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Pontryagin-van Kampen Duality (1930s)

Any locally compact abelian group G can be recovered from its (group of)
one-dimensional unitary representations. Namely, there is a functorial

isomorphism G =2 G between G and its double dual.

Tannaka-Krein Duality (1940s)

Any compact group G can be recovered from its (monoidal) category of
finite-dimensional representations.

Saavedra Rivano, Deligne (1972-1990)

Any affine group scheme can be recovered from its category of
finite-dimensional representations. In other words, any commutative Hopf
algebra can be recovered from its category of finite-dimensional comodules.
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Recall: monoidal categories and functors

Monoidal category: C endowed with a tensor product ® : C x C — C, a
unit I € C and natural isomorphisms

axyz: (X@Y)eZ > Xe(Y®Z)
I :I@X =X, tx: X=X
that satisfy the Pentagon and the Triangle Axioms.

Monoidal functor: w : C — C’ with an iso ¢, : I’ — w (I) and a natural
is0 pxy: w(X)® w(Y)— w(X®Y)inC such that

W (Ix) prx (o @ w(X)) = [/w(X)v W (tx) px1 (W(X) @ ¢o) = t:,u(X)
w(ax,yz)exey,z(Px,y ® W(Z)) = vx,yez(w(X) @ @v,Z)a'w(X),w(Y),w(Z)

Comonoids and comodules: In a monoidal category C a comonoid is
CeCwithA:C— C®C, e: C— 1T such that

(A® C)oA=(C®A)oA, (C®e)oA=C=(e®C)oA.
A (left) comodule over Cis N € C with § : N — C ® N such that
(AR C)od=(C®d)od, N= (@ N)od.
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Recall

A (co)algebra is a bialgebra if and only if its category of (co)modules is
monoidal and the forgetful functor to k-modules is a monoidal functor.

That is to say, it is a k-module B together with k-linear maps
€ A
k==B—B®B
such that (B, A,¢) is a coalgebra, (B, m, u) is an algebra and m, u are
coalgebra morphisms (equiv m, u are algebra morphisms).

Larson, Sweedler: Structure Theorem for Hopf modules (1967)

A bialgebra B is a Hopf algebra if and only if the free Hopf module functor
— ® B : 9 — ME is an equivalence of categories.

l.e., there exists S : B — B k-linear such that

Z a,5(a,) = (Idg x S)(a) = ¢(a)l = (S« 1dg)(a) = Z S(a1)a,.
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Reconstruction theorem for Hopf algebras

Ulbrich's Reconstruction Theorem [U] (1990)

Any (essentially small) rigid monoidal category C together with a monoidal
functor w : C — M, to finitely-generated and projective k-modules gives
rise to a k-Hopf algebra. In particular, every Hopf algebra over a field can
be recovered from its category of finite-dimensional comodules.

Corollary

A coalgebra over a field is a Hopf algebra if and only if its category of
finite-dimensional comodules is rigid monoidal with monoidal underlying
functor.

[U] Ulbrich, On Hopf algebras and rigid monoidal categories, Israel J. Math. 72 (1990).
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Coquasi-bialgebras

Definition (Majid (1991))

A coalgebra is a coquasi-bialgebra if and only if its category of comodules
is monoidal and the forgetful functor to k-modules is a (neutral)
quasi-monoidal functor (i.e. it preserves tensor product, unit and unit
constraints but it is not compatible with the associativity constraints).

In particular, it is a k-module B with k-linear maps
BoB®B—“>k<=—=B=—>B®B

such that (B, A, ¢) is a coalgebra, m, u are coalgebra morphisms, w is
convolution invertible and

w(CRCOM*xw(mMRCR(C)=(cuw)*w(Ceam®C)*(wre),
m(Ce@m)xw=w*xm(ma C),

where (f x g)(z) = >_ f(z1)g(z).

6/18
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Majid's reconstruction, coquasi-Hopf algebras

Majid's Reconstruction Theorem [M] (1991)

Any (essentially small) monoidal category C with a quasi-monoidal functor
w : C — M to finitely-generated and projective k-modules gives rise to a
k-coquasi-bialgebra.
e In the same paper, Majid claims that translating rigidity will provide a
“good” candidate for the role of an antipode in the coquasi-case.

e A coquasi-Hopf algebra is a coquasi-bialgebra together with an
anti-coalgebra endomorphism s and «, f € H* s.t.

> mB(h)s(hs) = B(M)1, Y s(h)a(h)hs = a(h)1,
> w(hy @ B(ho)s(hs)a(hs) ® hs) = £(h).

[M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results, Contemp. Math.
134, Amer. Math. Soc., Providence, RI (1992).
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Definition (Ardizzoni, Pavarin [AP] (2012))
A preantipode for a coquasi-bialgebra B is a k-linear endomorphism S s.t.
Zs(hl)th ® S(h1)2 = 1 ® S(h), Z 5(h2)1 ® h15(h2)2 = S(h) ® 17

Theorem (Structure Theorem for coquasi-Hopf bicomodules)

A coquasi-bialgebra B over a field admits a preantipode iff the free
coquasi-Hopf bicomodule functor — @ B : B9 — BIME is an equivalence.

Theorem (Schauenburg [S] (2002))

For a coquasi-bialgebra B over a field, the Structure Theorem holds iff the
category B9, of finite-dimensional B-comodules is rigid.

[AP] Ardizzoni, Pavarin, Preantipodes for Dual Quasi-Bialgebras, Israel J. Math. 192 (2012).

[S]  Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004).
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Tannaka-Krein reconstruction

Naively, T-K reconstruction means to construct an object H in a suitable
category A once given a functor w : C — A, from a category C (with
some properties) to the subcategory A, C A of dualizable objects.

Let C be an essentially small category with a functor w : C — ;.

The coalgebra structure

The functor Nat (w, — ® w) : 9 — Set is representable. Let H be a

representing object and let ¥ : Homy(H, —) = Nat (w, — ® w) be the
representing isomorphism. Set § := ¥,(ld) and represent it by 4 .
Then H is a coalgebra with A = ﬁ and e = ¢ given by

X
X X
X
J = and | =
X
H H X X
H H X

Key example: If k is a field and C = O, then H = C.

9/18
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Monoidal categories and coquasi-bialgebras

Assume that (C,®,1, a,1,t) is monoidal and w : C — Mi; is a (strict)
quasi-monoidal functor, ie. XY =X® Y and I =k.

The additional (coquasi-bialgebra) structure

The functors Nat(w”, — ® w") are represented by H®". H becomes a
coquasi-bialgebra with multiplication m= \_J , unit u= ¢ and
w : H* — k uniquely determined by

(XQY)®
X®Y k k
= =19,
HX®Y H k H k
R(Y®Z)

10/18



Reconstruction for coquasi-bialgebras

Theorem (Majid [M])

Let C be an essentially small monoidal category and w : C — M, a
quasi-monoidal functor. There is a coquasi-bialgebra H s.t. w factorizes
through a monoidal functor x : C — "9 followed by the forgetful functor

C—>—=Hm

I

My

[M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results. Contemp. Math.
134 (1992).
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Reconstruction for coquasi-bialgebras

Theorem (Majid [M])

Let C be an essentially small monoidal category and w : C — M, a
quasi-monoidal functor. There is a coquasi-bialgebra H s.t. w factorizes
through a monoidal functor x : C — "9 followed by the forgetful functor

C—>—=Hm

I

My

If H' is another one and G : C — "' is a functor as above then there is a
unique morphism of coquasi—bialgebras e:H— H s.t.

M —— '

m

[M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results. Contemp. Math.
134 (1992).
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The rigid case

Assume that C is (right) rigid, i.e. for every X there is (X*,evy,dbx) with
(eVX®X)O(X®dbx):|dX (X*®eVX)O(dbx®X*):|dx*,

and that a choice (—)* of dual objects has been performed. Denote by
w* : C°P — M the functor sending X to w(X*). Consider the maps

eVapy = W (evx) = | ) and dbug = w(dbx) = [ )

x* x
These induce a natural transformation
V : Nat(w, — ® w) — Nat(w, — @ w)

given by pe

Vo(@x = L=

(

v X
which does not depend on the choice of the duals.



Rigidity and preantipodes

In light of Yoneda's Lemma
Nat(Nat(w, ~ ® w), Nat(w, — ® w)) >~ Nat(w, H @ w) 2 End,(H),

so that there exists a unique linear endomorphism S of H such that

94(S)x = @ﬁ - ( — Vu(6)x.

H X
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Rigidity and preantipodes

In light of Yoneda's Lemma
Nat(Nat(w, ~ ® w), Nat(w, — ® w)) >~ Nat(w, H @ w) 2 End,(H),

so that there exists a unique linear endomorphism S of H such that

94(S)x = @ﬁ - ( — Vu(6)x.

Lemma
The endomorphism S above is a preantipode for H.

13/18



The (weak) reconstruction theorems

Theorem (Reconstruction theorem for preantipodes)

Let C be an essentially small right rigid monoidal category together with a
quasi-monoidal functor w : C — M. Then there exists a preantipode S
for the universal coquasi-bialgebra H of (C, w).
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Theorem (Reconstruction theorem for preantipodes)

Let C be an essentially small right rigid monoidal category together with a
quasi-monoidal functor w : C — M. Then there exists a preantipode S
for the universal coquasi-bialgebra H of (C, w).

For a coquasi-Hopf algebra H, the category "M is rigid monoidal with
quasi-monoidal underlying functor. In fact, N* = Homy (N, k) = N* with

on(F) =Y s((e)-1)f((e)o) @ €,

i

dby- (1 Ze@a )(e)o, evu-(n®@f) = B(n-

If we have w(X*) = w(X)" then we say that w is preserving duals.

Theorem (Reconstruction theorem for coquasi-Hopf algebras)

If w: C — M, preserves duals then H is a coquasi-Hopf algebra.

14 /18
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The field case

Henceforth k is a field.

Lemma
Preantipodes are unique and coquasi-bialgebra morphisms preserve them.

Theorem (Reconstruction theorem for preantipodes)

Let C be an essentially small right rigid monoidal category together with a
quasi-monoidal functor w : C — M. Then there exists a preantipode S
for the universal coquasi-bialgebra H of (C, w). Furthermore, if B is
another coquasi-bialgebra with preantipode such that w factorizes through
a monoidal functor G : C — BN, then the unique coquasi-bialgebra
morphism € : H — B preserves the preantipodes.
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Consequences
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Remark

For B a coquasi-bialgebra with preantipode, the category 91, of
finite-dimensional B-comodules is a rigid monoidal category and the
underlying functor to 9 is quasi-monoidal. The dual of an object V is
given by (V* ® B)«®.

Theorem

A coalgebra C is a coquasi-bialgebra with preantipode if and only if <O,
is rigid monoidal and the forgetful functor F is quasi-monoidal. It is a
coquasi-Hopf algebra if and only if in addition F preserves duals.

Remark

Every coquasi-Hopf algebra H with antipode (s, «, 8) admits a
preantipode S := [ * s % a.. The converse is not true [S].

[S] P. Schauenburg, Hopf algebra extensions and monoidal categories. New directions in Hopf
algebras (2002).
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coquasi-bialgebra with preantipode.

proof: The category 91, is monoidal with quasi-monoidal underlying
functor and the full subcategory (91, is rigid with duals given by

A M
T A (AR M)

* .

(M, =AM, compatibly with the underlying functors.
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