Val£)r 7 valL)

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

[M] K. Mackenzie, General theory of Lie groupoids and Lie algebroids. London Mathematical
Society Lecture Note Series, 213. Cambridge University Press, Cambridge, 2005.
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Der(A) the Lie algebra of k-derivations of A.
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Lie-Rinehart algebras

Henceforth, assume that A is a commutative k-algebra and denote by
Der(A) the Lie algebra of k-derivations of A.

A Lie-Rinehart algebra over A is a triple (A, L,w) where L is a Lie algebra
which is also an A-module and w : L — Der(A) is a Lie algebra map (the
anchor) such that for all a€ Aand X,Y € L

w(@a-X)=a-X  and X,a-Y]=w(X)(a)-Y+a[X,Y]

Example (Lie algebroids)

A Lie algebroid is a vector bundle £ — M over a smooth manifold M
with a structure of Lie algebra in the space (L) of sections of £ and a
morphism of vector bundles w : £ — T M such that

M(w):T(L) = I(TM)is a Lie algebra map and

(X, f-Y]=wX)(f)- Y +f-[X,Y]
forall f € C>*(M) and X, Y € T(L).

11/23



Universal enveloping algebra and filtered Hopf algebroids

The universal enveloping algebra of a Lie-Rinehart algebra (A, L,w) is a
triple (VA(L), LA,LL) composed by a k-algebra V,(L), an algebra map
ta: A= Va(L) and a Lie algebra map ¢, : L — V(L) satisfying

w(a-X)=u(X)a(a) and [u(X),ua(a)] = ta(w(X)(a), (1)
that enjoys the following universal property:

For any triple (U, ¢4, ¢,) as above satisfying () there exists a unique
algebra map ® : V(L) — U such that ® o1y = ¢4 and P o = ¢.



Universal enveloping algebra and filtered Hopf algebroids

The universal enveloping algebra of a Lie-Rinehart algebra (A, L,w) is a
triple (VA(L), LA,LL) composed by a k-algebra V,(L), an algebra map
ta: A= Va(L) and a Lie algebra map ¢, : L — V(L) satisfying

v(a-X)=u(X)ta(a) and [LL(X)MA(Q)] = 1a(w(X)(a)), (1)
that enjoys the following universal property:
For any triple (U, ¢4, ¢,) as above satisfying () there exists a unique

algebra map ® : V(L) — U such that ® o1y = ¢4 and P o = ¢.

Ti(A® L)
{ ), ()] = 01X, Y1), [0(X), a] — w (X) (a) )

with 14 A= Va(L); a—aand ¢ 1 L= Vu(l); X = n(X) =1 X.

Explicitly, V(L) :=



The k-algebra V4(L) comes endowed with
(HA1) an (injective) k-algebra map va: A — Va(L);
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such that e(uv) = e(e(u)v) for all u,v € V4(L) and A factors through
an A-ring map A : Va(L) = Va(L) x4 Va(L);
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such that e(uv) = e(e(u)v) for all u,v € V4(L) and A factors through
an A-ring map A : Va(L) = Va(L) x4 Va(L);

(HAS3) an inverse for the map can : V(L) ®4 Va(L) = Va(L) ®4 Va(L),
can(u ®a4 v) = (v ®4 1)A(v), which is uniquely determined by
can™ (1 ®4 1a(a)) = 1a(a) ®a 1 =1®4 ta(a),
can™ (1 @4 0 (X)) = 1 ®a 0 (X) — 0 (X) @4 1.




The k-algebra V4(L) comes endowed with
(HA1) an (injective) k-algebra map va: A — Va(L);
(HA2) a (co-commutative) comultiplication A and a counit € given by
e(ta(a)) = a, A1a(a)) = 1a(a) ®a 1 =1 ®4 ta(a),
e(u (X)) =0, Al (X)) = (X)) ®a 14 1®4 ¢ (X),
such that e(uv) = e(e(u)v) for all u,v € V4(L) and A factors through
an A-ring map A : Va(L) = Va(L) x4 Va(L);
(HAS3) an inverse for the map can : V(L) ®4 Va(L) = Va(L) ®4 Va(L),
can(u ®a4 v) = (v ®4 1)A(v), which is uniquely determined by
can™ (1 ®4 1a(a)) = 1a(a) ®a 1 =1®4 ta(a),
can™ (1 @4 0 (X)) = 1 ®a 0 (X) — 0 (X) @4 1.

A pair of k-algebras (A, U) satisfying (HA1) - (HA3) is called a
(Schauenburg [9]).

[S] P. Schauenburg, Duals and doubles of quantum groupoids (x gr-Hopf algebras), New trends in
Hopf algebra theory, Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000.



Even more:
(FHA1) The algebra Va(L) carries an

0 C FP(Va(L)) C F*(Va(L)) C FP(Va(L)) C ---

where F° (V4(L)) = A and FP (Va(L)) is the right A-submodule of V(L)
generated by products of at most p elements of ¢, (L).



Even more:

(FHA1) The algebra V4(L) carries an exhaustive ascending filtration
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where F° (V4(L)) = A and FP (Va(L)) is the right A-submodule of V(L)
generated by products of at most p elements of ¢;(L). If we assume A to
be filtered with the F"A =0 for all n <0 and

F"A = A for all n > 0, then the structure maps of V(L) turn out to be
filtered. In particular, it does so the

8 :Va(L) = Va(L) @4 Va(L), urs can (1 @4 u) := u_ @4 u,.
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Even more:

(FHA1) The algebra V4(L) carries an exhaustive ascending filtration
0 C FP(Va(L)) C F* (Va(L)) C FP(Va(L)) C - --

where F° (V4(L)) = A and FP (Va(L)) is the right A-submodule of V(L)
generated by products of at most p elements of ¢;(L). If we assume A to
be filtered with the discrete filtration F"A =0 for all n < 0 and

F"A = A for all n > 0, then the structure maps of V(L) turn out to be
filtered. In particular, it does so the translation map

8 :Va(L) = Va(L) @4 Va(L), urs can (1 @4 u) := u_ @4 u,.

(FHAZ2) If Lis a finitely generated and projective A-module, then the

quotient modules F” (V4(L)) /F™* (Va(L)) are finitely generated and
projective right A-modules as well (e.g. L =T(L), £ a Lie algebroid).

A co-commutative Hopf algebroid (A, U) satisfying (FHAL) is said to be
filtered. If it satisfies (FHA2) as well, then it is said to have an



The full linear dual and complete Hopf algds

Let (A, U) be a co-commutative Hopf algd with an admissible filtration.
Consider its full (right) linear dual U* = Hom_ (U, A) = lim (F"(U)").
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The full linear dual and complete Hopf algds

Let (A, U) be a co-commutative Hopf algd with an admissible filtration.
Consider its full (right) linear dual U* = Hom_ (U, A) = lim (F"(U)").
Recall that a filtered k-algebra (R, F,R) is iff

[Ka]: U~ inherits a natural decreasing filtration
G (U)=U* and G, (U")=2Am(F"(U)), n>0.

such that U* becomes a complete commutative k-algebra w.r.t. the
convolution product. The counit induces

nN=st:AQA— U*, (a® b~ [ur e(bu)a]).

Unit and multiplication of U induce €, : U* — A and

A, U > U B U =i ( U@ U )

T\ X Gi(U7) @4 G(U7)

[Ka] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).
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Even more: the translation map § induces a complete k-algebra map

S U = U, felu—e(f(ul)uy)].
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Even more: the translation map § induces a complete k-algebra map
S U = U, felu—e(f(ul)uy)].
Summing up, U* is a complete commutative algebra with a diagram

Ay

Agii) Ur ——— U@, U~ *)
(&)
of complete algebra maps such that
(CHA1) (U*,A,,e.) is a coalgebra in ,BimS;
(CHA2) Sos=1t,Sot=sand § =Idy;
(CHA3) > S(fh)f, = (toe,)(f) and Y AS(f) = (soe.)(f).
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Even more: the translation map § induces a complete k-algebra map
S U = U, felu—e(f(ul)uy)].
Summing up, U* is a complete commutative algebra with a diagram

A

AEZ)) Ur ——— U@, U~ *)
(&)
of complete algebra maps such that
(CHA1) (U*,A,,e.) is a coalgebra in ,BimS;
(CHA2) Sos=t, Sot=sand §? = Idy;
(CHA3) > S(fh)f, = (toe,)(f) and Y AS(f) = (soe.)(f).

A is of a pair of complete comm algebras (A, H)
together with a diagram of algebra maps () satisfying (CHA1) - (CHA3).

Equivalently, a complete Hopf algebroid is
(see e.g. [De]).

[De] E.S. Devinatz, Morava's change of rings theorem. The Cech centennial (Boston, MA, 1993),

pp. 83-118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.
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The finite dual

Let (A, U) be a co-commutative Hopf algebroid.

17/23



The finite dual

Let (A, U) be a co-commutative Hopf algebroid.

El Kaoutit, Gomez-Torrecillas [EG]: The category Ay of those right
U-modules whose underlying A-module is finitely generated and
projective is a symmetric rigid monoidal k-linear category and the
forgetful functor w : Ay — proj(A) is a strict monoidal additive faithful
functor. As a consequence, the Tannaka reconstruction process provides
us for a commutative Hopf algebroid (A, U°) (the finite dual) and a strict
monoidal functor x : Ay — AY°.
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The finite dual

Let (A, U) be a co-commutative Hopf algebroid.

El Kaoutit, Gbmez-Torrecillas [EG]: The category A, of those right
U-modules whose underlying A-module is finitely generated and
projective is a symmetric rigid monoidal k-linear category and the
forgetful functor w : Ay — proj(A) is a strict monoidal additive faithful
functor. As a consequence, the Tannaka reconstruction process provides
us for a commutative Hopf algebroid (A, U°) (the finite dual) and a strict
monoidal functor x : Ay — AY°.

@MEAU M* ®TM M

Namely, U° :=
ey (p@7, f(m)—pof®@r, m|loe N meM,feTyy)

where Ty, v = Hom 4, (M, N) and Ty = Ty,m. Furthermore, there is a
canonical A ® A-algebra map

C:UO_>U*7 ¢®TMmH[UHSD(m'U)]

whose injectivity implies that x is an isomorphism.
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The main morphism of complete Hopf algds

Assume that (A, U) is endowed with an admissible filtration {F"U},>o.
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The main morphism of complete Hopf algds

Assume that (A, U) is endowed with an admissible filtration {F"U},>o.

The commutative Hopf algebroid (A, U°) can be filtered with the
augmentation filtration Gy(U°) = U° and G,(U°) = ker(e,)" and its
completion (A, U°) is a complete Hopf algebroid (A discretely filtered).

Theorem

The canon/ca/ ' map ¢ : U° — U* is filtered and hence it can be lifted to a
morphism ( U° — U* of complete Hopf algebroids such that

UO C U*
N A
U\O ¢
commutes, where ~y is the completion map.
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Idea

If Va(L)° is separated and C is an isomorphism, ¢ is injective. It follows
then that V4(L)° can be seen as a formal groupoid which integrates L
and that is “canonically” associated with a groupoid whose category of
representations is equivalent to the category of modules of L.



Idea

If Va(L)° is separated and C is an isomorphism, ¢ is injective. It follows

then that V4(L)° can be seen as a formal groupoid which integrates L
and that is “canonically” associated with a groupoid whose category of
representations is equivalent to the category of modules of L.

Theorem

Let (A, U) be a co-commutative Hopf algebroid with an admissible
filtration and assume that ¢ : U° — U* is injective. TFAE

(a) C: U° — U* is a filtered isomorphism,

(b) Eis surjective and the augmentation filtration on U° coincides with
the induced one,

Moreover, the following assertions are equivalent as well
(c) C: U° — U* is an homeomorphism,
(d) C: U° — U* is open and injective and U° is dense in U*,

(e) the augmentation topology on U° is equivalent to the induced one
and U° is dense in U*.



Not an example

Even when ( is injective and A =k, Emay not be an isomorphism.
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Even when ( is injective and A =k, Emay not be an isomorphism.

Example (from [ES])

Let L = CX be the one dimensional (abelian) complex Lie algebra.

e |t is trivially a Lie-Rinehart algebra over C

e Its universal enveloping algebra is the Hopf algebra C[X]

The finite dual of C[X] coincides with the usual Sweedler dual C[X]°
The morphism ¢ is the inclusion C[X]° C C[X]*

Let £ € C[X]° be given by £(X") = 6,1 (Kronecker delta). Either the
augmentation filtration on C[X]° and the filtration on C[X]* are the
(& )-adic ones

In this case, it turns out that Eis surjective but the (¢)-adic filtration on
C[X]e is strictly finer then the one induced by C[X]*, whence ¢ cannot
be a filtered isomorphism (in fact, not even an homeomorphism).

[ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint,
arXiv:1705.03433, (2017).



Second application: jet spaces and differential operators

The question

Set K =ker(m: A® A — A). The quotients 7*(A) = (A® A)/K**! are
the modules of k-jets over A and the limit J(A) = #( k(A)) is the
algebra of infinite jets of A.
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algebra of infinite jets of A.

The duality Diff,(A) = *J*(A) [K] gives a morphism J(A) — Diff(A)*.
Notice that J(A) is the of A® A and it turns out to be
also a complete Hopf algebroid.
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The question

Set K =ker(m: A® A — A). The quotients J7*(A) = (A® A)/K**! are
the modules of k-jets over A and the limit J(A) = lim (T“(A)) is the
algebra of infinite jets of A.

The duality Diff,(A) = *J*(A) [K] gives a morphism J(A) — Diff(A)*.
Notice that (J(A) is the K-adic completion of A® A and it turns out to be
also a complete Hopf algebroid. In some favourable cases, Diff(A) is a
cocommutative Hopf algebroid, so we may consider

Diff (A)° —> Diff(A)*

A A
A®A——s TJ(A)
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The question

Set K =ker(m: A® A — A). The quotients J7*(A) = (A® A)/K**! are
the modules of k-jets over A and the limit J(A) = lim (T“(A)) is the
algebra of infinite jets of A.

The duality Diff,(A) = *J*(A) [K] gives a morphism J(A) — Diff(A)*.
Notice that (J(A) is the K-adic completion of A® A and it turns out to be
also a complete Hopf algebroid. In some favourable cases, Diff(A) is a
cocommutative Hopf algebroid, so we may consider

Diff(A)° —> Diff(A)*

A A
A®A——s TJ(A)
Question:
[K] 1. S. Krasil'shchik, Calculus over commutative algebras: a concise user guide. Algebraic

aspects of differential calculus. Acta Appl. Math. 49 (1997).
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Consequences of the existence of ¢

Idea: In some very favourable cases (e.g. A=Kk[Xy,...,X,]):

o Diff(A) is a cocommutative Hopf algebroid with an admissible
filtration and hence Diff(A)” is a complete Hopf algebroid.
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Consequences of the existence of ¢

Idea: In some very favourable cases (e.g. A=Kk[Xy,...,X,]):

o Diff(A) is a cocommutative Hopf algebroid with an admissible
filtration and hence Diff(A)” is a complete Hopf algebroid.
e If we endow A® A with the K-adic filtration, then the diagram
A® A2 Diff(A)*
™~
Diff(A)°
is made of filtered (A ® A)-algebra morphisms and we may
consider J(A) 9 Diff(A)"
N e
Diff(A)°
e @ is an isomorphism of complete Hopf algebroids.

Thus, it is reasonable to conjecture that 7) would be iso as well.



Thank you
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