

Globalization for geometric partial comodules

Paolo Saracco

ULB - Université Libre de Bruxelles

Fonds de la Recherche Scientifique - FNRS

Quantum Groups Seminar 31/05/2021

Based on an ongoing project with J. Vercruysse (ULB) - arXiv:2001.07669

1. Partial actions of groups

- 2. Geometric partial comodules
- 3. Globalization of geometric partial comodules

4. Applications

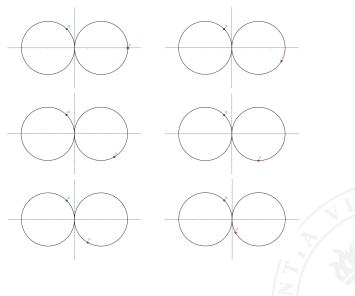
Saracco

ULB

L 1 8

JNIVERSITÉ

Partial actions of groups



ULB

Saracco

ULB & FNRS 3/2

Partial actions of groups

Definition [Exel, 1998]

A partial action of a group G on a set X is a collection $\{X_g, \alpha_g \mid g \in G\}$ of subsets X_g of X and bijections $\alpha_g : X_{g^{-1}} \to X_g$ such that

$$\blacktriangleright X_e = X \text{ and } \alpha_e = \mathrm{id}_X$$

$$\blacktriangleright \ \alpha_g^{-1}(X_g \cap X_{h^{-1}}) = X_{g^{-1}} \cap X_{(hg)^{-1}} \text{ for all } g, h \in G$$

•
$$\alpha_h \circ \alpha_g = \alpha_{hg}$$
 on $X_{g^{-1}} \cap X_{(hg)^{-1}}$ for all $g, h \in G$

Example

For $G = S^1$ and $X = \{\text{pair of tangent circumferences}\}\ \text{take as}\ X_g = \{\text{right-hand side circumference}\}\ \text{and as}\ \alpha_g\ \text{the rotation by}\ g\ \text{clockwise around its center, for}\ g \neq e.$

RS 4/21

Restrictions of global actions

Definition

Let $\beta : G \times Y \to Y$ be a global action of G on Y and let $X \subseteq Y$. Set

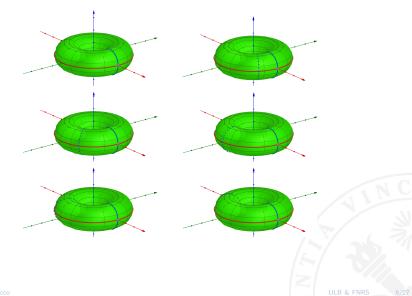
• $X_{g^{-1}} := \beta_{g^{-1}}(X) \cap X$ and

• α_g given by restriction of β_g for all $g \in G$.

Fact: The collection $\{X_g, \alpha_g\}$ is a partial action of *G* on *X*, called the induced partial action.

ШLВ

Restrictions of global actions



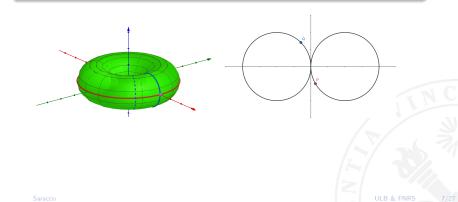
ULB

Restrictions of global actions

ULB

Example

Take $X = \{ \text{blue circumference} \} \cup \{ \text{red circumference} \}$ on the torus and the induced action of $G = S^1$ by clockwise rotation around the *z*-axis.



Definition

A globalization for $\{X_g, \alpha_g \mid g \in G\}$ is a *G*-set *Y* with an injection $\epsilon : X \rightarrow Y$ st the partial action on *X* is induced by the global one on *Y* and *Y* is universal (initial) among the *G*-sets satisfying this property.

Theorem [Abadie, 2003]

Every partial action of a group G on a set X admits a globalization (unique up to iso) which can be realized as

 $G \times X / \sim$

where $(g, x) \sim (h, y)$ iff $x \in X_{h^{-1}g}$ and $y = \alpha_{g^{-1}h}(x)$.

Example

The torus is the globalization of the partial action of S^1 on the tangent circumferences.

S

Round up of partial (co)actions

- Partial actions of groups on sets
- Partial actions of (topological) groups on topological spaces
- Partial actions of (C*-quantum) groups on C*-algebras
- Partial representations of groups in algebras

- Partial modules over Hopf algebras
- Partial comodules over Hopf algebras
- Partial comodule algebras over Hopf algebras
- Partial representations of Hopf algebras in algebras
- ▶ Partial actions of Hopf algebras on k-linear categories
- Partial actions of multiplier Hopf algebras
- Partial actions of groupoids on rings

. . .

. . .

RUXELLE

1. Partial actions of groups

2. Geometric partial comodules

3. Globalization of geometric partial comodules

4. Applications

ULB & FNRS 10/2

ULB

UNIVERSITÉ LIBRE DE BRUXELLES

Let $(\mathcal{C},\otimes,\mathbb{I})$ be a monoidal cat with pushouts and (H,Δ,ε) a coalgebra.

Monoidal category

A category ${\mathcal C}$ with a bifunctor $\otimes: {\mathcal C} \times {\mathcal C} \to {\mathcal C}$ and an object ${\mathbb I}$ such that

 $(X \otimes Y) \otimes Z \cong Z \otimes (Y \otimes Z), \qquad \mathbb{I} \otimes X \cong X \cong X \otimes \mathbb{I}$

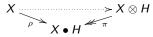
and the pentagon and triangle axioms hold.

Coalgebra

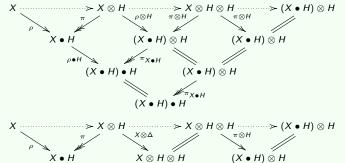
In a monoidal category $(\mathcal{C},\otimes,\mathbb{I})$ a coalgebra is an object H together with

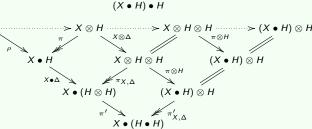
JNIVERSITÉ LIBRE

Partial comodule data



Any partial comodule datum induces canonically the following pushouts

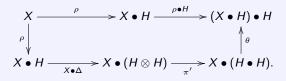




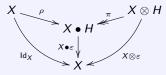
Definition [Hu-Vercruysse, 2018]

A geometric partial comodule (gpc_H) is a $pcd_H(X, X \bullet H, \pi, \rho)$ st

▶ there exists an isomorphism $\theta : X \bullet (H \bullet H) \to (X \bullet H) \bullet H$ such that $\theta \circ \pi'_{X,\Delta} = \pi_{X \bullet H}$ and the following diagram commutes



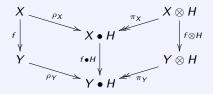
▶ there exists $X \bullet \varepsilon : X \bullet H \to X$ st the following diagram commutes



The category of geometric partial comodules

Definition

If $(X, X \bullet H, \pi_X, \rho_X)$ and $(Y, Y \bullet H, \pi_Y, \rho_Y)$ are $gpcs_H$, then a morphism of geometric partial comodules is a pair $(f, f \bullet H)$ of morphisms in C st



commutes. We denote by $gPCom^{H}$ the category of geometric partial comodules over H and their morphisms.

LB & FNRS 14/2

BRUXEL

UNIVERSI

Examples of geometric partial comodules

Example

Let G be a group and
$$\{X_g, \alpha_g\}$$
 a partial action of G on X. Set $G \bullet X := \{(g, x) \in G \times X \mid x \in X_{g^{-1}}\}$. Then

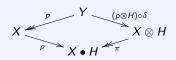
is a geometric partial G-comodule in Set^{op}.

- Partial actions of groups/monoids on sets (C = Set^{op})
- Partial actions of (topological) groups/monoids on topological spaces (C = Top^{op})
- ▶ Partial modules over Hopf algebras ($C = Vect_{k}^{op}$)
- ▶ Partial comodules over Hopf algebras ($C = Vect_k$)
- ▶ Partial comodule algebras over Hopf algebras ($C = Alg_k$)

Induced geometric partial comodules

Definition [Hu-Vercruysse, 2018]

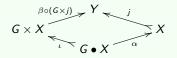
Let (Y, δ) be an *H*-comodule and $p: Y \to X$ an epi in \mathcal{C} . The pushout



is a gpc_H and p is a morphism of $gpcs_H$. We refer to this as the induced partial comodule structure from Y to X.

Example

If (Y, β) is a *G*-set and $j : X \subseteq Y$ is any subset, the pullback



gives the induced partial action of G on X.

JNIVERSITÉ LIBRE DE BRUJ

ULB

1. Partial actions of groups

2. Geometric partial comodules

3. Globalization of geometric partial comodules

4. Applications

ULB & FNRS 17/2

BRUX

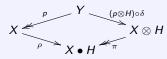
JNIVERSITÉ LIBRE DE

Globalization for geometric partial comodules

Definition

Given a gpc_H $(X, X \bullet H, \pi, \rho)$, a globalization for X is an H-comodule (Y, δ) with an epimorphism $p: Y \to X$ in \mathcal{C} such that

the diagram



commutes and it is a pushout square in C;

- \triangleright Y is universal among all comodules admitting a morphism of gpcs_H to X: if (Z, δ') is global and $p' : Z \to X$ is of $gpcs_H$, then there exists a unique morphism of $coms_H \eta : Z \to Y$ such that $p \circ \eta = p'$.
- X is globalizable if a globalization for X exists and we denote by $gPCom_{al}^{H}$ the full subcategory of $gPCom^H$ of the globalizable partial comodules.

ULB

Are geometric partial comodules globalizable?

$$\mathcal{I}(Y,\delta) \coloneqq (Y,Y\otimes H, \textit{id}, \delta) ext{ induces a functor } \mathcal{I}:\mathsf{Com}^H o \mathsf{gPCom}^H.$$

Let $(X, X \bullet H, \pi, \rho)$ be a gpc_H. We have a diagram of coms_H

$$X \otimes H \xrightarrow[(\pi \otimes H) \circ (X \otimes \Delta)]{\rho \otimes H} X \bullet H \otimes H$$
.

Lemma

(†)

For a gpc_{*H*} (*X*, *X* • *H*, π , ρ) and a com_{*H*} (*Y*, δ), there is a bijective correspondence

$$g\mathsf{PCom}^{H}(\mathcal{I}Y, X) \cong \left\{ f \in \mathsf{Com}^{H}(Y, X \otimes H) \mid f \text{ equalizes } (\dagger) \right\}$$
$$g \mapsto (g \otimes H) \circ \delta, \qquad (X \otimes \varepsilon) \circ f \leftrightarrow f.$$

Moreover, this correspondence is natural in both arguments Y and X.

Theorem [S.-Vercruysse]

Let *H* be a coalgebra in the monoidal category *C*. Then a geometric partial comodule $(X, X \bullet H, \pi, \rho)$ is globalizable iff

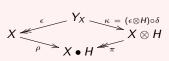
the equalizer

$$(Y_X, \delta) \xrightarrow{\kappa} (X \otimes H, X \otimes \Delta) \xrightarrow{\rho \otimes H} (X \bullet H \otimes H, X \bullet H \otimes \Delta)$$

exists in Com^{*H*};

▶ the morphism $\epsilon = (X \otimes \varepsilon) \circ \kappa : Y_X \to X$ is an epimorphism in C;

the diagram



is a pushout diagram in C.

Under these equivalent conditions Y_X is the globalization of X.

JNIVERSITÉ LIBRE DE BRU

ULB

1. Partial actions of groups

2. Geometric partial comodules

3. Globalization of geometric partial comodules

4. Applications

ULB & FNRS 21/2

DE BRUX

LIBRE

JNIVE

Partial actions of monoids and groups

Set $C = Set^{op}$. A gpc_H is a partial action of a monoid H.

Corollary [Megrelishvili-Schröder, 2004]

If X is a partial action of H, then $Y_X = (X \times M)/R$ is the globalization of X, where $R \subseteq (X \times M) \times (X \times M)$ is the equivalence relation generated by

$$\{((x \cdot m, n), (x, mn)) \mid m, n \in M, x \in X_m\}.$$

In particular, we have $gPCom_{gl}^{H} = gPCom^{H}$ for every monoid H.

$$Y_X$$
 is the coequalizer of $X \bullet H \times H \xrightarrow[(\pi \times H) \circ (X \times \mu)]{} X \times H$.

Corollary [Abadie, 2003]

For every group G, $gPCom_{gl}^{G} = gPCom^{G}$.

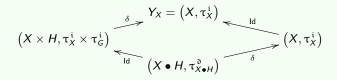
ULB

BRUX

UNIVERSITÉ LIBRE DE

Partial actions of topological monoids and groups Set $C = Top^{op}$.

If we endow a group H acting on a set X with the indiscrete topology, we get a global action of a topological group (H, τ_{H}^{i}) on a topological space (X, τ_{X}^{i}) . Set $X \bullet H := X \times H$ endowed with the discrete topology $\tau_{X \bullet H}^{\mathfrak{d}}$. Then $((X, \tau_{X}^{i}), (X \bullet H, \tau_{X \bullet H}^{\mathfrak{d}}), \mathrm{Id}, \delta)$ is a gpc_H in Top^{op}. However,



cannot be a pullback square.

Therefore, in general, $gPCom_{gl}^H \subsetneq gPCom^H$ in Top^{op} . Nevertheless

Corollary [Abadie, 2003]

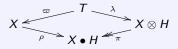
For a topological group (H, τ_H) , TopParAct_H is a full subcat of gPCom_{gl}^H.

Geometric partial comodules in abelian categories

Let $\ensuremath{\mathcal{C}}$ be any abelian monoidal category.

Proposition [S.-Vercruysse]

Assume that $(X, X \bullet H, \pi, \rho)$ is a counital pcd_H. Consider the pullback



in C. Then $(X, X \bullet H, \pi, \rho)$ is a gpc_H iff

$$T \xrightarrow{\lambda} X \otimes H \xrightarrow{\rho \otimes H} X \bullet H \otimes H$$

is an equalizer in \mathcal{C} .

Theorem [S.-Vercruysse]

If H is a coalgebra in C such that Com^H admits equalizers and $\operatorname{Com}^H \to C$ preserves them, then $\operatorname{gPCom}_{gl}^H = \operatorname{gPCom}^H$.

ULB

ULB

Geometric partial (co)modules in vector spaces

Let \Bbbk be a field.

Corollary

- ► If H is a k-algebra, then gpcs_H can be identified with H-modules together with a chosen generating subspace.
- ► If H is a k-coalgebra, then gpcs_H can be identified with H-comodules together with a chosen co-generating quotient space.
- Partial modules over Hopf algebras are globalizable and the globalization coincides with their standard dilation [Alves-Batista-Vercruysse]
- Partial representations of finite groups are globalizable [D'Adderio-Hautekiet-S.-Vercruysse]
- Partial comodules over Hopf algebras are globalizable
- Partial comodule algebras over Hopf algebras are globalizable, but their globalization is not their enveloping coaction [Alves-Batista]

Partially graded representations

Let G be a group. $C = \operatorname{Rep}_G$ is an abelian monoidal category and $\Bbbk G$ is a coalgebra therein. We call partially graded G-representation a partial comodule over $\Bbbk G$ in C.

Partially graded *G*-representations are all and only of the following form. For a vector space *V*, consider $\Bbbk G \otimes V$ with regular action and coaction. Pick a & G-submodule $N \subseteq \& G \otimes V$ and define $M := (\& G \otimes V)/N$. Then *M* with the induced structure

is a partially graded G-representation.

In particular, this construction induces a bijective correspondence between structures of partially graded *G*-representation on the base field \Bbbk (up to isomorphism) and linear characters of the group *G*.

ULB

Many thanks

ULB & FNRS 27,

Selected bibliography

- Abadie, Enveloping actions and Takai duality for partial actions. J. Funct. Anal. 197 (2003), no. 1, 14-67.
- [2] Alves, Batista, Globalization theorems for partial Hopf (co)actions, and some of their applications. Groups, algebras and applications, 13–30, Contemp. Math., 537, Amer. Math. Soc., Providence, RI, 2011.
- [3] Alves, Batista, Vercruysse, Partial representations of Hopf algebras. J. Algebra 426 (2015), 137-187.
- [4] D'Adderio, Hautekiet, Saracco, Vercruysse, Partial and global representations of finite groups (2020).
- [5] Dokuchaev, Recent developments around partial actions. São Paulo J. Math. Sci. 13 (2019), no. 1, 195-247.
- [6] Exel, Partial actions of groups and actions of inverse semigroups. Proc. Am. Math. Soc. 126, No. 12 (1998), 3481-3494.
- [7] Hu, Vercruysse, Geometrically Partial Actions. Trans. Amer. Math. Soc. 373 (2020), 4085-4143.
- [8] Megrelishvili, Schröder, Globalization of confluent partial actions on topological and metric spaces. Topology Appl. 145 (2004), no. 1-3, 119-145.
- [9] Saracco, Vercruysse, Globalization for geometric partial comodules, part I: General theory. To appear.
- [10] Saracco, Vercruysse, Globalization for geometric partial comodules, part II: Applications. In preparation.