

Tannaka-Kreĭn reconstruction and coquasi-bialgebras with preantipode

Paolo Saracco

Université Libre de Bruxelles

SIC - Lille, 12 October 2018

Report on Coquasi-bialgebras with Preantipode and Rigid Monoidal Categories - arXiv:1611.06819

Any locally compact abelian group G can be recovered from its (group of) one-dimensional unitary representations. Namely, there is a functorial isomorphism $G \cong \widehat{\hat{G}}$ between G and its double dual.

Tannaka-Kreĭn Duality (1940s)

Any compact group *G* can be recovered from its (monoidal) category of finite-dimensional representations.

Saavedra Rivano, Deligne (1972-1990)

Any locally compact abelian group G can be recovered from its (group of) one-dimensional unitary representations. Namely, there is a functorial isomorphism $G \cong \widehat{\hat{G}}$ between G and its double dual.

Tannaka-Krein Duality (1940s)

Any compact group G can be recovered from its (monoidal) category of finite-dimensional representations.

Saavedra Rivano, Deligne (1972-1990)

Any locally compact abelian group G can be recovered from its (group of) one-dimensional unitary representations. Namely, there is a functorial isomorphism $G \cong \widehat{\hat{G}}$ between G and its double dual.

Tannaka-Krein Duality (1940s)

Any compact group G can be recovered from its (monoidal) category of finite-dimensional representations.

Saavedra Rivano, Deligne (1972-1990)

Any locally compact abelian group G can be recovered from its (group of) one-dimensional unitary representations. Namely, there is a functorial isomorphism $G \cong \widehat{\hat{G}}$ between G and its double dual.

Tannaka-Krein Duality (1940s)

Any compact group G can be recovered from its (monoidal) category of finite-dimensional representations.

Saavedra Rivano, Deligne (1972-1990)

Recall: monoidal categories and functors

Monoidal category: C endowed with a tensor product $\otimes : C \times C \to C$, a unit $\mathbb{I} \in C$ and natural isomorphisms

 $\mathfrak{a}_{X,Y,Z}: (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$ $\mathfrak{l}_X: \mathbb{I} \otimes X \to X, \quad \mathfrak{r}_X: X \otimes \mathbb{I} \to X$

that satisfy the Pentagon and the Triangle Axioms.

Monoidal functor: $\boldsymbol{\omega} : \mathcal{C} \to \mathcal{C}'$ with an iso $\varphi_0 : \mathbb{I}' \to \boldsymbol{\omega}(\mathbb{I})$ and a natural iso $\varphi_{X,Y} : \boldsymbol{\omega}(X) \otimes' \boldsymbol{\omega}(Y) \to \boldsymbol{\omega}(X \otimes Y)$ in \mathcal{C}' such that

$$\begin{split} & \omega\left(\mathfrak{l}_{X}\right)\varphi_{\mathbb{I},X}\left(\varphi_{0}\otimes'\omega(X)\right)=\mathfrak{l}'_{\omega(X)}, \quad \omega\left(\mathfrak{r}_{X}\right)\varphi_{X,\mathbb{I}}\left(\omega(X)\otimes'\varphi_{0}\right)=\mathfrak{r}'_{\omega(X)}\\ & \omega(\mathfrak{a}_{X,Y,Z})\varphi_{X\otimes Y,Z}(\varphi_{X,Y}\otimes'\omega(Z))=\varphi_{X,Y\otimes Z}(\omega(X)\otimes'\varphi_{Y,Z})\mathfrak{a}'_{\omega(X),\omega(Y),\omega(Z)} \end{split}$$

Comonoids and comodules: In a monoidal category C a comonoid is $C \in C$ with $\Delta : C \to C \otimes C$, $\varepsilon : C \to \mathbb{I}$ such that

 $(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \qquad (C \otimes \varepsilon) \circ \Delta = C = (\varepsilon \otimes C) \circ \Delta.$

A (left) comodule over C is $N \in C$ with $\delta : N \to C \otimes N$ such that

 $(\Delta \otimes C) \circ \delta = (C \otimes \delta) \circ \delta, \qquad N = (\varepsilon \otimes N) \circ \delta.$

Recall: monoidal categories and functors

Monoidal category: C endowed with a tensor product $\otimes : C \times C \to C$, a unit $\mathbb{I} \in C$ and natural isomorphisms

 $\mathfrak{a}_{X,Y,Z}: (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$ $\mathfrak{l}_X: \mathbb{I} \otimes X \to X, \quad \mathfrak{r}_X: X \otimes \mathbb{I} \to X$

that satisfy the Pentagon and the Triangle Axioms.

Monoidal functor: $\boldsymbol{\omega} : \mathcal{C} \to \mathcal{C}'$ with an iso $\varphi_0 : \mathbb{I}' \to \boldsymbol{\omega}(\mathbb{I})$ and a natural iso $\varphi_{X,Y} : \boldsymbol{\omega}(X) \otimes' \boldsymbol{\omega}(Y) \to \boldsymbol{\omega}(X \otimes Y)$ in \mathcal{C}' such that

$$\begin{split} & \boldsymbol{\omega}\left(\mathfrak{l}_{X}\right)\varphi_{\mathbb{I},X}\left(\varphi_{0}\otimes'\boldsymbol{\omega}(X)\right)=\mathfrak{l}'_{\boldsymbol{\omega}(X)}, \quad \boldsymbol{\omega}\left(\mathfrak{r}_{X}\right)\varphi_{X,\mathbb{I}}\left(\boldsymbol{\omega}(X)\otimes'\varphi_{0}\right)=\mathfrak{r}'_{\boldsymbol{\omega}(X)} \\ & \boldsymbol{\omega}(\mathfrak{a}_{X,Y,Z})\varphi_{X\otimes Y,Z}(\varphi_{X,Y}\otimes'\boldsymbol{\omega}(Z))=\varphi_{X,Y\otimes Z}(\boldsymbol{\omega}(X)\otimes'\varphi_{Y,Z})\mathfrak{a}'_{\boldsymbol{\omega}(X),\boldsymbol{\omega}(Y),\boldsymbol{\omega}(Z)} \end{split}$$

Comonoids and comodules: In a monoidal category C a comonoid is $C \in C$ with $\Delta : C \to C \otimes C$, $\varepsilon : C \to \mathbb{I}$ such that

 $(\Delta \otimes C) \circ \Delta = (C \otimes \Delta) \circ \Delta, \qquad (C \otimes \varepsilon) \circ \Delta = C = (\varepsilon \otimes C) \circ \Delta.$

A (left) comodule over C is $N \in C$ with $\delta : N \to C \otimes N$ such that

 $(\Delta \otimes C) \circ \delta = (C \otimes \delta) \circ \delta, \qquad N = (\varepsilon \otimes N) \circ \delta.$

Recall: monoidal categories and functors

Monoidal category: C endowed with a tensor product $\otimes : C \times C \to C$, a unit $\mathbb{I} \in C$ and natural isomorphisms

 $\mathfrak{a}_{X,Y,Z}: (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$ $\mathfrak{l}_X: \mathbb{I} \otimes X \to X, \quad \mathfrak{r}_X: X \otimes \mathbb{I} \to X$

that satisfy the Pentagon and the Triangle Axioms.

Monoidal functor: $\omega : \mathcal{C} \to \mathcal{C}'$ with an iso $\varphi_0 : \mathbb{I}' \to \omega(\mathbb{I})$ and a natural iso $\varphi_{X,Y} : \omega(X) \otimes' \omega(Y) \to \omega(X \otimes Y)$ in \mathcal{C}' such that

$$\begin{split} & \boldsymbol{\omega}\left(\mathfrak{l}_{X}\right)\varphi_{\mathbb{I},X}\left(\varphi_{0}\otimes'\boldsymbol{\omega}(X)\right)=\mathfrak{l}'_{\boldsymbol{\omega}(X)}, \quad \boldsymbol{\omega}\left(\mathfrak{r}_{X}\right)\varphi_{X,\mathbb{I}}\left(\boldsymbol{\omega}(X)\otimes'\varphi_{0}\right)=\mathfrak{r}'_{\boldsymbol{\omega}(X)} \\ & \boldsymbol{\omega}(\mathfrak{a}_{X,Y,Z})\varphi_{X\otimes Y,Z}(\varphi_{X,Y}\otimes'\boldsymbol{\omega}(Z))=\varphi_{X,Y\otimes Z}(\boldsymbol{\omega}(X)\otimes'\varphi_{Y,Z})\mathfrak{a}'_{\boldsymbol{\omega}(X),\boldsymbol{\omega}(Y),\boldsymbol{\omega}(Z)} \end{split}$$

Comonoids and comodules: In a monoidal category C a comonoid is $C \in C$ with $\Delta : C \to C \otimes C$, $\varepsilon : C \to \mathbb{I}$ such that

 $(\Delta\otimes C)\circ\Delta=(C\otimes\Delta)\circ\Delta,\qquad (C\otimes\varepsilon)\circ\Delta=C=(\varepsilon\otimes C)\circ\Delta.$

A (left) comodule over C is $N \in C$ with $\delta : N \to C \otimes N$ such that

$$(\Delta \otimes C) \circ \delta = (C \otimes \delta) \circ \delta, \qquad N = (\varepsilon \otimes N) \circ \delta.$$

\Bbbk a commutative ring. ${\mathfrak M}$ the (monoidal) category of \Bbbk -modules. A \Bbbk -(co)algebra is a (co)monoid in ${\mathfrak M}.$

Recall

A (co)algebra is a bialgebra if and only if its category of (co)modules is monoidal and the forgetful functor to \Bbbk -modules is a monoidal functor.

That is to say, it is a k-module B together with k-linear maps

$$\mathbb{k} \xrightarrow[u]{\varepsilon} B \xrightarrow[m]{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, (B, m, u) is an algebra and m, u are coalgebra morphisms (equiv m, u are algebra morphisms).

Larson, Sweedler: Structure Theorem for Hopf modules (1967)

A bialgebra *B* is a Hopf algebra if and only if the free Hopf module functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is an equivalence of categories.

I.e., there exists $S: B \rightarrow B$ k-linear such that

$$\sum a_1 S(a_2) = (\mathsf{Id}_B * S)(a) = \varepsilon(a) 1 = (S * \mathsf{Id}_B)(a) = \sum S(a_1)a_2.$$

 \Bbbk a commutative ring. $\mathfrak M$ the (monoidal) category of \Bbbk -modules. A \Bbbk -(co)algebra is a (co)monoid in $\mathfrak M.$

Recall

A (co)algebra is a bialgebra if and only if its category of (co)modules is monoidal and the forgetful functor to \Bbbk -modules is a monoidal functor.

That is to say, it is a k-module B together with k-linear maps

$$\mathbb{k} \xrightarrow[u]{\varepsilon} B \xrightarrow[m]{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, (B, m, u) is an algebra and m, u are coalgebra morphisms (equiv m, u are algebra morphisms).

Larson, Sweedler: Structure Theorem for Hopf modules (1967)

A bialgebra *B* is a Hopf algebra if and only if the free Hopf module functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is an equivalence of categories.

I.e., there exists $S: B \rightarrow B$ k-linear such that

$$\sum a_1 S(a_2) = (\mathsf{Id}_B * S)(a) = \varepsilon(a) 1 = (S * \mathsf{Id}_B)(a) = \sum S(a_1)a_2.$$

 \Bbbk a commutative ring. $\mathfrak M$ the (monoidal) category of \Bbbk -modules. A \Bbbk -(co)algebra is a (co)monoid in $\mathfrak M.$

Recall

A (co)algebra is a bialgebra if and only if its category of (co)modules is monoidal and the forgetful functor to \Bbbk -modules is a monoidal functor.

That is to say, it is a \Bbbk -module B together with \Bbbk -linear maps

$$\Bbbk \xrightarrow[u]{\varepsilon} B \xrightarrow[m]{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, (B, m, u) is an algebra and m, u are coalgebra morphisms (equiv m, u are algebra morphisms).

Larson, Sweedler: Structure Theorem for Hopf modules (1967) A bialgebra *B* is a Hopf algebra if and only if the free Hopf module functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is an equivalence of categories. I.e., there exists $S: B \to B$ k-linear such that $\sum a S(a) = (Id + S)(a) = c(a)1 = (S + Id)(a) = \sum S(a)a$

 \Bbbk a commutative ring. $\mathfrak M$ the (monoidal) category of \Bbbk -modules. A \Bbbk -(co)algebra is a (co)monoid in $\mathfrak M.$

Recall

A (co)algebra is a bialgebra if and only if its category of (co)modules is monoidal and the forgetful functor to \Bbbk -modules is a monoidal functor.

That is to say, it is a \Bbbk -module B together with \Bbbk -linear maps

$$\Bbbk \xrightarrow[u]{\varepsilon} B \xrightarrow[m]{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, (B, m, u) is an algebra and m, u are coalgebra morphisms (equiv m, u are algebra morphisms).

Larson, Sweedler: Structure Theorem for Hopf modules (1967) A bialgebra *B* is a Hopf algebra if and only if the free Hopf module functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is an equivalence of categories. I.e., there exists $S: B \to B$ k-linear such that $\sum a_1 S(a_2) = (\operatorname{Id}_B * S)(a) = \varepsilon(a) 1 = (S * \operatorname{Id}_B)(a) = \sum S(a_1)a_2.$

 \Bbbk a commutative ring. $\mathfrak M$ the (monoidal) category of \Bbbk -modules. A \Bbbk -(co)algebra is a (co)monoid in $\mathfrak M.$

Recall

A (co)algebra is a bialgebra if and only if its category of (co)modules is monoidal and the forgetful functor to \Bbbk -modules is a monoidal functor.

That is to say, it is a \Bbbk -module B together with \Bbbk -linear maps

$$\Bbbk \xrightarrow[u]{\varepsilon} B \xrightarrow[m]{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, (B, m, u) is an algebra and m, u are coalgebra morphisms (equiv m, u are algebra morphisms).

A bialgebra *B* is a Hopf algebra if and only if the free Hopf module functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is an equivalence of categories.

Larson, Sweedler: Structure Theorem for Hopf modules (1967)

I.e., there exists S:B
ightarrow B \Bbbk -linear such that

$$\sum a_1 S(a_2) = (\mathsf{Id}_B * S)(a) = \varepsilon(a) 1 = (S * \mathsf{Id}_B)(a) = \sum S(a_1)a_2.$$

Ulbrich's Reconstruction Theorem [U] (1990)

Any (essentially small) rigid monoidal category \mathcal{C} together with a monoidal functor $\boldsymbol{\omega}: \mathcal{C} \to \mathfrak{M}_f$ to finitely-generated and projective k-modules gives rise to a k-Hopf algebra. In particular, every Hopf algebra over a field can be recovered from its category of finite-dimensional comodules.

Corollary

A coalgebra over a field is a Hopf algebra if and only if its category of finite-dimensional comodules is rigid monoidal with monoidal underlying functor.

[U] Ulbrich, On Hopf algebras and rigid monoidal categories, Israel J. Math. 72 (1990).

Ulbrich's Reconstruction Theorem [U] (1990)

Any (essentially small) rigid monoidal category $\mathcal C$ together with a monoidal functor $\boldsymbol{\omega}:\mathcal C\to\mathfrak M_f$ to finitely-generated and projective k-modules gives rise to a k-Hopf algebra. In particular, every Hopf algebra over a field can be recovered from its category of finite-dimensional comodules.

Corollary

A coalgebra over a field is a Hopf algebra if and only if its category of finite-dimensional comodules is rigid monoidal with monoidal underlying functor.

[U] Ulbrich, On Hopf algebras and rigid monoidal categories, Israel J. Math. 72 (1990).

Ulbrich's Reconstruction Theorem [U] (1990)

Any (essentially small) rigid monoidal category $\mathcal C$ together with a monoidal functor $\boldsymbol{\omega}:\mathcal C\to\mathfrak M_f$ to finitely-generated and projective k-modules gives rise to a k-Hopf algebra. In particular, every Hopf algebra over a field can be recovered from its category of finite-dimensional comodules.

Corollary

A coalgebra over a field is a Hopf algebra if and only if its category of finite-dimensional comodules is rigid monoidal with monoidal underlying functor.

A coalgebra is a coquasi-bialgebra if and only if its category of comodules is monoidal and the forgetful functor to k-modules is a (neutral) quasi-monoidal functor (i.e. it preserves tensor product, unit and unit constraints but it is not compatible with the associativity constraints).

In particular, it is a k-module B with k-linear maps

$$B\otimes B\otimes B \xrightarrow{\ \omega \ } \Bbbk \xrightarrow{\ \varepsilon \ } B \xrightarrow{\ \Delta \ } B\otimes B$$

such that (B, Δ, ε) is a coalgebra, m, u are coalgebra morphisms, ω is convolution invertible and

$$\omega (C \otimes C \otimes m) * \omega (m \otimes C \otimes C) = (\varepsilon \otimes \omega) * \omega (C \otimes m \otimes C) * (\omega \otimes \varepsilon),$$

$$m (C \otimes m) * \omega = \omega * m (m \otimes C),$$

A coalgebra is a coquasi-bialgebra if and only if its category of comodules is monoidal and the forgetful functor to \Bbbk -modules is a (neutral) quasi-monoidal functor (i.e. it preserves tensor product, unit and unit constraints but it is not compatible with the associativity constraints).

In particular, it is a k-module B with k-linear maps

$$B\otimes B\otimes B \xrightarrow{\omega} \Bbbk \xrightarrow{\varepsilon} B \xrightarrow{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, m, u are coalgebra morphisms, ω is convolution invertible and

 $\omega (C \otimes C \otimes m) * \omega (m \otimes C \otimes C) = (\varepsilon \otimes \omega) * \omega (C \otimes m \otimes C) * (\omega \otimes \varepsilon),$ $m (C \otimes m) * \omega = \omega * m (m \otimes C),$

A coalgebra is a coquasi-bialgebra if and only if its category of comodules is monoidal and the forgetful functor to \Bbbk -modules is a (neutral) quasi-monoidal functor (i.e. it preserves tensor product, unit and unit constraints but it is not compatible with the associativity constraints).

In particular, it is a k-module B with k-linear maps

$$B\otimes B\otimes B \xrightarrow{\omega} \Bbbk \xrightarrow{\varepsilon} B \xrightarrow{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, m, u are coalgebra morphisms, ω is convolution invertible and

 $\omega (C \otimes C \otimes m) * \omega (m \otimes C \otimes C) = (\varepsilon \otimes \omega) * \omega (C \otimes m \otimes C) * (\omega \otimes \varepsilon),$ $m (C \otimes m) * \omega = \omega * m (m \otimes C),$

A coalgebra is a coquasi-bialgebra if and only if its category of comodules is monoidal and the forgetful functor to \Bbbk -modules is a (neutral) quasi-monoidal functor (i.e. it preserves tensor product, unit and unit constraints but it is not compatible with the associativity constraints).

In particular, it is a k-module B with k-linear maps

$$B \otimes B \otimes B \xrightarrow{\omega} \Bbbk \xleftarrow{\varepsilon} B \xrightarrow{\Delta} B \otimes B$$

such that (B, Δ, ε) is a coalgebra, m, u are coalgebra morphisms, ω is convolution invertible and

$$\begin{split} \omega \left(C \otimes C \otimes m \right) * \omega \left(m \otimes C \otimes C \right) &= \left(\varepsilon \otimes \omega \right) * \omega \left(C \otimes m \otimes C \right) * \left(\omega \otimes \varepsilon \right), \\ m \left(C \otimes m \right) * \omega &= \omega * m \left(m \otimes C \right), \end{split}$$

Majid's Reconstruction Theorem [M] (1991)

Any (essentially small) monoidal category C with a *quasi*-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$ to finitely-generated and projective \Bbbk -modules gives rise to a \Bbbk -coquasi-bialgebra.

- In the same paper, Majid claims that translating rigidity will provide a "good" candidate for the role of an antipode in the coquasi-case.
- A coquasi-Hopf algebra is a coquasi-bialgebra together with an anti-coalgebra endomorphism s and α, β ∈ H* s.t.

$$\sum h_1\beta(h_2)s(h_3) = \beta(h)1, \quad \sum s(h_1)lpha(h_2)h_3 = lpha(h)1,$$

 $\sum \omega(h_1 \otimes \beta(h_2)s(h_3)lpha(h_4) \otimes h_5) = \varepsilon(h).$

[[]M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results, Contemp. Math. 134, Amer. Math. Soc., Providence, RI (1992).

Majid's Reconstruction Theorem [M] (1991)

Any (essentially small) monoidal category C with a *quasi*-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$ to finitely-generated and projective \Bbbk -modules gives rise to a \Bbbk -coquasi-bialgebra.

- In the same paper, Majid claims that translating rigidity will provide a "good" candidate for the role of an antipode in the coquasi-case.
- A coquasi-Hopf algebra is a coquasi-bialgebra together with an anti-coalgebra endomorphism s and α, β ∈ H* s.t.

$$\sum h_1\beta(h_2)s(h_3) = \beta(h)1, \quad \sum s(h_1)lpha(h_2)h_3 = lpha(h)1,$$

 $\sum \omega(h_1 \otimes \beta(h_2)s(h_3)lpha(h_4) \otimes h_5) = \varepsilon(h).$

[[]M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results, Contemp. Math. 134, Amer. Math. Soc., Providence, RI (1992).

Majid's Reconstruction Theorem [M] (1991)

Any (essentially small) monoidal category C with a *quasi*-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$ to finitely-generated and projective \Bbbk -modules gives rise to a \Bbbk -coquasi-bialgebra.

- In the same paper, Majid claims that translating rigidity will provide a "good" candidate for the role of an antipode in the coquasi-case.
- A coquasi-Hopf algebra is a coquasi-bialgebra together with an anti-coalgebra endomorphism s and α, β ∈ H* s.t.

$$\sum h_1\beta(h_2)s(h_3) = \beta(h)1, \quad \sum s(h_1)lpha(h_2)h_3 = lpha(h)1,$$

 $\sum \omega(h_1 \otimes \beta(h_2)s(h_3)lpha(h_4) \otimes h_5) = \varepsilon(h).$

 [[]M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results, Contemp. Math. 134, Amer. Math. Soc., Providence, RI (1992).

Preantipodes

Definition (Ardizzoni, Pavarin [AP] (2012))

A preantipode for a coquasi-bialgebra B is a k-linear endomorphism S s.t.

$$\sum S(h_1)_1 h_2 \otimes S(h_1)_2 = 1 \otimes S(h), \qquad \sum S(h_2)_1 \otimes h_1 S(h_2)_2 = S(h) \otimes 1,$$

 $\sum \omega(h_1 \otimes S(h_2) \otimes h_3) = \varepsilon(h).$

Theorem (Structure Theorem for coquasi-Hopf bicomodules)

A coquasi-bialgebra B over a field admits a preantipode iff the free coquasi-Hopf bicomodule functor $-\otimes B : {}^{B}\mathfrak{M} \to {}^{B}\mathfrak{M}_{B}^{B}$ is an equivalence.

Theorem (Schauenburg [S] (2002))

For a coquasi-bialgebra B over a field, the Structure Theorem holds iff the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional B-comodules is rigid.

[AP] Ardizzoni, Pavarin, Preantipodes for Dual Quasi-Bialgebras, Israel J. Math. 192 (2012).

[S] Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004).

Preantipodes

Definition (Ardizzoni, Pavarin [AP] (2012))

A preantipode for a coquasi-bialgebra B is a k-linear endomorphism S s.t.

$$\sum S(h_1)_1 h_2 \otimes S(h_1)_2 = 1 \otimes S(h), \qquad \sum S(h_2)_1 \otimes h_1 S(h_2)_2 = S(h) \otimes 1,$$

 $\sum \omega(h_1 \otimes S(h_2) \otimes h_3) = \varepsilon(h).$

Theorem (Structure Theorem for coquasi-Hopf bicomodules)

A coquasi-bialgebra B over a field admits a preantipode iff the free coquasi-Hopf bicomodule functor $-\otimes B : {}^{B}\mathfrak{M} \to {}^{B}\mathfrak{M}_{B}^{B}$ is an equivalence.

Theorem (Schauenburg [S] (2002))

For a coquasi-bialgebra B over a field, the Structure Theorem holds iff the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional B-comodules is rigid.

[AP] Ardizzoni, Pavarin, Preantipodes for Dual Quasi-Bialgebras, Israel J. Math. 192 (2012).

[S] Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004).

Definition (Ardizzoni, Pavarin [AP] (2012))

A preantipode for a coquasi-bialgebra B is a k-linear endomorphism S s.t.

$$\sum S(h_1)_1 h_2 \otimes S(h_1)_2 = 1 \otimes S(h), \qquad \sum S(h_2)_1 \otimes h_1 S(h_2)_2 = S(h) \otimes 1,$$

 $\sum \omega(h_1 \otimes S(h_2) \otimes h_3) = \varepsilon(h).$

Theorem (Structure Theorem for coquasi-Hopf bicomodules)

A coquasi-bialgebra B over a field admits a preantipode iff the free coquasi-Hopf bicomodule functor $-\otimes B : {}^{B}\mathfrak{M} \to {}^{B}\mathfrak{M}_{B}^{B}$ is an equivalence.

Theorem (Schauenburg [S] (2002))

For a coquasi-bialgebra B over a field, the Structure Theorem holds iff the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional B-comodules is rigid.

[AP] Ardizzoni, Pavarin, Preantipodes for Dual Quasi-Bialgebras, Israel J. Math. 192 (2012).

[S] Schauenburg, Two characterizations of finite quasi-Hopf algebras. J. Algebra 273 (2004).

Let \mathcal{C} be an essentially small category with a functor $\boldsymbol{\omega}: \mathcal{C} \to \mathfrak{M}_{f}$.

The coalgebra structure

The functor Nat $(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega}) : \mathfrak{M} \to \mathsf{Set}$ is representable. Let H be a representing object and let $\vartheta : \mathsf{Hom}_{\Bbbk}(H, -) \cong \mathsf{Nat}(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega})$ be the representing isomorphism. Set $\delta := \vartheta_H(\mathsf{Id}_H)$ and represent it by \frown . Then H is a coalgebra with $\Delta = \bigcirc$ and $\varepsilon = \bullet$ given by

Let \mathcal{C} be an essentially small category with a functor $\boldsymbol{\omega}:\mathcal{C}\to\mathfrak{M}_{f}.$

The coalgebra structure

The functor Nat $(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega}) : \mathfrak{M} \to \mathsf{Set}$ is representable. Let H be a representing object and let $\vartheta : \mathsf{Hom}_{\Bbbk}(H, -) \cong \mathsf{Nat}(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega})$ be the representing isomorphism. Set $\delta := \vartheta_H(\mathsf{Id}_H)$ and represent it by \checkmark . Then H is a coalgebra with $\Delta = \checkmark$ and $\varepsilon = \bullet$ given by

Let $\mathcal C$ be an essentially small category with a functor $\boldsymbol \omega:\mathcal C\to\mathfrak M_f.$

The coalgebra structure

The functor Nat $(\boldsymbol{\omega}, - \otimes \boldsymbol{\omega}) : \mathfrak{M} \to \mathsf{Set}$ is representable. Let H be a representing object and let $\vartheta : \mathsf{Hom}_{\Bbbk}(H, -) \cong \mathsf{Nat}(\boldsymbol{\omega}, - \otimes \boldsymbol{\omega})$ be the representing isomorphism. Set $\delta := \vartheta_H(\mathsf{Id}_H)$ and represent it by \frown . Then H is a coalgebra with $\Delta = \frown$ and $\varepsilon = \bullet$ given by

Let $\mathcal C$ be an essentially small category with a functor $\omega:\mathcal C\to\mathfrak M_f.$

The coalgebra structure

The functor Nat $(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega}) : \mathfrak{M} \to \mathsf{Set}$ is representable. Let H be a representing object and let $\vartheta : \mathsf{Hom}_{\Bbbk}(H, -) \cong \mathsf{Nat}(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega})$ be the representing isomorphism. Set $\delta := \vartheta_H(\mathsf{Id}_H)$ and represent it by \frown . Then H is a coalgebra with $\Delta = \bigcirc$ and $\varepsilon = \blacklozenge$ given by

Let $\mathcal C$ be an essentially small category with a functor $\omega:\mathcal C\to\mathfrak M_f.$

The coalgebra structure

The functor Nat $(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega}) : \mathfrak{M} \to \mathsf{Set}$ is representable. Let H be a representing object and let $\vartheta : \mathsf{Hom}_{\Bbbk}(H, -) \cong \mathsf{Nat}(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega})$ be the representing isomorphism. Set $\delta := \vartheta_H(\mathsf{Id}_H)$ and represent it by \checkmark . Then H is a coalgebra with $\Delta = \checkmark$ and $\varepsilon = *$ given by

Let $\mathcal C$ be an essentially small category with a functor $\boldsymbol \omega:\mathcal C\to\mathfrak M_f.$

The coalgebra structure

The functor Nat $(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega}) : \mathfrak{M} \to \mathsf{Set}$ is representable. Let H be a representing object and let $\vartheta : \mathsf{Hom}_{\Bbbk}(H, -) \cong \mathsf{Nat}(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega})$ be the representing isomorphism. Set $\delta := \vartheta_H(\mathsf{Id}_H)$ and represent it by \checkmark . Then H is a coalgebra with $\Delta = \checkmark$ and $\varepsilon = \checkmark$ given by

Let $\mathcal C$ be an essentially small category with a functor $\boldsymbol \omega:\mathcal C\to\mathfrak M_f.$

The coalgebra structure

The functor Nat $(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega}) : \mathfrak{M} \to \mathsf{Set}$ is representable. Let H be a representing object and let $\vartheta : \mathsf{Hom}_{\Bbbk}(H, -) \cong \mathsf{Nat}(\boldsymbol{\omega}, -\otimes \boldsymbol{\omega})$ be the representing isomorphism. Set $\delta := \vartheta_H(\mathsf{Id}_H)$ and represent it by \checkmark . Then H is a coalgebra with $\Delta = \checkmark$ and $\varepsilon = \checkmark$ given by

Key example: If \Bbbk is a field and $\mathcal{C} = {}^{\mathcal{C}}\mathfrak{M}_{f}$, then $H \cong C$.

Monoidal categories and coquasi-bialgebras

Assume that $(\mathcal{C}, \odot, \mathbb{I}, \mathfrak{a}, \mathfrak{l}, \mathfrak{r})$ is monoidal and $\omega : \mathcal{C} \to \mathfrak{M}_f$ is a (strict) quasi-monoidal functor, i.e. $X \odot Y = X \otimes Y$ and $\mathbb{I} = \mathbb{k}$.

The additional (coquasi-bialgebra) structure

The functors $\operatorname{Nat}(\omega^n, -\otimes \omega^n)$ are represented by $H^{\otimes n}$. H becomes a coquasi-bialgebra with multiplication $m = \bigcup$, unit $u = \operatorname{end} \omega : H^3 \to \mathbb{k}$ uniquely determined by

Assume that $(\mathcal{C}, \odot, \mathbb{I}, \mathfrak{a}, \mathfrak{l}, \mathfrak{r})$ is monoidal and $\omega : \mathcal{C} \to \mathfrak{M}_f$ is a (strict) quasi-monoidal functor, i.e. $X \odot Y = X \otimes Y$ and $\mathbb{I} = \mathbb{k}$.

The additional (coquasi-bialgebra) structure

The functors $\operatorname{Nat}(\omega^n, -\otimes \omega^n)$ are represented by $H^{\otimes n}$. H becomes a coquasi-bialgebra with multiplication $m = \bigcup$, unit $u = \operatorname{e}_{}$ and $\omega : H^3 \to \mathbb{k}$ uniquely determined by

Assume that $(\mathcal{C}, \odot, \mathbb{I}, \mathfrak{a}, \mathfrak{l}, \mathfrak{r})$ is monoidal and $\omega : \mathcal{C} \to \mathfrak{M}_f$ is a (strict) quasi-monoidal functor, i.e. $X \odot Y = X \otimes Y$ and $\mathbb{I} = \mathbb{k}$.

The additional (coquasi-bialgebra) structure

The functors $\operatorname{Nat}(\omega^n, -\otimes \omega^n)$ are represented by $H^{\otimes n}$. H becomes a coquasi-bialgebra with multiplication $m = \bigcup$, unit $u = \bullet$ and $\omega : H^3 \to \Bbbk$ uniquely determined by

Assume that $(\mathcal{C}, \odot, \mathbb{I}, \mathfrak{a}, \mathfrak{l}, \mathfrak{r})$ is monoidal and $\omega : \mathcal{C} \to \mathfrak{M}_f$ is a (strict) quasi-monoidal functor, i.e. $X \odot Y = X \otimes Y$ and $\mathbb{I} = \mathbb{k}$.

The additional (coquasi-bialgebra) structure

The functors $\operatorname{Nat}(\boldsymbol{\omega}^n, -\otimes \boldsymbol{\omega}^n)$ are represented by $H^{\otimes n}$. H becomes a coquasi-bialgebra with multiplication $m = \bigcup$, unit $u = \bullet$ and $\omega : H^3 \to \Bbbk$ uniquely determined by

Theorem (Majid [M])

Let C be an essentially small monoidal category and $\boldsymbol{\omega} : C \to \mathfrak{M}_f$ a quasi-monoidal functor. There is a coquasi-bialgebra H s.t. $\boldsymbol{\omega}$ factorizes through a monoidal functor $\boldsymbol{\chi} : C \to {}^{H}\mathfrak{M}$ followed by the forgetful functor

If H' is another one and $\mathcal{G} : \mathcal{C} \to {}^{H'}\mathfrak{M}$ is a functor as above then there is a unique morphism of coquasi-bialgebras $\epsilon : H \to H'$ s.t.

 [M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results. Contemp. Math. 134 (1992).

Theorem (Majid [M])

Let C be an essentially small monoidal category and $\boldsymbol{\omega} : C \to \mathfrak{M}_f$ a quasi-monoidal functor. There is a coquasi-bialgebra H s.t. $\boldsymbol{\omega}$ factorizes through a monoidal functor $\boldsymbol{\chi} : C \to {}^{H}\mathfrak{M}$ followed by the forgetful functor

If H' is another one and $\mathcal{G} : \mathcal{C} \to {}^{H'}\mathfrak{M}$ is a functor as above then there is a unique morphism of coquasi-bialgebras $\epsilon : H \to H'$ s.t.

 [[]M] Majid, Tannaka-Krein theorem for quasi-Hopf algebras and other results. Contemp. Math. 134 (1992).

The rigid case

Assume that C is (right) rigid, i.e. for every X there is (X^*, ev_X, db_X) with

 $(\operatorname{ev}_X \otimes X) \circ (X \otimes \operatorname{db}_X) = \operatorname{Id}_X \qquad (X^* \otimes \operatorname{ev}_X) \circ (\operatorname{db}_X \otimes X^*) = \operatorname{Id}_{X^*},$

and that a choice $(-)^*$ of dual objects has been performed. Denote by $\omega^* : \mathcal{C}^{\mathrm{op}} \to \mathfrak{M}$ the functor sending X to $\omega(X^*)$. Consider the maps $\operatorname{ev}_{\omega(X)} := \omega(\operatorname{ev}_X) = \overset{X \to X^*}{\bigcup}$ and $\operatorname{db}_{\omega(X)} := \omega(\operatorname{db}_X) = \overset{\frown}{\underset{X^* \to X}{\bigcap}}$.

These induce a natural transformation

$$abla : \mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega}) o \mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega})$$

given by

which does not depend on the choice of the duals.

The rigid case

Assume that C is (right) rigid, i.e. for every X there is (X^*, ev_X, db_X) with

$$(\operatorname{ev}_X \otimes X) \circ (X \otimes \operatorname{db}_X) = \operatorname{Id}_X \qquad (X^\star \otimes \operatorname{ev}_X) \circ (\operatorname{db}_X \otimes X^\star) = \operatorname{Id}_{X^\star},$$

and that a choice $(-)^*$ of dual objects has been performed. Denote by $\omega^* : \mathcal{C}^{\text{op}} \to \mathfrak{M}$ the functor sending X to $\omega(X^*)$. Consider the maps

$$\mathsf{ev}_{w(X)} := w(\mathsf{ev}_X) = \bigcup_{X \to X^*} \text{ and } \mathsf{db}_{w(X)} := w(\mathsf{db}_X) = \bigcap_{X^* \to X}$$

These induce a natural transformation

$$abla$$
 : $\mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega}) o \mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega})$

given by

which does not depend on the choice of the duals.

The rigid case

Assume that C is (right) rigid, i.e. for every X there is (X^*, ev_X, db_X) with

$$(\operatorname{ev}_X \otimes X) \circ (X \otimes \operatorname{db}_X) = \operatorname{Id}_X \qquad (X^\star \otimes \operatorname{ev}_X) \circ (\operatorname{db}_X \otimes X^\star) = \operatorname{Id}_{X^\star},$$

and that a choice $(-)^*$ of dual objects has been performed. Denote by $\omega^* : \mathcal{C}^{\text{op}} \to \mathfrak{M}$ the functor sending X to $\omega(X^*)$. Consider the maps

$$\mathsf{ev}_{\omega(X)} := \omega(\mathsf{ev}_X) = \bigcup_{X \to X^*} \text{ and } \mathsf{db}_{\omega(X)} := \omega(\mathsf{db}_X) = \bigcap_{X^* \to X}$$

These induce a natural transformation

$$\nabla:\mathsf{Nat}(\boldsymbol{\omega},-\otimes\boldsymbol{\omega})\to\mathsf{Nat}(\boldsymbol{\omega},-\otimes\boldsymbol{\omega})$$

given by

$$\nabla_V(\xi)_X = \bigvee_{V \qquad X}^{\Lambda} ,$$

which does not depend on the choice of the duals.

Rigidity and preantipodes

In light of Yoneda's Lemma

$$\mathsf{Nat} ig(\mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega}), \mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega})ig)\cong \mathsf{Nat}(oldsymbol{\omega}, H\otimes oldsymbol{\omega})\cong \mathsf{End}_{\Bbbk}(H),$$

so that there exists a unique linear endomorphism S of H such that

$$\vartheta_{H}(S)_{X} = \underbrace{\mathfrak{S}}_{H \times X}^{X} = \bigvee_{H \times X}^{X} = \nabla_{H}(\delta)_{X}.$$

Lemma

The endomorphism *S* above is a preantipode for *H*.

Rigidity and preantipodes

In light of Yoneda's Lemma

$$\mathsf{Nat} ig(\mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega}), \mathsf{Nat}(oldsymbol{\omega}, -\otimes oldsymbol{\omega})ig)\cong \mathsf{Nat}(oldsymbol{\omega}, H\otimes oldsymbol{\omega})\cong \mathsf{End}_{\Bbbk}(H),$$

so that there exists a unique linear endomorphism S of H such that

$$\vartheta_{H}(S)_{X} = \underbrace{\underset{H \times X}{(S)}}_{H \times X} = \bigvee_{H \times X}^{X} = \nabla_{H}(\delta)_{X}.$$

Lemma

The endomorphism S above is a preantipode for H.

Let C be an essentially small right rigid monoidal category together with a quasi-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$. Then there exists a preantipode S for the universal coquasi-bialgebra H of $(C, \boldsymbol{\omega})$.

For a coquasi-Hopf algebra H, the category ${}^{H}\mathfrak{M}_{f}$ is rigid monoidal with quasi-monoidal underlying functor. In fact, $N^{\star} = \operatorname{Hom}_{\Bbbk}(N, \Bbbk) = N^{*}$ with

$$\delta_{N^*}(f) = \sum_i s((e_i)_{-1}) f((e_i)_0) \otimes e^i,$$

$$\mathsf{lb}_{N^*}(1) = \sum_i e^i \otimes \alpha((e_i)_{-1})(e_i)_0, \quad \mathsf{ev}_{N^*}(n \otimes f) = \sum \beta(n_{-1}) f(n_0).$$

If we have $\omega(X^*) \cong \omega(X)^*$ then we say that ω is *preserving duals*.

Theorem (Reconstruction theorem for coquasi-Hopf algebras) If $\omega : C \to \mathfrak{M}_f$ preserves duals then H is a coquasi-Hopf algebra.

Let C be an essentially small right rigid monoidal category together with a quasi-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$. Then there exists a preantipode S for the universal coquasi-bialgebra H of $(C, \boldsymbol{\omega})$.

For a coquasi-Hopf algebra H, the category ${}^{H}\mathfrak{M}_{f}$ is rigid monoidal with quasi-monoidal underlying functor. In fact, $N^{*} = \operatorname{Hom}_{\Bbbk}(N, \Bbbk) = N^{*}$ with

$$\delta_{N^*}(f) = \sum_i s((e_i)_{-1}) f((e_i)_0) \otimes e^i,$$

$$\mathsf{db}_{N^*}(1) = \sum_i e^i \otimes \alpha((e_i)_{-1})(e_i)_0, \quad \mathsf{ev}_{N^*}(n \otimes f) = \sum \beta(n_{-1}) f(n_0).$$

If we have $\omega(X^*) \cong \omega(X)^*$ then we say that ω is *preserving duals*.

Theorem (Reconstruction theorem for coquasi-Hopf algebras) If $\boldsymbol{\omega} : \mathcal{C} \to \mathfrak{M}_f$ preserves duals then H is a coquasi-Hopf algebra.

Let C be an essentially small right rigid monoidal category together with a quasi-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$. Then there exists a preantipode S for the universal coquasi-bialgebra H of $(C, \boldsymbol{\omega})$.

For a coquasi-Hopf algebra H, the category ${}^{H}\mathfrak{M}_{f}$ is rigid monoidal with quasi-monoidal underlying functor. In fact, $N^{*} = \operatorname{Hom}_{\Bbbk}(N, \Bbbk) = N^{*}$ with

$$\delta_{N^*}(f) = \sum_i s((e_i)_{-1}) f((e_i)_0) \otimes e^i,$$

$$\mathsf{db}_{N^*}(1) = \sum_i e^i \otimes \alpha((e_i)_{-1})(e_i)_0, \quad \mathsf{ev}_{N^*}(n \otimes f) = \sum \beta(n_{-1}) f(n_0).$$

If we have $\omega(X^*) \cong \omega(X)^*$ then we say that ω is *preserving duals*.

Theorem (Reconstruction theorem for coquasi-Hopf algebras) If $\omega : C \to \mathfrak{M}_f$ preserves duals then H is a coquasi-Hopf algebra.

Let C be an essentially small right rigid monoidal category together with a quasi-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$. Then there exists a preantipode S for the universal coquasi-bialgebra H of $(C, \boldsymbol{\omega})$.

For a coquasi-Hopf algebra H, the category ${}^{H}\mathfrak{M}_{f}$ is rigid monoidal with quasi-monoidal underlying functor. In fact, $N^{*} = \operatorname{Hom}_{\Bbbk}(N, \Bbbk) = N^{*}$ with

$$\delta_{N^*}(f) = \sum_i s((e_i)_{-1})f((e_i)_0) \otimes e^i,$$

$$\mathsf{db}_{N^*}(1) = \sum_i e^i \otimes \alpha((e_i)_{-1})(e_i)_0, \quad \mathsf{ev}_{N^*}(n \otimes f) = \sum \beta(n_{-1})f(n_0).$$

If we have $\omega(X^*) \cong \omega(X)^*$ then we say that ω is *preserving duals*.

Theorem (Reconstruction theorem for coquasi-Hopf algebras) If $\boldsymbol{\omega} : \mathcal{C} \to \mathfrak{M}_f$ preserves duals then H is a coquasi-Hopf algebra.

Henceforth \Bbbk is a field.

Lemma

Preantipodes are unique and coquasi-bialgebra morphisms preserve them.

Theorem (Reconstruction theorem for preantipodes)

Let C be an essentially small right rigid monoidal category together with a quasi-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$. Then there exists a preantipode S for the universal coquasi-bialgebra H of $(C, \boldsymbol{\omega})$. Furthermore, if B is another coquasi-bialgebra with preantipode such that $\boldsymbol{\omega}$ factorizes through a monoidal functor $\mathcal{G} : C \to {}^B\mathfrak{M}$, then the unique coquasi-bialgebra morphism $\epsilon : H \to B$ preserves the preantipodes.

Henceforth ${\ensuremath{\Bbbk}}$ is a field.

Lemma

Preantipodes are unique and coquasi-bialgebra morphisms preserve them.

Theorem (Reconstruction theorem for preantipodes)

Let C be an essentially small right rigid monoidal category together with a quasi-monoidal functor $\omega : C \to \mathfrak{M}_f$. Then there exists a preantipode S for the universal coquasi-bialgebra H of (C, ω) . Furthermore, if B is another coquasi-bialgebra with preantipode such that ω factorizes through a monoidal functor $\mathcal{G} : C \to {}^{B}\mathfrak{M}$, then the unique coquasi-bialgebra morphism $\epsilon : H \to B$ preserves the preantipodes.

Henceforth \Bbbk is a field.

Lemma

Preantipodes are unique and coquasi-bialgebra morphisms preserve them.

Theorem (Reconstruction theorem for preantipodes)

Let C be an essentially small right rigid monoidal category together with a quasi-monoidal functor $\boldsymbol{\omega} : C \to \mathfrak{M}_f$. Then there exists a preantipode S for the universal coquasi-bialgebra H of $(C, \boldsymbol{\omega})$. Furthermore, if B is another coquasi-bialgebra with preantipode such that $\boldsymbol{\omega}$ factorizes through a monoidal functor $\mathcal{G} : C \to {}^B\mathfrak{M}$, then the unique coquasi-bialgebra morphism $\epsilon : H \to B$ preserves the preantipodes.

For *B* a coquasi-bialgebra with preantipode, the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional *B*-comodules is a rigid monoidal category and the underlying functor to \mathfrak{M}_{f} is quasi-monoidal. The dual of an object *V* is given by $(V^* \otimes B)^{coB}$.

Theorem

A coalgebra C is a coquasi-bialgebra with preantipode if and only if ${}^{C}\mathfrak{M}_{f}$ is rigid monoidal and the forgetful functor \mathcal{F} is quasi-monoidal. It is a coquasi-Hopf algebra if and only if in addition \mathcal{F} preserves duals.

Remark

Every coquasi-Hopf algebra H with antipode (s, α, β) admits a preantipode $S := \beta * s * \alpha$. The converse is not true [S].

[S] P. Schauenburg, Hopf algebra extensions and monoidal categories. New directions in Hopf algebras (2002).

For *B* a coquasi-bialgebra with preantipode, the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional *B*-comodules is a rigid monoidal category and the underlying functor to \mathfrak{M}_{f} is quasi-monoidal. The dual of an object *V* is given by $(V^* \otimes B)^{\operatorname{co} B}$.

Theorem

A coalgebra C is a coquasi-bialgebra with preantipode if and only if ${}^{C}\mathfrak{M}_{f}$ is rigid monoidal and the forgetful functor \mathcal{F} is quasi-monoidal. It is a coquasi-Hopf algebra if and only if in addition \mathcal{F} preserves duals.

Remark

Every coquasi-Hopf algebra H with antipode (s, α, β) admits a preantipode $S := \beta * s * \alpha$. The converse is not true [S].

[S] P. Schauenburg, *Hopf algebra extensions and monoidal categories*. New directions in Hopf algebras (2002).

For *B* a coquasi-bialgebra with preantipode, the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional *B*-comodules is a rigid monoidal category and the underlying functor to \mathfrak{M}_{f} is quasi-monoidal. The dual of an object *V* is given by $(V^* \otimes B)^{\operatorname{co} B}$.

Theorem

A coalgebra C is a coquasi-bialgebra with preantipode if and only if ${}^{C}\mathfrak{M}_{f}$ is rigid monoidal and the forgetful functor \mathcal{F} is quasi-monoidal. It is a coquasi-Hopf algebra if and only if in addition \mathcal{F} preserves duals.

Remark

Every coquasi-Hopf algebra H with antipode (s, α, β) admits a preantipode $S := \beta * s * \alpha$. The converse is not true [S].

[S] P. Schauenburg, *Hopf algebra extensions and monoidal categories*. New directions in Hopf algebras (2002).

For *B* a coquasi-bialgebra with preantipode, the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional *B*-comodules is a rigid monoidal category and the underlying functor to \mathfrak{M}_{f} is quasi-monoidal. The dual of an object *V* is given by $(V^* \otimes B)^{\operatorname{co} B}$.

Theorem

A coalgebra C is a coquasi-bialgebra with preantipode if and only if ${}^{C}\mathfrak{M}_{f}$ is rigid monoidal and the forgetful functor \mathcal{F} is quasi-monoidal. It is a coquasi-Hopf algebra if and only if in addition \mathcal{F} preserves duals.

Remark

Every coquasi-Hopf algebra H with antipode (s, α, β) admits a preantipode $S := \beta * s * \alpha$. The converse is not true [S].

 P. Schauenburg, Hopf algebra extensions and monoidal categories. New directions in Hopf algebras (2002).

For *B* a coquasi-bialgebra with preantipode, the category ${}^{B}\mathfrak{M}_{f}$ of finite-dimensional *B*-comodules is a rigid monoidal category and the underlying functor to \mathfrak{M}_{f} is quasi-monoidal. The dual of an object *V* is given by $(V^* \otimes B)^{\operatorname{co} B}$.

Theorem

A coalgebra *C* is a coquasi-bialgebra with preantipode if and only if ${}^{C}\mathfrak{M}_{f}$ is rigid monoidal and the forgetful functor \mathcal{F} is quasi-monoidal. It is a coquasi-Hopf algebra if and only if in addition \mathcal{F} preserves duals.

Remark

Every coquasi-Hopf algebra H with antipode (s, α, β) admits a preantipode $S := \beta * s * \alpha$. The converse is not true [S].

[[]S] P. Schauenburg, Hopf algebra extensions and monoidal categories. New directions in Hopf algebras (2002).

A quasi-bialgebra A is a bialgebra where Δ is coassociative only up to conjugation by an invertible element $\Phi \in A \otimes A \otimes A$. A preantipode for a quasi-bialgebra is a linear endomorphism S such that

$$\sum a_1 S(ba_2) = \varepsilon(a) S(b) = \sum S(a_1 b) a_2, \qquad \sum \Phi^1 S(\Phi^2) \Phi^3 = 1.$$

Consider $A^{\circ} = \{ f \in A^* \mid \ker(f) \supseteq I \text{ s.t. } \dim_{\Bbbk}(A/I) < \infty \}.$

Proposition

The Sweedler dual A° of a quasi-bialgebra with preantipode A is a coquasi-bialgebra with preantipode.

proof: The category \mathfrak{M}_A is monoidal with quasi-monoidal underlying functor and the full subcategory ${}_{f}\mathfrak{M}_A$ is rigid with duals given by

$$M^* := \frac{A \otimes M^*}{A^+(A \otimes M^*)}.$$

A quasi-bialgebra A is a bialgebra where Δ is coassociative only up to conjugation by an invertible element $\Phi \in A \otimes A \otimes A$. A preantipode for a quasi-bialgebra is a linear endomorphism S such that

$$\sum a_1 S(ba_2) = \varepsilon(a) S(b) = \sum S(a_1 b) a_2, \qquad \sum \Phi^1 S(\Phi^2) \Phi^3 = 1.$$

Consider $A^{\circ} = \{ f \in A^* \mid \ker(f) \supseteq I \text{ s.t. } \dim_{\Bbbk}(A/I) < \infty \}.$

Proposition

The Sweedler dual A° of a quasi-bialgebra with preantipode A is a coquasi-bialgebra with preantipode.

proof: The category \mathfrak{M}_A is monoidal with quasi-monoidal underlying functor and the full subcategory ${}_{f}\mathfrak{M}_A$ is rigid with duals given by

$$M^* := \frac{A \otimes M^*}{A^+(A \otimes M^*)}.$$

A quasi-bialgebra A is a bialgebra where Δ is coassociative only up to conjugation by an invertible element $\Phi \in A \otimes A \otimes A$. A preantipode for a quasi-bialgebra is a linear endomorphism S such that

$$\sum a_1 S(ba_2) = \varepsilon(a)S(b) = \sum S(a_1b)a_2, \qquad \sum \Phi^1 S(\Phi^2)\Phi^3 = 1.$$

Consider $A^{\circ} = \{ f \in A^* \mid \ker(f) \supseteq I \text{ s.t. } \dim_{\Bbbk}(A/I) < \infty \}.$

Proposition

The Sweedler dual A° of a quasi-bialgebra with preantipode A is a coquasi-bialgebra with preantipode.

proof: The category \mathfrak{M}_A is monoidal with quasi-monoidal underlying functor and the full subcategory ${}_{f}\mathfrak{M}_A$ is rigid with duals given by

$$M^* := \frac{A \otimes M^*}{A^+(A \otimes M^*)}.$$

A quasi-bialgebra A is a bialgebra where Δ is coassociative only up to conjugation by an invertible element $\Phi \in A \otimes A \otimes A$. A preantipode for a quasi-bialgebra is a linear endomorphism S such that

$$\sum a_1 S(ba_2) = \varepsilon(a)S(b) = \sum S(a_1b)a_2, \qquad \sum \Phi^1 S(\Phi^2)\Phi^3 = 1.$$

Consider $A^{\circ} = \{ f \in A^* \mid \ker(f) \supseteq I \text{ s.t. } \dim_{\Bbbk}(A/I) < \infty \}.$

Proposition

The Sweedler dual A° of a quasi-bialgebra with preantipode A is a coquasi-bialgebra with preantipode.

proof: The category \mathfrak{M}_A is monoidal with quasi-monoidal underlying functor and the full subcategory ${}_{f}\mathfrak{M}_A$ is rigid with duals given by

$$M^* := \frac{A \otimes M^*}{A^+(A \otimes M^*)}.$$

A quasi-bialgebra A is a bialgebra where Δ is coassociative only up to conjugation by an invertible element $\Phi \in A \otimes A \otimes A$. A preantipode for a quasi-bialgebra is a linear endomorphism S such that

$$\sum a_1 S(ba_2) = \varepsilon(a)S(b) = \sum S(a_1b)a_2, \qquad \sum \Phi^1 S(\Phi^2)\Phi^3 = 1.$$

Consider $A^{\circ} = \{ f \in A^* \mid \ker(f) \supseteq I \text{ s.t. } \dim_{\Bbbk}(A/I) < \infty \}.$

Proposition

The Sweedler dual A° of a quasi-bialgebra with preantipode A is a coquasi-bialgebra with preantipode.

proof: The category \mathfrak{M}_A is monoidal with quasi-monoidal underlying functor and the full subcategory ${}_{f}\mathfrak{M}_A$ is rigid with duals given by

$$M^\star := rac{A \otimes M^*}{A^+(A \otimes M^*)}.$$

A quasi-bialgebra A is a bialgebra where Δ is coassociative only up to conjugation by an invertible element $\Phi \in A \otimes A \otimes A$. A preantipode for a quasi-bialgebra is a linear endomorphism S such that

$$\sum a_1 S(ba_2) = \varepsilon(a)S(b) = \sum S(a_1b)a_2, \qquad \sum \Phi^1 S(\Phi^2)\Phi^3 = 1.$$

Consider $A^{\circ} = \{ f \in A^* \mid \ker(f) \supseteq I \text{ s.t. } \dim_{\Bbbk}(A/I) < \infty \}.$

Proposition

The Sweedler dual A° of a quasi-bialgebra with preantipode A is a coquasi-bialgebra with preantipode.

proof: The category \mathfrak{M}_A is monoidal with quasi-monoidal underlying functor and the full subcategory ${}_{f}\mathfrak{M}_A$ is rigid with duals given by

$$M^\star := rac{A \otimes M^*}{A^+(A \otimes M^*)}.$$

Thank you