

Globalization for geometric partial comodules

Paolo Saracco

ULB - Université Libre de Bruxelles Fonds de la Recherche Scientifique - FNRS

> ItaCa Fest 2021 15/06/2021

Based on an ongoing project with J. Vercruysse (ULB) - arXiv:2001.07669

- 1. Partial actions of groups
- 2. Geometric partial comodules
- 3. Globalization of geometric partial comodules
- 4. Applications

Partial actions of groups

Definition [Exel, 1998]

A partial action of a group G on a set X is a partial function

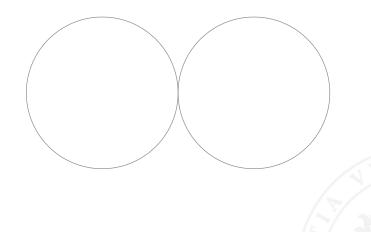
satisfying

- $ightharpoonup \exists 1_G \cdot x \text{ for every } x \text{ and } 1_G \cdot x = x;$
- ▶ if $\exists g \cdot x$, then $\exists g^{-1} \cdot (g \cdot x)$ and $g^{-1} \cdot (g \cdot x) = x$;
- ▶ if $\exists g \cdot (h \cdot x)$, then $\exists gh \cdot x$ and $g \cdot (h \cdot x) = gh \cdot x$.

Example

The Möbius group acts globally on the Riemann sphere but only partially on the complex plane.

Partial actions of groups



Saracco

B & FNRS

JLB

Restrictions of global actions

Definition

Let $\beta: G \times Y \to Y$ be a global action of G on Y and let $X \subseteq Y$.

Define $G \bullet X \xrightarrow{\cdot} X$ by declaring that $\exists g \cdot x \text{ if } \beta(g, x) \in X$.

This gives a partial action of G on X, called the induced partial action.

JLB

Globalization of partial actions of groups

Definition

A globalization for $G \bullet X \xrightarrow{\cdot} X$ is a G-set Y with an injection $\epsilon : X \rightarrowtail Y$ s.t. the partial action on X is induced by the global one on Y and Y is universal (initial) among the G-sets satisfying this property.

Theorem [Abadie, 2003]

Every partial action of a group G on a set X admits a globalization (unique up to iso) which can be realized as

$$G \times X / \sim$$

where $(g, x) \sim (h, y)$ iff $\exists h^{-1}g \cdot x$ and $y = h^{-1}g \cdot x$.

Example

- ► The Riemann sphere is the globalization of the partial action of the Möbius group on the complex plane.
- ▶ The torus is the globalization of the partial action of $S^1 \times S^1$ on the tangent circumferences.

Round up of partial (co)actions

- ► Partial actions of groups on sets
- ▶ Partial actions of (topological) groups on topological spaces
- \triangleright Partial actions of (C^* -quantum) groups on C^* -algebras
- ▶ Partial representations of groups in algebras
- ...
- ▶ Partial modules over Hopf algebras
- ▶ Partial comodules over Hopf algebras
- ▶ Partial comodule algebras over Hopf algebras
- ▶ Partial representations of Hopf algebras in algebras
- ▶ Partial actions of Hopf algebras on k-linear categories
- Partial actions of multiplier Hopf algebras
- ► Partial actions of groupoids on rings
- **.** . . .

aracco ULB & FNR

Outline

1. Partial actions of groups

2. Geometric partial comodules

3. Globalization of geometric partial comodules

4. Applications

Setting the stage

Let $(\mathcal{C}, \otimes, \mathbb{I})$ be a monoidal cat with pushouts and (H, Δ, ε) a coalgebra.

Monoidal category

A category \mathcal{C} with a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and an object \mathbb{I} such that

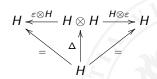
$$(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z), \qquad \mathbb{I} \otimes X \cong X \cong X \otimes \mathbb{I}$$

and the pentagon and triangle axioms hold.

Coalgebra

An object H in $(\mathcal{C}, \otimes, \mathbb{I})$ together with

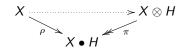
 $\Delta: H \to H \otimes H$ and $\varepsilon: H \to \mathbb{I}$ such that and $H \otimes H \xrightarrow{H \otimes \Lambda} H \otimes H \otimes H$



Geometric partial comodules

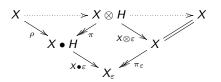
Definition [Hu-Vercruysse, 2018]

A geometric partial comodule (gpc_H) is a cospan



such that

► the following pushouts

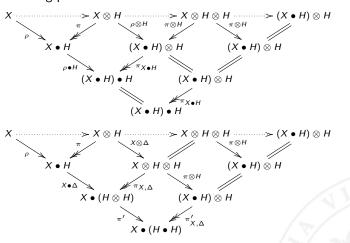


coincide (up to isomorphism);

...

Geometric partial comodules

▶ the following pushouts

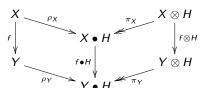


coincide (up to isomorphism).

The category of geometric partial comodules

Definition

If $(X, X \bullet H, \pi_X, \rho_X)$ and $(Y, Y \bullet H, \pi_Y, \rho_Y)$ are gpcs_H, then a morphism of geometric partial comodules is a pair $(f, f \bullet H)$ of morphisms in Csuch that



commutes. We denote by gPCom^H the category of geometric partial comodules over H and their morphisms.

Examples of geometric partial comodules

Example

A partial action of a group G on a set X

is a geometric partial G-comodule in Set^{op} .

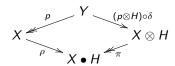
- ▶ Partial actions of groups/monoids on sets ($C = Set^{op}$)
- ▶ Partial actions of (topological) groups/monoids on topological spaces (C = Top^{op})
- ▶ Partial modules over Hopf algebras ($\mathcal{C} = \text{Vect}_{\mathbb{k}}^{\text{op}}$)
- ▶ Partial comodules over Hopf algebras ($C = Vect_k$)
- ▶ Partial comodule algebras over Hopf algebras ($\mathcal{C} = \mathsf{Alg}_{\Bbbk}$)
- **.** . . .

JLB

Induced geometric partial comodules

Definition [Hu-Vercruysse, 2018]

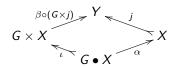
Let (Y, δ) be an H-comodule and $p: Y \to X$ an epi in C. The pushout



makes of X a gpc_H and of p a morphism of $gpcs_H$. We refer to this as the induced partial comodule structure from Y to X.

Example

If (Y, β) is a G-set and $j: X \subseteq Y$ is any subset, then the pullback



gives the induced partial action of G on X.

Outline

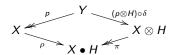
- 1. Partial actions of groups
- 2. Geometric partial comodules
- 3. Globalization of geometric partial comodules
- 4. Applications

Globalization for geometric partial comodules

Definition

Given a gpc_H $(X, X \bullet H, \pi, \rho)$, a globalization for X is an H-comodule (Y, δ) with an epimorphism $p: Y \to X$ in \mathcal{C} such that

the diagram



commutes and it is a pushout square in C;

 \triangleright Y is universal among all comodules admitting a map of gpcs_H to X: if (Z, δ') is global and $p': Z \to X$ is of $gpcs_H$, then there exists a unique morphism of coms_H $\eta: Z \to Y$ such that $p \circ \eta = p'$.

X is globalizable if a globalization for X exists and we denote by $gPCom_{\sigma l}^{H}$ the full subcategory of the globalizable partial comodules.

LB

When are geometric partial comodules globalizable?

Theorem [S.-Vercruysse]

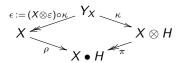
Let H be a coalgebra in the monoidal category C. Then a geometric partial comodule $(X, X \bullet H, \pi, \rho)$ is globalizable iff

► the equalizer

$$(\dagger) \qquad (Y_X, \delta) \stackrel{\kappa}{\Rightarrow} (X \otimes H, X \otimes \Delta) \xrightarrow[(\pi \otimes H) \circ (X \otimes \Delta)]{\rho \otimes H} (X \bullet H \otimes H, X \bullet H \otimes \Delta)$$

exists in Com^H ;

▶ the commuting diagram



is a pushout diagram in \mathcal{C} .

Under these equivalent conditions Y_X is the globalization of X.

When are geometric partial comodules globalizable?

$$\mathcal{I}(Y,\delta) \coloneqq (Y,Y \otimes H,id,\delta) \text{ induces a functor } \mathcal{I}: \mathsf{Com}^H \to \mathsf{gPCom}^H.$$

Lemma

For a ${\rm gpc}_H$ $(X,X \bullet H,\pi,\rho)$ and a ${\rm com}_H$ (Y,δ) , there is a bijective correspondence

$$\mathsf{gPCom}^H(\mathcal{I}Y,X) \cong \left\{ f \in \mathsf{Com}^H(Y,X \otimes H) \mid f \text{ equalizes } (\dagger) \right\}$$
$$g \mapsto (g \otimes H) \circ \delta, \qquad (X \otimes \varepsilon) \circ f \longleftrightarrow f.$$

Moreover, this correspondence is natural in both arguments Y and X.

Theorem [S.-Vercruysse]

Then the assignment $X \mapsto Y_X$ induces a functor

$$\mathcal{G}:\mathsf{gPCom}_{\mathit{gl}}^H o\mathsf{Com}^H$$

which is right adjoint to the fully faithful functor $\mathcal{I}:\mathsf{Com}^H o \mathsf{gPCom}_{\mathsf{gl}}^H.$

Outline

- 1. Partial actions of groups
- 2. Geometric partial comodules
- 3. Globalization of geometric partial comodules
- 4. Applications

JLB

Partial actions of monoids and groups

Set $C = Set^{op}$. A gpc_H is a partial action of a monoid H.

Corollary [Megrelishvili-Schröder, 2004]

If X is a partial action of H, then $Y_X = (X \times M)/R$ is the globalization of X, where $R \subseteq (X \times M) \times (X \times M)$ is the equivalence relation generated by

$$\Big\{\big((x\cdot m,n),(x,mn)\big)\mid m,n\in M,x\in X_m\Big\}.$$

In particular, we have $gPCom_{\sigma I}^{H} = gPCom^{H}$ for every monoid H.

$$Y_X$$
 is the coequalizer of $X \bullet H \times H \xrightarrow[(\pi \times H) \circ (X \times \mu)]{\rho \times H} X \times H$.

Corollary [Abadie, 2003]

For every group G, $gPCom_{gl}^G = gPCom^G$.

LB

Partial actions of topological monoids and groups

Set $C = \mathsf{Top}^{\mathrm{op}}$.

Caveat

There exists an example of a geometric partial comodule (X, τ_X) over a topological group (H, τ_H) which does not admit a globalization.

Endow a group H acting on a set X with the indiscrete topology. We get a global action of (H, τ_H^i) on (X, τ_X^i) . Set $X \bullet H := X \times H$ with the discrete topology $\tau_{X \bullet H}^{\mathfrak{d}}$. Then $(X, X \bullet H, \operatorname{Id}, \delta)$ is a gpc_H in \mathcal{C} , but

$$(X \times H, \tau_X^i \times \tau_G^i) \xrightarrow[\text{Id}]{\delta} (X \bullet H, \tau_{X \bullet H}^0) \xrightarrow[\delta]{\text{Id}} (X, \tau_X^i)$$

cannot be a pullback square.

Therefore, in general, $gPCom_{gl}^H \subsetneq gPCom^H$ in Top^{op} . Nevertheless

Corollary [Abadie, 2003]

For a topological group H, TopParAct_H is a full subcat of gPCom^H_{gl}.

Geometric partial comodules in abelian categories

Let $\mathcal C$ be any abelian monoidal category.

Proposition [S.-Vercruysse]

Assume that $(X, X \bullet H, \pi, \rho)$ is a counital pcd_H. Consider the pullback

$$X \stackrel{\overline{\otimes}}{\sim} X \bullet H \stackrel{\pi}{\sim} X \otimes H$$

in C. Then $(X, X \bullet H, \pi, \rho)$ is a gpc_H iff

$$T \xrightarrow{\lambda} X \otimes H \xrightarrow{\rho \otimes H} X \bullet H \otimes H$$

is an equalizer in C.

Theorem [S.-Vercruysse]

If H is a coalgebra in C s.t. Com^H admits equalizers and $Com^H \to C$ preserves them, then $gPCom_{gl}^H = gPCom^H$.

Geometric partial (co)modules in vector spaces

Let k be a field.

Corollary

- ▶ If H is a \mathbb{k} -algebra, then gpcs_H can be identified with H-modules together with a chosen generating subspace.
- ▶ If H is a k-coalgebra, then gpcs_H can be identified with H-comodules together with a chosen co-generating quotient space.
- Partial modules over Hopf algebras are globalizable and the globalization coincides with their standard dilation [Alves-Batista-Vercruysse]
- ► Partial representations of finite groups are globalizable [D'Adderio-Hautekiet-S.-Vercruysse]
- ▶ Partial comodules over Hopf algebras are globalizable
- ▶ Partial comodule algebras over Hopf algebras are globalizable, but their globalization is not their enveloping coaction [Alves-Batista]

Saracco

Partially graded representations

Let G be a group. $\mathcal{C} = \operatorname{Rep}_G$ is an abelian monoidal category and $\mathbb{k}G$ is a coalgebra therein. We call partially graded G-representation a partial comodule over $\mathbb{k}G$ in \mathcal{C} .

Partially graded G-representations are all and only of the following form. For a vector space V, consider $\Bbbk G \otimes V$ with regular action and coaction. Pick a $\Bbbk G$ -submodule $N \subseteq \Bbbk G \otimes V$ and define $M := (\Bbbk G \otimes V)/N$. Then M with the induced structure

is a partially graded G-representation.

In particular, this construction induces a bijective correspondence between structures of partially graded G-representation on the base field k (up to isomorphism) and linear characters of the group G.

ULB

Many thanks

