

A pair of Frobenius pairs for Hopf modules

Paolo Saracco

Université Libre de Bruxelles

Rings, modules, and Hopf algebras, 15 May 2019

Report on Hopf modules, Frobenius functors and (one-sided) Hopf algebras - arXiv:1904.13065 Antipodes, preantipodes and Frobenius functors - to appear

General recalls: one-sided Hopf, Frobenius algebras

\Bbbk is a commutative ring (from time to time a field). B a \Bbbk -bialgebra.

Definition ([GNT, 1980])

A left (resp. right) convolution inverse of Id_B is called a left (resp. right) antipode and B a left (resp. right) Hopf algebra.

Definition

A \Bbbk -algebra A is Frobenius if $\exists \psi \in A^*$ and $e \in A \otimes A$ such that

 $(\psi \otimes A)(e) = 1 = (A \otimes \psi)(e)$ and ae = ea $(\forall a \in A).$

Equivalently, if A is fgp and ${}_{A}A \cong {}_{A}A^*$ with regular structures.

General recalls: one-sided Hopf, Frobenius algebras

\Bbbk is a commutative ring (from time to time a field). *B* a \Bbbk -bialgebra.

Definition ([GNT, 1980])

A left (resp. right) convolution inverse of Id_B is called a left (resp. right) antipode and B a left (resp. right) Hopf algebra.

Definition

A k-algebra A is Frobenius if $\exists \psi \in A^*$ and $e \in A \otimes A$ such that

 $(\psi \otimes A)(e) = 1 = (A \otimes \psi)(e)$ and ae = ea $(\forall a \in A)$.

Equivalently, if A is fgp and ${}_{A}A \cong {}_{A}A^*$ with regular structures.

General recalls: Frobenius functors

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.

Theorem ([M, 1965])

A k-algebra A is Frobenius iff $U : {}_{A}\mathfrak{M} \to {}_{k}\mathfrak{M}$ is Frobenius.

- Frobenius functors are a natural extension of Frobenius algebras to category theory.
- [CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).

[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications. Comm. Algebra 27 (1999).

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.

Theorem ([M, 1965])

A k-algebra A is Frobenius iff $U : {}_{A}\mathfrak{M} \to {}_{k}\mathfrak{M}$ is Frobenius.

- Frobenius functors are a natural extension of Frobenius algebras to category theory.
- [CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).

[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications. Comm. Algebra 27 (1999).

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.

Theorem ([M, 1965])

A k-algebra A is Frobenius iff $U : {}_{A}\mathfrak{M} \to {}_{k}\mathfrak{M}$ is Frobenius.

- Frobenius functors are a natural extension of Frobenius algebras to category theory.
- [CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).

[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications. Comm. Algebra 27 (1999).

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.

Theorem ([M, 1965])

A k-algebra A is Frobenius iff $U : {}_{A}\mathfrak{M} \to {}_{k}\mathfrak{M}$ is Frobenius.

- Frobenius functors are a natural extension of Frobenius algebras to category theory.
- [CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).

[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications. Comm. Algebra 27 (1999).

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_r B^* \cong \Bbbk$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_r B^*$.

Argument

• *B* fgp Hopf $\Rightarrow B^* \in {}^B_B\mathfrak{M}$ and $\theta_{B^*} : B \otimes \int_r B^* \cong B^* \Rightarrow {}_BB \cong {}_BB^*$.

[LS] Larson, Sweedler, An Orthogonal Bilinear Form for Hopf Algebras. Amer. J. Math. 91 (1969).

[P] Pareigis, When Hopf algebras are Frobenius algebras. J. Algebra 18 (1971).

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_r B^* \cong \Bbbk$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_r B^*$.

Argument

• *B* fgp Hopf $\Rightarrow B^* \in {}^B_B\mathfrak{M}$ and $\theta_{B^*} : B \otimes \int_r B^* \cong B^* \Rightarrow {}_BB \cong {}_BB^*$.

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_r B^* \cong \Bbbk$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_r B^*$.

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_r B^* \cong \Bbbk$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_r B^*$.

Argument

• B fgp Hopf $\Rightarrow B^* \in {}^B_B\mathfrak{M}$ and $\theta_{B^*} : B \otimes \int_r B^* \cong B^* \Rightarrow {}_BB \cong {}_BB^*$.

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_r B^* \cong \Bbbk$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_r B^*$.

Argument

• B fgp Hopf $\Rightarrow B^* \in {}^B_B\mathfrak{M}$ and $\theta_{B^*} : B \otimes \int_r B^* \cong B^* \Rightarrow {}_BB \cong {}_BB^*$.

• When is the functor $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ Frobenius?

Lemma

• There is a canonical morphism

$$\sigma_M: \left(\overset{\operatorname{coB}}{\longrightarrow} M \xrightarrow{\epsilon_{\operatorname{coB}}^{-1}} {}^B \overline{B \otimes {}^{\operatorname{coB}} M} \xrightarrow{B} \overline{M} \right),$$

natural in $M \in {}^{B}_{B}\mathfrak{M}$, given by $\sigma_{M}(m) = \overline{m}$ for all $m \in M$.

• $B \otimes -$ is Frobenius iff σ is a natural iso, iff $M \cong {}^{\circ \circ B} M \oplus B^+ M (\forall M)$.

• What can we say about B when $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ is Frobenius?

Consider $B \widehat{\otimes} B := {}^{\bullet}B \otimes {}_{\bullet}B \in {}^{B}_{B}\mathfrak{M}$ and $\sigma_{B \widehat{\otimes} B} : {}^{\circ\circ B}(B \widehat{\otimes} B) \to {}^{B}\overline{B \widehat{\otimes} B}$.

• When is the functor $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ Frobenius?

Lemma

• There is a canonical morphism

$$\sigma_M: \left(\overset{\operatorname{coB}}{\longrightarrow} M \xrightarrow{\epsilon_{\operatorname{coB}}^{-1}} {}^B \overline{B \otimes {}^{\operatorname{coB}} M} \xrightarrow{B} \overline{\overline{M}} \right),$$

natural in $M \in {}^{\mathsf{B}}_{\mathsf{B}}\mathfrak{M}$, given by $\sigma_{\mathsf{M}}(m) = \overline{m}$ for all $m \in M$.

• $B \otimes -$ is Frobenius iff σ is a natural iso, iff $M \cong {}^{\circ \circ B} M \oplus B^+M \ (\forall M)$.

• What can we say about B when $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ is Frobenius?

Consider $B \widehat{\otimes} B := {}^{\bullet}B \otimes {}_{\bullet}B \in {}^{B}_{B}\mathfrak{M}$ and $\sigma_{B \widehat{\otimes} B} : {}^{\circ\circ B}(B \widehat{\otimes} B) \to {}^{B}\overline{\widehat{B \otimes} B}$.

• When is the functor $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ Frobenius?

Lemma

• There is a canonical morphism

$$\sigma_M: \left(\overset{\operatorname{coB}}{\longrightarrow} M \xrightarrow{\epsilon_{\operatorname{coB}}^{-1}} {}^B \overline{B \otimes {}^{\operatorname{coB}} M} \xrightarrow{B} \overline{\overline{M}} \right),$$

natural in $M \in {}^{\mathsf{B}}_{\mathsf{B}}\mathfrak{M}$, given by $\sigma_{\mathsf{M}}(m) = \overline{m}$ for all $m \in M$.

• $B \otimes -$ is Frobenius iff σ is a natural iso, iff $M \cong {}^{\circ \circ B} M \oplus B^+ M \ (\forall M)$.

• What can we say about B when $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ is Frobenius?

Consider $B \widehat{\otimes} B := {}^{\bullet}B \otimes {}_{\bullet}B \in {}^{B}_{B}\mathfrak{M}$ and $\sigma_{B \widehat{\otimes} B} : {}^{\circ\circ B}(B \widehat{\otimes} B) \to {}^{B}\overline{B \widehat{\otimes} B}$.

• When is the functor $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ Frobenius?

Lemma

• There is a canonical morphism

$$\sigma_M: \left(\overset{\operatorname{coB}}{\longrightarrow} M \xrightarrow{\epsilon_{\operatorname{coB}}^{-1}} {}^B \overline{B \otimes {}^{\operatorname{coB}} M} \xrightarrow{B} \overline{\overline{M}} \right),$$

natural in $M \in {}^{B}_{B}\mathfrak{M}$, given by $\sigma_{M}(m) = \overline{m}$ for all $m \in M$.

• $B \otimes -$ is Frobenius iff σ is a natural iso, iff $M \cong {}^{\circ \circ B} M \oplus B^+ M \ (\forall M)$.

• What can we say about B when $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ is Frobenius?

Consider $B \widehat{\otimes} B := {}^{\bullet}B \otimes {}_{\bullet}B \in {}^{B}_{B}\mathfrak{M}$ and $\sigma_{B \widehat{\otimes} B} : {}^{\circ\circ B}(B \widehat{\otimes} B) \to {}^{B}\overline{B \widehat{\otimes} B}$.

• When is the functor $B \otimes - : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ Frobenius?

Lemma

• There is a canonical morphism

$$\sigma_M: \left(\overset{\operatorname{coB}}{\longrightarrow} M \xrightarrow{\epsilon_{\operatorname{coB}}^{-1}} {}^B \overline{B \otimes {}^{\operatorname{coB}} M} \xrightarrow{B} \overline{\overline{M}} \right),$$

natural in $M \in {}^{B}_{B}\mathfrak{M}$, given by $\sigma_{M}(m) = \overline{m}$ for all $m \in M$.

- $B \otimes -$ is Frobenius iff σ is a natural iso, iff $M \cong {}^{\circ \circ B} M \oplus B^+ M (\forall M)$.
- What can we say about B when $B \otimes : {}_{\Bbbk}\mathfrak{M} \to {}^{B}_{B}\mathfrak{M}$ is Frobenius?

Consider $B \widehat{\otimes} B := {}^{\bullet}B \otimes {}_{\bullet}B \in {}^{B}_{B}\mathfrak{M}$ and $\sigma_{B \widehat{\otimes} B} : {}^{coB}(B \widehat{\otimes} B) \to {}^{B}\overline{B \widehat{\otimes} B}$.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism $S:=(arepsilon\otimes B)\left(\sigma_{B\hat{\otimes}B}^{-1}(-\otimes 1)
ight)$ of B satisfies

- S(1) = 1, $\varepsilon \circ S = \varepsilon$;
- $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in B.$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- *σ* is a natural isomorphism;
- $\sigma_{B\hat{\otimes}B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism $S:=(arepsilon\otimes B)\left(\sigma_{B\hat{\otimes}B}^{-1}(-\otimes 1)
ight)$ of B satisfies

- S(1) = 1, ε ∘ S = ε;
- $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in B.$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- *σ* is a natural isomorphism;
- $\sigma_{B\hat{\otimes}B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism ${\cal S}:=(arepsilon\otimes B)\left(\sigma_{B\hat{\otimes} B}^{-1}(-\otimes 1)
ight)$ of B satisfies

- S(1) = 1, ε ∘ S = ε;
- $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in B.$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- *σ* is a natural isomorphism;
- $\sigma_{B\hat{\otimes}B}$ is invertible.

The endomorphism ${\cal S}:=(arepsilon\otimes B)\left(\sigma_{B\hat{\otimes} B}^{-1}(-\otimes 1)
ight)$ of B satisfies

- S(1) = 1, $\varepsilon \circ S = \varepsilon$;
- $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in B.$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- *σ* is a natural isomorphism;
- $\sigma_{B\hat{\otimes}B}$ is invertible.

The endomorphism $S := (\varepsilon \otimes B) \left(\sigma_{B \hat{\otimes} B}^{-1}(- \otimes 1) \right)$ of B satisfies

- S(1) = 1, $\varepsilon \circ S = \varepsilon$;
- $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in B.$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- *σ* is a natural isomorphism;
- $\sigma_{B\hat{\otimes}B}$ is invertible.

The endomorphism $S := (\varepsilon \otimes B) \left(\sigma_{B \hat{\otimes} B}^{-1}(- \otimes 1) \right)$ of B satisfies

- S(1) = 1, $\varepsilon \circ S = \varepsilon$;
- $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in B.$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- σ is a natural isomorphism;
- $\sigma_{B\hat{\otimes}B}$ is invertible.

The endomorphism $S := (\varepsilon \otimes B) \left(\sigma_{B \hat{\otimes} B}^{-1}(- \otimes 1) \right)$ of B satisfies

- S(1) = 1, $\varepsilon \circ S = \varepsilon$;
- $S(a_1b)a_2 = \varepsilon(a)S(b), \forall a, b \in B.$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- σ is a natural isomorphism;
- $\sigma_{B\hat{\otimes}B}$ is invertible.

Theorem

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B \otimes B}$ and $\varsigma_{B \otimes B}$ are invertible;
- $\sigma_{B\hat{\otimes}B}$ is invertible and either $\eta_{B\hat{\otimes}B}$ is injective or $\theta_{B\hat{\otimes}B}$ is surjective.
- $\varsigma_{B\tilde{\otimes}B}$ is invertible and either $\eta_{B\tilde{\otimes}B}$ is injective or $\theta_{B\tilde{\otimes}B}$ is surjective.

Theorem

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B\hat{\otimes}B}$ and $\varsigma_{B\hat{\otimes}B}$ are invertible;
- $\sigma_{B\hat{\otimes}B}$ is invertible and either $\eta_{B\hat{\otimes}B}$ is injective or $\theta_{B\hat{\otimes}B}$ is surjective.
- $\varsigma_{B\tilde{\otimes}B}$ is invertible and either $\eta_{B\tilde{\otimes}B}$ is injective or $\theta_{B\tilde{\otimes}B}$ is surjective.

Theorem

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B\hat{\otimes}B}$ and $\varsigma_{B\hat{\otimes}B}$ are invertible;
- $\sigma_{B\hat{\otimes}B}$ is invertible and either $\eta_{B\hat{\otimes}B}$ is injective or $\theta_{B\hat{\otimes}B}$ is surjective.
- $\varsigma_{B\tilde{\otimes}B}$ is invertible and either $\eta_{B\tilde{\otimes}B}$ is injective or $\theta_{B\tilde{\otimes}B}$ is surjective.

Theorem

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B\hat{\otimes}B}$ and $\varsigma_{B\hat{\otimes}B}$ are invertible;
- $\sigma_{B \otimes B}$ is invertible and either $\eta_{B \otimes B}$ is injective or $\theta_{B \otimes B}$ is surjective.
- $\varsigma_{B\tilde{\otimes}B}$ is invertible and either $\eta_{B\tilde{\otimes}B}$ is injective or $\theta_{B\tilde{\otimes}B}$ is surjective.

Theorem

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B\hat{\otimes}B}$ and $\varsigma_{B\hat{\otimes}B}$ are invertible;
- $\sigma_{B\hat{\otimes}B}$ is invertible and either $\eta_{B\hat{\otimes}B}$ is injective or $\theta_{B\hat{\otimes}B}$ is surjective.
- $\varsigma_{B\tilde{\otimes}B}$ is invertible and either $\eta_{B\tilde{\otimes}B}$ is injective or $\theta_{B\tilde{\otimes}B}$ is surjective.

Examples and consequences

Example ([GNT, 1980])

Consider $T := \mathbb{k} \left\langle e_{i,j}^{(k)} \mid 1 \leq i, j \leq n, k \geq 0 \right\rangle$ with

$$\Delta\left(e_{i,j}^{(k)}\right) := \sum_{h=1}^{n} e_{i,h}^{(k)} \otimes e_{h,j}^{(k)}, \quad \varepsilon\left(e_{i,j}^{(k)}\right) := \delta_{i,j} \quad \text{and} \quad s\left(e_{i,j}^{(k)}\right) := e_{j,i}^{(k+1)}.$$

The ideal I generated by

$$\left\{\sum_{h=1}^{n} e_{h,i}^{(k+1)} e_{h,j}^{(k)} - \delta_{i,j} \mathbf{1}, \sum_{h=1}^{n} e_{i,h}^{(l)} e_{j,h}^{(l+1)} - \delta_{i,j} \mathbf{1} \mid 1 \le i,j \le n, k \ge 0, l \ge 1\right\}$$

is an *s*-stable bi-ideal, whence T/I is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.

Examples and consequences

Example ([GNT, 1980])

Consider $T := \Bbbk \left\langle e_{i,j}^{(k)} \mid 1 \leq i,j \leq n,k \geq 0 \right\rangle$ with

$$\Delta\left(e_{i,j}^{(k)}\right) := \sum_{h=1}^{n} e_{i,h}^{(k)} \otimes e_{h,j}^{(k)}, \quad \varepsilon\left(e_{i,j}^{(k)}\right) := \delta_{i,j} \quad \text{and} \quad s\left(e_{i,j}^{(k)}\right) := e_{j,i}^{(k+1)}.$$

The ideal *I* generated by

$$\left\{\sum_{h=1}^{n} e_{h,i}^{(k+1)} e_{h,j}^{(k)} - \delta_{i,j} \mathbf{1}, \sum_{h=1}^{n} e_{i,h}^{(l)} e_{j,h}^{(l+1)} - \delta_{i,j} \mathbf{1} \ \middle| \ \mathbf{1} \le i,j \le n, k \ge 0, l \ge 1 \right\}$$

is an *s*-stable bi-ideal, whence T/I is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.

Examples and consequences

Example ([GNT, 1980])

Consider $T := \Bbbk \left\langle e_{i,j}^{(k)} \mid 1 \leq i,j \leq n,k \geq 0 \right\rangle$ with

$$\Delta\left(e_{i,j}^{(k)}\right) := \sum_{h=1}^{n} e_{i,h}^{(k)} \otimes e_{h,j}^{(k)}, \quad \varepsilon\left(e_{i,j}^{(k)}\right) := \delta_{i,j} \quad \text{and} \quad s\left(e_{i,j}^{(k)}\right) := e_{j,i}^{(k+1)}.$$

The ideal I generated by

$$\left\{\sum_{h=1}^{n} e_{h,i}^{(k+1)} e_{h,j}^{(k)} - \delta_{i,j} \mathbf{1}, \sum_{h=1}^{n} e_{i,h}^{(l)} e_{j,h}^{(l+1)} - \delta_{i,j} \mathbf{1} \ \middle| \ \mathbf{1} \le i,j \le n, k \ge 0, l \ge 1 \right\}$$

is an *s*-stable bi-ideal, whence T/I is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.

Example ([GNT, 1980])

Consider $\mathcal{T} := \Bbbk \left\langle e_{i,j}^{(k)} \mid 1 \leq i,j \leq n,k \geq 0
ight
angle$ with

$$\Delta\left(e_{i,j}^{(k)}\right) := \sum_{h=1}^{n} e_{i,h}^{(k)} \otimes e_{h,j}^{(k)}, \quad \varepsilon\left(e_{i,j}^{(k)}\right) := \delta_{i,j} \quad \text{and} \quad s\left(e_{i,j}^{(k)}\right) := e_{j,i}^{(k+1)}.$$

The ideal I generated by

$$\left\{\sum_{h=1}^{n} e_{h,i}^{(k+1)} e_{h,j}^{(k)} - \delta_{i,j} \mathbf{1}, \sum_{h=1}^{n} e_{i,h}^{(l)} e_{j,h}^{(l+1)} - \delta_{i,j} \mathbf{1} \middle| 1 \le i,j \le n,k \ge 0, l \ge 1\right\}$$

is an *s*-stable bi-ideal, whence T/I is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.

Example ([RT, 2005])

Let $q \in \mathbb{k}^{\times}$ and consider the algebra $\widetilde{SL}_q(2)$ generated by $X_{i,j}$, $1 \leq i, j \leq 2$, and subject to the relations

$$egin{aligned} X_{2,1}X_{1,1} &= qX_{1,1}X_{2,1}, & X_{2,2}X_{1,2} &= qX_{1,2}X_{2,2}, \ X_{2,2}X_{1,1} &= qX_{1,2}X_{2,1} + 1, & X_{2,1}X_{1,2} &= qX_{1,1}X_{2,2} - q \end{aligned}$$

This is a left Hopf algebra which is not Hopf and no left antipode is anti-multiplicative.

[RT] Rodríguez-Romo, Taft, A left quantum group. J. Algebra 286 (2005).

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is Frobenius and $\int_r B^* \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{B} \to \mathfrak{M}^{B}_{B}$ is Frobenius and we have $\operatorname{Hom}^{B}(U_{B}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{coB}}, V)$, naturally in $M \in \mathfrak{M}^{B}_{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B \cong \Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_{B} \to \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}(V_{\varepsilon}, U^{B}(M)) \cong \operatorname{Hom}(V, \overline{M}^{B})$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}^{\mathsf{B}}_{\mathsf{B}}$ is Frobenius and $\int_{\mathsf{r}} B^* \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{B} \to \mathfrak{M}^{B}_{B}$ is Frobenius and we have $\operatorname{Hom}^{B}(U_{B}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{co}B}, V)$, naturally in $M \in \mathfrak{M}^{B}_{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}^{\mathcal{B}}_{\mathcal{B}}$ is Frobenius and $\int_{r} B \cong \Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_{B} \to \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}(V_{\varepsilon}, U^{B}(M)) \cong \operatorname{Hom}(V, \overline{M}^{B})$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}^{B}_{B}$ is Frobenius and $\int_{r} B^{*} \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{\mathcal{B}} \to \mathfrak{M}^{\mathcal{B}}_{\mathcal{B}}$ is Frobenius and we have $\operatorname{Hom}^{\mathcal{B}}(U_{\mathcal{B}}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{coB}}, V)$, naturally in $M \in \mathfrak{M}^{\mathcal{B}}_{\mathcal{B}}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B : \mathfrak{M} \to \mathfrak{M}^{\mathsf{B}}_{\mathsf{B}}$ is Frobenius and $\int_{\mathsf{r}} B \cong \Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_B \to \mathfrak{M}_B^{\mathbb{B}}$ is Frobenius and we have Hom_B($V_{\varepsilon}, U^{\mathbb{B}}(M)$) \cong Hom($V, \overline{M}^{\mathbb{B}}$), naturally in $M \in \mathfrak{M}_B^{\mathbb{B}}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}^{B}_{B}$ is Frobenius and $\int_{r} B^{*} \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{B} \to \mathfrak{M}^{B}_{B}$ is Frobenius and we have $\operatorname{Hom}^{B}(U_{B}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{coB}}, V)$, naturally in $M \in \mathfrak{M}^{B}_{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B : \mathfrak{M} \to \mathfrak{M}^{\mathcal{B}}_{\mathcal{B}}$ is Frobenius and $\int_{r} B \cong \Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_B \to \mathfrak{M}_B^{\mathbb{B}}$ is Frobenius and we have Hom_B($V_{\varepsilon}, U^{\mathbb{B}}(M)$) \cong Hom($V, \overline{M}^{\mathbb{B}}$), naturally in $M \in \mathfrak{M}_B^{\mathbb{B}}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{\mathcal{B}} \to \mathfrak{M}^{\mathcal{B}}_{\mathcal{B}}$ is Frobenius and we have $\operatorname{Hom}^{\mathcal{B}}(U_{\mathcal{B}}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{coB}}, V)$, naturally in $M \in \mathfrak{M}^{\mathcal{B}}_{\mathcal{B}}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B:\mathfrak{M} o\mathfrak{M}^{\mathsf{B}}_{\mathsf{B}}$ is Frobenius and $\int_{r}B\cong \Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_{B} \to \mathfrak{M}_{B}^{B}$ is Frobenius and we have Hom_B($V_{\varepsilon}, U^{B}(M)$) \cong Hom(V, \overline{M}^{B}), naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^{\mathcal{B}}$ is Frobenius and $\int_r B^* \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{B} \to \mathfrak{M}^{B}_{B}$ is Frobenius and we have $\operatorname{Hom}^{B}(U_{B}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{coB}}, V)$, naturally in $M \in \mathfrak{M}^{B}_{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B:\mathfrak{M} o\mathfrak{M}^{\mathcal{B}}_{\mathcal{B}}$ is Frobenius and $\int_{r}B\cong \Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_{B} \to \mathfrak{M}_{B}^{B}$ is Frobenius and we have Hom_B($V_{\varepsilon}, U^{B}(M)$) \cong Hom(V, \overline{M}^{B}), naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is Frobenius and $\int_r B^* \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{B} \to \mathfrak{M}^{B}_{B}$ is Frobenius and we have $\operatorname{Hom}^{B}(U_{B}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{coB}}, V)$, naturally in $M \in \mathfrak{M}^{B}_{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B:\mathfrak{M} o\mathfrak{M}^{\mathsf{B}}_{\mathsf{B}}$ is Frobenius and $\int_{\mathsf{r}}B\cong\Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_{B} \to \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}(V_{\varepsilon}, U^{B}(M)) \cong \operatorname{Hom}(V, \overline{M}^{B})$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

Theorem

TFAE for a fgp \Bbbk -bialgebra B.

- (1) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_B^B$ is Frobenius and $\int_r B^* \cong \Bbbk$.
- (2) B is a Hopf algebra with $\int_r B^* \cong \Bbbk$.
- (3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
- (4) The functor $-\otimes B : \mathfrak{M}^{B} \to \mathfrak{M}^{B}_{B}$ is Frobenius and we have $\operatorname{Hom}^{B}(U_{B}(M), V^{u}) \cong \operatorname{Hom}(M^{\operatorname{coB}}, V)$, naturally in $M \in \mathfrak{M}^{B}_{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
- (5) The functor $-\otimes B: \mathfrak{M} \to \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B \cong \Bbbk$.
- (6) B^* is a Hopf algebra with $\int_r B^{**} \cong \Bbbk$.
- (7) B^* is a Frobenius algebra with Frobenius homomorphism in $\int_r B^{**}$.
- (8) The functor $-\otimes B : \mathfrak{M}_{B} \to \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}(V_{\varepsilon}, U^{B}(M)) \cong \operatorname{Hom}(V, \overline{M}^{B})$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

[[]KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra Geom. 42 (2001).

 The functor − ⊗ B : M_k → M^B_B does not encode enough informations to recover a Hopf algebra structure.

Theorem

• The functor $-\otimes B : {}_B\mathfrak{M} \to {}_B\mathfrak{M}^B_B$ fits into an adjoint triple

$$\sigma_{M}: {}_{B}\text{Hom}_{B}^{B}(B \otimes B, M) \to \overline{M}^{B}, \quad f \mapsto \overline{f(1 \otimes 1)} \qquad \left(M \in {}_{B}\mathfrak{M}_{B}^{B}\right).$$

- B is a Hopf algebra iff $-\otimes B : {}_{B}\mathfrak{M} \to {}_{B}\mathfrak{M}^{B}_{B}$ is Frobenius, iff σ is a natural isomorphism.
- Presently, it is unclear if being Frobenius for $-\otimes B$ can be encoded in the invertibility of a unique canonical morphism.

 The functor − ⊗ B : M_k → M^B_B does not encode enough informations to recover a Hopf algebra structure.

Theorem

• The functor $-\otimes B : {}_B\mathfrak{M} \to {}_B\mathfrak{M}^B_B$ fits into an adjoint triple

$$-\otimes_{B} \mathbb{k} = \overline{(-)}^{B} \begin{pmatrix} A \\ - \bigotimes_{B} \\ B \end{pmatrix}_{B} Hom_{B}^{B}(B \otimes B, -)$$

$$\sigma_{M}: {}_{B}\text{Hom}_{B}^{B}(B \otimes B, M) \to \overline{M}^{B}, \quad f \mapsto \overline{f(1 \otimes 1)} \qquad \left(M \in {}_{B}\mathfrak{M}_{B}^{B}\right).$$

- B is a Hopf algebra iff $-\otimes B : {}_{B}\mathfrak{M} \to {}_{B}\mathfrak{M}^{B}_{B}$ is Frobenius, iff σ is a natural isomorphism.
- Presently, it is unclear if being Frobenius for $-\otimes B$ can be encoded in the invertibility of a unique canonical morphism.

 The functor − ⊗ B : M_k → M^B_B does not encode enough informations to recover a Hopf algebra structure.

Theorem

• The functor $-\otimes B : {}_B\mathfrak{M} \to {}_B\mathfrak{M}^B_B$ fits into an adjoint triple

$$-\otimes_{B} \mathbb{k} = \overline{(-)}^{B} \begin{pmatrix} A \\ -\bigotimes_{B} \\ B \end{pmatrix}_{B} \operatorname{Hom}_{B}^{B}(B \otimes B, -) \\ B \mathfrak{M} \end{pmatrix}$$

$$\sigma_{M}: {}_{B}\text{Hom}_{B}^{B}(B \otimes B, M) \to \overline{M}^{B}, \quad f \mapsto \overline{f(1 \otimes 1)} \qquad \left(M \in {}_{B}\mathfrak{M}_{B}^{B}\right).$$

- B is a Hopf algebra iff $-\otimes B : {}_{B}\mathfrak{M} \to {}_{B}\mathfrak{M}^{B}_{B}$ is Frobenius, iff σ is a natural isomorphism.
- Presently, it is unclear if being Frobenius for − ⊗ B can be encoded in the invertibility of a unique canonical morphism.

 The functor − ⊗ B : M_k → M^B_B does not encode enough informations to recover a Hopf algebra structure.

Theorem

• The functor $-\otimes B : {}_{B}\mathfrak{M} \to {}_{B}\mathfrak{M}^{B}_{B}$ fits into an adjoint triple

$$-\otimes_{B} \mathbb{k} = \overline{(-)}^{B} \begin{pmatrix} A \\ -\bigotimes_{B} \\ B \end{pmatrix}_{B} \operatorname{Hom}_{B}^{B}(B \otimes B, -) \\ B \mathfrak{M} \end{pmatrix}$$

$$\sigma_{M}: {}_{B}\text{Hom}_{B}^{B}(B \otimes B, M) \to \overline{M}^{B}, \quad f \mapsto \overline{f(1 \otimes 1)} \qquad \left(M \in {}_{B}\mathfrak{M}_{B}^{B}\right).$$

- B is a Hopf algebra iff $-\otimes B : {}_{B}\mathfrak{M} \to {}_{B}\mathfrak{M}^{B}_{B}$ is Frobenius, iff σ is a natural isomorphism.
- Presently, it is unclear if being Frobenius for − ⊗ B can be encoded in the invertibility of a unique canonical morphism.

Heartfelt wishes and many thanks