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Toward Hopf algebroids: Groups and Hopf Algebras
Fix an algebraically closed field k of characteristic 0.
Example (Coordinate ring of a group)

Let (G , µ, e, ι) be an (affine) algebraic group and k[G ] its coordinate ring:
• µ induces a map ∆ : k[G ] → k[G × G ] ∼= k[G ] ⊗ k[G ] such that

∆(f ) =
∑

i gi ⊗ hi iff for all x , y ∈ G ;
• e induces ε : k[G ]→ k such that ε(f ) = f (e) and
• ι induces S : k[G ]→ k[G ] via pre-composition: S(f ) = f ◦ ι.

What is a Hopf algebra?
A Hopf algebra is a k-algebra H endowed with 3 additional structure maps

H

satisfying
(∆⊗ H)∆ = (H ⊗∆)∆ (ε⊗ H)∆ = H = (H ⊗ ε)∆

m(S ⊗ H)∆ = uε = m(H ⊗ S)∆.
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Example (Coordinate ring of a group - continued)

For an (affine) algebraic group G , k[G ] is a Hopf algebra. Conversely, if
H is a Hopf algebra then Algk(H,k) is a group. The pair of functors

AffGrpk

k[−] // CHopfk(+ · · · )
Algk(−,k)

oo

defines an anti-equivalence of categories.

Actions of groups on varieties G × X → X correspond to coactions of the
Hopf algebras k[G ] on k[X ], i.e. k[X ]→ k[G ]⊗ k[X ].
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Example (Hopf algebras of representative functions)

Let G be a group and Rk(G) be the algebra of representative functions
on G (i.e. the algebra generated by those f : G → k that appear as
coefficients of finite-dimensional reprs ρ : G → GLn(k)). It has the same
Hopf algebra structure of the previous example:
• ∆ : Rk(G)→ Rk(G)⊗Rk(G) induced by µ,
• ε : Rk(G)→ k induced by e,
• S : Rk(G)→ Rk(G) induced by ι.
The pair of functors

Grp
Rk(−) // CHopfk

Algk(−,k)
oo

induces anti-equivalences of categories between
• finite groups and f.d. semisimple commutative Hopf algebras;
• compact real Lie groups and f.g. commutative R-Hopf algebras (plus
other properties).
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Example (Universal enveloping Hopf algebras)

Let g be a Lie algebra. Its universal enveloping algebra U(g) is a
co-commutative Hopf algebra where, for every X ∈ g,

∆(X ) = X ⊗ 1 + 1⊗ X ε(X ) = 0 S(X ) = −X .

If H is a Hopf algebra, P(H) = {h ∈ H | ∆(h) = h ⊗ 1 + 1⊗ h} is the
Lie algebra of primitive elements. The pair of functors

Liek
U(−) // CCHopfk(+ · · · )
P(−)

oo

defines an equivalence of categories.

The finite (or Sweedler) dual
If H is a Hopf algebra, then H∗ is not a Hopf algebra in general. Instead,

H◦ := {f ∈ H∗ | ker(f ) contains a finite-codimensional ideal}

is a Hopf algebra. The image of kG◦ ⊆ kG∗ ∼= Fun(G ,k) is Rk(G).
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Toward Hopf algebroids: Groupoids

What is a groupoid?
A (abstract) groupoid is a (small) category in which every arrow is
invertible, i.e. it is the datum of two sets G0,G1 together with functions

G0 id // G1too
soo

ι

XX G1 ×G0 G1
◦oo

satisfying some reasonable properties.

Example (The fundamental groupoid)

For a topological space X , the sets G0 = X , G1 = {paths on X}/〈homotopy〉

with obvious source, target and composition maps give the fundamental
groupoid of X .

Example (The general linear groupoid)

The set GL∗(k) of all invertible matrices of any order over k form a
groupoid (N,GL∗(k)) with the ordinary matrix multiplication.
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Example (Groupoids and partial actions)

A partial action of a group G on a set X consists of a family
{Xg | g ∈ G} of subsets of X and a family {αg : Xg−1 → Xg | g ∈ G} of
bijections such that
• Xe = X , αe = IdX ,
• α−1h (Xg−1 ∩ Xh) = X(gh)−1 ∩ Xh−1 ,
• αg ◦ αh = αgh on X(gh)−1 ∩ Xh−1 .
Taking G0 = X , G1 = {(g , x) ∈ G × X | x ∈ Xg−1} and

(g , x) · (h, y) =
{

(gh, y) if x = αh(y)
otherwise

provides a groupoid encoding the partial action.
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Commutative Hopf algebroids
A commutative Hopf algebroid is a groupoid object in the category Affk or,
equivalently, a cogroupoid object in the category CAlgk. Thus, it consists
of a pair of commutative algebras (A,H) together with structural algebra
morphisms

A s //
t // Hεoo

S

ZZ
∆ // H ⊗A H

such that
(∆⊗A H)∆ = (H ⊗A ∆)∆ (ε⊗A H)∆ = H = (H ⊗A ε)∆
Ss = t S2 = H m(S ⊗A H)∆ = tε m(H ⊗A S)∆ = sε

Example (Hopf algebroid of pairs)

Let A be a commutative algebra and H = A⊗ A. Then

s(a) = a ⊗ 1 ∆(a ⊗ b) = (a ⊗ 1)⊗A (1⊗ b)
t(a) = 1⊗ a ε(a ⊗ b) = ab S(a ⊗ b) = b ⊗ a

make of (A,A⊗ A) a commutative Hopf algebroid.
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First application: the integration problem

Lie
Groups

Differentiation at the identity // Lie
AlgebrasLie 3rd Theorem

oo

Lie
Groupoids

Differentiation at the identities // Lie
Algebroids

Kapranov [K]: for a (suitable) Lie algebroid L, VA(L)∗ is a topological
bialgebroid whose formal spectrum is a formal groupoid integrating L.

VA(L) co-commutative Hopf algd  VA(L)◦ commutative Hopf algd

VA(L)◦ ? VA(L)∗

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

[M] K. Mackenzie, General theory of Lie groupoids and Lie algebroids. London Mathematical
Society Lecture Note Series, 213. Cambridge University Press, Cambridge, 2005.
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Lie-Rinehart algebras
Henceforth, assume that A is a commutative k-algebra and denote by
Der(A) the Lie algebra of k-derivations of A.

A Lie-Rinehart algebra over A is a triple (A, L, ω) where L is a Lie algebra
which is also an A-module and ω : L→ Der(A) is a Lie algebra map (the
anchor) such that for all a ∈ A and X ,Y ∈ L

ω(a · X ) = a · X and [X , a · Y ] = ω(X )(a) · Y + a · [X ,Y ].

Example (Lie algebroids)

A Lie algebroid is a vector bundle L →M over a smooth manifoldM
with a structure of Lie algebra in the space Γ(L) of sections of L and a
morphism of vector bundles ω : L → TM such that
Γ(ω) : Γ(L)→ Γ(TM) is a Lie algebra map and

[X , f · Y ] = ω(X )(f ) · Y + f · [X ,Y ]

for all f ∈ C∞(M) and X ,Y ∈ Γ(L).
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Universal enveloping algebra and filtered Hopf algebroids

The universal enveloping algebra of a Lie-Rinehart algebra (A, L, ω) is a
triple

(
VA(L), ιA, ιL

)
composed by a k-algebra VA(L), an algebra map

ιA : A→ VA(L) and a Lie algebra map ιL : L→ VA(L) satisfying

ιL(a · X ) = ιL(X )ιA(a) and
[
ιL(X ), ιA(a)

]
= ιA(ω(X )(a)), (†)

that enjoys the following universal property:

For any triple (U, φA, φL) as above satisfying (†) there exists a unique
algebra map Φ : VA(L)→ U such that Φ ◦ ιA = φA and Φ ◦ ιL = φL.

Explicitly, VA(L) := TA (A⊗ L)〈
[η(X), η(Y )] − η([X ,Y ]) , [η(X), a] − ω (X) (a)

〉
with ιA : A→ VA(L); a 7→ a and ιL : L→ VA(L); X 7→ η(X ) := 1⊗ X .
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The k-algebra VA(L) comes endowed with
(HA1) an (injective) k-algebra map ιA : A→ VA(L);
(HA2) a (co-commutative) comultiplication ∆ and a counit ε given by

ε(ιA(a)) = a, ∆(ιA(a)) = ιA(a)⊗A 1 = 1⊗A ιA(a),
ε(ιL(X )) = 0, ∆(ιL(X )) = ιL(X )⊗A 1 + 1⊗A ιL(X ),

such that ε(uv) = ε(ε(u)v) for all u, v ∈ VA(L) and ∆ factors through
an A-ring map ∆ : VA(L)→ VA(L)×A VA(L);

(HA3) an inverse for the map can : VA(L)⊗A VA(L)→ VA(L)⊗A VA(L),
can(u ⊗A v) = (u ⊗A 1)∆(v), which is uniquely determined by

can−1(1⊗A ιA(a)) = ιA(a)⊗A 1 = 1⊗A ιA(a),
can−1(1⊗A ιL(X )) = 1⊗A ιL(X )− ιL(X )⊗A 1.

A pair of k-algebras (A,U) satisfying (HA1) - (HA3) is called a
co-commutative (right) Hopf algebroid (Schauenburg [S]).

[S] P. Schauenburg, Duals and doubles of quantum groupoids (×R -Hopf algebras), New trends in
Hopf algebra theory, Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000.
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Even more:
(FHA1) The algebra VA(L) carries an exhaustive ascending filtration

0 ⊂ F 0 (VA(L)) ⊂ F 1 (VA(L)) ⊂ F 2 (VA(L)) ⊂ · · ·

where F 0 (VA(L)) = A and F p (VA(L)) is the right A-submodule of VA(L)
generated by products of at most p elements of ιL(L). If we assume A to
be filtered with the discrete filtration F nA = 0 for all n < 0 and
F nA = A for all n ≥ 0, then the structure maps of VA(L) turn out to be
filtered. In particular, it does so the translation map

δ : VA(L)→ VA(L)⊗A VA(L), u 7→ can−1(1⊗A u) := u− ⊗A u+.

(FHA2) If L is a finitely generated and projective A-module, then the
quotient modules F n (VA(L)) /F n−1 (VA(L)) are finitely generated and
projective right A-modules as well (e.g. L = Γ(L), L a Lie algebroid).

A co-commutative Hopf algebroid (A,U) satisfying (FHA1) is said to be
filtered. If it satisfies (FHA2) as well, then it is said to have an
admissible filtration.
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The full linear dual and complete Hopf algds
Let (A,U) be a co-commutative Hopf algd with an admissible filtration.
Consider its full (right) linear dual U∗ = Hom−,A(U,A) ∼= lim←− (F n(U)∗).
Recall that a filtered k-algebra (R,FnR) is complete iff R ∼= lim←− (R/FnR).

Kapranov [Ka]: U∗ inherits a natural decreasing filtration

G0 (U∗) = U∗ and Gn+1 (U∗) = Ann (F n(U)) , n ≥ 0.

such that U∗ becomes a complete commutative k-algebra w.r.t. the
convolution product. The counit induces

η = s ⊗ t : A⊗ A→ U∗, (a ⊗ b 7→ [u 7→ ε(bu)a]).

Unit and multiplication of U induce ε∗ : U∗ → A and

∆∗ : U∗ → U∗ ⊗̂A U∗ = lim←−

(
U∗ ⊗A U∗∑

i+j=n Gi(U∗)⊗A Gj(U∗)

)
.

[Ka] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).
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Even more: the translation map δ induces a complete k-algebra map

S : U∗ → U∗, f 7→ [u 7→ ε(f (u−)u+)] .

Summing up, U∗ is a complete commutative algebra with a diagram

A s //
t // U∗ε∗oo

S

ZZ
∆∗ // U∗ ⊗̂A U∗ (†)

of complete algebra maps such that
(CHA1) (U∗,∆∗, ε∗) is a coalgebra in ABimc

A;
(CHA2) S ◦ s = t, S ◦ t = s and S2 = IdU∗ ;
(CHA3)

∑
S(f1)f2 = (t ◦ ε∗)(f ) and

∑
f1S(f2) = (s ◦ ε∗)(f ).

A complete Hopf algebroid is of a pair of complete comm algebras (A,H)
together with a diagram of algebra maps (†) satisfying (CHA1) - (CHA3).

Equivalently, a complete Hopf algebroid is a cogroupoid object in the
category of complete commutative algebras (see e.g. [De]).
[De] E. S. Devinatz, Morava’s change of rings theorem. The Čech centennial (Boston, MA, 1993),

pp. 83–118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.
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The finite dual
Let (A,U) be a co-commutative Hopf algebroid.

El Kaoutit, Gómez-Torrecillas [EG]: The category AU of those right
U-modules whose underlying A-module is finitely generated and
projective is a symmetric rigid monoidal k-linear category and the
forgetful functor ω : AU → proj(A) is a strict monoidal additive faithful
functor. As a consequence, the Tannaka reconstruction process provides
us for a commutative Hopf algebroid (A,U◦) (the finite dual) and a strict
monoidal functor χ : AU → AU◦ .

Namely, U◦ :=
⊕

M∈AU
M∗ ⊗TM M

〈ϕ⊗TN f (m)− ϕ ◦ f ⊗TM m | ϕ ∈ N∗,m ∈ M, f ∈ TM,N〉

where TM,N = HomAU (M,N) and TM = TM,M . Furthermore, there is a
canonical A⊗ A-algebra map

ζ : U◦ → U∗, ϕ⊗TM m 7→ [u 7→ ϕ(m · u)]

whose injectivity implies that χ is an isomorphism.
[EG] L. El Kaoutit, J. Gómez-Torrecillas, On the finite dual of a co-commutative Hopf algebroid.

Application to linear differential matrix equations. Preprint, arXiv:1607.07633v2 (2016).
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The main morphism of complete Hopf algds

Assume that (A,U) is endowed with an admissible filtration {F nU}n≥0.

The commutative Hopf algebroid (A,U◦) can be filtered with the
augmentation filtration G0(U◦) = U◦ and Gn(U◦) = ker(ε◦)n and its
completion

(
A, Û◦

)
is a complete Hopf algebroid (A discretely filtered).

Theorem
The canonical map ζ : U◦ → U∗ is filtered and hence it can be lifted to a
morphism ζ̂ : Û◦ → U∗ of complete Hopf algebroids such that

U◦ ζ //

γ !!

U∗

Û◦
ζ̂

==

commutes, where γ is the completion map.
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U◦ ζ //

γ !!

U∗

Û◦
ζ̂

==

commutes, where γ is the completion map.
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Idea

If VA(L)◦ is separated and ζ̂ is an isomorphism, ζ is injective. It follows
then that V̂A(L)◦ can be seen as a formal groupoid which integrates L
and that is “canonically” associated with a groupoid whose category of
representations is equivalent to the category of modules of L.

Theorem
Let (A,U) be a co-commutative Hopf algebroid with an admissible
filtration and assume that ζ : U◦ → U∗ is injective. TFAE

(a) ζ̂ : Û◦ → U∗ is a filtered isomorphism,
(b) ζ̂ is surjective and the augmentation filtration on U◦ coincides with

the induced one,
Moreover, the following assertions are equivalent as well

(c) ζ̂ : Û◦ → U∗ is an homeomorphism,
(d) ζ̂ : Û◦ → U∗ is open and injective and U◦ is dense in U∗,
(e) the augmentation topology on U◦ is equivalent to the induced one

and U◦ is dense in U∗.
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(a) ζ̂ : Û◦ → U∗ is a filtered isomorphism,
(b) ζ̂ is surjective and the augmentation filtration on U◦ coincides with

the induced one,
Moreover, the following assertions are equivalent as well
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Not an example
Even when ζ is injective and A = k, ζ̂ may not be an isomorphism.

Example (from [ES])

Let L = CX be the one dimensional (abelian) complex Lie algebra.
• It is trivially a Lie-Rinehart algebra over C
• Its universal enveloping algebra is the Hopf algebra C[X ]
• The finite dual of C[X ] coincides with the usual Sweedler dual C[X ]◦

• The morphism ζ is the inclusion C[X ]◦ ⊆ C[X ]∗

• Let ξ ∈ C[X ]◦ be given by ξ(X n) = δn,1 (Kronecker delta). Either the
augmentation filtration on C[X ]◦ and the filtration on C[X ]∗ are the
〈 ξ 〉-adic ones

In this case, it turns out that ζ̂ is surjective but the 〈ξ〉-adic filtration on
C[X ]◦ is strictly finer then the one induced by C[X ]∗, whence ζ̂ cannot
be a filtered isomorphism (in fact, not even an homeomorphism).

[ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint,
arXiv:1705.03433, (2017).
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Second application: jet spaces and differential operators

The question
Set K = ker (m : A⊗ A→ A). The quotients J k(A) = (A⊗ A)/K k+1 are
the modules of k-jets over A and the limit J (A) = lim←− (J k(A)) is the
algebra of infinite jets of A.
The duality Diffk(A) ∼= ∗J k(A) [K] gives a morphism J (A)→ Diff(A)∗.
Notice that J (A) is the K -adic completion of A⊗A and it turns out to be
also a complete Hopf algebroid. In some favourable cases, Diff(A) is a
cocommutative Hopf algebroid, so we may consider

Diff(A)◦ ζ // Diff(A)∗

A⊗ A

OO

// J (A)

OO

Question: Is J (A) some kind of completion of Diff(A)◦?

[K] I. S. Krasil’shchik, Calculus over commutative algebras: a concise user guide. Algebraic
aspects of differential calculus. Acta Appl. Math. 49 (1997).
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Consequences of the existence of ζ̂

Idea: In some very favourable cases (e.g. A = k[X1, . . . ,Xn]):
• Diff(A) is a cocommutative Hopf algebroid with an admissible
filtration and hence Diff(A)∗ is a complete Hopf algebroid.

• If we endow A⊗A with the K -adic filtration, then the diagram
A⊗ A θ //

η ��

Diff(A)∗

Diff(A)◦
ζ

??

is made of filtered (A ⊗ A)-algebra morphisms and we may
consider J (A) θ̂ //

η̂ ��

Diff(A)∗

D̂iff(A)◦
ζ̂

??

• θ̂ is an isomorphism of complete Hopf algebroids.
Thus, it is reasonable to conjecture that η̂ would be iso as well.
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Thank you
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