On Frobenius and Hopf

Paolo Saracco－Université Libre de Bruxelles

InTRODUCTION

Hopf algebras are the backbone of the algebraic approach to many questions in geometry，topology， representation theory，mathematical physics，and they are nowadays recognized as the algebraic counterpart of groups．
Frobenius algebras play a prominent role in repre－ sentation theory，geometry，quantum group theory and，recently，in connection with TQFTs．
It is known that they are intimately related and that this relationship is preserved for some of the many existing extensions of these．

Is there a common wider framework ruling this Hopf－Frobenius connection？

THE ORIGINAL ARGUMENT

For a \mathbb{k}－bialgebra B we always have an adjunction

$\gamma_{V}: V \xrightarrow{\cong}(V \otimes B)^{\mathrm{coB}}$
$\vartheta_{M}: M^{\mathrm{coB}} \otimes B \longrightarrow M$
where $M^{\mathrm{co} B}=\{m \in M \mid \delta(m)=m \otimes 1\}$.
Structure theorem for Hopf modules B is a Hopf algebra iff ϑ is a natural isomorphism．

When B is finitely generated and projective，we have $B^{*} \in \mathfrak{M}_{B}^{B}$ and

$$
\vartheta_{B^{*}}: \int B^{*} \otimes B \cong B^{*} \quad \Rightarrow \quad B_{B} \cong B_{B}^{*} .
$$

Recall： $\begin{array}{rlr}\lambda \in \int B^{*} & \Leftrightarrow \lambda * f=\lambda f(1) & \left(\forall f \in B^{*}\right) \\ & \Leftrightarrow \lambda\left(a_{1}\right) a_{2}=\lambda(a) 1 & (\forall a \in B) .\end{array}$

References

［1］J．A．Green，W．D．Nichols，and E．J．Taft．Left Hopf algebras．J．Algebra， 1980.
［2］P．Saracco．Hopf modules，Frobenius functors and （one－sided）Hopf algebras．arXiv：1904．13065， 2019.

THE MAIN CHARACTERS

（艺）－A \mathbb{k}－bialgebra B is a one－sided Hopf algebra ［1］if it admits a one－sided antipode S ：for all $b \in B$
either $\quad S\left(b_{1}\right) b_{2}=\varepsilon(b) 1 \quad$ or $\quad b_{1} S\left(b_{2}\right)=\varepsilon(b) 1$.
If S is a two－sided antipode，B is a Hopf algebra．
（筧）－ $\mathrm{A} \mathbb{k}$－algebra A is a Frobenius algebra if there exists $\psi: A \rightarrow \mathbb{k}$ and $e \in A \otimes A$ such that

$$
(\psi \otimes A)(e)=1=(A \otimes \psi)(e) \quad \text { and } \quad a e=e a
$$

for all $a \in A$ ．Equivalently，if $A \cong A^{*}$ as A－modules．
Previously on Frobenius－Hopf algebras

Morita（1965）－（紕）\Leftrightarrow（奥）
A \mathbb{k}－algebra is Frobenius if and only if
Larson－Sweedler（1969）
（包）\Rightarrow（邑）
Any finitely generated and projective Hopf \mathbb{k}－ algebra over a PID is Frobenius

$$
\text { Forget }: \mathfrak{M}_{\mathrm{A}} \longleftrightarrow \mathfrak{M}_{\mathrm{k}}:-\otimes A
$$Forget ： $\mathfrak{M}_{\mathrm{A}} \longrightarrow \mathfrak{M}_{\mathfrak{k}}:-\otimes$

（雷）－A pair of functors

$$
\mathcal{F}: \mathcal{C} \longrightarrow \mathcal{D}: \mathcal{G}
$$

is a Frobenius pair if $\mathcal{F} \dashv \mathcal{G} \dashv \mathcal{F}$ ．A functor is Frobenius if it is part of a Frobenius pair．

Pareigis（1971）

A \mathbb{k}－bialgebra B is a fgp Hopf \mathbb{k}－algebra with $\int B^{*} \cong \mathbb{k}$ if and only if it is a Frobenius \mathbb{k}－algebra and $\psi \in \int B^{*}$ ．Call them FH－algebras．
is a Frobenius pair．

A TRUTH REVEALED

In fact，we always have an adjoint triple

and a canonical natural map

$$
\sigma_{M}: M^{\operatorname{co} B} \rightarrow M \otimes_{B} \mathbb{k}, \quad m \mapsto m \otimes_{B} 1_{\mathbb{k}}
$$

When is $-\otimes B$ Frobenius？
The following are equivalent for a bialgebra B
$(\alpha) \quad-\otimes B$ is Frobenius；
（ β ）$\quad \sigma$ is a natural isomorphism； $M \cong M^{\mathrm{coB}} \oplus M B^{+}$for all $M \in \mathfrak{M}_{B}^{B}$.

EXAMPLE

$B=\mathbb{k}\left\langle e_{i j}^{(k)} \mid 1 \leq i, j \leq n, k \geq 0\right\rangle / I$ where I is
$\left\langle\begin{array}{l|l|l}\sum_{h} e_{h i}^{(k+1)} e_{h j}^{(k)}-\delta_{i j}, \sum_{h} e_{i h}^{(l)} e_{j h}^{(l+1)}-\delta_{i j} & \left.\begin{array}{l}k \geq 1 \\ l \geq 0\end{array}\right\rangle\end{array}\right\rangle$
and with $s\left(e_{i j}^{(k)}\right)=e_{j i}^{(k+1)}$ is a right Hopf algebra．

The main results［2］

A new structure theorem－$($ 匈 $) \Leftrightarrow($ 魚 $)$
The following are equivalent for a bialgebra B
1．B is a right Hopf algebra with anti－ （co）multiplicative right antipode S ；
2．σ is a natural isomorphism；
3．$\sigma_{B \otimes B}$ is invertible．
In such a case，for all $a \in B$

$$
S(a):=(B \otimes \varepsilon)\left(\sigma_{B \otimes B}^{-1}\left((1 \otimes a) \otimes_{B} 1_{\mathbb{k}}\right)\right)
$$

How far from Hopf？
B is a Hopf \mathbb{k}－algebra if and only if $\sigma_{B \otimes B}$ is inver－ tible and $\vartheta_{B \otimes B}$ is surjective．

Larson－Sweedler（1969）

If B is finitely generated and projective，then B is
Hopf if and only if it is one－sided Hopf．

Further Questions

The functor $-\otimes B:{ }_{B} \mathfrak{M} \rightarrow{ }_{B} \mathfrak{M}_{B}^{B}$ is part of an adjoint triple as well with right adjoint ${ }_{B} \operatorname{Hom}_{B}^{B}(B \otimes B,-)$ ．When is $-\otimes B$ Frobenius？

Pareigis＇theorem for Frobenius functors
The following are equivalent for a finitely genera－ ted and projective \mathbb{k}－bialgebra B

1．$-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int B^{*} \cong \mathbb{k}$ ．
2．B is a Hopf algebra with $\int B^{*} \cong \mathbb{k}$ ．
3．B is a FH－algebra．
4．$-\otimes B: \mathfrak{M}^{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\operatorname{Hom}^{B}\left(U_{B}(M), V^{u}\right) \cong \operatorname{Hom}\left(M^{\operatorname{coB}}, V\right)$.
5．$-\otimes B: \mathfrak{M} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\int B \cong \mathbb{k}$ ．
6．B^{*} is a Hopf algebra with $\int B^{* *} \cong \mathbb{k}$ ．
7．B^{*} is a FH －algebra．
8．$-\otimes B: \mathfrak{M}_{B} \rightarrow \mathfrak{M}_{B}^{B}$ is Frobenius and $\operatorname{Hom}_{B}\left(V_{\varepsilon}, U^{B}(M)\right) \cong \operatorname{Hom}\left(V, M \otimes_{B} \mathbb{k}\right)$ ．

CONTACT INFORMATION

Web sites．google．com／view／paolo－saracco Email paolo．saracco＠ulb．ac．be
Address Département de Mathématique，ULB， Bd du Triomphe，B－1050 Brussels，Belgium．

