

On the integration problem for Lie algebroids

Paolo Saracco

ULB - Université Libre de Bruxelles

Fonds de la Recherche Scientifique - FNRS

Welcome Home 2021

22/12/2021

(Based on an ongoing joint project with A. Ardizzoni and L. El Kaoutit - arXiv:1905.10288)

The correspondence between groups, Hopf algebras and Lie algebras

Grp

Paolo Saracco

Let (G, μ, e) be a (discrete) group and $\mathbb{k}^G \coloneqq \operatorname{Fun}(G, \mathbb{k})$.

$$\mathcal{R}(G) := \left\{ f: G \to \Bbbk \mid \begin{array}{c} \exists \sum_{i} f_{1,i} \otimes f_{2,i} \in \Bbbk^G \otimes \Bbbk^G \quad \text{s.t.} \\ f(xy) = \sum_{i} f_{1,i}(x) f_{2,i}(y) \quad \forall x, y \in G \end{array} \right\}$$

is the algebra of representative functions on G.

Let (G, μ, e) be a (discrete) group and $\mathbb{k}^G \coloneqq \operatorname{Fun}(G, \mathbb{k})$.

$$\mathcal{R}(G) := \left\{ f: G \to \Bbbk \; \left| \begin{array}{c} \exists \; \sum_i f_{1,i} \otimes f_{2,i} \in \Bbbk^G \otimes \Bbbk^G \; \text{ s.t.} \\ f(xy) = \sum_i f_{1,i}(x) f_{2,i}(y) \; \forall \, x, \, y \in G \end{array} \right\} \right\}$$

is the algebra of representative functions on G.

(1) Since μ is associative,

 $\Delta: \mathcal{R}(G) \to \mathcal{R}(G) \otimes \mathcal{R}(G), \qquad f \mapsto \sum_i f_{1,i} \otimes f_{2,i},$

is coassociative;

Let (G, μ, e) be a (discrete) group and $\mathbb{k}^G \coloneqq \operatorname{Fun}(G, \mathbb{k})$.

$$\mathcal{R}(G) := \left\{ f: G \to \Bbbk \; \left| \begin{array}{c} \exists \; \sum_i f_{1,i} \otimes f_{2,i} \in \Bbbk^G \otimes \Bbbk^G \; \text{ s.t.} \\ f(xy) = \sum_i f_{1,i}(x) f_{2,i}(y) \; \forall \, x, \, y \in G \end{array} \right\} \right\}$$

is the algebra of representative functions on G.

(1) Since μ is associative,

$$\Delta: \mathcal{R}(G) \to \mathcal{R}(G) \otimes \mathcal{R}(G), \qquad f \mapsto \sum_i f_{1,i} \otimes f_{2,i},$$

is coassociative;

(2) Since
$$e$$
 is a unit for μ ,

$$\varepsilon: \mathcal{R}(G) \to \Bbbk, \qquad f \mapsto f(e),$$

is a *counit* for Δ ;

Let (G, μ, e) be a (discrete) group and $\mathbb{k}^G \coloneqq \operatorname{Fun}(G, \mathbb{k})$.

$$\mathcal{R}(G) := \left\{ f: G \to \mathbb{k} \; \middle| \; \begin{array}{c} \exists \quad \sum_i f_{1,i} \otimes f_{2,i} \in \mathbb{k}^G \otimes \mathbb{k}^G \quad \text{s.t.} \\ f(xy) = \sum_i f_{1,i}(x) f_{2,i}(y) \quad \forall \, x, y \in G \end{array} \right\}$$

is the algebra of representative functions on G.

(1) Since μ is associative,

$$\Delta: \mathcal{R}(G) \to \mathcal{R}(G) \otimes \mathcal{R}(G), \qquad f \mapsto \sum_i f_{1,i} \otimes f_{2,i},$$

is coassociative;

(2) Since e is a unit for μ ,

$$\varepsilon: \mathcal{R}(G) \to \Bbbk, \qquad f \mapsto f(e),$$

is a *counit* for Δ ;

(3) Since x^{-1} is the inverse of x,

$$S: \mathcal{R}(G) \to \mathcal{R}(G), \qquad f \mapsto f((-)^{-1})$$

satisfies $\sum_{i} S(f_{1,i}) f_{2,i} = f(e) = \sum_{i} f_{1,i} S(f_{2,i}), \quad \forall f$

Let (G, μ, e) be a (discrete) group and $\mathbb{k}^G \coloneqq \operatorname{Fun}(G, \mathbb{k})$.

$$\mathcal{R}(G) := \left\{ f: G \to \mathbb{k} \; \middle| \; \begin{array}{c} \exists \quad \sum_i f_{1,i} \otimes f_{2,i} \in \mathbb{k}^G \otimes \mathbb{k}^G \quad \text{s.t.} \\ f(xy) = \sum_i f_{1,i}(x) f_{2,i}(y) \quad \forall \, x, y \in G \end{array} \right\}$$

is the algebra of representative functions on G.

(1) Since μ is associative,

$$\Delta: \mathcal{R}(G) \to \mathcal{R}(G) \otimes \mathcal{R}(G), \qquad f \mapsto \sum_i f_{1,i} \otimes f_{2,i},$$

is coassociative;

(2) Since e is a unit for μ ,

$$\varepsilon: \mathcal{R}(G) \to \Bbbk, \qquad f \mapsto f(e),$$

is a *counit* for Δ ;

(3) Since x^{-1} is the inverse of x,

$$S: \mathcal{R}(G) \to \mathcal{R}(G), \qquad f \mapsto f((-)^{-1})$$

satisfies $\sum_{i} S(f_{1,i}) f_{2,i} = f(e) = \sum_{i} f_{1,i} S(f_{2,i}), \quad \forall f.$

 $(\mathcal{R}(G), \Delta, \varepsilon, S)$ is a commutative Hopf algebra.

Representative functions

Representative functions

- Any polynomial function is representative.
- exp, sin and cos from $(\mathbb{R}, +, 0)$ to \mathbb{R} are representative:

$$\begin{array}{ll} \Delta(\exp) = \exp \otimes \exp, & \varepsilon(\exp) = 1, \quad S(\exp) = \exp^{-1}; \\ \Delta(\sin) = \cos \otimes \sin + \sin \otimes \cos, & \varepsilon(\sin) = 0, \quad S(\sin) = -\sin; \\ \Delta(\cos) = \cos \otimes \cos - \sin \otimes \sin, & \varepsilon(\cos) = 1, \quad S(\cos) = \cos. \end{array}$$

$$\Delta(\mathsf{log}) = \mathsf{log} \otimes 1 + 1 \otimes \mathsf{log}, \qquad arepsilon(\mathsf{log}) = 0, \qquad S(\mathsf{log}) = -\mathsf{log}\,.$$

The correspondence between groups, Hopf algebras and Lie algebras

From Hopf algebras to groups

If $(H, \Delta, \varepsilon, S)$ is a commutative Hopf algebra, then

 $\mathcal{X}(H) \coloneqq \mathsf{Alg}(H, \Bbbk)$

is a group with

 $f * g := (f \otimes g) \circ \Delta, \qquad e := \varepsilon \qquad \text{and} \qquad f^{-1} := f \circ S.$

 $CommHopf(H, \mathcal{R}(G)) \cong Grp(G, \mathcal{X}(H)).$

Paolo Saracco

ULB & FNRS 6/26

The correspondence between groups, Hopf algebras and Lie algebras

Paolo Saracco

ULB & FNRS 7/26

The group-Hopf algebra dictionary

 $\begin{array}{rcl} {\sf FinGrp} &\cong & {\sf SsCommHopf}_{{\sf f.d.}}^{{\sf op}} \\ {\sf CompTopGrp} &\cong & {\sf CommHopf}_{\int,\,\mathcal{X}(H)\subseteq H^*{\rm dense}}^{{\sf op}} \\ {\sf CompLieGrp} &\cong & {\sf AffHopf}_{\int,\,\mathcal{X}(H)\subseteq H^*{\rm dense}}^{{\sf op}} \\ {\sf AffAlgGrp} &\cong & {\sf AffHopf}^{{\sf op}} \\ {\sf AffGrpSch} &\cong & {\sf CommHopf}^{{\sf op}} \end{array}$

Paolo Saracco

ULB & FNRS 8/26

The correspondence between groups, Hopf algebras and Lie algebras

Lie

Paolo Saracco

ULB & FNRS 9/26

Let L be a Lie algebra. Its universal enveloping algebra

$$\mathcal{U}(L) \coloneqq \mathbb{k} \langle X \in L \mid XY = YX + [X, Y] \rangle$$

becomes a cocommutative Hopf algebra via

 $\Delta(X) \coloneqq X \otimes 1 + 1 \otimes X, \qquad \varepsilon(X) \coloneqq 0, \qquad S(X) \coloneqq -X, \qquad \forall X \in L.$

Let L be a Lie algebra. Its universal enveloping algebra

$$\mathcal{U}(L) \coloneqq \mathbb{k} \langle X \in L \mid XY = YX + [X, Y] \rangle$$

becomes a cocommutative Hopf algebra via

 $\Delta(X) \coloneqq X \otimes 1 + 1 \otimes X, \qquad \varepsilon(X) \coloneqq 0, \qquad S(X) \coloneqq -X, \qquad \forall \, X \in L.$

In the other direction, if H is a Hopf algebra then the *space of primitives*

$$\mathcal{P}(H) \coloneqq \{h \in H \mid \Delta(h) = h \otimes 1 + 1 \otimes h\}$$

is a Lie algebra.

Let L be a Lie algebra. Its universal enveloping algebra

$$\mathcal{U}(L) \coloneqq \mathbb{k} \langle X \in L \mid XY = YX + [X, Y] \rangle$$

becomes a cocommutative Hopf algebra via

 $\Delta(X) \coloneqq X \otimes 1 + 1 \otimes X, \qquad \varepsilon(X) \coloneqq 0, \qquad S(X) \coloneqq -X, \qquad \forall X \in L.$

In the other direction, if H is a Hopf algebra then the space of primitives

$$\mathcal{P}(H) \coloneqq \{h \in H \mid \Delta(h) = h \otimes 1 + 1 \otimes h\}$$

is a Lie algebra.

TheoremPoincaré-Birkhoff-Witt \Rightarrow $L \cong \mathcal{PU}(L).$ Heyneman-Radford \Rightarrow $\mathcal{UP}(H) \hookrightarrow H.$

Let L be a Lie algebra. Its universal enveloping algebra

$$\mathcal{U}(L) \coloneqq \mathbb{k} \langle X \in L \mid XY = YX + [X, Y] \rangle$$

becomes a cocommutative Hopf algebra via

 $\Delta(X) \coloneqq X \otimes 1 + 1 \otimes X, \qquad \varepsilon(X) \coloneqq 0, \qquad S(X) \coloneqq -X, \qquad \forall X \in L.$

In the other direction, if H is a Hopf algebra then the *space of primitives*

$$\mathcal{P}(H) \coloneqq \{h \in H \mid \Delta(h) = h \otimes 1 + 1 \otimes h\}$$

is a Lie algebra.

TheoremPoincaré-Birkhoff-Witt \Rightarrow $L \cong \mathcal{PU}(L).$ Heyneman-Radford \Rightarrow $\mathcal{UP}(H) \hookrightarrow H.$

Milnor-Moore Theorem

 $H \cong \mathcal{UP}(H) \Leftrightarrow H$ primitively generated $\Leftrightarrow H$ cocommutative connected.

Paolo Saracco

The correspondence between groups, Hopf algebras and Lie algebras

Paolo Saracco

ULB & FNRS 11/2

Sweedler's dual and Hopf algebra duality

If H is a Hopf algebra, then

$$H^{\circ} := \left\{ f \in H^* := \operatorname{Hom}_{\Bbbk}(H, \Bbbk) \mid \exists \sum_{i} f_{1,i} \otimes f_{2,i} \in H^* \otimes H^* \quad \text{s.t.} \\ f(xy) = \sum_{i} f_{1,i}(x) f_{2,i}(y) \quad \forall x, y \in H \right\}$$

is a Hopf algebra again with

$$f * g := (f \otimes g) \circ \Delta, \qquad 1 := \varepsilon, \qquad \varepsilon := \operatorname{ev}_1$$

 $\Delta(f) := \sum_i f_{1,i} \otimes f_{2,i}, \qquad S(f) := f \circ S.$

ULB & FNRS 12/2

Sweedler's dual and Hopf algebra duality

If H is a Hopf algebra, then

$$H^{\circ} := \left\{ f \in H^* := \operatorname{Hom}_{\Bbbk}(H, \Bbbk) \mid \exists \sum_{i} f_{1,i} \otimes f_{2,i} \in H^* \otimes H^* \quad \text{s.t.} \\ f(xy) = \sum_{i} f_{1,i}(x) f_{2,i}(y) \quad \forall x, y \in H \right\}$$

is a Hopf algebra again with

$$f * g := (f \otimes g) \circ \Delta, \qquad 1 := \varepsilon, \qquad \varepsilon := \operatorname{ev}_1 \Delta(f) := \sum_i f_{1,i} \otimes f_{2,i}, \qquad S(f) := f \circ S.$$

If H is commutative, then H° is cocommutative and conversely.

 $CommHopf(H, K^{\circ}) \cong CocommHopf(K, H^{\circ}).$

Paolo Saracco

The correspondence between groups, Hopf algebras and Lie algebras

Paolo Saracco

ULB & FNRS 13/2

Sweedler's dual and Hopf algebra duality

If H is a Hopf algebra, then

$$H^{\circ} := \left\{ f \in H^* := \operatorname{Hom}_{\Bbbk}(H, \Bbbk) \mid \exists \sum_{i} f_{1,i} \otimes f_{2,i} \in H^* \otimes H^* \quad \text{s.t.} \\ f(xy) = \sum_{i} f_{1,i}(x) f_{2,i}(y) \quad \forall x, y \in H \right\}$$

is a Hopf algebra again with

$$f * g := (f \otimes g) \circ \Delta, \qquad 1 := \varepsilon, \qquad \varepsilon := \operatorname{ev}_1$$

 $\Delta(f) := \sum_i f_{1,i} \otimes f_{2,i}, \qquad S(f) := f \circ S.$

If H is commutative, then H° is cocommutative and conversely.

 $CommHopf(H, K^{\circ}) \cong CocommHopf(K, H^{\circ}).$

Remark

$$\mathcal{P}(H^{\circ}) = \{ f \in H^* \mid f(xy) = f(x)\varepsilon(y) + \varepsilon(x)f(y) \} = \mathsf{Der}(H, \Bbbk).$$

Hence $\mathcal{U}(-)^{\circ} \dashv \mathsf{Der}(-, \Bbbk).$

Paolo Saracco

The correspondence between groups, Hopf algebras and Lie algebras

The correspondence between groups, Hopf algebras and Lie algebras

ULB & FNRS 15/2

Lie-Rinehart algebras

A Lie-Rinehart algebra over a commutative algebra A is a Lie algebra L s.t.

- A acts on L by k-linear endomorphisms: $\rho: A \to End_k(L)$,
- ▶ *L* acts on *A* by \Bbbk -linear derivations: $\omega : L \to \text{Der}_{\Bbbk}(A)$,
- ω and ρ are compatible, in the sense that ω is A-linear,
- ► Leibniz rule: $[X, aY] = \omega(X)(a)Y + a[X, Y], \forall X, Y \in L, a \in A$.

Lie-Rinehart algebras

A Lie-Rinehart algebra over a commutative algebra A is a Lie algebra L s.t.

- A acts on L by k-linear endomorphisms: $\rho: A \to End_k(L)$,
- ▶ *L* acts on *A* by \Bbbk -linear derivations: $\omega : L \to \text{Der}_{\Bbbk}(A)$,
- ω and ρ are compatible, in the sense that ω is A-linear,
- ► Leibniz rule: $[X, aY] = \omega(X)(a)Y + a[X, Y], \forall X, Y \in L, a \in A$.

Example

(1)
$$A = \mathcal{C}^{\infty}(M)$$
, $L = \mathfrak{X}(M)$, $\omega = \text{Id}$.

(2) More generally, if *L* is a Lie algebroid over a smooth manifold *M*, then Γ(*L*) is a Lie-Rinehart algebra over C[∞](*M*).

Groupoids, Hopf algebroids and Lie-Rinehart algebras

 $LieRin_A$

Paolo Saracco

Universal enveloping algebroids

Let (A, L, ω) be a Lie-Rinehart algebra. Its universal enveloping algebra

$$\mathcal{U}(L) \coloneqq \mathbb{k} \left\langle egin{array}{c|c} a \in A \\ X \in L \end{array} \middle| \begin{array}{c} a \cdot b = ab, & XY = YX + [X, Y], \\ 1 = 1_A, & Xa = aX + \omega(X)(a) \end{array}
ight
angle$$

becomes a cocommutative Hopf algebroid via

$$\begin{array}{ll} \Delta(X) \coloneqq X \otimes_A 1 + 1 \otimes_A X, & \varepsilon(X) \coloneqq 0, \\ \gamma(X) \coloneqq X \otimes_A 1 - 1 \otimes_A X, & \forall X \in L. \end{array}$$

Universal enveloping algebroids

Let (A, L, ω) be a Lie-Rinehart algebra. Its universal enveloping algebra

$$\mathcal{U}(L) \coloneqq \mathbb{k} \left\langle egin{array}{c} a \in A \\ X \in L \end{array} \middle| egin{array}{c} a \cdot b = ab, & XY = YX + [X,Y], \\ 1 = 1_A, & Xa = aX + \omega(X)(a) \end{array}
ight
angle$$

becomes a cocommutative Hopf algebroid via

$$\begin{array}{ll} \Delta(X) \coloneqq X \otimes_A 1 + 1 \otimes_A X, & \varepsilon(X) \coloneqq 0, \\ \gamma(X) \coloneqq X \otimes_A 1 - 1 \otimes_A X, & \forall X \in L. \end{array}$$

In the other direction, if H is a cocommutative Hopf algebroid then

$$\mathcal{P}(H) \coloneqq \{h \in H \mid \Delta(h) = h \otimes_A 1 + 1 \otimes_A h\}$$

is a Lie-Rinehart algebra.

Groupoids, Hopf algebroids and Lie-Rinehart algebras

Paolo Saracco

Universal enveloping algebroids

Let (A, L, ω) be a Lie-Rinehart algebra. Its universal enveloping algebra

$$\mathcal{U}(L) \coloneqq \mathbb{k} \left\langle egin{array}{c} a \in A \\ X \in L \end{array} \middle| egin{array}{c} a \cdot b = ab, & XY = YX + [X,Y], \\ 1 = 1_A, & Xa = aX + \omega(X)(a) \end{array}
ight
angle$$

becomes a cocommutative Hopf algebroid via

$$\begin{array}{ll} \Delta(X) \coloneqq X \otimes_A 1 + 1 \otimes_A X, & \varepsilon(X) \coloneqq 0, \\ \gamma(X) \coloneqq X \otimes_A 1 - 1 \otimes_A X, & \forall X \in L. \end{array}$$

In the other direction, if H is a cocommutative Hopf algebroid then

$$\mathcal{P}(\mathcal{H})\coloneqq \{h\in\mathcal{H}\mid\Delta(h)=h\otimes_{\mathcal{A}}1+1\otimes_{\mathcal{A}}h\}$$

is a Lie-Rinehart algebra.

Theorem (Moerdijk-Mrčun [MM])

 $LieRin_A(L, \mathcal{P}(H)) \cong CocommHopfAlgd_A(\mathcal{U}(L), H)$ and

 $\mathsf{LieRin}_A^{\mathsf{proj}} \cong \mathsf{CocommHopfAlgd}_A^{\mathsf{cocompl, gr proj}}$

[MM] I. Moerdijk, J. Mrčun, On the universal enveloping algebra of a Lie algebroid. Proc. Amer. Math. Soc. 138 (2010), no. 9, 3135–3145.

Paolo Saracco

JLB & FNRS 20/2

Groupoids and commutative Hopf algebroids

A groupoid is a small category in which every arrow is invertible:

Paolo Saracco

Groupoids and commutative Hopf algebroids

A groupoid is a small category in which every arrow is invertible:

$$\mathcal{G}_{0} \underbrace{\overset{\sigma}{\underbrace{\leftarrow} e \longrightarrow}}_{\tau} \mathcal{G}_{1} \underbrace{\overset{\circ}{\leftarrow} \mathcal{G}_{1} \times_{\mathcal{G}_{0}} \mathcal{G}_{1}}_{\tau} \mathcal{G}_{1} \times_{\mathcal{G}_{0}} \mathcal{G}_{1}.$$

A *commutative Hopf algebroid* is a cogroupoid in the category of commutative algebras (equivalently, an affine groupoid scheme = representable presheaf of groupoids on commutative algebras):

Groupoids and commutative Hopf algebroids

A groupoid is a small category in which every arrow is invertible:

$$\mathcal{G}_{0} \underbrace{\overset{\sigma}{\underbrace{\leftarrow}} \overset{\circ}{\underbrace{\leftarrow}} \mathcal{G}_{1}}_{\tau} \underbrace{\overset{\circ}{\underbrace{\leftarrow}} \mathcal{G}_{1} \times_{\mathcal{G}_{0}} \mathcal{G}_{1}}_{\tau} \mathcal{G}_{1} \times_{\mathcal{G}_{0}} \mathcal{G}_{1}.$$

A commutative Hopf algebroid is a cogroupoid in the category of commutative algebras (equivalently, an affine groupoid scheme = representable presheaf of groupoids on commutative algebras):

In particular, if (A, H) is a commutative Hopf algebroid, then $\mathcal{X}(A, H) := (Alg(A, \Bbbk), Alg_{\Bbbk}(H, \Bbbk))$ is a groupoid.

Groupoids, Hopf algebroids and Lie-Rinehart algebras

Groupoids, Hopf algebroids and Lie-Rinehart algebras

The dark dual

Given a k-algebra extension $A \rightarrow R$, R^{\bullet} is uniquely determined by the following *universal property*:

R[•] admits a coassociative and counital comultiplication

$$\Delta: R^{\bullet} \to R^{\bullet} \otimes_{A} R^{\bullet}, \qquad \varepsilon: R^{\bullet} \to A,$$

and there exists an A-bilinear morphism $\xi : \mathbb{R}^{\bullet} \to \operatorname{Hom}_{A}(\mathbb{R}, A)$ such that

$$\xi(z)(rs) = \sum_{i} \xi(z_{1,i}) \left(\xi(z_{2,i})(r)s \right), \qquad \xi(z)(1_R) = \varepsilon(z)$$

for all $z \in \mathbb{R}^{\bullet}$, $r, s \in \mathbb{R}$. Furthermore, \mathbb{R}^{\bullet} is universal with respect to these properties. That is, for any other $(C, \Delta, \varepsilon, \zeta)$, there exists a unique morphism $\hat{\zeta}: C \to \mathbb{R}^{\bullet}$ (compatible with Δ and ε) such that $\xi \circ \hat{\zeta} = \zeta$.

The dark dual

Given a k-algebra extension $A \rightarrow R$, R^{\bullet} is uniquely determined by the following *universal property*:

R[•] admits a coassociative and counital comultiplication

$$\Delta: R^{\bullet} \to R^{\bullet} \otimes_{A} R^{\bullet}, \qquad \varepsilon: R^{\bullet} \to A,$$

and there exists an A-bilinear morphism $\xi : \mathbb{R}^{\bullet} \to \operatorname{Hom}_{A}(\mathbb{R}, A)$ such that

$$\xi(z)(rs) = \sum_{i} \xi(z_{1,i}) \left(\xi(z_{2,i})(r)s \right), \qquad \xi(z)(1_R) = \varepsilon(z)$$

for all $z \in R^{\bullet}$, $r, s \in R$. Furthermore, R^{\bullet} is universal with respect to these properties. That is, for any other $(C, \Delta, \varepsilon, \zeta)$, there exists a unique morphism $\hat{\zeta}: C \to R^{\bullet}$ (compatible with Δ and ε) such that $\xi \circ \hat{\zeta} = \zeta$.

If (A, H) is a cocommutative Hopf algebroid, then (A, H^{\bullet}) is a commutative Hopf algebroid.

Paolo Saracco

ULB & FNRS 23/26

Groupoids, Hopf algebroids and Lie-Rinehart algebras

Paolo Saracco

JLB & FNRS 24/20

Groupoids, Hopf algebroids and Lie-Rinehart algebras

Paolo Saracco

JLB & FNRS 24/26

Open questions

- ▶ If A is affine, under which conditions $U(L)^{\bullet}$ is affine, too?
- ▶ In such a case, do we have $L \cong \text{Der}_A(\mathcal{U}(L)^\bullet, A)$?
- If A is affine, under which condition we can find B ⊆ U(L)[•] which is affine?
- Given (A, B) in (A, U(L)[•]) affine, under which conditions Der_A(B, A) ≅ L?

. . .

Many thanks

ULB & FNRS 26/

Paolo Saracco

Filling in the gaps: the group Hopf algebra

If G is a group, then $\Bbbk G = {\sf span}_{\Bbbk}\{g \in G\}$ is a Hopf algebra with

$$\Delta(g) = g \otimes g, \qquad \varepsilon(g) = 1, \qquad S(g) = g^{-1}.$$

If H is a Hopf algebra, then the set of *group-like elements*

$$\mathcal{G}(H) \coloneqq \{h \in H \mid \Delta(h) = h \otimes h, \varepsilon(h) = 1\}$$

is a group with

$$\mu(h,k) \coloneqq hk, \qquad e \coloneqq 1, \qquad h^{-1} \coloneqq S(h).$$

 $Hopf(\Bbbk G, H) \cong Grp(G, \mathcal{G}(H)).$

Remark

$$\mathcal{G}(H^{\circ}) = \{ f \in H^* \mid f(xy) = f(x)f(y), f(1) = 1 \} = \mathsf{Alg}(H, \Bbbk) = \mathcal{X}(H).$$

Hence $\mathcal{R}(G) = \Bbbk G^{\circ}$.

The full correspondence between groups, Hopf algebras and Lie algebras

Groupoids, Hopf algebroids and Lie-Rinehart algebras

- [E] L. El Kaoutit, Representative functions on discrete groupoids and duality with Hopf algebroids (2013).
- [EG] L. El Kaoutit, J. Gómez-Torrecillas, On the finite dual of a cocommutative Hopf algebroid. Application to linear differential matrix equations and Picard-Vessiot theory. Bull. Belg. Math. Soc. Simon Stevin 28 (2021), no. 1, 53–121.