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General recalls: one-sided Hopf, Frobenius algebras

k is a commutative ring (from time to time a field). B a k-bialgebra.

Definition ([GNT, 1980])

A left (resp. right) convolution inverse of Idg is called a left (resp. right)
antipode and B a left (resp. right) Hopf algebra.

[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).
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Definition
A k-algebra A is Frobenius if 31 € A* and e € A® A such that
(o A)(e)=1=(AxY)(e) and ae = ea (VaeA).

Equivalently, if A is fgp and 4A = 4A* with regular structures.
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*» When is the functor B ® — : .91 — 5901 Frobenius?
Lemma

e There is a canonical morphism
B——
—1
coB Caerz) B B aM B—
aM:< M—= > "B““°M—F M|,

natural in M € 590, given by oy(m) =m for all m € M.
e B® — is Frobenius iff o is a natural iso, iff M = “° M & B*M (¥ M).

** What can we say about B when B ® — : 90t — E901 is Frobenius?

Consider B® B =B ® ,B € 89 and 045 : < (B® B) — "B® B.
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The first main results: Hopf algebras

There is a right-handed analogue vv~ith canonical map ¢y : M©6 — M’
and distinguished Hopf module B ® B = B, @ B: € M&.

Theorem

TFAE for a bialgebra B

B is a Hopf algebra;

e o and ¢ are natural isomorphisms;

0ggp and Sgep are invertible;
e opgp Is invertible and either ngg g is injective or Ogg g is surjective.

® Gzep is invertible and either ngg s is injective or Oggp is surjective.
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Examples and consequences

Example ([GNT, 1980])

Consider T := k<e}5> |1<ij<nk> 0> with

k k k k k k
( ()> Ze() ® 3, (ef(,f)) =y enel S (e,.(’j)) =g -
The ideal / generated by
k+1 k (/ I4+1)
{Ze( )e,(,j)— i1 Ze,},efh —9;;1

is an s-stable bi-ideal, whence T /[ is a left Hopf algebra with
anti-(co)multiplicative left antipode which is not an antipode.

1§i,j§n,k20,/21}

[GNT] Green, Nichols, Taft, Left Hopf algebras. J. Algebra 65 (1980).



Examples and consequences

Example ([RT, 2005])

Let g € k* and consider the algebra §L,(2) generated by X ;,
1 <i,j <2, and subject to the relations

X2,1X1,1 = qX1,1X2,17 X2,2X1,2 = qX1,2X2,27
XopXi1 = qX1X01 +1, X5 X1, =9X1:1 X, —q.

This is a left Hopf algebra which is not Hopf and no left antipode is
anti-multiplicative.

[RT] Rodriguez-Romo, Taft, A left quantum group. J. Algebra 286 (2005).



Connections with Pareigis's results

Theorem
TFAE for a fgp k-bialgebra B.
(1) The functor — @ B : M — NG is Frobenius and [ B* = k.
(2) B is a Hopf algebra with [ B* = k.
(3) B is a Frobenius algebra with Frobenius homomorphism in [ B*.
(4) The functor — @ B : M — ML is Frobenius and we have
Hom®(Us(M), V*) = Hom(M=E, V), naturally in M € 9MME, V € I,
where V¥ denotes the trivial comodule structure.
(5) The functor — ® B : 9 — M is Frobenius and [ B = k.
(6) B* is a Hopf algebra with [ B** ~k.
(7) B* is a Frobenius algebra with Frobenius homomorphism in [ B**.
(8) The functor — @ B : Mg — M5 is Frobenius and we have
Homg( V., UE(M)) = Hom(V, M"), naturally in M € 9ME, V € 9N,
where V. denotes the trivial module structure.
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Further developments

*» The functor — ® B : M, — ME does not encode enough informations
to recover a Hopf algebra structure.

Theorem

o The functor — ® B : gD — gL fits into an adjoint triple

Mg
A
—egk=()" < —795 gHomB(B®B,-)
M

and there is a canonical natural transformation given by

ou: gHomE(B@ B,M) = M, fesfle1)  (Me m8).
e B is a Hopf algebra iff — @ B : g9 — ;N5 is Frobenius, iff o is a
natural isomorphism.

& Presently, it is unclear if being Frobenius for — ® B can be encoded in
the invertibility of a unique canonical morphism.
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