ULB

A pair of Frobenius pairs for Hopf modules

Paolo Saracco

Université Libre de Bruxelles

Rings, modules, and Hopf algebras, 15 May 2019

General recalls: one-sided Hopf, Frobenius algebras

\mathbb{k} is a commutative ring (from time to time a field). B a \mathbb{k}-bialgebra.

Definition ([GNT, 1980])

A left (resp. right) convolution inverse of Id_{B} is called a left (resp. right) antipode and B a left (resp. right) Hopf algebra.

Definition
A \mathbb{k}-algebra A is Frobenius if $\exists \psi \in A^{*}$ and $e \in A \otimes A$ such that $(\psi \otimes A)(e)=1=(A \otimes \psi)(e) \quad$ and $\quad a e=e a \quad(\forall a \in A)$.

Equivalently, if A is fgp and ${ }_{A} A \cong{ }_{A} A^{*}$ with regular structures.
[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).

General recalls: one-sided Hopf, Frobenius algebras

\mathbb{k} is a commutative ring (from time to time a field). B a \mathbb{k}-bialgebra.

Definition ([GNT, 1980])

A left (resp. right) convolution inverse of Id_{B} is called a left (resp. right) antipode and B a left (resp. right) Hopf algebra.

Definition

A \mathbb{k}-algebra A is Frobenius if $\exists \psi \in A^{*}$ and $e \in A \otimes A$ such that

$$
(\psi \otimes A)(e)=1=(A \otimes \psi)(e) \quad \text { and } \quad a e=e a \quad(\forall a \in A) .
$$

Equivalently, if A is fgp and ${ }_{A} A \cong{ }_{A} A^{*}$ with regular structures.
[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).

General recalls: Frobenius functors

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ and $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.

Theorem ([M, 1965])
A \mathbb{k}-algebra A is Frobenius iff $U: A N T \rightarrow \mathfrak{N}$ is Frobenius
or Frobenius functors are a natural extension of Frobenius algebras to category theory.
[CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).
[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications.
Comm. Algebra 27 (1999).

[^0]
General recalls: Frobenius functors

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ and $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.
\square
$A \mathbb{k}$-algebra A is Frobenius if $U: A \mathcal{X} \rightarrow \mathfrak{N D}^{\text {is Frobenius }}$
or Frobenius functors are a natural extension of Frobenius algebras to category theory.
[CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).
[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications.
Comm. Algebra 27 (1999).

[^1]
General recalls: Frobenius functors

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ and $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.

Theorem ([M, 1965])

$A \mathbb{k}$-algebra A is Frobenius iff $U: A_{M} \rightarrow{ }_{k} \mathfrak{M}$ is Frobenius.

* Frobenius functors are a natural extension of Frobenius algebras to category theory.
[CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).
[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications.
Comm. Algebra 27 (1999).
[M] Morita, Adjoint pairs of functors and Frobenius extensions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965).

General recalls: Frobenius functors

Definition ([CMZ, 1997],[CGN, 1999])

- A pair of functors $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ and $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ is called a Frobenius pair if $\mathcal{G} \dashv \mathcal{F} \dashv \mathcal{G}$ (equivalently, $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$).
- A functor \mathcal{F} is Frobenius if $\exists \mathcal{G}$ such that $(\mathcal{F}, \mathcal{G})$ is a Frobenius pair.

Theorem ([M, 1965])

$A \mathbb{k}$-algebra A is Frobenius iff $U: A_{M} \rightarrow{ }_{k} \mathfrak{M}$ is Frobenius.

- Frobenius functors are a natural extension of Frobenius algebras to category theory.
[CMZ] Caenepeel, Militaru, Zhu, Doi-Hopf modules, Yetter-Drinfel'd modules and Frobenius type properties. Trans. Amer. Math. Soc. 349 (1997).
[CGN] Castaño Iglesias, Gómez-Torrecillas, Năstăsescu, Frobenius functors, applications.
Comm. Algebra 27 (1999).
[M] Morita, Adjoint pairs of functors and Frobenius extensions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965).

General recalls: Frobenius-Hopf connections

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

A bialgebra B is an fgp Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_{r} B^{*}$

Argument

[LS] Larson, Sweedler, An Orthogonal Bilinear Form for Hopf Algebras. Amer. J. Math. 91 (1969).
[P] Pareigis, When Hopf algebras are Frobenius algebras. J. Algebra 18 (1971)

General recalls: Frobenius-Hopf connections

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.
Theorem ([P, 1971])
A bialgebra B is an fgp Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_{r} B^{*}$.

$\Rightarrow B$ fgp Hopf $\Rightarrow B^{*} \in{ }_{B}^{B} \mathfrak{M}$ and $\theta_{B^{*}}: B \otimes \int_{\Gamma} B^{*} \cong B^{*} \Rightarrow{ }_{B} B \cong{ }_{B} B^{*}$
[LS] Larson, Sweedler, An Orthogonal Bilinear Form for Hopf Algebras. Amer. J. Math. 91 (1969).
[P] Pareigis, When Hopf algebras are Frobenius algebras. J. Algebra 18 (1971).

General recalls: Frobenius-Hopf connections

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_{r} B^{*}$.

Argument

[LS] Larson, Sweedler, An Orthogonal Bilinear Form for Hopf Algebras. Amer. J. Math. 91 (1969).
[P] Pareigis, When Hopf algebras are Frobenius algebras. J. Algebra 18 (1971).

General recalls: Frobenius-Hopf connections

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_{r} B^{*}$.

Argument

$\bullet B$ fgp Hopf $\Rightarrow B^{*} \in{ }_{B}^{B} \mathfrak{M}$ and $\theta_{B^{*}}: B \otimes \int_{r} B^{*} \cong B^{*} \Rightarrow{ }_{B} B \cong{ }_{B} B^{*}$.
[LS] Larson, Sweedler, An Orthogonal Bilinear Form for Hopf Algebras. Amer. J. Math. 91 (1969).
[P] Pareigis, When Hopf algebras are Frobenius algebras. J. Algebra 18 (1971).

General recalls: Frobenius-Hopf connections

Theorem ([LS, 1969])

Any fgp Hopf algebra over a PID is Frobenius.

Theorem ([P, 1971])

A bialgebra B is an fgp Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$ iff it is Frobenius with Frobenius homomorphism $\psi \in \int_{r} B^{*}$.

Argument

$$
\begin{aligned}
& \eta_{M}: M \rightarrow B \otimes{ }^{B} \bar{M} \\
& \epsilon_{V}:{ }^{B} \overline{B \otimes V} \xlongequal{\cong} V
\end{aligned}
$$

-r B fgp Hopf $\Rightarrow B^{*} \in{ }_{B}^{B M}$ and $\theta_{B^{*}}: B \otimes \int_{r} B^{*} \cong B^{*} \Rightarrow{ }_{B} B \cong{ }_{B} B^{*}$.
[LS] Larson, Sweedler, An Orthogonal Bilinear Form for Hopf Algebras. Amer. J. Math. 91 (1969).
[P] Pareigis, When Hopf algebras are Frobenius algebras. J. Algebra 18 (1971).

The Frobenius question

- When is the functor $B \otimes-: \mathfrak{k}_{\mathfrak{M}} \rightarrow{ }_{B}^{B} \mathfrak{M}$ Frobenius?
- There is a canonical morphism

natural in $M \in{ }_{B} \mathfrak{M}$, given by $\sigma_{M}(m)=\bar{m}$ for all $m \in M$.
- $B Q$ - is rrobenius iff σ is a natural' iso, iff $M \simeq \operatorname{coB} M \cap B^{-} M(\forall M)$.
\bullet What can we say about B when $B \otimes-: \mathbb{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ is Frobenius?

Consider $B \widehat{\otimes} B:=: B \otimes, B \in{ }_{B}^{B} \mathfrak{M}$ and $\sigma_{B \hat{\otimes} B}:{ }^{c o B}(B \widehat{\otimes} B) \rightarrow{ }^{B} \overline{B \widehat{\otimes} B}$.

The Frobenius question

- When is the functor $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ Frobenius?

Lemma

- There is a canonical morphism

$$
\sigma_{M}:\left({ }^{\mathrm{coB}} M \xrightarrow{\epsilon_{\mathrm{coB}}^{-1}}{ }^{B} \overline{B \otimes^{\mathrm{CoB}} M} \xrightarrow{{ }^{B} \overline{\theta_{M}}}{ }^{B} \bar{M}\right),
$$

natural in $M \in{ }_{B}^{B} \mathfrak{M}$, given by $\sigma_{M}(m)=\bar{m}$ for all $m \in M$.

- $B \otimes$ - is Frobenius iff σ is a natural iso, iff $M \cong{ }^{\cos } M \oplus B^{+} M(\forall M)$.

- What can we say about B when $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ is Frobenius?

The Frobenius question

* When is the functor $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ Frobenius?

Lemma

- There is a canonical morphism

$$
\sigma_{M}:\left({ }^{\text {coB }} M \xrightarrow{\epsilon_{C O B}^{-1}}{ }^{B} \overline{B \otimes^{C o B} M} \xrightarrow{{ }^{B} \overline{\theta_{M}}}{ }^{B} \bar{M}\right),
$$

natural in $M \in{ }_{B}^{B} \mathfrak{M}$, given by $\sigma_{M}(m)=\bar{m}$ for all $m \in M$.

- $B \otimes$ - is Frobenius iff σ is a natural iso, iff $M \cong{ }^{\mathrm{coB}} M \oplus B^{+} M(\forall M)$.
- What can we say about B when $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ is Frobenius?

The Frobenius question

* When is the functor $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ Frobenius?

Lemma

- There is a canonical morphism

$$
\sigma_{M}:\left({ }^{\text {coB }} M \xrightarrow{\epsilon_{c o B}^{-1}}{ }^{B} \overline{B \otimes^{C o B} M} \xrightarrow{{ }^{B} \overline{\theta_{M}}}{ }^{B} \bar{M}\right),
$$

natural in $M \in{ }_{B}^{B} \mathfrak{M}$, given by $\sigma_{M}(m)=\bar{m}$ for all $m \in M$.

- $B \otimes$ - is Frobenius iff σ is a natural iso, iff $M \cong{ }^{\mathrm{coB}} M \oplus B^{+} M(\forall M)$.
- What can we say about B when $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ is Frobenius?

The Frobenius question

* When is the functor $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ Frobenius?

Lemma

- There is a canonical morphism

$$
\sigma_{M}:\left({ }^{\text {coB }} M \xrightarrow{\epsilon_{c o B}^{-1}}{ }^{B} \overline{B \otimes^{C o B} M} \xrightarrow{{ }^{B} \overline{\theta_{M}}}{ }^{B} \bar{M}\right),
$$

natural in $M \in{ }_{B}^{B} \mathfrak{M}$, given by $\sigma_{M}(m)=\bar{m}$ for all $m \in M$.

- $B \otimes$ - is Frobenius iff σ is a natural iso, iff $M \cong{ }^{\mathrm{coB}} M \oplus B^{+} M(\forall M)$.
- What can we say about B when $B \otimes-:{ }_{k} \mathfrak{M} \rightarrow{ }_{B}^{B} \mathfrak{M}$ is Frobenius?

Consider $B \widehat{\otimes} B:=: B \otimes, B \in{ }_{B}^{B} \mathfrak{M}$ and $\sigma_{B \hat{\otimes} B}:{ }^{c \circ B}(B \widehat{\otimes} B) \rightarrow{ }^{B} \overline{B \widehat{\otimes} B}$.

The first main results: one-sided Hopf algebras

Theorem
The endomorphism $S:=(\varepsilon \otimes B)\left(\sigma_{B \hat{\otimes} B}^{-1}(-\otimes 1)\right)$ of B satisfies

- $S(1)=1, \varepsilon \circ S=\varepsilon$,
- $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in B$

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem
TFAE for a bialgebra B

- B is a left Hopf algebra with anti-(co)multiplicative left antipode,
- σ is a natural isomorphism;
- $\sigma_{B \hat{\otimes} B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem
The endomorphism $S:=(\varepsilon \otimes B)\left(\sigma_{B \hat{\otimes} B}^{-1}(-\otimes 1)\right)$ of B satisfies

- $S(1)=1, \varepsilon \circ S=\varepsilon$;

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem
TFAE for a bialgebra B

- B is a left Hopf algebra with anti-(co)multiplicative left antipode,
- σ is a natural isomorphism;
- $\sigma_{B \hat{\otimes} B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism $S:=(\varepsilon \otimes B)\left(\sigma_{B \hat{\otimes} B}^{-1}(-\otimes 1)\right)$ of B satisfies

- $S(1)=1, \varepsilon \circ S=\varepsilon$;
- $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in B$.

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

TFAE for a bialgebra B

- B is a left Hopf algebra with anti-(co)multiplicative left antipode,
- σ is a natural isomorphism;
- $\sigma_{B \hat{\otimes} B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism $S:=(\varepsilon \otimes B)\left(\sigma_{B \hat{\otimes} B}^{-1}(-\otimes 1)\right)$ of B satisfies

- $S(1)=1, \varepsilon \circ S=\varepsilon$;
- $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in B$.

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

TFAE for a bialgebra B

- B is a left Hopf algebra with anti-(co)multiplicative left antipode,
- σ is a natural isomorphism;
- $\sigma_{B \hat{\otimes} B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism $S:=(\varepsilon \otimes B)\left(\sigma_{B \hat{\otimes} B}^{-1}(-\otimes 1)\right)$ of B satisfies

- $S(1)=1, \varepsilon \circ S=\varepsilon$;
- $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in B$.

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

TFAE for a bialgebra B

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- σ is a natural isomorphism;
- $\sigma_{B \hat{\otimes} B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism $S:=(\varepsilon \otimes B)\left(\sigma_{B \hat{\otimes} B}^{-1}(-\otimes 1)\right)$ of B satisfies

- $S(1)=1, \varepsilon \circ S=\varepsilon$;
- $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in B$.

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

TFAE for a bialgebra B

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- σ is a natural isomorphism;
- $\sigma_{B \hat{\otimes} B}$ is invertible.

The first main results: one-sided Hopf algebras

Theorem

The endomorphism $S:=(\varepsilon \otimes B)\left(\sigma_{B \otimes \otimes B}^{-1}(-\otimes 1)\right)$ of B satisfies

- $S(1)=1, \varepsilon \circ S=\varepsilon$;
- $S\left(a_{1} b\right) a_{2}=\varepsilon(a) S(b), \forall a, b \in B$.

In particular, it is a left antipode and B is a left Hopf algebra. Moreover, S is anti-multiplicative and anti-comultiplicative.

Theorem

TFAE for a bialgebra B

- B is a left Hopf algebra with anti-(co)multiplicative left antipode;
- σ is a natural isomorphism;
- $\sigma_{B \hat{\otimes} B}$ is invertible.

The first main results: Hopf algebras

There is a right-handed analogue with canonical map $\varsigma_{M}: M^{\text {coB }} \rightarrow \bar{M}^{B}$ and distinguished Hopf module $B \widetilde{\otimes} B=B_{\mathbf{\bullet}} \otimes B_{\mathbf{\bullet}}^{\bullet} \in \mathfrak{M}_{B}^{B}$.

```
Theorem
TrAE for a bialgebra B
- B is a Hopf algebra;
- }\sigma\mathrm{ and s are natural isomorphisms;
- }\mp@subsup{\sigma}{B\hat{\otimes}B}{}\mathrm{ and }\mp@subsup{\varsigma}{B\otimes\otimesB}{}\mathrm{ are invertible;
- }\mp@subsup{\sigma}{B\hat{\otimes}B}{}\mathrm{ is invertible and either }\mp@subsup{\eta}{B\hat{\otimes}B}{}\mathrm{ is injective or }\mp@subsup{0}{B\hat{\otimes}B}{}\mathrm{ is surjective.
- SBzB is invertible and either n}\mp@subsup{n}{B}{}\mp@subsup{\tilde{z}}{B}{}\mathrm{ is iniective or }\mp@subsup{A}{B}{}\mp@subsup{z}{B}{}\mathrm{ is suriective.
```


The first main results: Hopf algebras

There is a right-handed analogue with canonical map $\varsigma_{M}: M^{\text {coB }} \rightarrow \bar{M}^{B}$ and distinguished Hopf module $B \widetilde{\otimes} B=B_{\mathbf{\bullet}} \otimes B_{\mathbf{\bullet}} \in \mathfrak{M}_{B}^{B}$.

Theorem

TFAE for a bialgebra B

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B \hat{\otimes} B}$ and $\zeta_{B \otimes B}$ are invertible;
- $\sigma_{B \hat{A}_{B}}$ is invertible and either $n_{B} \hat{Q}_{B}$ is injective or $\theta_{B \otimes B}$ is surjective.
- $\varsigma_{B \ddot{\otimes} B}$ is invertible and either $\eta_{B \otimes B B}$ is injective or $\theta_{B \ddot{\otimes} B}$ is surjective.

The first main results: Hopf algebras

There is a right-handed analogue with canonical map $\varsigma_{M}: M^{\text {coB }} \rightarrow \bar{M}^{B}$ and distinguished Hopf module $B \widetilde{\otimes} B=B_{\mathbf{\bullet}} \otimes B_{\mathbf{\bullet}} \in \mathfrak{M}_{B}^{B}$.

Theorem

TFAE for a bialgebra B

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B \hat{\otimes} B}$ and $\varsigma_{B \otimes \in B}$ are invertible;
- $\sigma_{B \hat{\otimes} B}$ is invertible and either $\eta_{B \hat{\otimes} B}$ is injective or $\theta_{B \hat{\otimes} B}$ is surjective.
- CBEB is invertihle and either $n_{B E}$ is iniective or $A_{B}{ }_{B}$ is suriective

The first main results: Hopf algebras

There is a right-handed analogue with canonical map $\varsigma_{M}: M^{\text {coB }} \rightarrow \bar{M}^{B}$ and distinguished Hopf module $B \widetilde{\otimes} B=B_{\bullet} \otimes B_{\mathbf{\bullet}} \in \mathfrak{M}_{B}^{B}$.

Theorem

TFAE for a bialgebra B

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B \hat{\otimes} B}$ and $\varsigma_{B \tilde{\otimes} B}$ are invertible;
- $\sigma_{B \hat{\otimes} B}$ is invertible and either $\eta_{B \hat{\otimes} B}$ is injective or $\theta_{B \hat{\otimes}_{B}}$ is surjective.
- $\varsigma_{B \ddot{\otimes} B}$ is invertible and either $\eta_{B \otimes B}$ is injective or $\theta_{B \ddot{\otimes} B}$ is surjective.

The first main results: Hopf algebras

There is a right-handed analogue with canonical map $\varsigma_{M}: M^{\text {coB }} \rightarrow \bar{M}^{B}$ and distinguished Hopf module $B \widetilde{\otimes} B=B_{\bullet} \otimes B_{\mathbf{0}} \in \mathfrak{M}_{B}^{B}$.

Theorem

TFAE for a bialgebra B

- B is a Hopf algebra;
- σ and ς are natural isomorphisms;
- $\sigma_{B \hat{\otimes} B}$ and $\varsigma_{B \tilde{\otimes} B}$ are invertible;
- $\sigma_{B \hat{\otimes} B}$ is invertible and either $\eta_{B \hat{\otimes} B}$ is injective or $\theta_{B \hat{\otimes} B}$ is surjective.
- $\varsigma_{B \otimes \tilde{\otimes}_{B}}$ is invertible and either $\eta_{B \tilde{\otimes} B}$ is injective or $\theta_{B \otimes \tilde{\otimes}_{B}}$ is surjective.

Examples and consequences

Example ([GNT, 1980])

Consider $T:=\mathbb{k}\left\langle e_{i, j}^{(k)} \mid 1 \leq i, j \leq n, k \geq 0\right\rangle$ with

$$
\Delta\left(e_{i, j}^{(k)}\right):=\sum_{h=1}^{n} e_{i, h}^{(k)} \otimes e_{h, j}^{(k)}, \quad \varepsilon\left(e_{i, j}^{(k)}\right):=\delta_{i, j} \quad \text { and } \quad s\left(e_{i, j}^{(k)}\right):=e_{j, i}^{(k+1)}
$$

The ideal / generated by

$$
\left\{\sum_{h=1}^{n} e_{h, i}^{(k+1)} e_{h, j}^{(k)}-\delta_{i, j} 1, \sum_{h=1}^{n} e_{i, h}^{(1)} e_{j, h}^{(1+1)}-\delta_{i, j} 1 \mid 1 \leq i, j \leq n, k \geq 0, / \geq 1\right\}
$$

is an s-stable bi-ideal, whence T / I is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.
[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).

Examples and consequences

Example ([GNT, 1980])

Consider $T:=\mathbb{k}\left\langle e_{i, j}^{(k)} \mid 1 \leq i, j \leq n, k \geq 0\right\rangle$ with

$$
\Delta\left(e_{i, j}^{(k)}\right):=\sum_{h=1}^{n} e_{i, h}^{(k)} \otimes e_{h, j}^{(k)}, \quad \varepsilon\left(e_{i, j}^{(k)}\right):=\delta_{i, j} \quad \text { and } \quad s\left(e_{i, j}^{(k)}\right):=e_{j, i}^{(k+1)} .
$$

The ideal / generated by

is an s-stable bi-ideal, whence T / I is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.
[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).

Examples and consequences

Example ([GNT, 1980])

Consider $T:=\mathbb{k}\left\langle e_{i, j}^{(k)} \mid 1 \leq i, j \leq n, k \geq 0\right\rangle$ with

$$
\Delta\left(e_{i, j}^{(k)}\right):=\sum_{h=1}^{n} e_{i, h}^{(k)} \otimes e_{h, j}^{(k)}, \quad \varepsilon\left(e_{i, j}^{(k)}\right):=\delta_{i, j} \quad \text { and } \quad s\left(e_{i, j}^{(k)}\right):=e_{j, i}^{(k+1)} .
$$

The ideal I generated by

$$
\left\{\sum_{h=1}^{n} e_{h, i}^{(k+1)} e_{h, j}^{(k)}-\delta_{i, j} 1, \sum_{h=1}^{n} e_{i, h}^{(l)} e_{j, h}^{(l+1)}-\delta_{i, j} 1 \mid 1 \leq i, j \leq n, k \geq 0, I \geq 1\right\}
$$

is an s-stable bi-ideal, whence $T / /$ is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.
[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).

Examples and consequences

Example ([GNT, 1980])

Consider $T:=\mathbb{k}\left\langle e_{i, j}^{(k)} \mid 1 \leq i, j \leq n, k \geq 0\right\rangle$ with

$$
\Delta\left(e_{i, j}^{(k)}\right):=\sum_{h=1}^{n} e_{i, h}^{(k)} \otimes e_{h, j}^{(k)}, \quad \varepsilon\left(e_{i, j}^{(k)}\right):=\delta_{i, j} \quad \text { and } \quad s\left(e_{i, j}^{(k)}\right):=e_{j, i}^{(k+1)} .
$$

The ideal I generated by

$$
\left\{\sum_{h=1}^{n} e_{h, i}^{(k+1)} e_{h, j}^{(k)}-\delta_{i, j} 1, \sum_{h=1}^{n} e_{i, h}^{(l)} e_{j, h}^{(l+1)}-\delta_{i, j} 1 \mid 1 \leq i, j \leq n, k \geq 0, I \geq 1\right\}
$$

is an s-stable bi-ideal, whence T / I is a left Hopf algebra with anti-(co)multiplicative left antipode which is not an antipode.
[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).

Examples and consequences

Example ([RT, 2005])

Let $q \in \mathbb{k}^{\times}$and consider the algebra $\widetilde{S L}_{q}(2)$ generated by $X_{i, j}$, $1 \leq i, j \leq 2$, and subject to the relations

$$
\begin{aligned}
X_{2,1} X_{1,1}=q X_{1,1} X_{2,1}, & X_{2,2} X_{1,2}=q X_{1,2} X_{2,2}, \\
X_{2,2} X_{1,1}=q X_{1,2} X_{2,1}+1, & X_{2,1} X_{1,2}=q X_{1,1} X_{2,2}-q .
\end{aligned}
$$

This is a left Hopf algebra which is not Hopf and no left antipode is anti-multiplicative.
[RT] Rodríguez-Romo, Taft, A left quantum group. J. Algebra 286 (2005).

Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(1) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \mathbb{k}$.
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
(4) The functor $-\otimes B: \mathfrak{M}^{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{\cos B}, V\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
(5) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B \cong \mathbb{k}$.
(6) B^{*} is a Hopf algebra with $\int_{r} B^{* *} \cong \mathbb{k}$.
(7) B^{*} is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{* *}$.
(8) The functor $-\otimes B: \mathfrak{M}_{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}\left(V_{\varepsilon}, U^{B}(M)\right) \cong \operatorname{Hom}\left(V, \bar{M}^{B}\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

[^2] Geom 42 (2001)

Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(1) The functor $-\otimes B: \mathfrak{N} \rightarrow \mathfrak{N}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \mathbb{k}$.
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.

[^3]
Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(1) The functor $-\otimes B: \mathfrak{N} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \mathbb{k}$
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.

$\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{c o B}, V\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$,
where V^{u} denotes the trivial comodule structure.
(5) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{R}^{B}$ is Frobenius and $\int E \cong \mathbb{k}$
(6) B^{*} is a Hopf algebra with $\int_{r} B^{* *} \cong \mathbb{k}$.
(7) B^{*} is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{* *}$.
(8) The functor $-\otimes B: \mathfrak{N}_{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}\left(V_{\varepsilon}, U^{B}(M)\right) \cong \operatorname{Hom}\left(V, \bar{M}^{B}\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

[^4] Geom. 42 (2001)

Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(1) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \mathbb{k}$.
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
 $\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{\operatorname{coB}}, V\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
(5) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int E \cong \mathbb{k}$
(6) B^{*} is a Hopf algebra with $\int_{r} B^{* *} \cong \mathbb{k}$.
(7) B^{*} is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{* *}$.
 $\operatorname{Hom}_{B}\left(V_{\varepsilon}, U^{B}(M)\right) \cong \operatorname{Hom}\left(V, \bar{M}^{B}\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.
[KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra Geom. 42 (2001).

Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
(4) The functor $-\otimes B: \mathfrak{M}^{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{c o B}, V\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
(6) B^{*} is a Hopf algebra with $\int_{r} B^{* *} \cong \mathbb{k}$.
(7) B^{*} is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{* *}$.
(8) The functor $-\otimes B: \mathfrak{M}_{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}\left(V_{\varepsilon}, U^{B}(M)\right) \cong \operatorname{Hom}\left(V, \bar{M}^{B}\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

[^5]
Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(1) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \mathbb{k}$.
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
(4) The functor $-\otimes B: \mathfrak{M}^{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{\text {coB }}, V\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
(6) B^{*} is a Hopf algebra with $\int_{r} B^{* *} \cong \mathbb{k}$.
(7) B^{*} is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{* *}$.
 where V_{ε} denotes the trivial module structure.

[^6]
Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(1) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \mathbb{k}$.
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
(4) The functor $-\otimes B: \mathfrak{M}^{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{\operatorname{coB}}, V\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
(6) B^{*} is a Hopf algebra with $\int_{r} B^{* *} \cong \mathbb{k}$.
(7) B^{*} is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{* *}$.
(8) The functor $-\otimes B: \mathfrak{M}_{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}\left(V_{\varepsilon}, U^{B}(M)\right) \cong \operatorname{Hom}\left(V, \bar{M}^{B}\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

[^7]
Connections with Pareigis's results

Theorem

TFAE for a fgp \mathbb{k}-bialgebra B.
(1) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B^{*} \cong \mathbb{k}$.
(2) B is a Hopf algebra with $\int_{r} B^{*} \cong \mathbb{k}$.
(3) B is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{*}$.
(4) The functor $-\otimes B: \mathfrak{M}^{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{\operatorname{coB}}, V\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V^{u} denotes the trivial comodule structure.
(5) The functor $-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int_{r} B \cong \mathbb{k}$.
(6) B^{*} is a Hopf algebra with $\int_{r} B^{* *} \cong \mathbb{k}$.
(7) B^{*} is a Frobenius algebra with Frobenius homomorphism in $\int_{r} B^{* *}$.
(8) The functor $-\otimes B: \mathfrak{M}_{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and we have $\operatorname{Hom}_{B}\left(V_{\varepsilon}, U^{B}(M)\right) \cong \operatorname{Hom}\left(V, \bar{M}^{B}\right)$, naturally in $M \in \mathfrak{M}_{B}^{B}, V \in \mathfrak{M}$, where V_{ε} denotes the trivial module structure.

[^8]
Further developments

- The functor $-\otimes B: \mathfrak{M}_{\mathrm{k}} \rightarrow \mathfrak{M}_{B}^{B}$ does not encode enough informations to recover a Hopf algebra structure.

The functor $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ fits into an adjoint triple and there is a canonical natural transformation given by $\sigma_{M}: \operatorname{Hom}_{B}^{B}(B \odot B M), \bar{M}^{B} \quad f \cdots \overline{f(1 \cap 1)} \quad\left(M \mathcal{B}_{B} \mathcal{D}_{B}^{B}\right)$ - B is a Hopf algebra iff $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ is Frobenius, iff σ is a natural isomorphism.

- Presently, it is unclear if being Frobenius for $-\otimes B$ can be encoded in the invertibility of a uniaue canonical morphism

Further developments

- The functor $-\otimes B: \mathfrak{M}_{\mathrm{k}} \rightarrow \mathfrak{M}_{B}^{B}$ does not encode enough informations to recover a Hopf algebra structure.

Theorem

- The functor $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ fits into an adjoint triple

$$
-\otimes_{B} \mathrm{k}=\overline{(-)}{ }^{B}\left(\prod_{B^{\mathfrak{M}^{3}}}^{\uparrow_{-\infty}^{\mathfrak{M}_{B}^{B}}}\right)_{B^{\mathrm{Hom}}{ }_{B}^{B}(B \otimes B,-)}
$$

and there is a canonical natural transformation given by

$$
\sigma_{M}:{ }_{B} \operatorname{Hom}_{B}^{B}(B \otimes B, M) \rightarrow \bar{M}^{B}, \quad f \mapsto \overline{f(1 \otimes 1)} \quad\left(M \in{ }_{B} \mathfrak{M}_{B}^{B}\right) .
$$

- B is a Hopf algebra iff $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ is Frobenius, iff σ is a natural isomorphism.
or Presently, it is unclear if being Frobenius for $-\otimes B$ can be encoded in the invertibility of a unique canonical morphism

Further developments

- The functor $-\otimes B: \mathfrak{M}_{\mathrm{k}} \rightarrow \mathfrak{M}_{B}^{B}$ does not encode enough informations to recover a Hopf algebra structure.

Theorem

- The functor $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ fits into an adjoint triple

$$
-\otimes_{B} \mathrm{k}=\overline{(-)}{ }^{B}\left(\prod_{B^{\mathfrak{M}^{3}}}^{\uparrow_{-\infty}^{\mathfrak{M}_{B}^{B}}}\right)_{B^{\mathrm{Hom}}{ }_{B}^{B}(B \otimes B,-)}
$$

and there is a canonical natural transformation given by

$$
\sigma_{M}:{ }_{B} \operatorname{Hom}_{B}^{B}(B \otimes B, M) \rightarrow \bar{M}^{B}, \quad f \mapsto \overline{f(1 \otimes 1)} \quad\left(M \in{ }_{B} \mathfrak{M}_{B}^{B}\right) .
$$

- B is a Hopf algebra iff $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ is Frobenius, iff σ is a natural isomorphism.
* Presently, it is unclear if being Frobenius for $-\otimes B$ can be encoded in the invertibility of a unique canonical morphism

Further developments

- The functor $-\otimes B: \mathfrak{M}_{\mathrm{k}} \rightarrow \mathfrak{M}_{B}^{B}$ does not encode enough informations to recover a Hopf algebra structure.

Theorem

- The functor $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ fits into an adjoint triple

$$
-\otimes_{B} \mathrm{k}=\overline{(-)}{ }^{B}\binom{\uparrow_{B}^{\mathfrak{M}_{B}^{B}}}{-\mathfrak{M}_{B}^{B}} B^{\operatorname{Hom}_{B}^{B}(B \otimes B,-)}
$$

and there is a canonical natural transformation given by

$$
\sigma_{M}:{ }_{B} \operatorname{Hom}_{B}^{B}(B \otimes B, M) \rightarrow \bar{M}^{B}, \quad f \mapsto \overline{f(1 \otimes 1)} \quad\left(M \in{ }_{B} \mathfrak{M}_{B}^{B}\right) .
$$

- B is a Hopf algebra iff $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ is Frobenius, iff σ is a natural isomorphism.
-r Presently, it is unclear if being Frobenius for $-\otimes B$ can be encoded in the invertibility of a unique canonical morphism.

Heartfelt wishes and many thanks

[^0]: [M] Morita, Adjoint pairs of functors and Frobenius extensions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965).

[^1]: [M] Morita, Adjoint pairs of functors and Frobenius extensions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965).

[^2]: [KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra

[^3]: [KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra

[^4]: [KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra

[^5]: [KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra Geom. 42 (2001).

[^6]: [KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra Geom. 42 (2001).

[^7]: [KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra Geom. 42 (2001).

[^8]: [KS] Kadison, Stolin, An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra Geom. 42 (2001).

