

From left ideals two-sided coideals to normal Hopf ideals in Hopf algebroids, and groupoids

Paolo Saracco

ULB - Université Libre de Bruxelles

Fonds de la Recherche Scientifique - FNRS

Noncommutative Geometry and Higher Structures

Scalea, June 6 - 10, 2022

(based on an ongoing joint work with A. Ghobadi, L. El Kaoutit, J. Vercruysse)

A soft (?!) introduction

▶ Let *G* be a (discrete, linear, Lie) group.

• Let $\mathcal{R}_{\Bbbk}(G)$ be the algebra of "representative" functions on G

$Fun(G,\Bbbk)$	$\Bbbk[G]$	$\mathcal{R}_{\Bbbk}(G)$
(finite, discrete)	(linear)	(Lie)

• $\mathcal{R}_{\Bbbk}(G)$ is an algebra together with $\Delta \colon \mathcal{R}_{\Bbbk}(G) \to \mathcal{R}_{\Bbbk}(G) \otimes \mathcal{R}_{\Bbbk}(G)$ uniquely determined by

$$\Delta(f) = \sum f_1 \otimes f_2 \quad \iff \quad \sum f_1(x)f_2(y) = f(xy), \quad \forall x, y \in G,$$

ε: R_k(G) → k, f ↦ f(1_G), and S: R_k(G) → R_k(G), f ↦ f ∘ (-)⁻¹.
If I ⊆ R_k(G) is an ideal, then R_k(G)/I "is a subspace of" G.
If I is also a coideal, R_k(G)/I "is a submonoid of" G.
If B ⊆ R_k(G) is a subalgebra, then B "is a quotient space of" G.
If B is also a subcoalgebra, B "is a quotient monoid of" G.
If B is also a sub-Hopf algebra, then B "is a quotient group of" G.

Where do we want to go?

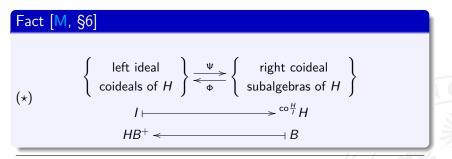
Let H be a Hopf algebra over a field \Bbbk (a bialgebra would suffice).

▶ If $I \subseteq H$ is a coideal, then $\pi: H \to \frac{H}{I}$ is a coalgebra map and

$${}^{\operatorname{co}rac{H}{T}}H\coloneqq\{h\in H\mid \pi(h_1)\otimes h_2=1\otimes h\}.$$

▶ If $B \subseteq H$ is a subalgebra,

$$B^+ \coloneqq B \cap \ker(\varepsilon).$$



[M] S. Montgomery, Hopf Galois theory: a survey. New topological contexts for Galois theory and algebraic geometry, 367–400, Geom. Topol. Monogr., 16, Geom. Topol. Publ., Coventry, 2009.

Why do we want to go there?

- [T] Suppose that H is commutative. The correspondence (★) is a bijection from the set of all sub-Hopf algebras of H onto the set of all normal Hopf ideals of H. This gives purely algebraic proofs of a number of results in the theory of affine k-groups, among which the fact that affine abelian groups form an abelian category.
- ► [N] Suppose that H is cocommutative (i.e., a formal group scheme). The correspondence (★) is a bijection from the set of all sub-Hopf algebras of H onto the set of all left ideal coideals of H.
- [S] The correspondence (*) is a bijection from the set of all normal Hopf subalgebras B such that H_B is faithfully flat onto the set of all normal Hopf ideals I such that H^{H/I} is faithfully coflat. This suggests the "correct" definition of s.e.s. of quantum groups.
- (*) can be extended to Hopf-Galois extensions of k different from H.
 For a classical Galois extension K/k with Galois group G and for H := Fun(G, k), it is the well-known Galois correspondence.
- K. Newman, A correspondence between bi-ideals and sub-Hopf algebras in cocommutative Hopf algebras. J. Algebra 36 (1975), no. 1, 1–15.
- [S] H.-J. Schneider, Some remarks on exact sequences of quantum groups. Comm. Algebra 21 (1993), no. 9, 3337–3357.
- [T] M. Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras. Manuscripta Math. 7 (1972), 251–270.

Paolo Saracco

RS 4/1

Why (and what are) Hopf algebroids?

What

A (left) Hopf algebroid is a pair (A, \mathcal{H}) of \Bbbk -algebras such that

- ► \mathcal{H} is an $A^{e} = A \otimes A^{\mathrm{op}}$ -ring via an algebra map $s \otimes t = \eta \colon A^{e} \to \mathcal{H}$;
- ▶ $_{\eta}\mathcal{H}$ admits an *A*-coring structure $(\mathcal{H}, \Delta : \mathcal{H} \to \mathcal{H} \otimes_{A} \mathcal{H}, \varepsilon : \mathcal{H} \to A)$;
- Δ is multiplicative, i.e. $\Delta(u)\Delta(v)$ makes sense and equals $\Delta(uv)$;
- ▶ ε is a left character, i.e. $\varepsilon(u \, s \varepsilon(v)) = \varepsilon(u \, t \varepsilon(v));$
- $\blacktriangleright \ \beta \colon \mathcal{H} \otimes_{\mathcal{A}^{\mathrm{op}}} \mathcal{H} \to \mathcal{H} \otimes_{\mathcal{A}} \mathcal{H}, \ u \otimes_{\mathcal{A}^{\mathrm{op}}} v \mapsto u_{(1)} \otimes_{\mathcal{A}} u_{(2)} v \text{ is bijective.}$

Why (sloppily)

- Commutative Hopf algebroids are affine groupoid schemes.
- Cocommutative Hopf algebroids are formal groupoid schemes.
- Hopf algebroids are quantum groupoids.

Examples

Commutative

► $(A, A \otimes A)$ is a Hopf algebroid w.r.t. $s(a) = a \otimes 1$, $t(a) = 1 \otimes a$, $\Delta(a \otimes b) = (a \otimes 1) \otimes_A (1 \otimes b)$, $\varepsilon(a \otimes b) = ab$, $S(a \otimes b) = b \otimes a$. It corresponds to the groupoid of pairs $(X, X \times X)$ on the set X.

▶ $(A, (A \otimes A)[T])$ is a Hopf algebroid w.r.t. the structure above and $\Delta(T) = T \otimes_A 1 + 1 \otimes_A T$, $\varepsilon(T) = 0$, S(T) = -T. It corresponds to the additive groupoid $(X, X \times G \times X)$ where X is a set, G an abelian group, and composition is given by $(x, a, y) \circ (y, b, z) = (x, a + b, z)$.

Cocommutative

Let (A, L, ω) be a Lie-Rinehart algebra. Its universal enveloping algebra $\mathcal{U}_A(L)$ is a Hopf algebroid with $\Delta(X) = X \otimes_A 1 + 1 \otimes_A X$, $\varepsilon(X) = 0$ and $\beta^{-1}(X \otimes_A 1) = X \otimes_A 1 - 1 \otimes_A X$ for all $X \in L$.

Quantum

• The pair $(A, A \otimes A^{op})$ is a Hopf algebroid as above.

▶ If *U* is a Hopf algebra and *A* is a left *U*-module algebra, then the Connes-Moscovici bialgebroid $A \odot U \odot A$ is a Hopf algebroid over *A*.

Coideal subrings and left ideal two-sided coideals

Let (A, \mathcal{H}) be a bialgebroid.

▶ If $I \subseteq \mathcal{H}$ is a 2-sided coideal, then $\pi \colon \mathcal{H} \to \frac{\mathcal{H}}{I}$ is an *A*-coring map and

$${}^{\operatorname{co}rac{\mathcal{H}}{\mathcal{T}}}\mathcal{H}\coloneqq\{h\in\mathcal{H}\mid \pi(h_1)\otimes_{\mathcal{A}}h_2=\pi(1)\otimes_{\mathcal{A}}h\}.$$

▶ If $B \subseteq \mathcal{H}$ is a subalgebra,

$$B^+ := B \cap \ker(\varepsilon).$$

Proposition

Under the assumption that ${}_{s}\mathcal{H}$ is A-flat, we have well-defined inclusion-preserving correspondences

The canonical inclusions and the Galois connection

Theorem

Let (A, \mathcal{H}) be a bialgebroid such that ${}_{s}\mathcal{H}$ is A-flat.

- If B is a right H-comodule A^{op}-subring via t of H, then we have an inclusion η_B: B ⊆ ^{co H}_{HB+} H = ΨΦ(B). Moreover, ΦΨΦ(B) = Φ(B).
- ▶ If *I* is a left ideal 2-sided coideal in \mathcal{H} , then we have an inclusion $\epsilon_I : \Psi \Phi(I) = \mathcal{H} \left({}^{\operatorname{co} \frac{\mathcal{H}}{I}} \mathcal{H} \right)^+ \subseteq I$. Moreover, $\Psi \Phi \Psi(I) = \Psi(I)$.

In other words, Φ and Ψ form a monotone Galois connection (or, equivalently, an adjunction) between the two lattices and we have that

$$\mathcal{H}B^+\subseteq I\quad\iff\quad B\subseteq {}^{\operatorname{co}\frac{\mathcal{H}}{I}}\mathcal{H}.$$

The Hopf algebroid case

Let us fix a Hopf algebroid (A, \mathcal{H}) such that ${}_{s}\mathcal{H}$ is A-flat.

Proposition

Let *B* be a right \mathcal{H} -comodule A^{op} -subring via *t* of \mathcal{H} such that $\beta^{-1}(B \otimes_A 1) \subseteq B \otimes_{A^{\mathrm{op}}} \mathcal{H}$ and such that \mathcal{H} is faithfully flat over *B* on the right. Then $B = {}^{\mathrm{co}}\frac{\mathcal{H}}{\mathcal{H}B^+}\mathcal{H}$, that is $\Psi\Phi(B) = B$.

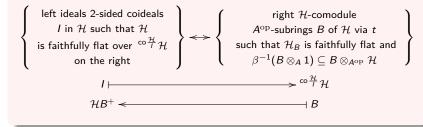
Proposition

Let $I \subseteq \mathcal{H}$ be a left ideal 2-sided coideal such that \mathcal{H} is faithfully flat on $B := {}^{\operatorname{co} \frac{\mathcal{H}}{I}}\mathcal{H}$ on the right. Then $I = \mathcal{H}B^+$, that is to say, $\Phi\Psi(I) = I$.

The main result

Theorem

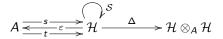
We have a well-defined inclusion-preserving bijective correspondence



The commutative case

A commutative Hopf algebroid is a cogroupoid object in the category of commutative algebras or, equivalently, an affine groupoid scheme (i.e. a representable presheaf of groupoids on Aff_{k}).

▶ It consists of a pair of commutative \Bbbk -algebras (A, \mathcal{H}) together with a diagram of algebra maps



satisfying the duals of the groupoid conditions.

▶ the inverse of the Hopf-Galois map β : $u \otimes_A v \mapsto u_1 \otimes_A u_2 v$ is

$$\beta^{-1} \colon \mathcal{H} \otimes_A \mathcal{H} \to \mathcal{H} \otimes_A \mathcal{H}, \qquad u \otimes_A v \mapsto u_1 \otimes_A \mathcal{S}(u_2)v.$$

▶ If (A, \mathcal{H}) is a commutative Hopf algebroid then $\mathscr{G} := (\mathscr{G}_A, \mathscr{G}_{\mathcal{H}})$ is the associated groupoid scheme:

$$\mathscr{G}(R) = \left(\mathsf{CAlg}_{\Bbbk}(A, R), \mathsf{CAlg}_{\Bbbk}(\mathcal{H}, R)\right)$$

Hopf ideals and subgroupoids

▶ An ideal $I \subseteq \mathcal{H}$ in a commutative Hopf algebroid (A, \mathcal{H}) is called a *(wide) Hopf ideal* if

 $\varepsilon(I) = 0, \qquad \Delta(I) \subseteq \operatorname{im}(\mathcal{H} \otimes_A I + I \otimes_A \mathcal{H}), \qquad \mathcal{S}(I) \subseteq I.$

▶ $(\mathscr{G}_A, \mathscr{G}_{\mathcal{H}/I})$ is a (wide closed) subgroupoid of $(\mathscr{G}_A, \mathscr{G}_{\mathcal{H}})$ if $(\mathscr{G}_A, \mathscr{G}_{\mathcal{H}/I})$ is a groupoid itself and $\pi^* : \mathscr{G}_{\mathcal{H}/I} \hookrightarrow \mathscr{G}_{\mathcal{H}}$ induces a morphism of groupoids $(\mathscr{G}_A, \mathscr{G}_{\mathcal{H}/I}) \to (\mathscr{G}_A, \mathscr{G}_{\mathcal{H}})$, that is, if and only if *I* is a Hopf ideal.

Example (The isotropy Hopf algebroid)

- The ideal $\langle s(a) t(a) | a \in A \rangle$ is a Hopf ideal in \mathcal{H} .
- $\mathcal{H}_{(i)} \coloneqq \mathcal{H}/\langle s t \rangle$ is a commutative Hopf *A*-algebra.

▶ The presheaf of groupoids $(\mathscr{G}_A, \mathscr{G}_{\mathcal{H}}^{(i)})$ obtained by taking the isotropy groupoid of $(\mathscr{G}_A(R), \mathscr{G}_{\mathcal{H}}(R))$ for every R in CAlg_k is represented by $\mathcal{H}_{(i)}$:

$$\left(\mathscr{G}_{\mathcal{A}},\mathscr{G}_{\mathcal{H}}^{(i)}
ight)\cong \left(\mathscr{G}_{\mathcal{A}},\mathscr{G}_{\mathcal{H}_{(i)}}
ight).$$

Normal Hopf ideals and normal subgroupoids

 \blacktriangleright $\mathcal{H}_{(i)}$ is a right \mathcal{H} -comodule algebra with coaction defined by

$$\delta_{\mathcal{H}_{(i)}} \colon \mathcal{H}_{(i)} o \mathcal{H}_{(i)} \otimes_A \mathcal{H}, \qquad \overline{h} \mapsto \overline{h_2} \otimes_A \mathcal{S}(h_1)h_3.$$

A Hopf ideal *I* of \mathcal{H} is said to be *normal* if $\langle s - t \rangle \subseteq I$ and for all \overline{x} in $I_{(i)} := I/\langle s - t \rangle$, we have

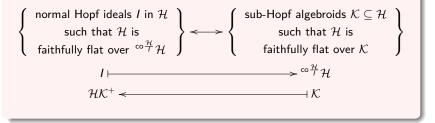
$$\delta_{\mathcal{H}_{(i)}}(\overline{x}) = \overline{x_2} \otimes_{\mathcal{A}} \mathcal{S}(x_1) x_3 \in \operatorname{im} \left(I_{(i)} \otimes_{\mathcal{A}} \mathcal{H} \right).$$

▶ *I* is a normal Hopf ideal of (A, \mathcal{H}) if and only if $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}/I})$ is a normal subgroupoid of $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}})$.

The main result in the commutative setting

Theorem

If (A, \mathcal{H}) is a commutative Hopf algebroid such that ${}_{s}\mathcal{H}$ is flat, then we have a well-defined inclusion-preserving bijective correspondence



Proposition

Let $\Bbbk = \overline{\Bbbk}$ and let (A, \mathcal{K}) be a sub-Hopf algebroid of (A, \mathcal{H}) such that \mathcal{H} is faithfully flat over \mathcal{K} . Then $\Theta \colon \mathsf{CAlg}_{\Bbbk}(\mathcal{H}, \Bbbk) \to \mathsf{CAlg}_{\Bbbk}(\mathcal{K}, \Bbbk)$ is surjective. In particular, in the setting of the theorem there are canonical isos

 $\mathscr{G}_{\mathcal{H}}(\Bbbk)/\mathscr{G}_{\mathcal{H}/\mathcal{H}\mathcal{K}^+}(\Bbbk) \;\cong\; \mathscr{G}_{\mathcal{K}}(\Bbbk) \quad \text{and} \quad \mathscr{G}_{\mathcal{H}}(\Bbbk)/\mathscr{G}_{\mathcal{H}/I}(\Bbbk) \cong \mathscr{G}_{^{\mathrm{co}\mathcal{H}/I}\mathcal{H}}(\Bbbk) \,.$

The end

Thank you

ULB & FNRS 15/1