
Tannaka-Krĕın reconstruction and
coquasi-bialgebras with preantipode

Paolo Saracco

Université Libre de Bruxelles

SIC - Lille, 12 October 2018

Report on Coquasi-bialgebras with Preantipode and Rigid Monoidal Categories - arXiv:1611.06819



Glimpses from the past

Pontryagin-van Kampen Duality (1930s)
Any locally compact abelian group G can be recovered from its (group of)
one-dimensional unitary representations. Namely, there is a functorial
isomorphism G ∼= ̂̂G between G and its double dual.

Tannaka-Krĕın Duality (1940s)
Any compact group G can be recovered from its (monoidal) category of
finite-dimensional representations.

Saavedra Rivano, Deligne (1972-1990)
Any affine group scheme can be recovered from its category of
finite-dimensional representations. In other words, any commutative Hopf
algebra can be recovered from its category of finite-dimensional comodules.
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Recall: monoidal categories and functors
Monoidal category: C endowed with a tensor product ⊗ : C × C → C, a
unit I ∈ C and natural isomorphisms

aX ,Y ,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z )
lX : I⊗ X → X , rX : X ⊗ I→ X

that satisfy the Pentagon and the Triangle Axioms.

Monoidal functor: ω : C → C′ with an iso ϕ0 : I′ →ω (I) and a natural
iso ϕX ,Y : ω (X )⊗′ω (Y )→ω (X ⊗ Y ) in C′ such that
ω (lX )ϕI,X (ϕ0 ⊗′ω(X )) = l′ω(X), ω (rX )ϕX ,I (ω(X )⊗′ ϕ0) = r′ω(X)

ω(aX ,Y ,Z )ϕX⊗Y ,Z (ϕX ,Y ⊗′ω(Z )) = ϕX ,Y⊗Z (ω(X )⊗′ ϕY ,Z )a′ω(X),ω(Y ),ω(Z)

Comonoids and comodules: In a monoidal category C a comonoid is
C ∈ C with ∆ : C → C ⊗ C , ε : C → I such that

(∆⊗ C) ◦∆ = (C ⊗∆) ◦∆, (C ⊗ ε) ◦∆ = C = (ε⊗ C) ◦∆.
A (left) comodule over C is N ∈ C with δ : N → C ⊗ N such that

(∆⊗ C) ◦ δ = (C ⊗ δ) ◦ δ, N = (ε⊗ N) ◦ δ.
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Bialgebras, Hopf algebras
k a commutative ring. M the (monoidal) category of k-modules.
A k-(co)algebra is a (co)monoid in M.

Recall
A (co)algebra is a bialgebra if and only if its category of (co)modules is
monoidal and the forgetful functor to k-modules is a monoidal functor.
That is to say, it is a k-module B together with k-linear maps

k
u
// B

∆ //εoo B ⊗ B
m
oo

such that (B,∆, ε) is a coalgebra, (B,m, u) is an algebra and m, u are
coalgebra morphisms (equiv m, u are algebra morphisms).

Larson, Sweedler: Structure Theorem for Hopf modules (1967)
A bialgebra B is a Hopf algebra if and only if the free Hopf module functor
−⊗ B : M→MB

B is an equivalence of categories.
I.e., there exists S : B → B k-linear such that∑

a1S(a2) = (IdB ∗ S)(a) = ε(a)1 = (S ∗ IdB)(a) =
∑

S(a1)a2.
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Reconstruction theorem for Hopf algebras

Ulbrich’s Reconstruction Theorem [U] (1990)
Any (essentially small) rigid monoidal category C together with a monoidal
functor ω : C →Mf to finitely-generated and projective k-modules gives
rise to a k-Hopf algebra. In particular, every Hopf algebra over a field can
be recovered from its category of finite-dimensional comodules.

Corollary
A coalgebra over a field is a Hopf algebra if and only if its category of
finite-dimensional comodules is rigid monoidal with monoidal underlying
functor.

[U] Ulbrich, On Hopf algebras and rigid monoidal categories, Israel J. Math. 72 (1990).
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Coquasi-bialgebras

Definition (Majid (1991))
A coalgebra is a coquasi-bialgebra if and only if its category of comodules
is monoidal and the forgetful functor to k-modules is a (neutral)
quasi-monoidal functor (i.e. it preserves tensor product, unit and unit
constraints but it is not compatible with the associativity constraints).
In particular, it is a k-module B with k-linear maps

B ⊗ B ⊗ B ω // k
u
// B

∆ //εoo B ⊗ B
m
oo

such that (B,∆, ε) is a coalgebra, m, u are coalgebra morphisms, ω is
convolution invertible and

ω (C ⊗ C ⊗m) ∗ ω (m ⊗ C ⊗ C) = (ε⊗ ω) ∗ ω (C ⊗m ⊗ C) ∗ (ω ⊗ ε) ,
m (C ⊗m) ∗ ω = ω ∗m (m ⊗ C),

where (f ∗ g)(z) =
∑

f (z1)g(z2).
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Majid’s reconstruction, coquasi-Hopf algebras

Majid’s Reconstruction Theorem [M] (1991)
Any (essentially small) monoidal category C with a quasi-monoidal functor
ω : C →Mf to finitely-generated and projective k-modules gives rise to a
k-coquasi-bialgebra.

• In the same paper, Majid claims that translating rigidity will provide a
“good” candidate for the role of an antipode in the coquasi-case.

• A coquasi-Hopf algebra is a coquasi-bialgebra together with an
anti-coalgebra endomorphism s and α, β ∈ H∗ s.t.

∑
h1β(h2)s(h3) = β(h)1,

∑
s(h1)α(h2)h3 = α(h)1,∑

ω(h1 ⊗ β(h2)s(h3)α(h4)⊗ h5) = ε(h).

[M] Majid, Tannaka-Krĕın theorem for quasi-Hopf algebras and other results, Contemp. Math.
134, Amer. Math. Soc., Providence, RI (1992).
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Preantipodes

Definition (Ardizzoni, Pavarin [AP] (2012))
A preantipode for a coquasi-bialgebra B is a k-linear endomorphism S s.t.∑

S(h1)1h2 ⊗ S(h1)2 = 1⊗ S(h),
∑

S(h2)1 ⊗ h1S(h2)2 = S(h)⊗ 1,∑
ω(h1 ⊗ S(h2)⊗ h3) = ε(h).

Theorem (Structure Theorem for coquasi-Hopf bicomodules)
A coquasi-bialgebra B over a field admits a preantipode iff the free
coquasi-Hopf bicomodule functor −⊗ B : BM→ BMB

B is an equivalence.

Theorem (Schauenburg [S] (2002))
For a coquasi-bialgebra B over a field, the Structure Theorem holds iff the
category BMf of finite-dimensional B-comodules is rigid.

[AP] Ardizzoni, Pavarin, Preantipodes for Dual Quasi-Bialgebras, Israel J. Math. 192 (2012).

[S] Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004).
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Tannaka-Krĕın reconstruction

Naively, T-K reconstruction means to construct an object H in a suitable
category A once given a functor ω : C → A0 from a category C (with
some properties) to the subcategory A0 ⊆ A of dualizable objects.

Let C be an essentially small category with a functor ω : C →Mf .

The coalgebra structure
The functor Nat (ω,−⊗ω) : M→ Set is representable. Let H be a
representing object and let ϑ : Homk(H,−) ∼= Nat (ω,−⊗ω) be the
representing isomorphism. Set δ := ϑH(IdH) and represent it by �� .
Then H is a coalgebra with ∆ = ��and ε = r given by

X

��

��

H H X

=

X

����
H H X

and
X

X

=

X

��r
X

Key example: If k is a field and C = CMf , then H ∼= C .
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Monoidal categories and coquasi-bialgebras

Assume that (C,�, I, a, l, r) is monoidal and ω : C →Mf is a (strict)
quasi-monoidal functor, i.e. X � Y = X ⊗ Y and I = k.

The additional (coquasi-bialgebra) structure
The functors Nat(ωn,−⊗ωn) are represented by H⊗n. H becomes a
coquasi-bialgebra with multiplication m = 
	, unit u = r and
ω : H3 → k uniquely determined by

X⊗Y

��

H X⊗Y

=

X Y

�� ��


	
H X Y

,

k

��

H k

=
kr

H k

,

(X⊗Y )⊗Z

a

X⊗(Y⊗Z)

=

X Y Z

�� �� ��

ω

X Y Z

.
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Reconstruction for coquasi-bialgebras

Theorem (Majid [M])
Let C be an essentially small monoidal category and ω : C →Mf a
quasi-monoidal functor. There is a coquasi-bialgebra H s.t. ω factorizes
through a monoidal functor χ : C → HM followed by the forgetful functor

C χ //

ω   

HM

F{{
Mf

If H ′ is another one and G : C → H′M is a functor as above then there is a
unique morphism of coquasi-bialgebras ε : H → H ′ s.t.

C G
!!

χ

}}
HM

εM

// H′M

[M] Majid, Tannaka-Krĕın theorem for quasi-Hopf algebras and other results. Contemp. Math.
134 (1992).
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The rigid case
Assume that C is (right) rigid, i.e. for every X there is (X ?, evX , dbX ) with

(evX ⊗ X ) ◦ (X ⊗ dbX ) = IdX (X ? ⊗ evX ) ◦ (dbX ⊗ X ?) = IdX? ,

and that a choice (−)? of dual objects has been performed. Denote by
ω? : Cop →M the functor sending X to ω(X ?). Consider the maps

evω(X) := ω (evX ) = X X?
	 and dbω(X) := ω (dbX ) =
��

X? X
.

These induce a natural transformation
∇ : Nat(ω,−⊗ω)→ Nat(ω,−⊗ω)

given by

∇V (ξ)X =

X ��
ξX?


	
V X

,

which does not depend on the choice of the duals.
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Rigidity and preantipodes

In light of Yoneda’s Lemma

Nat
(
Nat(ω,−⊗ω),Nat(ω,−⊗ω)

)
∼= Nat(ω,H ⊗ω) ∼= Endk(H),

so that there exists a unique linear endomorphism S of H such that

ϑH(S)X =

X

��hS
H X

=

X ��
��


	
H X

= ∇H(δ)X .

Lemma
The endomorphism S above is a preantipode for H.
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The (weak) reconstruction theorems

Theorem (Reconstruction theorem for preantipodes)
Let C be an essentially small right rigid monoidal category together with a
quasi-monoidal functor ω : C →Mf . Then there exists a preantipode S
for the universal coquasi-bialgebra H of (C,ω).

For a coquasi-Hopf algebra H, the category HMf is rigid monoidal with
quasi-monoidal underlying functor. In fact, N? = Homk(N,k) = N∗ with

δN∗(f ) =
∑
i

s
(
(ei)−1

)
f
(
(ei)0

)
⊗ e i ,

dbN∗(1) =
∑
i

e i ⊗ α
(
(ei)−1

)
(ei)0, evN∗(n ⊗ f ) =

∑
β(n−1)f (n0).

If we have ω(X ?) ∼= ω(X )∗ then we say that ω is preserving duals.

Theorem (Reconstruction theorem for coquasi-Hopf algebras)
If ω : C →Mf preserves duals then H is a coquasi-Hopf algebra.
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The field case

Henceforth k is a field.

Lemma
Preantipodes are unique and coquasi-bialgebra morphisms preserve them.

Theorem (Reconstruction theorem for preantipodes)
Let C be an essentially small right rigid monoidal category together with a
quasi-monoidal functor ω : C →Mf . Then there exists a preantipode S
for the universal coquasi-bialgebra H of (C,ω). Furthermore, if B is
another coquasi-bialgebra with preantipode such that ω factorizes through
a monoidal functor G : C → BM, then the unique coquasi-bialgebra
morphism ε : H → B preserves the preantipodes.
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Consequences

Remark
For B a coquasi-bialgebra with preantipode, the category BMf of
finite-dimensional B-comodules is a rigid monoidal category and the
underlying functor to Mf is quasi-monoidal. The dual of an object V is
given by (V ∗ ⊗ B)coB.

Theorem
A coalgebra C is a coquasi-bialgebra with preantipode if and only if CMf

is rigid monoidal and the forgetful functor F is quasi-monoidal. It is a
coquasi-Hopf algebra if and only if in addition F preserves duals.

Remark
Every coquasi-Hopf algebra H with antipode (s, α, β) admits a
preantipode S := β ∗ s ∗ α. The converse is not true [S].

[S] P. Schauenburg, Hopf algebra extensions and monoidal categories. New directions in Hopf
algebras (2002).
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The Sweedler dual of a quasi-bialgebra with preantipode

A quasi-bialgebra A is a bialgebra where ∆ is coassociative only up to
conjugation by an invertible element Φ ∈ A⊗ A⊗ A. A preantipode for a
quasi-bialgebra is a linear endomorphism S such that∑

a1S(ba2) = ε(a)S(b) =
∑

S(a1b)a2,
∑

Φ1S(Φ2)Φ3 = 1.

Consider A◦ = {f ∈ A∗ | ker(f ) ⊇ I s.t. dimk(A/I) <∞}.

Proposition
The Sweedler dual A◦ of a quasi-bialgebra with preantipode A is a
coquasi-bialgebra with preantipode.

proof: The category MA is monoidal with quasi-monoidal underlying
functor and the full subcategory fMA is rigid with duals given by

M? := A⊗M∗
A+(A⊗M∗) .

fMA
∼= A◦Mf compatibly with the underlying functors.
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