

An Hopf Algebroid Approach to Jet Spaces and Lie Algebroid Integration

Paolo Saracco (joint project with L. El Kaoutit, Granada)

GTM 2018

Milano, 17th July 2018

1 Groups and Hopf algebras

- Oroupoids and Hopf algebroids
- **3** First application: the integration problem
- 4 Second application: jet spaces and differential operators

1 Groups and Hopf algebras

2 Groupoids and Hopf algebroids

3 First application: the integration problem

4 Second application: jet spaces and differential operators

- 1 Groups and Hopf algebras
- **2** Groupoids and Hopf algebroids
- **3** First application: the integration problem
- 4 Second application: jet spaces and differential operators

- 1 Groups and Hopf algebras
- **2** Groupoids and Hopf algebroids
- **3** First application: the integration problem
- **4** Second application: jet spaces and differential operators

Fix an algebraically closed field \Bbbk of characteristic 0.

Example (Coordinate ring of a group)

Let (G, μ, e, ι) be an (affine) algebraic group and $\Bbbk[G]$ its coordinate ring:

- μ induces a map $\Delta : \Bbbk[G] \to \Bbbk[G \times G] \cong \Bbbk[G] \otimes \Bbbk[G]$ such that $\Delta(f) = \sum_i g_i \otimes h_i$ iff for all $x, y \in G$;
- e induces $\varepsilon : \Bbbk[G] \to \Bbbk$ such that $\varepsilon(f) = f(e)$ and
- ι induces $S : \Bbbk[G] \to \Bbbk[G]$ via pre-composition: $S(f) = f \circ \iota$.

What is a Hopf algebra?

A Hopf algebra is a k-algebra H endowed with 3 additional structure maps

Н

satisfying

$$\Delta \otimes H)\Delta = (H \otimes \Delta)\Delta \qquad (\varepsilon \otimes H)\Delta = H = (H \otimes \varepsilon)\Delta$$
$$m(S \otimes H)\Delta = u\varepsilon = m(H \otimes S)\Delta.$$

Fix an algebraically closed field \Bbbk of characteristic 0.

Example (Coordinate ring of a group)

Let (G, μ, e, ι) be an (affine) algebraic group and $\Bbbk[G]$ its coordinate ring:

- μ induces a map $\Delta : \Bbbk[G] \to \Bbbk[G \times G] \cong \Bbbk[G] \otimes \Bbbk[G]$ such that $\Delta(f) = \sum_i g_i \otimes h_i$ iff $\sum_i g_i(x)h_i(y) = f(xy)$ for all $x, y \in G$;
- e induces $\varepsilon : \Bbbk[G] \to \Bbbk$ such that $\varepsilon(f) = f(e)$ and
- ι induces $S : \Bbbk[G] \to \Bbbk[G]$ via pre-composition: $S(f) = f \circ \iota$.

What is a Hopf algebra?

A Hopf algebra is a k-algebra H endowed with 3 additional structure maps

Н

satisfying

 $\Delta \otimes H)\Delta = (H \otimes \Delta)\Delta \qquad (\varepsilon \otimes H)\Delta = H = (H \otimes \varepsilon)\Delta$ $m(S \otimes H)\Delta = u\varepsilon = m(H \otimes S)\Delta.$

Fix an algebraically closed field \Bbbk of characteristic 0.

Example (Coordinate ring of a group)

Let (G, μ, e, ι) be an (affine) algebraic group and $\Bbbk[G]$ its coordinate ring:

- μ induces a map $\Delta : \Bbbk[G] \to \Bbbk[G \times G] \cong \Bbbk[G] \otimes \Bbbk[G]$ such that $\Delta(f) = \sum_i g_i \otimes h_i$ iff $\sum_i g_i(x)h_i(y) = f(xy)$ for all $x, y \in G$;
- e induces $\varepsilon : \Bbbk[G] \to \Bbbk$ such that $\varepsilon(f) = f(e)$ and
- ι induces $S : \Bbbk[G] \to \Bbbk[G]$ via pre-composition: $S(f) = f \circ \iota$.

What is a Hopf algebra?

A Hopf algebra is a k-algebra H endowed with 3 additional structure maps

$$H \xrightarrow{\Delta} H \otimes H$$

satisfying

 $\Delta \otimes H)\Delta = (H \otimes \Delta)\Delta \qquad (\varepsilon \otimes H)\Delta = H = (H \otimes \varepsilon)\Delta$ $m(S \otimes H)\Delta = u\varepsilon = m(H \otimes S)\Delta.$

Fix an algebraically closed field \Bbbk of characteristic 0.

Example (Coordinate ring of a group)

Let (G, μ, e, ι) be an (affine) algebraic group and $\Bbbk[G]$ its coordinate ring:

- μ induces a map $\Delta : \Bbbk[G] \to \Bbbk[G \times G] \cong \Bbbk[G] \otimes \Bbbk[G]$ such that $\Delta(f) = \sum_i g_i \otimes h_i$ iff $\sum_i g_i(x)h_i(y) = f(xy)$ for all $x, y \in G$;
- e induces $\varepsilon : \Bbbk[G] \to \Bbbk$ such that $\varepsilon(f) = f(e)$ and
- ι induces $S : \Bbbk[G] \to \Bbbk[G]$ via pre-composition: $S(f) = f \circ \iota$.

What is a Hopf algebra?

A Hopf algebra is a k-algebra H endowed with 3 additional structure maps

$$\Bbbk \stackrel{\varepsilon}{\longleftarrow} H \stackrel{\Delta}{\longrightarrow} H \otimes H$$

satisfying

 $\Delta \otimes H)\Delta = (H \otimes \Delta)\Delta \qquad (\varepsilon \otimes H)\Delta = H = (H \otimes \varepsilon)\Delta$ $m(S \otimes H)\Delta = u\varepsilon = m(H \otimes S)\Delta.$

Fix an algebraically closed field \Bbbk of characteristic 0.

Example (Coordinate ring of a group)

Let (G, μ, e, ι) be an (affine) algebraic group and $\Bbbk[G]$ its coordinate ring:

- μ induces a map $\Delta : \Bbbk[G] \to \Bbbk[G \times G] \cong \Bbbk[G] \otimes \Bbbk[G]$ such that $\Delta(f) = \sum_i g_i \otimes h_i$ iff $\sum_i g_i(x)h_i(y) = f(xy)$ for all $x, y \in G$;
- e induces $\varepsilon : \Bbbk[G] \to \Bbbk$ such that $\varepsilon(f) = f(e)$ and
- ι induces $S : \Bbbk[G] \to \Bbbk[G]$ via pre-composition: $S(f) = f \circ \iota$.

What is a Hopf algebra?

A Hopf algebra is a k-algebra H endowed with 3 additional structure maps

$$\mathbb{k} \stackrel{(s)}{\longleftarrow} H \stackrel{\Delta}{\longrightarrow} H \otimes H$$

satisfying

 $(\Delta \otimes H)\Delta = (H \otimes \Delta)\Delta$ $(\varepsilon \otimes H)\Delta = H = (H \otimes \varepsilon)\Delta$ $m(S \otimes H)\Delta = u\varepsilon = m(H \otimes S)\Delta.$

Fix an algebraically closed field \Bbbk of characteristic 0.

Example (Coordinate ring of a group)

Let (G, μ, e, ι) be an (affine) algebraic group and $\Bbbk[G]$ its coordinate ring:

- μ induces a map $\Delta : \Bbbk[G] \to \Bbbk[G \times G] \cong \Bbbk[G] \otimes \Bbbk[G]$ such that $\Delta(f) = \sum_i g_i \otimes h_i$ iff $\sum_i g_i(x)h_i(y) = f(xy)$ for all $x, y \in G$;
- e induces $\varepsilon : \Bbbk[G] \to \Bbbk$ such that $\varepsilon(f) = f(e)$ and
- ι induces $S : \Bbbk[G] \to \Bbbk[G]$ via pre-composition: $S(f) = f \circ \iota$.

What is a Hopf algebra?

A Hopf algebra is a k-algebra H endowed with 3 additional structure maps

$$\mathbb{k} \stackrel{(s)}{\longleftarrow} H \stackrel{\Delta}{\longrightarrow} H \otimes H$$

satisfying

$$(\Delta \otimes H)\Delta = (H \otimes \Delta)\Delta \qquad (\varepsilon \otimes H)\Delta = H = (H \otimes \varepsilon)\Delta$$
$$m(S \otimes H)\Delta = u\varepsilon = m(H \otimes S)\Delta.$$

Fix an algebraically closed field \Bbbk of characteristic 0.

Example (Coordinate ring of a group)

Let (G, μ, e, ι) be an (affine) algebraic group and $\Bbbk[G]$ its coordinate ring:

- μ induces a map $\Delta : \Bbbk[G] \to \Bbbk[G \times G] \cong \Bbbk[G] \otimes \Bbbk[G]$ such that $\Delta(f) = \sum_i g_i \otimes h_i$ iff $\sum_i g_i(x)h_i(y) = f(xy)$ for all $x, y \in G$;
- e induces $\varepsilon : \Bbbk[G] \to \Bbbk$ such that $\varepsilon(f) = f(e)$ and
- ι induces $S : \Bbbk[G] \to \Bbbk[G]$ via pre-composition: $S(f) = f \circ \iota$.

What is a Hopf algebra?

A Hopf algebra is a \Bbbk -algebra H endowed with 3 additional structure maps

$$\mathbb{k} \stackrel{(s)}{\longleftarrow} H \stackrel{\Delta}{\longrightarrow} H \otimes H$$

satisfying

$$(\Delta \otimes H)\Delta = (H \otimes \Delta)\Delta \qquad (\varepsilon \otimes H)\Delta = H = (H \otimes \varepsilon)\Delta$$
$$m(S \otimes H)\Delta = u\varepsilon = m(H \otimes S)\Delta.$$

For an (affine) algebraic group G, $\Bbbk[G]$ is a Hopf algebra. Conversely, if H is a Hopf algebra then $Alg_{\Bbbk}(H, \Bbbk)$ is a group. The pair of functors

$$\operatorname{AffGrp}_{\Bbbk} \xrightarrow{\Bbbk[-]} \operatorname{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories.

For an (affine) algebraic group G, $\Bbbk[G]$ is a Hopf algebra. Conversely, if H is a Hopf algebra then $Alg_{\Bbbk}(H, \Bbbk)$ is a group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \xrightarrow{\Bbbk[-]} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories.

For an (affine) algebraic group G, $\Bbbk[G]$ is a Hopf algebra. Conversely, if H is a Hopf algebra then $Alg_{\Bbbk}(H, \Bbbk)$ is a group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \xrightarrow[]{\mathbb{k}[-]]{}} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories.

For an (affine) algebraic group G, $\Bbbk[G]$ is a Hopf algebra. Conversely, if H is a Hopf algebra then $Alg_{\Bbbk}(H, \Bbbk)$ is a group. The pair of functors

$$\mathsf{AffGrp}_{\Bbbk} \xrightarrow[]{\mathbb{k}[-]]{}{\overset{\mathbb{k}[-]}{\overset{}{\leftarrow}}}} \mathsf{CHopf}_{\Bbbk}(+\cdots)$$

defines an anti-equivalence of categories.

Example (Hopf algebras of representative functions)

Let G be a group and $\mathcal{R}_{\Bbbk}(G)$ be the algebra of representative functions on G (i.e. the algebra generated by those $f : G \to \Bbbk$ that appear as coefficients of finite-dimensional reprs $\rho : G \to GL_n(\Bbbk)$). It has the same Hopf algebra structure of the previous example:

- $\Delta : \mathcal{R}_{\Bbbk}(G) \to \mathcal{R}_{\Bbbk}(G) \otimes \mathcal{R}_{\Bbbk}(G)$ induced by μ ,
- $\varepsilon : \mathcal{R}_{\Bbbk}(G) \to \Bbbk$ induced by e,
- $S : \mathcal{R}_{\Bbbk}(G) \to \mathcal{R}_{\Bbbk}(G)$ induced by ι .

The pair of functors

$$\mathsf{Grp} \xrightarrow[]{\mathcal{R}_{\Bbbk}(-)]{}}_{\mathsf{Alg}_{\Bbbk}(-,\Bbbk)} \mathsf{CHopf}_{\Bbbk}$$

induces anti-equivalences of categories between

- finite groups and f.d. semisimple commutative Hopf algebras;
- compact real Lie groups and f.g. commutative R-Hopf algebras (plus other properties).

Example (Hopf algebras of representative functions)

Let G be a group and $\mathcal{R}_{\Bbbk}(G)$ be the algebra of representative functions on G (i.e. the algebra generated by those $f : G \to \Bbbk$ that appear as coefficients of finite-dimensional reprs $\rho : G \to \operatorname{GL}_n(\Bbbk)$). It has the same Hopf algebra structure of the previous example:

- $\Delta : \mathcal{R}_{\Bbbk}(G) \to \mathcal{R}_{\Bbbk}(G) \otimes \mathcal{R}_{\Bbbk}(G)$ induced by μ ,
- $\varepsilon : \mathcal{R}_{\Bbbk}(G) \to \Bbbk$ induced by e,
- $S : \mathcal{R}_{\Bbbk}(G) \to \mathcal{R}_{\Bbbk}(G)$ induced by ι .

The pair of functors

$$\mathsf{Grp} \xrightarrow[]{\mathcal{R}_{\Bbbk}(-)]{\mathcal{R}_{\Bbbk}}} \mathsf{CHopf}_{\Bbbk}$$

induces anti-equivalences of categories between

- finite groups and f.d. semisimple commutative Hopf algebras;
- compact real Lie groups and f.g. commutative R-Hopf algebras (plus other properties).

Example (Hopf algebras of representative functions)

Let G be a group and $\mathcal{R}_{\Bbbk}(G)$ be the algebra of representative functions on G (i.e. the algebra generated by those $f : G \to \Bbbk$ that appear as coefficients of finite-dimensional reprs $\rho : G \to \operatorname{GL}_n(\Bbbk)$). It has the same Hopf algebra structure of the previous example:

- $\Delta : \mathcal{R}_{\Bbbk}(G) \to \mathcal{R}_{\Bbbk}(G) \otimes \mathcal{R}_{\Bbbk}(G)$ induced by μ ,
- $\varepsilon : \mathcal{R}_{\Bbbk}(G) \to \Bbbk$ induced by e,
- $S : \mathcal{R}_{\Bbbk}(G) \to \mathcal{R}_{\Bbbk}(G)$ induced by ι .

The pair of functors

$$\mathsf{Grp} \xrightarrow[]{\mathcal{R}_{\Bbbk}(-)]{\mathcal{R}_{\Bbbk}}} \mathsf{CHopf}_{\Bbbk}$$

induces anti-equivalences of categories between

- finite groups and f.d. semisimple commutative Hopf algebras;
- compact real Lie groups and f.g. commutative ℝ-Hopf algebras (plus other properties).

Let \mathfrak{g} be a Lie algebra. Its universal enveloping algebra $U(\mathfrak{g})$ is a co-commutative Hopf algebra where, for every $X \in \mathfrak{g}$,

 $\Delta(X) = X \otimes 1 + 1 \otimes X$ $\varepsilon(X) = 0$ S(X) = -X.

If H is a Hopf algebra, $\mathcal{P}(H) = \{h \in H \mid \Delta(h) = h \otimes 1 + 1 \otimes h\}$ is the Lie algebra of primitive elements. The pair of functors

$$\mathsf{Lie}_{\Bbbk} \xrightarrow{U(-)} \mathsf{CCHopf}_{\Bbbk}(+\cdots)$$

defines an equivalence of categories.

The finite (or Sweedler) dual

If H is a Hopf algebra, then H^* is not a Hopf algebra in general. Instead,

 $H^{\circ} := \{ f \in H^* \mid \ker(f) \text{ contains a finite-codimensional ideal} \}$

Let \mathfrak{g} be a Lie algebra. Its universal enveloping algebra $U(\mathfrak{g})$ is a co-commutative Hopf algebra where, for every $X \in \mathfrak{g}$,

 $\Delta(X) = X \otimes 1 + 1 \otimes X$ $\varepsilon(X) = 0$ S(X) = -X.

If H is a Hopf algebra, $\mathcal{P}(H) = \{h \in H \mid \Delta(h) = h \otimes 1 + 1 \otimes h\}$ is the Lie algebra of primitive elements. The pair of functors

$$\mathsf{Lie}_{\Bbbk} \xrightarrow{U(-)} \mathsf{CCHopf}_{\Bbbk}(+\cdots)$$

defines an equivalence of categories.

The finite (or Sweedler) dual

If H is a Hopf algebra, then H^* is not a Hopf algebra in general. Instead,

 $H^{\circ} := \{ f \in H^* \mid \text{ker}(f) \text{ contains a finite-codimensional ideal} \}$

Let \mathfrak{g} be a Lie algebra. Its universal enveloping algebra $U(\mathfrak{g})$ is a co-commutative Hopf algebra where, for every $X \in \mathfrak{g}$,

 $\Delta(X) = X \otimes 1 + 1 \otimes X$ $\varepsilon(X) = 0$ S(X) = -X.

If H is a Hopf algebra, $\mathcal{P}(H) = \{h \in H \mid \Delta(h) = h \otimes 1 + 1 \otimes h\}$ is the Lie algebra of primitive elements. The pair of functors

$$\mathsf{Lie}_{\Bbbk} \xrightarrow{\mathcal{U}(-)} \mathsf{CCHopf}_{\Bbbk}(+\cdots)$$

defines an equivalence of categories.

The finite (or Sweedler) dual

If H is a Hopf algebra, then H^* is not a Hopf algebra in general. Instead,

 $H^{\circ} := \{f \in H^* \mid \ker(f) \text{ contains a finite-codimensional ideal}\}$

Let \mathfrak{g} be a Lie algebra. Its universal enveloping algebra $U(\mathfrak{g})$ is a co-commutative Hopf algebra where, for every $X \in \mathfrak{g}$,

 $\Delta(X) = X \otimes 1 + 1 \otimes X$ $\varepsilon(X) = 0$ S(X) = -X.

If H is a Hopf algebra, $\mathcal{P}(H) = \{h \in H \mid \Delta(h) = h \otimes 1 + 1 \otimes h\}$ is the Lie algebra of primitive elements. The pair of functors

$$\mathsf{Lie}_{\Bbbk} \xrightarrow{\mathcal{U}(-)} \mathsf{CCHopf}_{\Bbbk}(+\cdots)$$

defines an equivalence of categories.

The finite (or Sweedler) dual

If H is a Hopf algebra, then H^* is not a Hopf algebra in general. Instead,

 $H^{\circ} := \{ f \in H^* \mid \ker(f) \text{ contains a finite-codimensional ideal} \}$

Toward Hopf algebroids: Groupoids

What is a groupoid?

A (abstract) groupoid is a (small) category in which every arrow is invertible, i.e. it is the datum of two sets $\mathcal{G}_0, \mathcal{G}_1$ together with functions

$$\mathcal{G}_{0} \underbrace{\overset{s}{\underset{t}{\longleftarrow}} \mathcal{G}_{1}}_{\underset{(\iota)}{\underbrace{\iota}}} \mathcal{G}_{1} \times_{\mathcal{G}_{0}} \mathcal{G}_{1}$$

satisfying some reasonable properties.

Example (The fundamental groupoid)

For a topological space X, the sets $\mathcal{G}_0 = X$, $\mathcal{G}_1 = \{\text{paths on } X\}/_{\langle\text{homotopy}\rangle}$ with obvious source, target and composition maps give the fundamental groupoid of X.

Example (The general linear groupoid)

The set $GL_*(\Bbbk)$ of all invertible matrices of any order over \Bbbk form a groupoid $(\mathbb{N}, GL_*(\Bbbk))$ with the ordinary matrix multiplication.

Toward Hopf algebroids: Groupoids

What is a groupoid?

A (abstract) groupoid is a (small) category in which every arrow is invertible, i.e. it is the datum of two sets $\mathcal{G}_0, \mathcal{G}_1$ together with functions

satisfying some reasonable properties.

Example (The fundamental groupoid)

For a topological space X, the sets $\mathcal{G}_0 = X$, $\mathcal{G}_1 = \{\text{paths on } X\}/_{\langle \text{homotopy} \rangle}$ with obvious source, target and composition maps give the fundamental groupoid of X.

Example (The general linear groupoid)

The set $GL_*(\Bbbk)$ of all invertible matrices of any order over \Bbbk form a groupoid $(\mathbb{N}, GL_*(\Bbbk))$ with the ordinary matrix multiplication.

Toward Hopf algebroids: Groupoids

What is a groupoid?

A (abstract) groupoid is a (small) category in which every arrow is invertible, i.e. it is the datum of two sets $\mathcal{G}_0, \mathcal{G}_1$ together with functions

satisfying some reasonable properties.

Example (The fundamental groupoid)

For a topological space X, the sets $\mathcal{G}_0 = X$, $\mathcal{G}_1 = \{\text{paths on } X\}/_{\langle \text{homotopy} \rangle}$ with obvious source, target and composition maps give the fundamental groupoid of X.

Example (The general linear groupoid)

The set $GL_*(\Bbbk)$ of all invertible matrices of any order over \Bbbk form a groupoid $(\mathbb{N}, GL_*(\Bbbk))$ with the ordinary matrix multiplication.

Example (Groupoids and partial actions)

A partial action of a group G on a set X consists of a family $\{X_g \mid g \in G\}$ of subsets of X and a family $\{\alpha_g : X_{g^{-1}} \to X_g \mid g \in G\}$ of bijections such that

• $X_e = X$, $\alpha_e = \operatorname{Id}_X$,

•
$$\alpha_h^{-1}(X_{g^{-1}} \cap X_h) = X_{(gh)^{-1}} \cap X_{h^{-1}},$$

•
$$\alpha_g \circ \alpha_h = \alpha_{gh}$$
 on $X_{(gh)^{-1}} \cap X_{h^{-1}}$.

Taking $\mathcal{G}_0=X$, $\mathcal{G}_1=\{(g,x)\in G imes X\mid x\in X_{g^{-1}}\}$ and

$$(g,x) \cdot (h,y) = \begin{cases} (gh,y) & \text{if } x = \alpha_h(y) \\ - & \text{otherwise} \end{cases}$$

provides a groupoid encoding the partial action.

Example (Groupoids and partial actions)

A partial action of a group G on a set X consists of a family $\{X_g \mid g \in G\}$ of subsets of X and a family $\{\alpha_g : X_{g^{-1}} \to X_g \mid g \in G\}$ of bijections such that

• $X_e = X$, $\alpha_e = Id_X$, • $\alpha_h^{-1}(X_{g^{-1}} \cap X_h) = X_{(gh)^{-1}} \cap X_{h^{-1}}$, • $\alpha_g \circ \alpha_h = \alpha_{gh}$ on $X_{(gh)^{-1}} \cap X_{h^{-1}}$. Taking $\mathcal{G}_0 = X$, $\mathcal{G}_1 = \{(g, x) \in G \times X \mid x \in X_{g^{-1}}\}$ and (gh, y) if $x = \alpha_h(y)$

$$(g, x) \cdot (h, y) = \begin{cases} (gn, y) & \text{if } x = \alpha_h(y) \\ -- & \text{otherwise} \end{cases}$$

provides a groupoid encoding the partial action.

Commutative Hopf algebroids

A commutative Hopf algebroid is a groupoid object in the category Aff_k or, equivalently, a cogroupoid object in the category $CAlg_k$. Thus, it consists of a pair of commutative algebras (A, H) together with structural algebra morphisms

such that

$$(\Delta \otimes_{A} H)\Delta = (H \otimes_{A} \Delta)\Delta \qquad (\varepsilon \otimes_{A} H)\Delta = H = (H \otimes_{A} \varepsilon)\Delta$$

$$Ss = t \qquad S^{2} = H \qquad m(S \otimes_{A} H)\Delta = t\varepsilon \qquad m(H \otimes_{A} S)\Delta = s\varepsilon$$

Example (Hopf algebroid of pairs)

Let A be a commutative algebra and $H = A \otimes A$. Then

$$s(a) = a \otimes 1$$
 $\Delta(a \otimes b) = (a \otimes 1) \otimes_A (1 \otimes b)$
 $t(a) = 1 \otimes a$ $\varepsilon(a \otimes b) = ab$ $S(a \otimes b) = b \otimes a$

make of $(A, A \otimes A)$ a commutative Hopf algebroid.

Commutative Hopf algebroids

A commutative Hopf algebroid is a groupoid object in the category Aff_{k} or, equivalently, a cogroupoid object in the category $CAlg_{k}$. Thus, it consists of a pair of commutative algebras (A, H) together with structural algebra morphisms

$$A \xrightarrow[t]{s} H \xrightarrow{\Delta} H \otimes_A H$$

such that

$$(\Delta \otimes_{A} H)\Delta = (H \otimes_{A} \Delta)\Delta \qquad (\varepsilon \otimes_{A} H)\Delta = H = (H \otimes_{A} \varepsilon)\Delta Ss = t \qquad S^{2} = H \qquad m(S \otimes_{A} H)\Delta = t\varepsilon \qquad m(H \otimes_{A} S)\Delta = s\varepsilon$$

Example (Hopf algebroid of pairs)

Let A be a commutative algebra and $H = A \otimes A$. Then

$$s(a) = a \otimes 1 \qquad \Delta(a \otimes b) = (a \otimes 1) \otimes_A (1 \otimes b)$$

$$t(a) = 1 \otimes a \qquad \varepsilon(a \otimes b) = ab \qquad S(a \otimes b) = b \otimes a$$

make of $(A, A \otimes A)$ a commutative Hopf algebroid.

Commutative Hopf algebroids

A commutative Hopf algebroid is a groupoid object in the category Aff_{k} or, equivalently, a cogroupoid object in the category $CAlg_{k}$. Thus, it consists of a pair of commutative algebras (A, H) together with structural algebra morphisms

$$A \xrightarrow[t]{s} H \xrightarrow{\Delta} H \otimes_A H$$

such that

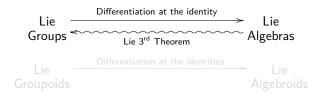
$$(\Delta \otimes_{A} H)\Delta = (H \otimes_{A} \Delta)\Delta \qquad (\varepsilon \otimes_{A} H)\Delta = H = (H \otimes_{A} \varepsilon)\Delta$$
$$Ss = t \qquad S^{2} = H \qquad m(S \otimes_{A} H)\Delta = t\varepsilon \qquad m(H \otimes_{A} S)\Delta = s\varepsilon$$

Example (Hopf algebroid of pairs)

Let A be a commutative algebra and $H = A \otimes A$. Then

$$egin{aligned} s(a) &= a \otimes 1 & \Delta(a \otimes b) = (a \otimes 1) \otimes_{A} (1 \otimes b) \ t(a) &= 1 \otimes a & arepsilon(a \otimes b) = ab & S(a \otimes b) = b \otimes a \end{aligned}$$

make of $(A, A \otimes A)$ a commutative Hopf algebroid.

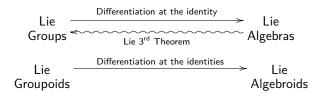


Kapranov [K]: for a (suitable) Lie algebroid \mathcal{L} , $\mathcal{V}_A(\mathcal{L})^*$ is a topological bialgebroid whose formal spectrum is a formal groupoid integrating \mathcal{L} .

 $\mathcal{V}_A(\mathcal{L})$ co-commutative Hopf algd $\rightsquigarrow \mathcal{V}_A(\mathcal{L})^\circ$ commutative Hopf algd

 $\mathcal{V}_A(\mathcal{L})^\circ$? $\mathcal{V}_A(\mathcal{L})^*$

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

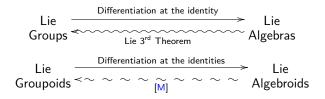


Kapranov [K]: for a (suitable) Lie algebroid \mathcal{L} , $\mathcal{V}_A(\mathcal{L})^*$ is a topological bialgebroid whose formal spectrum is a formal groupoid integrating \mathcal{L} .

 $\mathcal{V}_A(\mathcal{L})$ co-commutative Hopf algd $\rightsquigarrow \mathcal{V}_A(\mathcal{L})^\circ$ commutative Hopf algd

 $\mathcal{V}_A(\mathcal{L})^\circ$? $\mathcal{V}_A(\mathcal{L})^*$

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

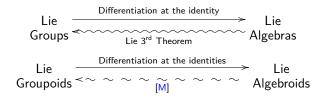


Kapranov [K]: for a (suitable) Lie algebroid \mathcal{L} , $\mathcal{V}_A(\mathcal{L})^*$ is a topological bialgebroid whose formal spectrum is a formal groupoid integrating \mathcal{L} .

 $\mathcal{V}_A(\mathcal{L})$ co-commutative Hopf algd $\rightsquigarrow \mathcal{V}_A(\mathcal{L})^\circ$ commutative Hopf algd

 $\mathcal{V}_A(\mathcal{L})^\circ$? $\mathcal{V}_A(\mathcal{L})^*$

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

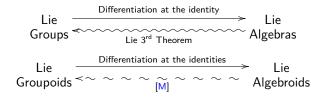


Kapranov [K]: for a (suitable) Lie algebroid \mathcal{L} , $\mathcal{V}_A(\mathcal{L})^*$ is a topological bialgebroid whose formal spectrum is a formal groupoid integrating \mathcal{L} .

 $\mathcal{V}_{\!A}(\mathcal{L})$ co-commutative Hopf algd $\rightsquigarrow \mathcal{V}_{\!A}(\mathcal{L})^\circ$ commutative Hopf algd

 $\mathcal{V}_A(\mathcal{L})^\circ$? $\mathcal{V}_A(\mathcal{L})^*$

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).



Kapranov [K]: for a (suitable) Lie algebroid \mathcal{L} , $\mathcal{V}_A(\mathcal{L})^*$ is a topological bialgebroid whose formal spectrum is a formal groupoid integrating \mathcal{L} .

 $\mathcal{V}_{\text{A}}(\mathcal{L})$ co-commutative Hopf algd $\rightsquigarrow \mathcal{V}_{\text{A}}(\mathcal{L})^{\circ}$ commutative Hopf algd

$$\mathcal{V}_{A}(\mathcal{L})^{\circ}$$
? $\mathcal{V}_{A}(\mathcal{L})^{*}$

[K] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

Lie-Rinehart algebras

Henceforth, assume that A is a commutative \Bbbk -algebra and denote by Der(A) the Lie algebra of \Bbbk -derivations of A.

A Lie-Rinehart algebra over A is a triple (A, L, ω) where L is a Lie algebra which is also an A-module and $\omega : L \to \text{Der}(A)$ is a Lie algebra map (the anchor) such that for all $a \in A$ and $X, Y \in L$

 $\omega(a \cdot X) = a \cdot X$ and $[X, a \cdot Y] = \omega(X)(a) \cdot Y + a \cdot [X, Y].$

Example (Lie algebroids)

A Lie algebroid is a vector bundle $\mathcal{L} \to \mathcal{M}$ over a smooth manifold \mathcal{M} with a structure of Lie algebra in the space $\Gamma(\mathcal{L})$ of sections of \mathcal{L} and a morphism of vector bundles $\omega : \mathcal{L} \to T\mathcal{M}$ such that $\Gamma(\omega) : \Gamma(\mathcal{L}) \to \Gamma(T\mathcal{M})$ is a Lie algebra map and

 $[X, f \cdot Y] = \omega(X)(f) \cdot Y + f \cdot [X, Y]$

for all $f \in \mathcal{C}^{\infty}(\mathcal{M})$ and $X, Y \in \Gamma(\mathcal{L})$.

Lie-Rinehart algebras

Henceforth, assume that A is a commutative k-algebra and denote by Der(A) the Lie algebra of k-derivations of A.

A Lie-Rinehart algebra over A is a triple (A, L, ω) where L is a Lie algebra which is also an A-module and $\omega : L \to \text{Der}(A)$ is a Lie algebra map (the anchor) such that for all $a \in A$ and $X, Y \in L$

 $\omega(a \cdot X) = a \cdot X$ and $[X, a \cdot Y] = \omega(X)(a) \cdot Y + a \cdot [X, Y].$

Example (Lie algebroids)

A Lie algebroid is a vector bundle $\mathcal{L} \to \mathcal{M}$ over a smooth manifold \mathcal{M} with a structure of Lie algebra in the space $\Gamma(\mathcal{L})$ of sections of \mathcal{L} and a morphism of vector bundles $\omega : \mathcal{L} \to T\mathcal{M}$ such that $\Gamma(\omega) : \Gamma(\mathcal{L}) \to \Gamma(T\mathcal{M})$ is a Lie algebra map and

 $[X, f \cdot Y] = \omega(X)(f) \cdot Y + f \cdot [X, Y]$

for all $f \in \mathcal{C}^{\infty}(\mathcal{M})$ and $X, Y \in \Gamma(\mathcal{L})$.

Lie-Rinehart algebras

Henceforth, assume that A is a commutative k-algebra and denote by Der(A) the Lie algebra of k-derivations of A.

A Lie-Rinehart algebra over A is a triple (A, L, ω) where L is a Lie algebra which is also an A-module and $\omega : L \to \text{Der}(A)$ is a Lie algebra map (the anchor) such that for all $a \in A$ and $X, Y \in L$

$$\omega(a \cdot X) = a \cdot X$$
 and $[X, a \cdot Y] = \omega(X)(a) \cdot Y + a \cdot [X, Y].$

Example (Lie algebroids)

A Lie algebroid is a vector bundle $\mathcal{L} \to \mathcal{M}$ over a smooth manifold \mathcal{M} with a structure of Lie algebra in the space $\Gamma(\mathcal{L})$ of sections of \mathcal{L} and a morphism of vector bundles $\omega : \mathcal{L} \to T\mathcal{M}$ such that $\Gamma(\omega) : \Gamma(\mathcal{L}) \to \Gamma(T\mathcal{M})$ is a Lie algebra map and

$$[X, f \cdot Y] = \omega(X)(f) \cdot Y + f \cdot [X, Y]$$

for all $f \in C^{\infty}(\mathcal{M})$ and $X, Y \in \Gamma(\mathcal{L})$.

The universal enveloping algebra of a Lie-Rinehart algebra (A, L, ω) is a triple $(\mathcal{V}_A(L), \iota_A, \iota_L)$ composed by a k-algebra $\mathcal{V}_A(L)$, an algebra map $\iota_A : A \to \mathcal{V}_A(L)$ and a Lie algebra map $\iota_L : L \to \mathcal{V}_A(L)$ satisfying

 $\iota_L(a \cdot X) = \iota_L(X)\iota_A(a) \quad \text{and} \quad \left[\iota_L(X), \iota_A(a)\right] = \iota_A(\omega(X)(a)), \quad (\dagger)$

that enjoys the following universal property:

For any triple (U, ϕ_A, ϕ_L) as above satisfying (†) there exists a unique algebra map $\Phi : \mathcal{V}_A(L) \to U$ such that $\Phi \circ \iota_A = \phi_A$ and $\Phi \circ \iota_L = \phi_L$.

Explicitly, $\mathcal{V}_A(L) := \frac{T_A(A \otimes L)}{\langle [\eta(X), \eta(Y)] - \eta([X, Y]), [\eta(X), a] - \omega(X)(a) \rangle}$

with $\iota_A: A o \mathcal{V}_A(L); \ a \mapsto a$ and $\iota_L: L o \mathcal{V}_A(L); \ X \mapsto \eta(X) := 1 \otimes X.$

The universal enveloping algebra of a Lie-Rinehart algebra (A, L, ω) is a triple $(\mathcal{V}_A(L), \iota_A, \iota_L)$ composed by a k-algebra $\mathcal{V}_A(L)$, an algebra map $\iota_A : A \to \mathcal{V}_A(L)$ and a Lie algebra map $\iota_L : L \to \mathcal{V}_A(L)$ satisfying

 $\iota_L(a \cdot X) = \iota_L(X)\iota_A(a) \quad \text{and} \quad \left[\iota_L(X), \iota_A(a)\right] = \iota_A(\omega(X)(a)), \quad (\dagger)$

that enjoys the following universal property:

For any triple (U, ϕ_A, ϕ_L) as above satisfying (†) there exists a unique algebra map $\Phi : \mathcal{V}_A(L) \to U$ such that $\Phi \circ \iota_A = \phi_A$ and $\Phi \circ \iota_L = \phi_L$.

Explicitly,
$$\mathcal{V}_A(L) := \frac{T_A(A \otimes L)}{\langle [\eta(X), \eta(Y)] - \eta([X, Y]), [\eta(X), a] - \omega(X)(a) \rangle}$$

with $\iota_A : A \to \mathcal{V}_A(L)$; $a \mapsto a$ and $\iota_L : L \to \mathcal{V}_A(L)$; $X \mapsto \eta(X) := 1 \otimes X$.

The k-algebra $\mathcal{V}_A(L)$ comes endowed with **(HA1)** an (injective) k-algebra map $\iota_A : A \to \mathcal{V}_A(L)$; **(HA2)** a (co-commutative) comultiplication \wedge and a counit s given

$$\begin{split} \varepsilon(\iota_A(a)) &= a, \qquad \Delta(\iota_A(a)) = \iota_A(a) \otimes_A 1 = 1 \otimes_A \iota_A(a), \\ \varepsilon(\iota_L(X)) &= 0, \qquad \Delta(\iota_L(X)) = \iota_L(X) \otimes_A 1 + 1 \otimes_A \iota_L(X), \end{split}$$

such that $\varepsilon(uv) = \varepsilon(\varepsilon(u)v)$ for all $u, v \in \mathcal{V}_A(L)$ and Δ factors through an *A*-ring map $\Delta : \mathcal{V}_A(L) \to \mathcal{V}_A(L) \times_A \mathcal{V}_A(L)$;

(HA3) an inverse for the map can : $\mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L)$, can $(u \otimes_A v) = (u \otimes_A 1)\Delta(v)$, which is uniquely determined by

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{A}(a)) = \iota_{A}(a) \otimes_{A} 1 = 1 \otimes_{A} \iota_{A}(a),$$

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{L}(X)) = 1 \otimes_{A} \iota_{L}(X) - \iota_{L}(X) \otimes_{A} 1.$$

A pair of \Bbbk -algebras (A, U) satisfying (HA1) - (HA3) is called a co-commutative (right) Hopf algebroid (Schauenburg [S]).

The k-algebra $\mathcal{V}_A(L)$ comes endowed with

 $\textbf{(HA1)} \text{ an (injective)} \ \& \text{-algebra map} \ \iota_{A}: A \to \mathcal{V}_{A}(L);$

 $(\mathbf{HA2})$ a (co-commutative) comultiplication Δ and a counit ε given by

$$\begin{split} \varepsilon(\iota_A(a)) &= a, \qquad \Delta(\iota_A(a)) = \iota_A(a) \otimes_A 1 = 1 \otimes_A \iota_A(a), \\ \varepsilon(\iota_L(X)) &= 0, \qquad \Delta(\iota_L(X)) = \iota_L(X) \otimes_A 1 + 1 \otimes_A \iota_L(X), \end{split}$$

such that $\varepsilon(uv) = \varepsilon(\varepsilon(u)v)$ for all $u, v \in \mathcal{V}_A(L)$ and Δ factors through an A-ring map $\Delta : \mathcal{V}_A(L) \to \mathcal{V}_A(L) \times_A \mathcal{V}_A(L)$;

(HA3) an inverse for the map can : $\mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L)$, can $(u \otimes_A v) = (u \otimes_A 1)\Delta(v)$, which is uniquely determined by

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{A}(a)) = \iota_{A}(a) \otimes_{A} 1 = 1 \otimes_{A} \iota_{A}(a),$$

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{L}(X)) = 1 \otimes_{A} \iota_{L}(X) - \iota_{L}(X) \otimes_{A} 1.$$

A pair of \Bbbk -algebras (A, U) satisfying (HA1) - (HA3) is called a co-commutative (right) Hopf algebroid (Schauenburg [S]).

The k-algebra $\mathcal{V}_A(L)$ comes endowed with

 $\textbf{(HA1)} \text{ an (injective)} \ \& \text{-algebra map} \ \iota_{A}: A \to \mathcal{V}_{A}(L);$

(HA2) a (co-commutative) comultiplication Δ and a counit ε given by

$$\begin{split} \varepsilon(\iota_A(a)) &= a, \qquad \Delta(\iota_A(a)) = \iota_A(a) \otimes_A 1 = 1 \otimes_A \iota_A(a), \\ \varepsilon(\iota_L(X)) &= 0, \qquad \Delta(\iota_L(X)) = \iota_L(X) \otimes_A 1 + 1 \otimes_A \iota_L(X), \end{split}$$

such that $\varepsilon(uv) = \varepsilon(\varepsilon(u)v)$ for all $u, v \in \mathcal{V}_A(L)$ and Δ factors through an A-ring map $\Delta : \mathcal{V}_A(L) \to \mathcal{V}_A(L) \times_A \mathcal{V}_A(L)$;

(HA3) an inverse for the map $can : \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L)$, $can(u \otimes_A v) = (u \otimes_A 1)\Delta(v)$, which is uniquely determined by

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{A}(a)) = \iota_{A}(a) \otimes_{A} 1 = 1 \otimes_{A} \iota_{A}(a),$$

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{L}(X)) = 1 \otimes_{A} \iota_{L}(X) - \iota_{L}(X) \otimes_{A} 1.$$

A pair of \Bbbk -algebras (A, U) satisfying (HA1) - (HA3) is called a co-commutative (right) Hopf algebroid (Schauenburg [S]).

The k-algebra $\mathcal{V}_A(L)$ comes endowed with

 $\textbf{(HA1)} \text{ an (injective)} \ \& \text{-algebra map} \ \iota_{A}: A \to \mathcal{V}_{A}(L);$

(HA2) a (co-commutative) comultiplication Δ and a counit ε given by

$$\begin{split} \varepsilon(\iota_A(a)) &= a, \qquad \Delta(\iota_A(a)) = \iota_A(a) \otimes_A 1 = 1 \otimes_A \iota_A(a), \\ \varepsilon(\iota_L(X)) &= 0, \qquad \Delta(\iota_L(X)) = \iota_L(X) \otimes_A 1 + 1 \otimes_A \iota_L(X), \end{split}$$

such that $\varepsilon(uv) = \varepsilon(\varepsilon(u)v)$ for all $u, v \in \mathcal{V}_A(L)$ and Δ factors through an A-ring map $\Delta : \mathcal{V}_A(L) \to \mathcal{V}_A(L) \times_A \mathcal{V}_A(L)$;

(HA3) an inverse for the map can : $\mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L)$, can $(u \otimes_A v) = (u \otimes_A 1)\Delta(v)$, which is uniquely determined by

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{A}(a)) = \iota_{A}(a) \otimes_{A} 1 = 1 \otimes_{A} \iota_{A}(a),$$

$$\operatorname{can}^{-1}(1 \otimes_{A} \iota_{L}(X)) = 1 \otimes_{A} \iota_{L}(X) - \iota_{L}(X) \otimes_{A} 1.$$

A pair of \Bbbk -algebras (A, U) satisfying (HA1) - (HA3) is called a co-commutative (right) Hopf algebroid (Schauenburg [S]).

(FHA1) The algebra $\mathcal{V}_A(L)$ carries an exhaustive ascending filtration

 $0 \subset F^0\left(\mathcal{V}_A(L)
ight) \subset F^1\left(\mathcal{V}_A(L)
ight) \subset F^2\left(\mathcal{V}_A(L)
ight) \subset \cdots$

where $F^0(\mathcal{V}_A(L)) = A$ and $F^p(\mathcal{V}_A(L))$ is the right A-submodule of $\mathcal{V}_A(L)$ generated by products of at most p elements of $\iota_L(L)$. If we assume A to be filtered with the discrete filtration $F^n A = 0$ for all n < 0 and $F^n A = A$ for all $n \ge 0$, then the structure maps of $\mathcal{V}_A(L)$ turn out to be filtered. In particular, it does so the translation map

 $\delta: \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L), \ u \mapsto \mathfrak{can}^{-1}(1 \otimes_A u) := u_- \otimes_A u_+.$

(FHA2) If *L* is a finitely generated and projective *A*-module, then the quotient modules $F^n(\mathcal{V}_A(L))/F^{n-1}(\mathcal{V}_A(L))$ are finitely generated and projective right *A*-modules as well (e.g. $L = \Gamma(\mathcal{L})$, \mathcal{L} a Lie algebroid).

(FHA1) The algebra $\mathcal{V}_A(L)$ carries an exhaustive ascending filtration

$$0 \subset F^0\left(\mathcal{V}_A(L)
ight) \subset F^1\left(\mathcal{V}_A(L)
ight) \subset F^2\left(\mathcal{V}_A(L)
ight) \subset \cdots$$

where $F^0(\mathcal{V}_A(L)) = A$ and $F^p(\mathcal{V}_A(L))$ is the right A-submodule of $\mathcal{V}_A(L)$ generated by products of at most p elements of $\iota_L(L)$. If we assume A to be filtered with the discrete filtration $F^n A = 0$ for all n < 0 and $F^n A = A$ for all $n \ge 0$, then the structure maps of $\mathcal{V}_A(L)$ turn out to be filtered. In particular, it does so the translation map

 $\delta: \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L), \ u \mapsto \mathfrak{can}^{-1}(1 \otimes_A u) := u_- \otimes_A u_+.$

(FHA2) If *L* is a finitely generated and projective *A*-module, then the quotient modules $F^n(\mathcal{V}_A(L))/F^{n-1}(\mathcal{V}_A(L))$ are finitely generated and projective right *A*-modules as well (e.g. $L = \Gamma(\mathcal{L})$, \mathcal{L} a Lie algebroid).

(FHA1) The algebra $\mathcal{V}_A(L)$ carries an exhaustive ascending filtration

$$0 \subset F^0\left(\mathcal{V}_A(L)
ight) \subset F^1\left(\mathcal{V}_A(L)
ight) \subset F^2\left(\mathcal{V}_A(L)
ight) \subset \cdots$$

where $F^0(\mathcal{V}_A(L)) = A$ and $F^p(\mathcal{V}_A(L))$ is the right A-submodule of $\mathcal{V}_A(L)$ generated by products of at most p elements of $\iota_L(L)$. If we assume A to be filtered with the discrete filtration $F^n A = 0$ for all n < 0 and $F^n A = A$ for all $n \ge 0$, then the structure maps of $\mathcal{V}_A(L)$ turn out to be filtered. In particular, it does so the translation map

 $\delta: \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L), \ u \mapsto \mathfrak{can}^{-1}(1 \otimes_A u) := u_- \otimes_A u_+.$

(FHA2) If *L* is a finitely generated and projective *A*-module, then the quotient modules $F^n(\mathcal{V}_A(L))/F^{n-1}(\mathcal{V}_A(L))$ are finitely generated and projective right *A*-modules as well (e.g. $L = \Gamma(\mathcal{L})$, \mathcal{L} a Lie algebroid).

(FHA1) The algebra $\mathcal{V}_A(L)$ carries an exhaustive ascending filtration

$$0 \subset F^0\left(\mathcal{V}_A(L)
ight) \subset F^1\left(\mathcal{V}_A(L)
ight) \subset F^2\left(\mathcal{V}_A(L)
ight) \subset \cdots$$

where $F^0(\mathcal{V}_A(L)) = A$ and $F^p(\mathcal{V}_A(L))$ is the right A-submodule of $\mathcal{V}_A(L)$ generated by products of at most p elements of $\iota_L(L)$. If we assume A to be filtered with the discrete filtration $F^n A = 0$ for all n < 0 and $F^n A = A$ for all $n \ge 0$, then the structure maps of $\mathcal{V}_A(L)$ turn out to be filtered. In particular, it does so the translation map

$$\delta: \mathcal{V}_A(L) \to \mathcal{V}_A(L) \otimes_A \mathcal{V}_A(L), \ u \mapsto \mathfrak{can}^{-1}(1 \otimes_A u) := u_- \otimes_A u_+.$$

(FHA2) If *L* is a finitely generated and projective *A*-module, then the quotient modules $F^n(\mathcal{V}_A(L))/F^{n-1}(\mathcal{V}_A(L))$ are finitely generated and projective right *A*-modules as well (e.g. $L = \Gamma(\mathcal{L})$, \mathcal{L} a Lie algebroid).

The full linear dual and complete Hopf algds

Let (A, U) be a co-commutative Hopf algd with an admissible filtration. Consider its full (right) linear dual $U^* = \operatorname{Hom}_{-,A}(U, A) \cong \lim_{\to \infty} (F^n(U)^*)$. Recall that a filtered \mathbb{R} -algebra $(R, F_n R)$ is complete iff $R \cong \lim_{\to \infty} (R/F_n R)$.

Kapranov [Ka]: *U*^{*} inherits a natural decreasing filtration

$$G_0\left(U^*
ight)=U^*$$
 and $G_{n+1}\left(U^*
ight)=\mathfrak{Ann}\left(F^n(U)
ight),\ n\geq 0.$

such that U^* becomes a complete commutative $\Bbbk\text{-algebra}$ w.r.t. the convolution product. The counit induces

$$\eta = s \otimes t : A \otimes A \to U^*, \quad (a \otimes b \mapsto [u \mapsto \varepsilon(bu)a]).$$

Unit and multiplication of U induce $\varepsilon_*: U^* \to A$ and

$$\Delta_*: U^* \to U^* \widehat{\otimes}_A U^* = \varprojlim \left(\frac{U^* \otimes_A U^*}{\sum_{i+j=n} G_i(U^*) \otimes_A G_j(U^*)} \right)$$

[Ka] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

The full linear dual and complete Hopf algds

Let (A, U) be a co-commutative Hopf algd with an admissible filtration. Consider its full (right) linear dual $U^* = \operatorname{Hom}_{-,A}(U, A) \cong \lim_{\to \infty} (F^n(U)^*)$. Recall that a filtered k-algebra $(R, F_n R)$ is complete iff $R \cong \lim_{\to \infty} (R/F_n R)$.

Kapranov [Ka]: U* inherits a natural decreasing filtration

$$G_0\left(U^*
ight)=U^* \quad ext{and} \quad G_{n+1}\left(U^*
ight)=\mathfrak{Ann}\left(F^n(U)
ight), \ n\geq 0.$$

such that U^* becomes a complete commutative \Bbbk -algebra w.r.t. the convolution product. The counit induces

$$\eta = s \otimes t : A \otimes A \rightarrow U^*, \quad (a \otimes b \mapsto [u \mapsto \varepsilon(bu)a]).$$

Unit and multiplication of U induce $\varepsilon_*: U^* \to A$ and

$$\Delta_*: U^* \to U^* \widehat{\otimes}_A U^* = \varprojlim \left(\frac{U^* \otimes_A U^*}{\sum_{i+j=n} G_i(U^*) \otimes_A G_j(U^*)} \right)$$

[Ka] M. Kapranov, Free Lie algebroids and the space of paths. Sel. Math., New ser. 13 (2007).

Even more: the translation map δ induces a complete k-algebra map

$$\mathcal{S}: U^* \to U^*, \quad f \mapsto [u \mapsto \varepsilon(f(u_-)u_+)].$$

Summing up, U^* is a complete commutative algebra with a diagram

$$A \xrightarrow[]{s \to \varepsilon_*} U^* \xrightarrow{\Delta_*} U^* \widehat{\otimes}_A U^* \tag{\dagger}$$

of complete algebra maps such that (CHA1) $(U^*, \Delta_*, \varepsilon_*)$ is a coalgebra in ${}_A\text{Bim}_A^c$; (CHA2) $S \circ s = t$, $S \circ t = s$ and $S^2 = \text{Id}_{U^*}$; (CHA3) $\sum S(f_1)f_2 = (t \circ \varepsilon_*)(f)$ and $\sum f_1S(f_2) = (s \circ \varepsilon_*)(f)$.

A complete Hopf algebroid is of a pair of complete comm algebras (A, H) together with a diagram of algebra maps (†) satisfying (CHA1) - (CHA3).

Equivalently, a complete Hopf algebroid is a cogroupoid object in the category of complete commutative algebras (see e.g. [De]).

[De] E. S. Devinatz, Morava's change of rings theorem. The Čech centennial (Boston, MA, 1993), pp. 83–118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. Even more: the translation map δ induces a complete k-algebra map

$$\mathcal{S}: U^* \to U^*, \quad f \mapsto [u \mapsto \varepsilon(f(u_-)u_+)].$$

Summing up, U^* is a complete commutative algebra with a diagram

$$A \xrightarrow[s]{\varepsilon_*} U^* \xrightarrow{\Delta_*} U^* \widehat{\otimes}_A U^* \tag{\dagger}$$

of complete algebra maps such that

(CHA1) $(U^*, \Delta_*, \varepsilon_*)$ is a coalgebra in ${}_A \operatorname{Bim}_A^c$; (CHA2) $S \circ s = t, S \circ t = s$ and $S^2 = \operatorname{Id}_{U^*}$; (CHA3) $\sum S(f_1)f_2 = (t \circ \varepsilon_*)(f)$ and $\sum f_1S(f_2) = (s \circ \varepsilon_*)(f)$.

A complete Hopf algebroid is of a pair of complete comm algebras (A, H) together with a diagram of algebra maps (†) satisfying (CHA1) - (CHA3).

Equivalently, a complete Hopf algebroid is a cogroupoid object in the category of complete commutative algebras (see e.g. [De]).

[De] E. S. Devinatz, Morava's change of rings theorem. The Čech centennial (Boston, MA, 1993), pp. 83–118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. Even more: the translation map δ induces a complete k-algebra map

$$\mathcal{S}: U^* \to U^*, \quad f \mapsto [u \mapsto \varepsilon(f(u_-)u_+)].$$

Summing up, U^* is a complete commutative algebra with a diagram

$$A \xrightarrow[]{s} U^* \xrightarrow{\Delta_*} U^* \widehat{\otimes}_A U^* \tag{\dagger}$$

of complete algebra maps such that

(CHA1) $(U^*, \Delta_*, \varepsilon_*)$ is a coalgebra in ${}_A\text{Bim}_A^c$; (CHA2) $S \circ s = t$, $S \circ t = s$ and $S^2 = \text{Id}_{U^*}$; (CHA3) $\sum S(f_1)f_2 = (t \circ \varepsilon_*)(f)$ and $\sum f_1S(f_2) = (s \circ \varepsilon_*)(f)$.

A complete Hopf algebroid is of a pair of complete comm algebras (A, H) together with a diagram of algebra maps (†) satisfying (CHA1) - (CHA3).

Equivalently, a complete Hopf algebroid is a cogroupoid object in the category of complete commutative algebras (see e.g. [De]).

[[]De] E. S. Devinatz, Morava's change of rings theorem. The Čech centennial (Boston, MA, 1993), pp. 83–118, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.

Let (A, U) be a co-commutative Hopf algebroid.

El Kaoutit, Gómez-Torrecillas [EG]: The category \mathcal{A}_U of those right U-modules whose underlying A-module is finitely generated and projective is a symmetric rigid monoidal k-linear category and the forgetful functor $\omega : \mathcal{A}_U \to \mathfrak{proj}(A)$ is a strict monoidal additive faithful functor. As a consequence, the Tannaka reconstruction process provides us for a commutative Hopf algebroid (A, U°) (the finite dual) and a strict monoidal functor $\chi : \mathcal{A}_U \to \mathcal{A}^{U^\circ}$.

Namely,
$$U^{\circ} := \frac{\bigoplus_{M \in \mathcal{A}_U} M^* \otimes_{T_M} M}{\langle \varphi \otimes_{T_N} f(m) - \varphi \circ f \otimes_{T_M} m \mid \varphi \in N^*, m \in M, f \in T_{M,N} \rangle}$$

where $T_{M,N} = \text{Hom}_{\mathcal{A}_U}(M, N)$ and $T_M = T_{M,M}$. Furthermore, there is a canonical $A \otimes A$ -algebra map

$$\zeta: U^{\circ} \to U^{*}, \ \overline{\varphi \otimes_{\mathcal{T}_{M}} m} \mapsto [u \mapsto \varphi(m \cdot u)]$$

whose injectivity implies that χ is an isomorphism.

[[]EG] L. El Kaoutit, J. Gómez-Torrecillas, On the finite dual of a co-commutative Hopf algebroid. Application to linear differential matrix equations. Preprint, arXiv:1607.07633v2 (2016).

Let (A, U) be a co-commutative Hopf algebroid.

El Kaoutit, Gómez-Torrecillas [EG]: The category \mathcal{A}_U of those right U-modules whose underlying A-module is finitely generated and projective is a symmetric rigid monoidal k-linear category and the forgetful functor $\omega : \mathcal{A}_U \to \mathfrak{proj}(A)$ is a strict monoidal additive faithful functor. As a consequence, the Tannaka reconstruction process provides us for a commutative Hopf algebroid (A, U°) (the finite dual) and a strict monoidal functor $\chi : \mathcal{A}_U \to \mathcal{A}^{U^\circ}$.

Namely,
$$U^{\circ} := \frac{\bigoplus_{M \in \mathcal{A}_U} M^{\circ} \otimes_{T_M} M}{\langle \varphi \otimes_{T_N} f(m) - \varphi \circ f \otimes_{T_M} m \mid \varphi \in N^*, m \in M, f \in T_{M,N} \rangle}$$

where $T_{M,N} = \text{Hom}_{\mathcal{A}_U}(M, N)$ and $T_M = T_{M,M}$. Furthermore, there is a canonical $A \otimes A$ -algebra map

$$\zeta: U^{\circ} \to U^{*}, \ \overline{\varphi \otimes_{\tau_{M}} m} \mapsto [u \mapsto \varphi(m \cdot u)]$$

whose injectivity implies that χ is an isomorphism.

[EG] L. El Kaoutit, J. Gómez-Torrecillas, On the finite dual of a co-commutative Hopf algebroid. Application to linear differential matrix equations. Preprint, arXiv:1607.07633v2 (2016).

Let (A, U) be a co-commutative Hopf algebroid.

El Kaoutit, Gómez-Torrecillas [EG]: The category \mathcal{A}_U of those right U-modules whose underlying A-module is finitely generated and projective is a symmetric rigid monoidal k-linear category and the forgetful functor $\omega : \mathcal{A}_U \to \mathfrak{proj}(A)$ is a strict monoidal additive faithful functor. As a consequence, the Tannaka reconstruction process provides us for a commutative Hopf algebroid (A, U°) (the finite dual) and a strict monoidal functor $\chi : \mathcal{A}_U \to \mathcal{A}^{U^\circ}$.

Namely,
$$U^{\circ} := \frac{\bigoplus_{M \in \mathcal{A}_U} M^* \otimes_{\mathcal{T}_M} M}{\langle \varphi \otimes_{\mathcal{T}_N} f(m) - \varphi \circ f \otimes_{\mathcal{T}_M} m \mid \varphi \in N^*, m \in M, f \in \mathcal{T}_{M,N} \rangle}$$

where $T_{M,N} = \text{Hom}_{\mathcal{A}_U}(M, N)$ and $T_M = T_{M,M}$. Furthermore, there is a canonical $A \otimes A$ -algebra map

$$\zeta: U^{\circ} \to U^{*}, \ \overline{\varphi \otimes_{T_{M}} m} \mapsto [u \mapsto \varphi(m \cdot u)]$$

whose injectivity implies that χ is an isomorphism.

[[]EG] L. El Kaoutit, J. Gómez-Torrecillas, On the finite dual of a co-commutative Hopf algebroid. Application to linear differential matrix equations. Preprint, arXiv:1607.07633v2 (2016).

The main morphism of complete Hopf algds

Assume that (A, U) is endowed with an admissible filtration $\{F^n U\}_{n \ge 0}$.

The commutative Hopf algebroid (A, U°) can be filtered with the augmentation filtration $G_0(U^{\circ}) = U^{\circ}$ and $G_n(U^{\circ}) = \ker(\varepsilon_{\circ})^n$ and its completion $(A, \widehat{U^{\circ}})$ is a complete Hopf algebroid (A discretely filtered).

Theorem

The canonical map $\zeta : U^{\circ} \to U^{*}$ is filtered and hence it can be lifted to a morphism $\widehat{\zeta} : \widehat{U^{\circ}} \to U^{*}$ of complete Hopf algebroids such that

commutes, where γ is the completion map.

The main morphism of complete Hopf algds

Assume that (A, U) is endowed with an admissible filtration $\{F^n U\}_{n \ge 0}$.

The commutative Hopf algebroid (A, U°) can be filtered with the augmentation filtration $G_0(U^{\circ}) = U^{\circ}$ and $G_n(U^{\circ}) = \ker(\varepsilon_{\circ})^n$ and its completion $(A, \widehat{U^{\circ}})$ is a complete Hopf algebroid (A discretely filtered).

Theorem

The canonical map $\zeta : U^{\circ} \to U^{*}$ is filtered and hence it can be lifted to a morphism $\widehat{\zeta} : \widehat{U^{\circ}} \to U^{*}$ of complete Hopf algebroids such that

commutes, where γ is the completion map.

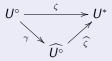
The main morphism of complete Hopf algds

Assume that (A, U) is endowed with an admissible filtration $\{F^n U\}_{n\geq 0}$.

The commutative Hopf algebroid (A, U°) can be filtered with the augmentation filtration $G_0(U^{\circ}) = U^{\circ}$ and $G_n(U^{\circ}) = \ker(\varepsilon_{\circ})^n$ and its completion $(A, \widehat{U^{\circ}})$ is a complete Hopf algebroid (A discretely filtered).

Theorem

The canonical map $\zeta: U^{\circ} \to U^{*}$ is filtered and hence it can be lifted to a morphism $\widehat{\zeta}: \widehat{U^{\circ}} \to U^{*}$ of complete Hopf algebroids such that



commutes, where γ is the completion map.

Idea

If $\mathcal{V}_A(L)^\circ$ is separated and $\widehat{\zeta}$ is an isomorphism, ζ is injective. It follows then that $\widehat{\mathcal{V}_A(L)}^\circ$ can be seen as a formal groupoid which integrates L and that is "canonically" associated with a groupoid whose category of representations is equivalent to the category of modules of L.

Theorem

Let (A, U) be a co-commutative Hopf algebroid with an admissible filtration and assume that $\zeta : U^{\circ} \rightarrow U^{*}$ is injective. TFAE

- (a) $\widehat{\zeta}: \widehat{U^{\circ}} \to U^*$ is a filtered isomorphism,
- (b) $\hat{\zeta}$ is surjective and the augmentation filtration on U° coincides with the induced one,

Moreover, the following assertions are equivalent as well

- (c) $\,\widehat{\zeta}:\,\widehat{U^\circ}
 ightarrow U^*$ is an homeomorphism,
- $(d) \,\,\, \widehat{\zeta}:\, \widehat{U^\circ} o U^*$ is open and injective and U° is dense in $U^*,$
- (e) the augmentation topology on U° is equivalent to the induced one and U° is dense in U*.

Idea

If $\mathcal{V}_A(L)^\circ$ is separated and $\widehat{\zeta}$ is an isomorphism, ζ is injective. It follows then that $\widehat{\mathcal{V}_A(L)}^\circ$ can be seen as a formal groupoid which integrates L and that is "canonically" associated with a groupoid whose category of representations is equivalent to the category of modules of L.

Theorem

Let (A, U) be a co-commutative Hopf algebroid with an admissible filtration and assume that $\zeta : U^{\circ} \rightarrow U^{*}$ is injective. TFAE

- (a) $\widehat{\zeta}: \widehat{U^{\circ}}
 ightarrow U^{*}$ is a filtered isomorphism,
- (b) $\hat{\zeta}$ is surjective and the augmentation filtration on U° coincides with the induced one,

Moreover, the following assertions are equivalent as well

- (c) $\widehat{\zeta}: \widehat{U^{\circ}} \to U^*$ is an homeomorphism,
- (d) $\widehat{\zeta}: \widehat{U^{\circ}} \to U^*$ is open and injective and U° is dense in U^* ,
- (e) the augmentation topology on U° is equivalent to the induced one and U° is dense in U^{*} .

Even when ζ is injective and $A = \Bbbk$, $\widehat{\zeta}$ may not be an isomorphism.

Example (from [ES])

Let $L = \mathbb{C}X$ be the one dimensional (abelian) complex Lie algebra.

- $\bullet\,$ It is trivially a Lie-Rinehart algebra over $\mathbb C$
- Its universal enveloping algebra is the Hopf algebra $\mathbb{C}[X]$
- The finite dual of $\mathbb{C}[X]$ coincides with the usual Sweedler dual $\mathbb{C}[X]^\circ$
- The morphism ζ is the inclusion $\mathbb{C}[X]^{\circ} \subseteq \mathbb{C}[X]^{*}$
- Let $\xi \in \mathbb{C}[X]^{\circ}$ be given by $\xi(X^n) = \delta_{n,1}$ (Kronecker delta). Either the augmentation filtration on $\mathbb{C}[X]^{\circ}$ and the filtration on $\mathbb{C}[X]^*$ are the $\langle \xi \rangle$ -adic ones

In this case, it turns out that $\widehat{\zeta}$ is surjective but the $\langle \xi \rangle$ -adic filtration on $\mathbb{C}[X]^{\circ}$ is strictly finer then the one induced by $\mathbb{C}[X]^{*}$, whence $\widehat{\zeta}$ cannot be a filtered isomorphism (in fact, not even an homeomorphism).

[[]ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint, arXiv:1705.03433, (2017).

Even when ζ is injective and $A = \Bbbk$, $\widehat{\zeta}$ may not be an isomorphism.

Example (from [ES])

Let $L = \mathbb{C}X$ be the one dimensional (abelian) complex Lie algebra.

- $\bullet\,$ It is trivially a Lie-Rinehart algebra over $\mathbb C$
- Its universal enveloping algebra is the Hopf algebra $\mathbb{C}[X]$
- The finite dual of $\mathbb{C}[X]$ coincides with the usual Sweedler dual $\mathbb{C}[X]^{\circ}$
- The morphism ζ is the inclusion $\mathbb{C}[X]^\circ \subseteq \mathbb{C}[X]^*$
- Let $\xi \in \mathbb{C}[X]^{\circ}$ be given by $\xi(X^n) = \delta_{n,1}$ (Kronecker delta). Either the augmentation filtration on $\mathbb{C}[X]^{\circ}$ and the filtration on $\mathbb{C}[X]^*$ are the $\langle \xi \rangle$ -adic ones

In this case, it turns out that $\widehat{\zeta}$ is surjective but the $\langle \xi \rangle$ -adic filtration on $\mathbb{C}[X]^{\circ}$ is strictly finer then the one induced by $\mathbb{C}[X]^*$, whence $\widehat{\zeta}$ cannot be a filtered isomorphism (in fact, not even an homeomorphism).

[[]ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint, arXiv:1705.03433, (2017).

Even when ζ is injective and $A = \Bbbk$, $\widehat{\zeta}$ may not be an isomorphism.

Example (from [ES])

Let $L = \mathbb{C}X$ be the one dimensional (abelian) complex Lie algebra.

- It is trivially a Lie-Rinehart algebra over $\ensuremath{\mathbb{C}}$
- Its universal enveloping algebra is the Hopf algebra $\mathbb{C}[X]$
- The finite dual of $\mathbb{C}[X]$ coincides with the usual Sweedler dual $\mathbb{C}[X]^\circ$
- The morphism ζ is the inclusion $\mathbb{C}[X]^\circ\subseteq\mathbb{C}[X]^*$
- Let $\xi \in \mathbb{C}[X]^{\circ}$ be given by $\xi(X^n) = \delta_{n,1}$ (Kronecker delta). Either the augmentation filtration on $\mathbb{C}[X]^{\circ}$ and the filtration on $\mathbb{C}[X]^*$ are the $\langle \xi \rangle$ -adic ones

In this case, it turns out that $\widehat{\zeta}$ is surjective but the $\langle \xi \rangle$ -adic filtration on $\mathbb{C}[X]^{\circ}$ is strictly finer then the one induced by $\mathbb{C}[X]^*$, whence $\widehat{\zeta}$ cannot be a filtered isomorphism (in fact, not even an homeomorphism).

[[]ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint, arXiv:1705.03433, (2017).

Even when ζ is injective and $A = \Bbbk$, $\widehat{\zeta}$ may not be an isomorphism.

Example (from [ES])

Let $L = \mathbb{C}X$ be the one dimensional (abelian) complex Lie algebra.

- It is trivially a Lie-Rinehart algebra over $\ensuremath{\mathbb{C}}$
- Its universal enveloping algebra is the Hopf algebra $\mathbb{C}[X]$
- The finite dual of $\mathbb{C}[X]$ coincides with the usual Sweedler dual $\mathbb{C}[X]^\circ$
- The morphism ζ is the inclusion $\mathbb{C}[X]^\circ\subseteq\mathbb{C}[X]^*$
- Let $\xi \in \mathbb{C}[X]^{\circ}$ be given by $\xi(X^n) = \delta_{n,1}$ (Kronecker delta). Either the augmentation filtration on $\mathbb{C}[X]^{\circ}$ and the filtration on $\mathbb{C}[X]^*$ are the $\langle \xi \rangle$ -adic ones

In this case, it turns out that $\widehat{\zeta}$ is surjective but the $\langle \xi \rangle$ -adic filtration on $\mathbb{C}[X]^{\circ}$ is strictly finer then the one induced by $\mathbb{C}[X]^*$, whence $\widehat{\zeta}$ cannot be a filtered isomorphism (in fact, not even an homeomorphism).

[[]ES] L. El Kaoutit, P. Saracco, Comparing Topologies on Linearly Recursive Sequences. Preprint, arXiv:1705.03433, (2017).

Set $K = \ker (m : A \otimes A \to A)$. The quotients $\mathcal{J}^k(A) = (A \otimes A)/K^{k+1}$ are the modules of k-jets over A and the limit $\mathcal{J}(A) = \varprojlim (\mathcal{J}^k(A))$ is the algebra of infinite jets of A.

The duality $\operatorname{Diff}_k(A) \cong {}^*\mathcal{J}^k(A)$ [K] gives a morphism $\mathcal{J}(A) \to \operatorname{Diff}(A)^*$. Notice that $\mathcal{J}(A)$ is the K-adic completion of $A \otimes A$ and it turns out to be also a complete Hopf algebroid. In some favourable cases, $\operatorname{Diff}(A)$ is a cocommutative Hopf algebroid, so we may consider

$$\mathsf{Diff}(A)^{\circ} \xrightarrow{\zeta} \mathsf{Diff}(A)^{*}$$
$$\overset{\land}{\longrightarrow} A \otimes A \longrightarrow \mathcal{J}(A)$$

Question: Is $\mathcal{J}(A)$ some kind of completion of Diff $(A)^{\circ}$?

[K] I. S. Krasil'shchik, Calculus over commutative algebras: a concise user guide. Algebraic aspects of differential calculus. Acta Appl. Math. 49 (1997).

Set $K = \ker(m : A \otimes A \to A)$. The quotients $\mathcal{J}^k(A) = (A \otimes A)/K^{k+1}$ are the modules of k-jets over A and the limit $\mathcal{J}(A) = \varprojlim(\mathcal{J}^k(A))$ is the algebra of infinite jets of A. The duality $\operatorname{Diff}_k(A) \cong *\mathcal{J}^k(A)$ [K] gives a morphism $\mathcal{J}(A) \to \operatorname{Diff}(A)^*$. Notice that $\mathcal{J}(A)$ is the K-adic completion of $A \otimes A$ and it turns out to be also a complete Hopf algebroid. In some favourable cases, $\operatorname{Diff}(A)$ is a cocommutative Hopf algebroid, so we may consider

$$\mathsf{Diff}(A)^{\circ} \xrightarrow{\zeta} \mathsf{Diff}(A)^{*} \\ \stackrel{k}{\longrightarrow} A \otimes A \longrightarrow \mathcal{J}(A)$$

Question: Is $\mathcal{J}(A)$ some kind of completion of Diff $(A)^{\circ}$?

[K] I. S. Krasil'shchik, Calculus over commutative algebras: a concise user guide. Algebraic aspects of differential calculus. Acta Appl. Math. 49 (1997).

Set $K = \ker(m : A \otimes A \to A)$. The quotients $\mathcal{J}^k(A) = (A \otimes A)/K^{k+1}$ are the modules of k-jets over A and the limit $\mathcal{J}(A) = \varprojlim(\mathcal{J}^k(A))$ is the algebra of infinite jets of A. The duality $\operatorname{Diff}_k(A) \cong {}^*\mathcal{J}^k(A)$ [K] gives a morphism $\mathcal{J}(A) \to \operatorname{Diff}(A)^*$. Notice that $\mathcal{J}(A)$ is the K-adic completion of $A \otimes A$ and it turns out to be also a complete Hopf algebroid. In some favourable cases, $\operatorname{Diff}(A)$ is a cocommutative Hopf algebroid, so we may consider

$$\mathsf{Diff}(A)^{\circ} \xrightarrow{\zeta} \mathsf{Diff}(A)^{*}$$

$$\overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\longrightarrow}} \mathsf{Diff}(A)$$

Question: Is $\mathcal{J}(A)$ some kind of completion of Diff $(A)^{\circ}$?

[K] I. S. Krasil'shchik, Calculus over commutative algebras: a concise user guide. Algebraic aspects of differential calculus. Acta Appl. Math. 49 (1997).

Set $K = \ker(m : A \otimes A \to A)$. The quotients $\mathcal{J}^k(A) = (A \otimes A)/K^{k+1}$ are the modules of k-jets over A and the limit $\mathcal{J}(A) = \varprojlim(\mathcal{J}^k(A))$ is the algebra of infinite jets of A. The duality $\operatorname{Diff}_k(A) \cong {}^*\mathcal{J}^k(A)$ [K] gives a morphism $\mathcal{J}(A) \to \operatorname{Diff}(A)^*$. Notice that $\mathcal{J}(A)$ is the K-adic completion of $A \otimes A$ and it turns out to be also a complete Hopf algebroid. In some favourable cases, $\operatorname{Diff}(A)$ is a cocommutative Hopf algebroid, so we may consider

$$\mathsf{Diff}(A)^{\circ} \xrightarrow{\zeta} \mathsf{Diff}(A)^{*}$$

$$\stackrel{h}{\longrightarrow} A \xrightarrow{} \mathcal{J}(A)$$

Question: Is $\mathcal{J}(A)$ some kind of completion of Diff $(A)^{\circ}$?

[[]K] I. S. Krasil'shchik, Calculus over commutative algebras: a concise user guide. Algebraic aspects of differential calculus. Acta Appl. Math. 49 (1997).

Consequences of the existence of $\widehat{\zeta}$

Idea: In some very favourable cases (e.g. $A = \Bbbk[X_1, \ldots, X_n]$):

- Diff(A) is a cocommutative Hopf algebroid with an admissible filtration and hence Diff(A)^{*} is a complete Hopf algebroid.
- If we endow $A \otimes A$ with the K-adic filtration, then the diagram

is made of filtered $(A \otimes A)$ -algebra morphisms and we may consider $\mathcal{T}(A) \xrightarrow{\widehat{\theta}} \text{Diff}(A)^*$

• $\widehat{\theta}$ is an isomorphism of complete Hopf algebroids.

Idea: In some very favourable cases (e.g. $A = \Bbbk[X_1, \ldots, X_n]$):

- Diff(A) is a cocommutative Hopf algebroid with an admissible filtration and hence Diff(A)^{*} is a complete Hopf algebroid.
- If we endow $A \otimes A$ with the K-adic filtration, then the diagram

$$A \otimes A \xrightarrow{\theta} \text{Diff}(A)^*$$
$$\eta \xrightarrow{\gamma} \swarrow \zeta$$
$$\text{Diff}(A)^\circ$$

is made of filtered $(A \otimes A)$ -algebra morphisms and we may consider $\widehat{\sigma}(A) = \widehat{\theta} = \sum_{i=1}^{n} \widehat{\sigma}(A)^*$

$$\mathcal{J}(A) \xrightarrow{\theta} \operatorname{Diff}(A)$$

$$\widehat{\eta} \xrightarrow{\gamma} \widehat{\zeta}$$

$$\operatorname{Diff}(A)^{\circ}$$

• θ is an isomorphism of complete Hopf algebroids.

Idea: In some very favourable cases (e.g. $A = \Bbbk[X_1, \ldots, X_n]$):

- Diff(A) is a cocommutative Hopf algebroid with an admissible filtration and hence Diff(A)* is a complete Hopf algebroid.
- If we endow $A \otimes A$ with the K-adic filtration, then the diagram

$$A \otimes A \xrightarrow{\theta} \text{Diff}(A)^*$$
$$\bigwedge_{\eta \searrow} \swarrow_{\zeta}$$
$$\text{Diff}(A)^\circ$$

is made of filtered ($A \otimes A$)-algebra morphisms and we may consider $\widehat{\sigma}(A) = \widehat{\theta} = D_{i}^{i} (G(A)^{*})^{*}$

$$\mathcal{J}(A) \xrightarrow{\theta} \mathsf{Diff}(A)^*$$

$$\widehat{\eta} \swarrow \overbrace{\widehat{\zeta}}^{\widehat{\zeta}}$$

$$\widehat{\mathsf{Diff}(A)^\circ}$$

• $\widehat{\theta}$ is an isomorphism of complete Hopf algebroids.

Idea: In some very favourable cases (e.g. $A = \Bbbk[X_1, \ldots, X_n]$):

- Diff(A) is a cocommutative Hopf algebroid with an admissible filtration and hence Diff(A)^{*} is a complete Hopf algebroid.
- If we endow $A \otimes A$ with the K-adic filtration, then the diagram

$$A \otimes A \xrightarrow{\theta} \text{Diff}(A)^*$$
$$\bigwedge_{\eta \searrow} \swarrow_{\zeta}$$
$$\text{Diff}(A)^\circ$$

is made of filtered ($A \otimes A$)-algebra morphisms and we may consider $\widehat{\sigma}(A) = \widehat{\theta} = D_{i}^{i} (G(A)^{*})^{*}$

$$\mathcal{J}(A) \xrightarrow{\widehat{\theta}} \mathsf{Diff}(A)^{*}$$

$$\widehat{\eta} \xrightarrow{\widehat{\zeta}} \mathsf{Diff}(A)^{\circ}$$

• $\widehat{\theta}$ is an isomorphism of complete Hopf algebroids.

Thank you