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Abstract. We show how the Connes-Moscovici bialgebroid construction naturally pro-
vides universal objects for Lie algebras acting on non-commutative algebras. As a supple-
ment, we see how these objects interact with the study of flat bimodule connections.
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Introduction

Given a Hopf algebra H (possibly with bijective antipode S) over a field k and a left
H-module algebra A, one can turn the vector space A ⊗ H ⊗ A into a left bialgebroid
H := A�H�A over A in a natural way. This procedure has been introduced independently,
and under different forms, by Connes and Moscovici [10] in their study of the index theory
of transversely elliptic operators, and by Kadison [27] in connection with his work on
(pseudo-)Galois extensions. Later, Panaite and Van Oystaeyen proved in [40] that the two
constructions are in fact equivalent (isomorphic as A-bialgebroids) and that, as algebras,
they are particular instances of the L-R-smash product introduced in [39]. Nevertheless, by
following [5], we refer to the bialgebroid A�H � A as the Connes-Moscovici bialgebroid.
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Following the foregoing and, in particular, in view of the results in [40], two observations
were made, that triggered the present investigation: (i) that whenever a Lie algebra L
acts by derivations on an associative algebra A (for the sake of simplicity, let us call it
an A-anchored Lie algebra), then A becomes naturally an Uk(L)-module algebra and (ii)
that the associated Connes-Moscovici bialgebroid construction satisfies a universal property
(both as Ae-ring and as A-bialgebroid, see [40, Proposition 3.1 and Theorem 3.2]) which
suggests the possibility that A�Uk(L)�A plays for an A-anchored Lie algebra L the same
role played by the universal enveloping algebra for a Lie algebra.

Among anchored Lie algebras we find the well-known Lie-Rinehart algebras, which are
in particular Lie algebras acting on commutative algebras. As it can be inferred from the
substantial literature on the topic, Lie-Rinehart algebras are a deeply investigated area, in
particular for its connections with differential geometry (the global sections of a Lie algebroid
L → M form a Lie-Rinehart algebra over C∞(M)). Rinehart himself gave an explicit
construction of the universal enveloping algebra U(R,L) of a Lie-Rinehart algebra in [44]
and proved a Poincaré-Birkhoff-Witt theorem for the latter. Other equivalent constructions
are provided in [17, §3.2], [25, page 64], [47, §18]. The universal property of U(R,L) as an
algebra is spelled out in [25, page 64] and [32, page 174] (where it is attributed to Feld’man).
Its universal property as an A-bialgebroid is codified in the Cartier-Milnor-Moore Theorem
for U(R,L) proved in [35, §3], where Moerdijk and Mrčun show that the construction
of the universal enveloping algebra provides a left adjoint to the functor associating any
cocommutative bialgebroid with its Lie-Rinehart algebra of primitive elements and they
find natural conditions under which this adjunction becomes an equivalence (as it has
been done in [34] for cocommutative bialgebras and Lie algebras). Further algebraic and
categorical properties and applications are investigated in [2, 16, 23, 24, 25].

However, there are many important examples of Lie algebras acting by derivations on
associative algebras which are not necessarily commutative (actually, any Lie algebra acts
by derivations on its universal enveloping algebra and any associative algebra acts by inner
derivations on itself). Furthermore, while the space of primitive elements of a bialgebra is
always a Lie algebra and a primitively generated bialgebra is always cocommutative, the
space of primitive elements of a bialgebroid is not, in general, a Lie-Rinehart algebra and not
every primitively generated bialgebroid is necessarily cocommutative. A third observation
that stood up for the present investigation is that, instead, the space of primitive elements
of a bialgebroid is always a Lie algebra acting by derivations on the base algebra.

These facts, together with the two foregoing observations (i) and (ii), called for the
study of Lie algebras L acting on non-commutative algebras A in their own right and, in
particular, for the study of the associated Connes-Moscovici bialgebroid A� Uk(L)� A, as
it has been done for Lie-Rinehart algebras and their universal enveloping algebras.

In the present paper, we are mainly concerned with two universal properties of BL :=
A� Uk(L)� A, as an Ae-ring and as an A-bialgebroid, which reflect the two well-known
universal properties of universal enveloping algebras reported above. The first one (Theorem
2.9) exhibits A� Uk(L)� A as the universal Ae-ring associated with the A-anchored Lie
algebra L, similarly to what happens for U(R,L) in [25, page 64]. Namely, for any Ae-ring
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φA : Ae → R and any k-Lie algebra morphism φL : L→ L(R) such that[
φL(X), φA(a⊗ bo)

]
= φA (X · (a⊗ bo)) ,

for all a, b ∈ A and all X ∈ L, there exists a unique morphism of Ae-rings Φ : BL → R
extending φL. This naturally affects the study of the representations of L (see Corollary
2.10). The second universal property (Proposition 3.4) exhibits A � Uk(L) � A as the
universal A-bialgebroid associated with the A-anchored Lie algebra L, similarly to what
happens for U(R,L) in [35, Theorem 3.1(i)]. Namely, for any A-bialgebroid B and any
morphism of k-Lie algebras φL : L → B which lands into the space Prim(B) of primitive
elements of B and that is compatible with the anchors, there exists a unique morphism of
A-bialgebroids Φ : BL → B that extends φL.

Parallel to the new insights into the structure of bialgebroids over non-commutative base,
which have been the author’s original motivation for the present study and that are mainly
collected in sections 3 and 4, the representation theory of anchored Lie algebras provide
also an alternative, derivation-based, approach to non-commutative differential calculus
over associative algebras, as shown briefly in Section 5. In this, the universal property of
A� Uk(L)� A as an Ae-ring and its bialgebroid structure play a crucial role in deducing
categorical properties of the associated flat bimodule connections.

Concretely, after a first section devoted to recalling some definitions and some preliminary
results, we introduce A-anchored Lie algebras in §2.1 and we prove that the Connes-
Moscovici bialgebroid associated to an A-anchored Lie algebra satisfies the stated universal
property as Ae-ring in §2.2 (Theorem 2.9). In §3.1, we detail how taking the space of
primitives of an A-bialgebroid induces a functor from the category of A-bialgebroids to
the category of A-anchored Lie algebras and in §3.2 we show that the Connes-Moscovici
construction provides a natural left adjoint to this latter functor (Theorem 3.6) and, at
the same time, we prove the second universal property of A � Uk(L) � A (Proposition
3.4). At this point, by finding inspiration from the Milnor-Moore and the Moerdijk-Mrčun
theorems, we look for intrinsic conditions on a bialgebroid that allow us to recognize it as a
A� Uk(L)� A for a certain A-anchored Lie algebra. Section 4 is devoted to finding a first
answer (Theorem 4.14). After studying in more detail the space of primitives of a Connes-
Moscovici bialgebroid in §4.1, we tackle the question in the general framework in §4.2 and
in the particular case of bialgebroids over a commutative base in §4.3. Finally, we conclude
with some final remarks about future lines of investigation in §4.4. As a supplement, in §5
we show how representations of an A-anchored Lie algebra L are naturally equivalent to
certain flat bimodule connections on the first-order differential calculus Homk (L,A) and we
comment on how this research direction can be extended further and connected with the
differential calculi studied by Dubois-Violette and collaborators (see, e.g., [12, 13, 14]).

Notation. All over the paper, we assume a certain familiarity of the reader with the
language of monoidal categories and of (co)monoids therein (see, for example, [30, VII]).

We work over a ground field k of characteristic 0. All vector spaces are assumed to be
over k. The unadorned tensor product ⊗ stands for ⊗k. All (co)algebras and bialgebras are
intended to be k-(co)algebras and k-bialgebras, that is to say, (co)algebras and bialgebras
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in the symmetric monoidal category of vector spaces (Vectk,⊗,k). Every (co)module has
an underlying vector space structure. Identity morphisms IdV are often denoted by V .

In order to avoid confusion between indexes of elements and coproducts or coactions, we
will adopt the following variant of the Heyneman-Sweedler’s Sigma Notation. For c in a
coalgebra C, m in a left C-comodule M and n in a right C-comodule N we write

∆C (c) =
∑

c(1) ⊗ c(2), ρM(m) =
∑

m(−1) ⊗m(0) and ρN(n) =
∑

n(0) ⊗ n(1).

Given an algebra A, we denote by Ao its opposite algebra. We freely use the canonical
isomorphism between the category of left A-modules AMod and that of right Ao-modules
ModAo . We also set Ae := A⊗ Ao and we identify the category of left Ae-modules AeMod
with that of A-bimodules AModA. Recall that any morphism of algebras η : Ae → R leads
to two commuting algebra maps s : A → R, a 7→ a ⊗ 1o, and t : Ao → R, ao 7→ 1 ⊗ ao,
(i.e. s(a)t(bo) = t(bo)s(a) for all a, b ∈ A) and conversely. Given two R-bimodules M and N ,
this gives rise to several A-module structures on M and N and it leads to several ways of
considering the tensor product over A between the underlying A-bimodules. In the present
paper we focus on the A-bimodule structure induced by Ae acting on the left via η and
which we denote by sM to . We usually consider this bimodule structure when taking tensor
products. If we want to stress the fact that M is considered as a left Ae-module, we may
also write ηM . Therefore, given two R-bimodules M and N , we consider the tensor product
A-bimodule

M ⊗A N := sM to ⊗A sN to = M ⊗N〈
t(ao)m⊗ n−m⊗ s(a)n

∣∣∣ m ∈M,n ∈ N, a ∈ A
〉 . (1)

Inside M ⊗A N , we will also consider the distinguished subspace

M ×A N :=
{∑

i

mi ⊗A ni ∈M ⊗A N

∣∣∣∣∣ ∑
i

mit(ao)⊗A ni =
∑
i

mi ⊗A nis(a)
}
, (2)

which is often called Takeuchi-Sweedler’s ×-product. It is an A-subbimodule with actions

a ·
(∑

i

mi ⊗A ni

)
=
∑
i

s(a)mi ⊗A ni and
(∑

i

mi ⊗A ni

)
· a =

∑
i

mi ⊗A t(ao)ni

for all ∑imi ⊗A ni ∈ M ×A N and a ∈ A (see [47, Definition 2.1] and [49, page 460]). In
particular, the following relations hold for all m ∈M , n ∈ N , ∑imi ⊗A ni ∈M ×A N and
for all a ∈ A:

t(ao)m⊗A n
(1)= m⊗A s(a)n and

∑
i

mit(ao)⊗A ni
(2)=
∑
i

mi ⊗A nis(a). (3)

For the sake of clarity, it will be useful to set

a . m / b = s(a)t(bo)m = η(a⊗ bo)m and b I m J a = ms(a)t(bo) = mη(a⊗ bo) (4)

for m ∈ ηM η and a, b ∈ A.
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1. Preliminaries

We begin by collecting some facts about bimodules, corings and bialgebroids that will be
needed in the sequel. The aim is to keep the exposition self-contained. Many results and
definitions we will present herein hold in a more general context and under less restrictive
hypotheses, but we preferred to limit ourselves to the essentials.

Given a (preferably, non-commutative) k-algebra A, the category of A-bimodules forms
a non-strict monoidal category (AModA,⊗A, A, a, l, r). Nevertheless, all over the paper we
will behave as if the structural natural isomorphisms

aM,N,P : (M ⊗A N)⊗A P →M ⊗A (N ⊗A P ) , (m⊗A n)⊗A p→ m⊗A (n⊗A p) ,
lM : A⊗A M →M, a⊗A m 7→ a ·m, and rM : M ⊗A A→M, m⊗A a 7→ m · a,

were “the identities”, that is, as if AModA was a strict monoidal category.

1.1. Graded and filtered A-bimodules. As far as we are concerned, we assume A to
be filtered over Z with filtration

Fn(A) = 0 for all n < 0 and Fn(A) = A for all n ≥ 0
and we assume it to be graded over Z with grading

A0 = A and An = 0 for all n 6= 0.
By a graded A-bimodule we mean an A-bimodule M with a family of A-subbimodules
{Mn | n ∈ Z} such that M = ⊕

n∈ZMn. By a filtered A-bimodule we mean an A-bimodule
M with a chain of A-subbimodules {Fn(M) | n ∈ Z}, that is Fp(M) ⊆ Fq(M) if p ≤ q. The
filtration is said to be exhaustive if M = ⋃

n∈Z Fn(M). Given a filtered A-bimodule M , one
can consider the associated graded bimodule gr(M) defined by

grn(M) := Fn(M)
Fn−1(M) and gr(M) :=

⊕
n∈Z

grn(M).

In what follows we will be interested in positively filtered and graded bimodules, that is,
those for which the negative terms are 0.

Given two filtered bimodules M,N , we can perform their tensor product M ⊗A N
and this is still a filtered bimodule: the k-th term of the filtration on M ⊗A N is the
A-subbimodule generated by the elements m⊗A n such that m ∈ Fs(M), n ∈ Ft(N) and
s + t = k; analogously for two graded A-bimodules. With these tensor products, we
have that the categories

(
AFModA,⊗A, A

)
and

(
AGModA,⊗A, A

)
of filtered and graded

bimodules, respectively, are monoidal categories (it follows, for instance, from [36, Chapter
A, Proposition I.2.14 and Chapter D, Lemma VIII.1]). Morphisms of filtered (respectively,
graded) bimodules are A-bilinear maps that respect the filtration (respectively, grading).

The result we are principally interested in is that the construction of the graded bimodule
associated to a filtered bimodule is functorial (see, for example, [36, chapter D, §III]).
Moreover, the natural surjection

ϕM,N : gr(M)⊗A gr(N)→ gr(M ⊗A N), (5)
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uniquely determined by
(m+ Fs−1(M))⊗A (n+ Ft−1(N)) 7→ (m⊗A n) + Fs+t−1(M ⊗A N)

for m ∈ Fs(M) and n ∈ Ft(N) (see [36, page 318]), and the isomorphism ϕ0 : A ∼= gr(A)
endow the functor

gr(−) : AFModA → AGModA, M 7→ gr(M),
with a structure of lax monoidal functor (see [1, Definition 3.1]). For further details about
filtered and graded bimodules, we refer the reader to [36].

1.2. A-corings. Recall that an A-coring is a monoid in the monoidal category of A-
bimodules (AModA,⊗A, A). More concretely, an A-coring is an A-bimodule C endowed with
a comultiplication ∆C : C → C ⊗A C and a counit εC : C → A such that

(∆C ⊗A C) ◦∆C = (C ⊗A ∆C) ◦∆C and (εC ⊗A C) ◦∆C = C = (C ⊗A εC) ◦∆C. (6)
For the general theory of corings and their comodules, we refer to [8].

Later on, we will be particularly interested in (exhaustively) filtered A-corings such
that the associated graded components are projective as A-bimodules. These are A-
corings C endowed with an increasing filtration {Fn(C) | n ∈ N} as A-bimodules such that
C = ⋃

n Fn(C), grn(C) = Fn(C)/Fn−1(C) is a projective A-bimodule and

∆C(Fn(C)) ⊆
∑
i+j=n

Fi(C)⊗A Fj(C) (7)

for all n ≥ 0 (that is to say, ∆C is a morphism of filtered A-bimodules). We will refer to
these A-corings as graded projective filtered A-corings. By convention, we put F−1(C) = 0.
Notice that the inclusion (7) makes sense in view of the following well-known result for
filtered (bi)modules (see, for instance, [17, Lemma B.1]).

Lemma 1.1. Let C be an A-bimodule with filtration {Fn(C) | n ∈ N} such that grn(C) is a
projective A-bimodule for all n ≥ 0. Then

Fn(C) ∼=
n⊕
k=0

Fk(C)
Fk−1(C)

(8)

for all n ≥ 0 and so Fn(C) is a projective A-bimodule. Moreover, the canonical map

gr (C)⊗A gr (C)→ gr (C ⊗A C) ,
(
ξ+Fh (C)

)
⊗A

(
ξ′+Fk (C)

)
7→ ξ⊗A ξ

′+Fh+k+1 (C ⊗A C) ,

from (5) is an isomorphism of A-bimodules. If, in addition, the filtration {Fn(C) | n ∈ N} is
exhaustive, then C ∼= gr(C) as A-bimodules and, in particular, C is a projective A-bimodule.

Proof. By definition and projectivity of grn(C), we have a split short exact sequence

0 // Fn−1(C) // Fn(C) // grn(C) // 0

of A-bimodules, which implies that, as A-bimodules,
Fn(C) ∼= Fn−1(C)⊕ grn(C).
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By proceeding recursively, one reaches (8). The second claim follows from [31, Theorem
C.24, p. 93]. About the last claim in the statement, saying that the filtration is exhaustive
means that C ∼= lim−→n

(Fn(C)) as A-bimodules. Since (8) means that Fn(C) ∼= Fn (gr(C)) as
A-bimodules, we have that C ∼= lim−→n

(Fn(C)) ∼= lim−→n
(Fn (gr(C))) ∼= gr(C) as claimed. �

Analogously to the theory of filtered coalgebras (see, for example, [48, §11.1]), the graded
A-bimodule gr(C) associated to a graded projective filtered A-coring C becomes a graded
A-coring in a natural way, as the subsequent Proposition 1.2 formalize.

For the sake of clarity, by a graded A-coring we mean an A-coring D endowed with an
N-grading {Dn | n ∈ N} as A-bimodule such that every Dn is projective as A-bimodule,

∆D (Dn) ⊆
⊕
i+j=n

Di ⊗A Dj for all n ∈ N and εD (Dn) = 0 for all n ≥ 1.

It can be seen as a comonoid in the monoidal category of graded A-bimodules. Notice that
∆D is uniquely determined by the A-bilinear maps

∆[n]
D : Dn →

⊕
i+j=n

Di ⊗A Dj

obtained by (co)restriction of ∆D to the graded components of D and D ⊗A D and which,
in turn, are uniquely determined by the A-bilinear maps

∆[h,k]
D :=

(
Dn

∆[n]
D−−→

⊕
i+j=n

Di ⊗A Dj

pD
h,k−−→ Dh ⊗A Dk

)
(9)

for all n ≥ 0 and for all h + k = n. Following [3, Definition 2.2], we say that the graded
A-coring D is strongly graded whenever ∆[h,k]

D is injective for all h, k ∈ N.

Proposition 1.2. Let C be a graded projective filtered A-coring. Then the A-coring
structure on C induces an A-coring structure on gr(C). Moreover, for any morphism
of graded projective filtered A-corings f : C → B, the induced graded A-bilinear morphism
gr(f) : gr(C)→ gr(B) is a morphism of graded A-corings.

Proof. The first claim follows from the functoriality of gr(−) and from the fact that
∆C : C → C ⊗A C and εC : C → A are filtered morphisms of A-bimodules. In fact, they
induce graded morphisms of A-bimodules

gr(C) gr(∆C)−−−→ gr(C ⊗A C) ∼= gr(C)⊗A gr(C) and gr(C) gr(εC)−−→ gr(A) ∼= A,

which provides an A-coring structure on gr(C), since gr(−) is lax monoidal. Concerning the
second claim, it is enough to apply gr(−) to the diagrams expressing the comultiplicativity
and counitality of f . �
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Remark 1.3. For any morphism f : C → B of filtered A-corings, we have that

grn(C)
∆[n]

gr(C) //

grn(f)

��

⊕
i+j=n

gri(C)⊗A grj(C)⊕
i+j=n

gri(f)⊗Agrj(f)

��

grn(B)
∆[n]

gr(B)

//
⊕
i+j=n

gri(B)⊗A grj(B)

(10)

commutes for all n ≥ 0.

Corollary 1.4 (of Proposition 1.2). The assignment C 7→ gr(C) induces a functor gr(−)
from the category of graded projective filtered A-corings to the category of graded A-corings.

1.3. A-bialgebroids. Next, we recall the definition of a left bialgebroid. It can be consid-
ered as a revised version of the notion of a ×A-bialgebra as it appears in [45, Definition 4.3].
However, we prefer to mimic [29] as presented in [7, Definition 2.2] (in light of [7, Theorem
3.1], this is something we may do).

Definition 1.5. A left bialgebroid is the datum consisting of
(B1) a pair (A,B) of k-algebras, called the base algebra and the total algebra respectively,
(B2) a k-algebra map ηB : Ae → B, inducing a source sB : A→ B and a target tB : Ao → B

which are k-algebra maps, and making of B an Ae-bimodule,
(B3) an A-coring structure (B,∆B, εB) on the A-bimodule ηB = sBto ,

satisfying
(B4) ∆B takes values into B ×A B and ∆B : B → B ×A B is a morphism of k-algebras,

where the algebra structure on B ×A B is given by the component-wise product

(ξ ⊗A ζ)(ξ′ ⊗A ζ
′) = ξξ′ ⊗A ζζ

′, (11)

for all ξ, ξ′, ζ, ζ ′ ∈ B,
(B5) εB

(
ξsB (ε (ξ′))

)
= εB (ξξ′) = εB

(
ξtB (εB (ξ′)o)

)
for all ξ, ξ′ ∈ B.

(B6) εB(1B) = 1A.
A k-linear map εB : B → A which is left Ae-linear and satisfies (B5) and (B6) is called a
left character on the Ae-ring B (see [5, Lemma 2.5 and following]).

A morphism of left bialgebroids from (A,B) to (A′,B′) is a pair of k-algebra morphisms
φ0 : A→ A′ and φ1 : B → B′ such that

φ1 ◦ sB = sB′ ◦ φ0, φ1 ◦ tB = tB′ ◦ φ0, εB′ ◦ φ1 = φ0 ◦ εB
and

B φ1 //

∆B
��

B′

∆B′

��
B ⊗A B φ1⊗Aφ1

// B′ ⊗A B′ // // B′ ⊗A′ B′
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commutes. In this paper we will focus on left bialgebroids over a fixed base algebra A, that
we call left A-bialgebroids. A morphism of left A-bialgebroids between B and B′ is then an
algebra map φ : B → B′ such that

φ ◦ sB = sB′ , φ ◦ tB = tB′ , εB′ ◦ φ = εB, (φ⊗A φ) ◦∆B = ∆B′ ◦ φ.
The category of left A-bialgebroids will be denoted by BialgdA.

We will often omit to specify the A-bialgebroid B in writing the comultiplication ∆B or
the counit εB, when it is clear from the context.

Remark 1.6. Let us make explicit some of the relations involved in the definition of a left
bialgebroid and some of their consequences. In terms of elements of A and B, and by
resorting to Sweedler Sigma Notation, relations (6) become∑

ξ(1)(1) ⊗A ξ(1)(2) ⊗A ξ(2) =
∑

ξ(1) ⊗A ξ(2)(1) ⊗A ξ(2)(2)

and
∑

s
(
ε (ξ(1))

)
ξ(2) = ξ =

∑
t
(
ε (ξ(2))o

)
ξ(1)

(12)

for all ξ ∈ B. Moreover, for all a, b ∈ A the A-bilinearity of ∆ forces∑(
s (a) t (bo) ξ

)
(1)
⊗A

(
s (a) t (bo) ξ

)
(2)

=
∑

s (a) ξ(1) ⊗A t (bo) ξ(2).

In particular,
∆ (s (a)) = s (a)⊗A 1B and ∆ (t (ao)) = 1B ⊗A t (ao) (13)

for all a ∈ A. As a consequence, the multiplicativity of ∆ forces

∆(ξs(a)) = ∆(ξ)∆(s(a)) =
(∑

ξ(1) ⊗A ξ(2)

)(
s(a)⊗A 1B

)
=
∑

ξ(1)s(a)⊗A ξ(2),

∆(ξt(ao)) = ∆(ξ)∆(t(ao)) =
(∑

ξ(1) ⊗A ξ(2)

)(
1B ⊗A t(ao)

)
=
∑

ξ(1) ⊗A ξ(2)t(ao),
(14)

for all ξ ∈ B. The A-bilinearity of ε becomes

ε
(
s (a) t (bo) ξ

)
= aε (ξ) b (15)

and since it also preserves the unit, we have that
ε (s (a)) = ε (s(a)1B) = aε (1B) = a = ε (1B) a = ε (t (ao)) . (16)

Therefore, in light of the character condition on ε,

ε (ξs (a)) (B5)= ε

(
ξt
(
ε
(
s (a)

)o)) (16)= ε (ξt (ao)) . (17)

One may also define, in a symmetric way, the notion of a right bialgebroid (see [28, §2]).
Henceforth, however, all the bialgebroids we consider will be left bialgebroids, whence we
will often omit to specify the adjective “left”.

Example 1.7. Let us give some examples.
(a) Any bialgebra over a field k is a k-bialgebroid.
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(b) On the algebra A⊗ Ao we may consider the morphisms
s : A→ A⊗ Ao, a 7→ a⊗ 1o, t : Ao → A⊗ Ao, bo 7→ 1⊗ bo,

∆ : A⊗ Ao → (A⊗ Ao)⊗A (A⊗ Ao) , a⊗ bo 7→ (a⊗ 1o)⊗A (1⊗ bo) ,
ε : A⊗ Ao → A, a⊗ bo 7→ ab.

These make of A⊗ Ao an A-bialgebroid (see [29, Example 3.1]).
(c) Assume that A is a finite-dimensional algebra over k and set B := Endk(A). Consider

s : A→ B given by left multiplication and t : A→ B given by right multiplication. The
morphism

B ⊗ B → Homk (A⊗ A,A) , f ⊗ g 7→ [a⊗ b 7→ f(a)g(b)]
induces an isomorphism B ⊗A B ∼= Homk (A⊗ A,A). In view of this, one can endow B
with a structure of A-bialgebroid with source s, target t, ∆ given by

∆(f)(a⊗ b) = f(ab)
(up to the latter isomorphism) and ε by evaluation at 1A (see [29, page 56]).

(d) Let R→ S be a depth two ring extension (see [28, Definition 3.1]) and set A := CS(R),
the centralizer of R in S. Then the ring of endomorphisms B := EndR(S) of S as an
R-bimodule satisfies

B ⊗A B ∼= RHomR (S ⊗R S, S) , f ⊗A g 7→ [s⊗R s
′ 7→ f(s)g(s′)] ,

as above (see [28, Proposition 3.11]) and we may endow it with an A-bialgebroid
structure exactly as in (c) ([28, Theorem 4.1]).

(e) Let (H,m, u,∆, ε) be a bialgebra and let A be a braided commutative algebra in H
HYD.

This means that A is at the same time a left H-module algebra (that is, an algebra in the
monoidal category (HMod,⊗,k) of left H-modules) with action H⊗A→ A, h⊗a 7→ h·a,
satisfying

h · (ab) =
∑

(h(1) · a) (h(2) · b) and h · 1A = ε (h) 1A
for all h ∈ H, a, b ∈ A, and a left H-comodule algebra with coaction ρ : A→ H ⊗ A,
satisfying

ρ(ab) =
∑

a(−1)b(−1) ⊗ a(0)b(0) and ρ(1A) = 1H ⊗ 1A
for all a, b ∈ A. Furthermore, these structures are required to satisfy∑

h(1)a(−1) ⊗ h(2) · a(0) =
∑

(h(1) · a)(−1) h(2) ⊗ (h(1) · a)(0)

and ∑ (a(−1) · b) a(0) = ab for all a, b ∈ A and h ∈ H (the latter expresses the braided
commutativity). Under these conditions, the smash product algebra H#A is an A-
bialgebroid with

(h⊗ a)(h′ ⊗ b) =
∑

h(1)h
′ ⊗ (h(2) · b) a, 1H#A = 1H ⊗ 1A,

s(a) =
∑

a(−1) ⊗ a(0), t(ao) = 1H ⊗ a,
∆(h⊗ a) =

∑
(h(1) ⊗ 1A)⊗A (h(2) ⊗ a) and ε(h⊗ a) = ε(h)a
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for all a, b ∈ A, h, h′ ∈ H. This is a left-left symmetrical version of [5, Example 3.4.7]
and [7, Theorem 4.1].

(f) Connes-Moscovici bialgebroid (see [10, 40] and [5, Example 3.4.6]). Let H be a Hopf
algebra (in fact, a bialgebra would suffice) and let A be an H-module algebra. The
vector space B := A⊗H ⊗ A becomes an algebra via

(a⊗ h⊗ b) (a′ ⊗ h′ ⊗ b′) =
∑

a (h(1) · a′)⊗ h(2)h
′ ⊗ (h(3) · b′) b (18)

and unit 1A ⊗ 1H ⊗ 1A. It can be endowed with an A-bialgebroid structure as follows

sB(a) := a⊗ 1H ⊗ 1A, tB(ao) := 1A ⊗ 1H ⊗ a,
∆B (a⊗ h⊗ b) :=

∑
(a⊗ h(1) ⊗ 1A)⊗A (1A ⊗ h(2) ⊗ b) ,

εB (a⊗ h⊗ b) := aεH (h) b.

Following [40], we will denote this bialgebroid by A�H�A, avoiding the use of symbols
like # or n,o in order to avoid confusion with two-sided smash/crossed products in
the sense of [19]. Notice that for all a, a′, b, b′ ∈ A and h ∈ H we have

a . (a′ ⊗ h⊗ b′) / b (4)= (a⊗ 1H ⊗ 1A) (1A ⊗ 1H ⊗ b) (a′ ⊗ h⊗ b′) (18)= aa′ ⊗ h⊗ b′b,

a I (a′ ⊗ h⊗ b′) J b
(4)= (a′ ⊗ h⊗ b′) (b⊗ 1H ⊗ 1A) (1A ⊗ 1H ⊗ a)
(18)=

∑
a′ (h(1) · b)⊗ h(2) ⊗ (h(3) · a) b′.

Remark 1.8. It is known that an Ae-ring is a left bialgebroid if and only if the category
BMod of left B-modules is monoidal in such a way that the forgetful functor BMod→ AeMod
is a monoidal functor (see, for example, [45, Theorem 5.1]). In particular, the tensor
product of two B-modules M and N is M ⊗A N with diagonal action ξ � (m⊗A n) :=∑ (ξ(1) �m)⊗A (ξ(2) � n) and A is a B-module with

ξ � a := ε (ξt (ao)) (17)= ε (ξs (a)) . (19)

It is, in fact, a left B-module algebra (see [5, §3.7.1] for a right-handed analogue). In
particular, for all a, b ∈ A and all ξ ∈ B we have∑

(ξ(1) � a) (ξ(2) � b) = ξ � ab and ξ � 1A = ε(ξ). (20)

2. The Connes-Moscovici bialgebroid as universal Ae-ring

In this section we introduce A-anchored Lie algebras and we show that the Connes-
Moscovici bialgebroid A � Uk(L) � A naturally associated to an A-anchored Lie algebra
satisfies a universal property as Ae-ring. In particular, unless stated otherwise, we assume
to work over a fixed base algebra A, possibly non-commutative. We conclude the section
with an extension of the PBW theorem to bialgebroids of the form A� Uk(L)� A.
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2.1. A-anchored Lie algebras.
Definition 2.1. An A-anchored Lie algebra is an ordinary Lie algebra L over k together
with a Lie algebra morphism ω : L → Derk (A), called the anchor. We will often write
X · a for ω(X)(a). A morphism of A-anchored Lie algebras between (L, ω) and (L′, ω′) is a
Lie algebra morphism f : L → L′ such that ω′ ◦ f = ω. The category of A-anchored Lie
algebras and their morphisms will be denoted by AnchLieA. As a matter of notation, we
may write simply (A,L, ω) to mean the A-anchored Lie algebra (L, ω).
Remark 2.2. The reader needs to be warned that the terminology “A-anchored” used here
is inspired from the literature, but it neither strictly coincides with the classical notion of
A-anchored module, nor it properly extends it. In fact, in the literature, an “A-anchored
module” [42, §1] (also called “A-module with arrow” [41, §3] or “A-module fléché” [43, §1]) is
an A-module M over a commutative algebra A together with an A-linear map M → Derk (A).
Since, in the present framework, A is assumed to be preferably non-commutative, the vector
space Derk (A) does not carry any natural A-module structure and hence we do not have
any reasonable way to speak about an A-linear anchor. In spite of this, in order to limit the
proliferation of different terminology in the field and trusting that the non-commutative
context will help in distinguishing between the two notions, we decided to adopt the term
“A-anchored” in this framework as well.
Example 2.3. Let us give a few important examples.
(a) The Lie algebra Derk (A) with the identity map is an A-anchored Lie algebra.
(b) Any Lie algebra L is a Uk(L)-anchored Lie algebra.
(c) Any k-algebra A, with the associated Lie algebra structure L(A) = (A, [−,−]A) given

by the commutator bracket, is an A-anchored Lie algebra with anchor induced by the
adjoint representation. Namely,

L(A)→ Derk (A) , a 7→
[
b 7→ [a, b]A

]
.

(d) A Lie-Rinehart algebra over a commutative algebra R (called in this way in honour of
G. S. Rinehart, who studied them in [44] under the name of (K,R)-Lie algebras) is a
Lie algebra L endowed with a (left) R-module structure R⊗L→ L, r⊗X 7→ r ·X, and
with a Lie algebra morphism ω : L→ Derk (R) such that, for all r ∈ R and X, Y ∈ L,

ω (r ·X) = r · ω (X) and [X, r · Y ] = r · [X, Y ] + ω (X) (r) · Y.
Clearly, any Lie-Rinehart algebra over R is an R-anchored Lie algebra.

(e) Let B be an A-bialgebroid and consider the vector space of primitive elements
Prim (B) :=

{
X ∈ B | ∆ (X) = X ⊗A 1 + 1⊗A X

}
.

This is a Lie algebra with the commutator bracket. Assume that X ∈ Prim (B). In light
of Equation (20), X acts on A by derivations, which means that the assignment

ωB : Prim (B)→ Derk (A) , X 7→ X � (−),
is well-defined. Moreover,
ωB (XY − Y X) (a) = (XY ) � a− (Y X) � a = X � (Y � a)− Y � (X � a)



ANCHORED LIE ALGEBRAS AND C-M BIALGEBROIDS 13

= ωB (X) (ωB (Y ) (a))− ωB (Y ) (ωB (X) (a)) = [ωB (X) , ωB (Y )] (a)
implies that ωB is a morphism of Lie algebras and hence it is an anchor for Prim (B).
As a matter of notation, we write θB : Prim(B)→ B for the canonical inclusion.

Definition 2.4. Assume that (L, ω) is an A-anchored Lie algebra.
(L1) An A-anchored Lie ideal (L′, ω′) in (L, ω) is a Lie ideal L′ in L together with an

anchor ω′ such that the inclusion L′ ⊆ L is a morphism in AnchLieA. Equivalently,
it is vector subspace L′ ⊆ L such that [X,X ′]L ∈ L′ for all X ′ ∈ L′, X ∈ L with
anchor ω′ given by the restriction of ω.

(L2) An A-anchored Lie subalgebra (L′′, ω′′) in (L, ω) is a Lie subalgebra L′′ of L together
with an anchor ω′′ such that the inclusion L′′ ⊆ L is a morphism in AnchLieA.
Equivalently, it is a vector subspace L′′ ⊆ L such that [X ′′, Y ′′]L ∈ L′′ for all
X ′′, Y ′′ ∈ L′′ with anchor ω′′ given by the restriction of ω.

(L3) If we have two A-anchored Lie algebras (L′, ω′) and (L′′, ω′′) and a Lie algebra
morphism δ : L′′ → Derk (L′) such that[

ω′′(X ′′), ω′(X ′)
]

= ω′
(
δ(X ′′)(X ′)

)
(21)

in Derk (A) for all X ′ ∈ L′ and all X ′′ ∈ L′′, then we define the semi-direct product
of (L′, ω′) and (L′′, ω′′) to be the k-vector space L′′ × L′ with Lie bracket[

(X ′′, X ′), (Y ′′, Y ′)
]

:=
(
[X ′′, Y ′′]L′′ , δ(X ′′)(Y ′)− δ(Y ′′)(X ′) + [X ′, Y ′]L′

)
(22)

and anchor
L→ Derk (A) , (X ′′, X ′) 7→ ω′′(X ′′) + ω′(X ′). (23)

We denote it by (L′′ nδ L
′, ωδ).

For the sake of brevity, from now on we will only speak about ideals and subalgebras
without reporting the syntagma “A-anchored Lie” in front. Definition 2.4(L3) is consistent
in view of the following results.

Lemma 2.5. The semi-direct product (L, ω) of two A-anchored Lie algebras (L′, ω′) and
(L′′, ω′′) is an A-anchored Lie algebra.

Proof. The fact that the semi-direct product is a Lie algebra follows from the fact that, as
Lie algebras, it is the semi-direct product of L′ and L′′. Thus we only need to check that
ωδ is a Lie algebra morphism. To this aim, we compute directly[

ωδ
(
(X ′′, X ′)

)
, ωδ

(
(Y ′′, Y ′)

)]
(23)=

[
ω′′(X ′′) + ω′(X ′), ω′′(Y ′′) + ω′(Y ′)

]
=
[
ω′′(X ′′), ω′′(Y ′′)

]
+
[
ω′(X ′), ω′′(Y ′′)

]
+
[
ω′′(X ′′), ω′(Y ′)

]
+
[
ω′(X ′), ω′(Y ′)

]
(21)= ω′′

(
[X ′′, Y ′′]L′′

)
+ ω′

(
δ(X ′′)(Y ′)

)
− ω′

(
δ(Y ′′)(X ′)

)
+ ω′

(
[X ′, Y ′]L′

)
(23)= ωδ

((
[X ′′, Y ′′]L′′ , δ(X ′′)(Y ′)− δ(Y ′′)(X ′) + [X ′, Y ′]L′

))
(22)= ωδ

([
(X ′′, X ′), (Y ′′, Y ′)

])
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for all X ′, Y ′ ∈ L′ and all X ′′, Y ′′ ∈ L′′. �

The following lemma should not be surprising.

Lemma 2.6. Let (L, ω) be an A-anchored Lie algebra and let (L′, ω′) and (L′′, ω′′) be
subalgebras of (L, ω). Then there exists a semi-direct product (L′′ nδ L

′, ωδ) of (L′, ω′) and
(L′′, ω′′) such that L′′ nδ L

′ → L, (X ′′, X ′) 7→ X ′′ + X ′, is an isomorphism of A-anchored
Lie algebras if and only if
• (L′, ω′) is an ideal in (L, ω);
• L = L′′ + L′ as k-vector spaces;
• L′ ∩ L′′ = 0 (that is, L = L′′ ⊕ L′).

If this is the case, then δ : L′′ → Derk (L′) is given by X ′′ 7→ [X ′′,−]L.

Proof. In one direction, notice that (L′, ω′) is an ideal in (L′′ nδ L
′, ωδ) via the canonical

morphism L′ → L′′ ⊕ L′, X ′ 7→ (0, X ′), and that (L′′, ω′′) is a subalgebra of (L′′ nδ L
′, ωδ)

via the canonical morphism L′′ → L′′ ⊕ L′, X ′′ 7→ (X ′′, 0). Furthermore, one recovers δ as[
(X ′′, 0), (0, X ′)

]
=
(
0, δ(X ′′)(X ′)

)
for all X ′ ∈ L′, X ′′ ∈ L′′. In the other direction, assume that (L′, ω′) is an ideal in (L, ω)
and that L = L′′⊕L′ as k-vector spaces. Consider further the assignment δ : L′′ → Derk (L′)
given by X ′′ 7→ [X ′′,−]L (which is well-defined because L′ is an ideal). It satisfies[

ω′′(X ′′), ω′(X ′)
]

= ω(X ′′) ◦ ω(X ′)− ω(X ′) ◦ ω(X ′′)

= ω
(
[X ′′, X ′]L

)
= ω

(
δ(X ′′)(X ′)

)
= ω′

(
δ(X ′′)(X ′)

)
for all X ′ ∈ L′, X ′′ ∈ L′′, which is (21), and so we may perform the semi-direct product
(L′′ nδ L

′, ωδ). Then[
X ′′ +X ′, Y ′′ + Y ′

]
L

= [X ′′, Y ′′]L + [X ′, Y ′′]L + [X ′′, Y ′]L + [X ′, Y ′]L

= [X ′′, Y ′′]L′′ +
(
δ(X ′′)(Y ′)− δ(Y ′′)(X ′) + [X ′, Y ′]L′

)
,

so that L′′ ⊕ L′ ∼= L is a morphism of Lie algebras and moreover
ω(X ′′ +X ′) = ω(X ′′) + ω(X ′) = ω′′(X ′′) + ω′(X ′),

whence it is of A-anchored Lie algebras, too. �

Remark 2.7. The reader has to be warned that, despite the definition of ideal and of
semi-direct product in Definition 2.4 has been inspired by the subsequent Lemma 4.1 and
Proposition 4.3 and by the results in §4.3, they may turn out to be improper terminologies
in the future. In fact, it is not true in general that the quotient of an A-anchored Lie
algebra by an ideal is an A-anchored Lie algebra (unless the ideal has the zero anchor) or
that (L, ω) is a semi-direct product of (L′, ω′) and (L′′, ω′′) if and only if there is a short
exact sequence of A-anchored Lie algebras

0→ L′
f−→ L

g−→ L′′ → 0 (24)
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such that g admits a section σ which is a morphism of A-anchored Lie algebras. On the
one hand, the canonical projection L′′ nδ L

′ → L′′ is not a morphism of A-anchored Lie
algebras because it is not compatible with the anchors. On the other hand, in order to have
that ω′′ ◦ g = ω and that ω ◦ f = ω′, we should have had that

ω′ = ω ◦ f = ω′′ ◦ g ◦ f = 0,
which is not the case in general.

What one may observe is that (L, ω) is a semi-direct product of (L′, ω′) and (L′′, ω′′) if
and only if there is a short exact sequence of Lie algebras (24) such that g admits a section
σ and both f and σ are morphisms of A-anchored Lie algebras (but g is not, in general).
2.2. A universal Ae-ring construction. Assume that we are given an A-anchored Lie
algebra (L, ω). Recall that we may consider the universal enveloping algebra Uk (L) of L
and that there is a canonical injective k-linear map

jL : L→ Uk(L), X 7→ x, (25)
which allows us to identify X with its image x in Uk(L). The anchor ω makes of A a left
representation of L with L acting as derivations, that is, we have a Lie algebra morphism

L
ω−→ Derk (A) ⊆ L (Endk(A)) (26)

where L (Endk(A)) is the Lie algebra associated to the associative algebra (Endk(A), ◦, idA).
By the universal property of the universal enveloping algebra, there is a unique algebra
morphism

Ω : Uk (L)→ Endk (A)
which extends ω.
Lemma 2.8. The base algebra A is naturally an Uk (L)-module algebra.
Proof. See, for instance, [11, Example 6.1.13(3)]. Explicitly

x · a = ω(X)(a), x · 1A
(26)= 0 and u · a = Ω(u)(a) (27)

for all X ∈ L, u ∈ Uk(L) and a ∈ A. �

By Lemma 2.8, we may consider the Connes-Moscovici A-bialgebroid A � Uk (L) � A.
For the sake of simplicity, we will often denote it by BL. As an Ae-ring, it comes endowed
with a Lie algebra morphism

JL : L→ L (BL) , X 7→ 1⊗ x⊗ 1,
which satisfies [

JL(X), ηBL(a⊗ bo)
]
BL

= ηBL(X · (a⊗ bo)) (28)

for all a, b ∈ A and all X ∈ L, where
X · (a⊗ bo) = (X · a)⊗ bo + a⊗ (X · b)o

is the L-module structure on the tensor product of two L-modules. Equivalently, ηBL :
Ae → BL is a morphism of L-modules, where BL has the L-module structure induced by JL.

The Ae-ring BL with JL is universal among pairs (R, φL) satisfying these properties.
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Theorem 2.9. Given an Ae-ring R with k-algebra morphism φA : Ae → R and given a
Lie algebra morphism φL : L→ L(R) such that[

φL(X), φA(a⊗ bo)
]
R

= φA (X · (a⊗ bo)) , (29)
for all a, b ∈ A and all X ∈ L, there exists a unique morphism of Ae-rings Φ : BL → R
such that Φ ◦ JL = φL. It is explicitly given by

Φ : BL → R, a⊗ u⊗ b 7→ φA(a⊗ bo)φ′(u), (30)
where φ′ : Uk(L)→ R is the unique morphism of k-algebras such that φ′ ◦ jL = φL.

Proof. By the universal property of the universal enveloping k-algebra Uk(L), there exists a
unique morphism of k-algebras φ′ : Uk(L)→ R such that φ′ ◦ jL = φL. Now, set U := Uk(L)
and consider the k-linear map

Φ : A� U � A→ R, a⊗ u⊗ b 7→ φA(a⊗ bo)φ′(u)
of (30). It follows immediately from the definition that

Φ ◦ ηBL = φA and Φ ◦ JL = φL.

Now, a straightforward check using (29) and induction on a PBW basis of U shows that
φ′(u)φA(a⊗ bo) =

∑
φA ((u(1) · a)⊗ (u(3) · b)o)φ′ (u(2)) (31)

for all u ∈ U and a, b ∈ A. In view of this, we have
Φ ((a⊗ u⊗ b)(a′ ⊗ v ⊗ b′)) (18)=

∑
Φ (a(u(1) · a′)⊗ u(2)v ⊗ (u(3) · b′)b)

(30)=
∑

φA (a(u(1) · a′)⊗ ((u(3) · b′)b)o)φ′ (u(2)v)

=
∑

φA (a⊗ bo)φA ((u(1) · a′)⊗ (u(3) · b′)o)φ′ (u(2))φ′ (v)
(31)= φA (a⊗ bo)φ′ (u)φA (a′ ⊗ b′o)φ′ (v)

= Φ (a⊗ u⊗ b) Φ (a′ ⊗ v ⊗ b′)
for all u, v ∈ U , a, a′, b, b′ ∈ A. Thus, Φ is a morphism of Ae-rings and it is clearly the
unique one satisfying Φ ◦ JL = φL. �

Corollary 2.10. Given an A-anchored Lie algebra (L, ω), any representation ρ : L →
Endk(M) of L into an A-bimodule M satisfying the Leibniz condition

ρ(X)(a ·m · b) = a · ρ(X)(m) · b+ ω(X)(a) ·m · b+ a ·m · ω(X)(b) (32)
for all a, b ∈ A, X ∈ L and m ∈ M , makes of M a left A � Uk(L) � A-module, and
conversely.

Proof. If M is an A-bimodule, then the assignments
sE : A→ Endk(M), a 7→ [m 7→ a ·m], and tE : Ao → Endk(M), bo 7→ [m 7→ m · b],
make of Endk(M) an Ae-ring with φA : Ae → Endk(M), a⊗ bo 7→ sE(a)tE(bo). If we consider
the Lie algebra morphism φL := ρ, then equation (32) is exactly condition (29) and hence
there is a unique morphism of Ae-rings R : A�Uk(L)�A→ Endk(M) such that R ◦ JL = ρ.
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The other way around, if we have a morphism of Ae-rings R : A� Uk(L)� A→ Endk(M)
and we compose it with JL we get a Lie algebra morphism φL : L→ Endk(M) such that

φL(X)(a ·m · b) = (R(1A ⊗ x⊗ 1A) ◦ φA(a⊗ bo)) (m)

= R ((1A ⊗ x⊗ 1A)(a⊗ 1U ⊗ b)) (m)
(18)= R ((a⊗ x⊗ b) + (ω(X)(a)⊗ 1U ⊗ b) + (a⊗ 1U ⊗ ω(X)(b))) (m)

= a · φL(X)(m) · b+ ω(X)(a) ·m · b+ a ·m · ω(X)(b). �

Remark 2.11. Observe that the algebra maps φ′ : Uk(L)→ R and φA : Ae → R satisfy (31)
if and only if they satisfy∑

φ′ (u(1))φA
(
a⊗

(
S (u(2)) · b

)o)
=
∑

φA(u(1) · a⊗ bo)φ′(u(2))

for all u ∈ U , a, b ∈ A. This implies that the Ae-ring morphism Φ : A� Uk(L)� A→ R in
Theorem 2.9 coincides, up to the isomorphism of A-bialgebroids from [40, Theorem 2.5],
with the algebra map ω of [40, Proposition 3.1].

Proposition 2.12. Let B := {Xα | α ∈ S} be a k-basis for L, where S is an ordered
set of indexes. Then BL is a free left Ae-module with basis given by 1A ⊗ 1U ⊗ 1A and
1A ⊗ xα1 · · ·xαn ⊗ 1A where the xα1 · · ·xαn’s are the cosets of the standard monomials
Xα1 · · ·Xαn in the basis B (see [26, §V.2]).

Proof. It follows from the PBW theorem (see, for instance, [26, Theorem V.2.3]) and the
definition of the left Ae-module structure on BL. �

3. The Connes-Moscovici bialgebroid as universal enveloping bialgebroid

Our next aim is to prove that the Connes-Moscovici bialgebroid BL = A � Uk(L) � A
satisfies a universal property as A-bialgebroid as well, in the form of an adjunction between
the category of A-anchored Lie algebras and the category of A-bialgebroids.

3.1. The primitive functor. In light of Example 2.3(e), we may consider the assignment

P : BialgdA → AnchLieA
given on objects by P (B) = (Prim (B) , ωB) and on morphisms by simply (co)restricting
any φ : B → B′ to the primitive elements, that is φ ◦ θB = θB′ ◦ P(φ). The latter gives
a well-defined morphism of A-anchored Lie algebras because it is compatible with the
commutator bracket and

ωB′ (φ (X)) (a) = εB′ (φ (X) tB′ (ao)) = εB′ (φ (X)φ (tB (ao)))
= εB′ (φ (XtB (ao))) = εB (XtB (ao)) = ωB (X) (a)

for all X ∈ Prim (B) and a ∈ A. Summing up, we have the following result.
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Proposition 3.1. There is a well-defined functor P : BialgdA → AnchLieA which assigns
to every A-bialgebroid B its Lie algebra of primitive elements Prim (B) with anchor ωB :
Prim (B)→ Derk (A) sending X to

ωB (X) : A→ A, a 7→ ωB (X) (a) = X � a. (33)

Next lemma states a property of the primitive elements of an A-bialgebroid that we
already observed for BL in (28) and that will be useful to prove the universal property in
the forthcoming section.

Lemma 3.2. For B an A-bialgebroid, every primitive element X ∈ Prim (B) satisfies

Xt (ao)− t (ao)X = t
(
ε
(
Xt (ao)

)o)
and Xs (a)− s (a)X = s

(
ε
(
Xs (a)

))
(34)

for all a ∈ A. In particular,[
X, ηB(a⊗ bo)

]
B

= ηB
(
X � (a⊗ bo)

)
(35)

for all X ∈ Prim(B) and all a, b ∈ A.

Proof. In view of the definition of B ⊗A B and of B ×A B we have that

Xt (ao)⊗A 1B + t (ao)⊗A X
(3)= X ⊗A s (a) + 1B ⊗A Xs (a) .

By resorting to the left-hand side identity in (3), this relation can be written equivalently as

Xt (ao)⊗A 1B + t (ao)⊗A X = t (ao)X ⊗A 1B + 1B ⊗A Xs (a) (36)

or
Xt (ao)⊗A 1B + 1B ⊗A s (a)X = X ⊗A s (a) + 1B ⊗A Xs (a) . (37)

By applying B ⊗A ε to both sides of (36) and by recalling that ε(X) = 0, we get

Xt (ao) = t (ao)X + t
(
ε
(
Xs (a)

)o) (17)= t (ao)X + t
(
ε
(
Xt (ao)

)o)
.

If we apply instead ε⊗A B to (37) then we get

s
(
ε
(
Xt (ao)

))
+ s (a)X = Xs (a) ,

which gives the other relation in (34). �

3.2. An adjunction between AnchLieA and BialgdA. We show now how the Connes-
Moscovici bialgebroid construction provides a left adjoint to the functor P in a way that
mimics the well-known “universal enveloping algebra/space of primitives” adjunction

Bialgk

Prim(−)




a

Liek.

Uk(−)

JJ

(38)
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Remark 3.3. Despite being well-known, it seems that no “classical” reference explicitly
reports the adjunction (38) in the form we stated it here. Nevertheless, it is straightforward
to check that the involved functors are well-defined (they are, in fact, slight adjustments of
the functors considered in [34, page 239]) and that they form an adjoint pair. The unit
L→ Prim(Uk(L)) (induced by the canonical map jL of (25)) and the counit Uk(Prim(B))→
B (the unique algebra morphism extending the Lie algebra inclusion Prim(B) ⊆ L(B)) are
the obvious natural morphism which are proved to be bijective in [34, Theorem 5.18].

Proposition 3.4. Let (L, ω) be an A-anchored Lie algebra. Given an A-bialgebroid B and
given a Lie algebra morphism φL : L→ L(B) such that φL(L) ⊆ Prim(B) and

φL(X) � a = ω(X)(a) (39)

for all a ∈ A and for all X ∈ L, there exists a unique morphism of A-bialgebroids Φ : BL → B
such that Φ ◦ JL = φL and it is explicitly given by (30).

Proof. Set U := Uk(L) and let φ′ : U → B be the unique k-algebra map extending φL.
In view of (35) and (39), ηB and φL satisfy (29). Thus, by Theorem 2.9, there exists a
unique morphism of Ae-rings Φ : BL → B satisfying Φ ◦ JL = φL. Moreover, ηB : Ae → B
is always a morphism of A-bialgebroids, where Ae has the A-bialgebroid structure from
Example 1.7(b). Therefore, in view of Remark 2.11 and of [40, Theorem 3.2], if we show
that (1A, φ′) : (k, U)→ (A,B) is a morphism of bialgebroids, then we can conclude that Φ
is a morphism of A-bialgebroids and finish the proof. Equivalently, we need to check that
φ′ : U → B satisfies ∑

φ′ (u(1))⊗A φ
′ (u(2)) =

∑
φ′ (u)(1) ⊗A φ

′ (u)(2) (40)
and εB (φ′ (u)) = εU (u) 1A (41)

for all u ∈ U . Since, in view of the PBW theorem, U admits a k-basis of the form

{1U} ∪ {x1 · · ·xn | n ≥ 1, X1, . . . , Xn ∈ L} ,

it is enough to check (40) and (41) on the elements of this basis. A direct computation
shows that εB (φ′ (1U)) = εB(1B) = 1A = εU(1U)1A and that

εB (φ′ (x1 · · ·xn)) = εB (φ′ (x1 · · · xn−1)φ′ (xn))
(B5)= εB (φ′ (x1 · · ·xn−1) s (εB (φ′ (xn))))

= εB (φ′ (x1 · · ·xn−1) s (εB (φL (Xn)))) = 0 = εU (x1 · · ·xn) 1A
for all n ≥ 1. Therefore, relation (41) holds. Concerning (40), we notice first of all that

φ′ (1U)⊗A φ
′ (1U) = 1B ⊗A 1B =

∑
φ′ (1U)(1) ⊗A φ

′ (1U)(2) ,

which shows that it is satisfied for u = 1U , and we prove by induction on n ≥ 1 that it also
holds for u = x1 · · ·xn, where X1, . . . , Xn ∈ L. For n = 1 we have∑

φ′ (x(1))⊗A φ
′ (x(2)) = φ′ (x)⊗A φ

′ (1U) + φ′ (1U)⊗A φ
′ (x)

= φL(X)⊗A 1B + 1B ⊗A φL(X) =
∑

φ′ (x)(1) ⊗A φ
′ (x)(2) .
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Assume now that (40) holds for n ≥ 1, that is, that we have∑
φ′
(
(x1 · · · xn)(1)

)
⊗A φ

′
(
(x1 · · ·xn)(2)

)
=
∑

φ′ (x1 · · ·xn)(1) ⊗A φ
′ (x1 · · · xn)(2) (42)

for all X1, . . . , Xn ∈ L and hence, in particular, ∑φ′
(
(x1 · · ·xn)(1)

)
⊗A φ

′
(
(x1 · · ·xn)(2)

)
∈

B ×A B. Let us compute∑
φ′
(
(x1x2 · · ·xn+1)(1)

)
⊗A φ

′
(
(x1x2 · · · xn+1)(2)

)
=
∑

φ′
(
(x1)(1) (x2 · · ·xn+1)(1)

)
⊗A φ

′
(
(x1)(2) (x2 · · ·xn+1)(2)

)
=
∑

φ′
(
(x1)(1)

)
φ′
(
(x2 · · ·xn+1)(1)

)
⊗A φ

′
(
(x1)(2)

)
φ′
(
(x2 · · ·xn+1)(2)

)
(11)=

(∑
φ′
(
(x1)(1)

)
⊗A φ

′
(
(x1)(2)

)) (∑
φ′
(
(x2 · · ·xn+1)(1)

)
⊗A φ

′
(
(x2 · · ·xn+1)(2)

))
(42)= (φL (X1)⊗A 1B + 1B ⊗A φL (X1))

(∑
φ′ (x2 · · ·xn+1)(1) ⊗A φ

′ (x2 · · ·xn+1)(2)

)
(11)=

∑
φ′ (x1)(1) φ

′ (x2 · · ·xn+1)(1) ⊗A φ
′ (x1)(2) φ

′ (x2 · · ·xn+1)(2)

=
∑

(φ′ (x1)φ′ (x2 · · ·xn+1))(1) ⊗A (φ′ (x1)φ′ (x2 · · · xn+1))(2)

=
∑

φ′ (x1x2 · · ·xn+1)(1) ⊗A φ
′ (x1x2 · · ·xn+1)(2) ,

so that it holds for n+ 1 and we may conclude that it holds for every n by induction. �

Corollary 3.5. Let (L, ω) be an A-anchored Lie algebra. Given an A-bialgebroid B and
given a morphism of A-anchored Lie algebras φL : (L, ω) → (Prim(B), ωB), there exists
a unique morphism of A-bialgebroids Φ : BL → B such that Φ ◦ JL = θB ◦ φL, where
θB : Prim(B)→ B is the canonical inclusion.

Proof. The morphism of Lie algebras (θB ◦ φL) : L→ L(B) satisfies (39) if and only if φL is
of A-anchored Lie algebras. �

Theorem 3.6. The assignment

B : AnchLieA → BialgdA, (L, ω) 7→ A� Uk (L)� A

induces a well-defined functor which is left adjoint to the functor

P : BialgdA → AnchLieA, B 7→ (Prim (B) , ωB) ,

where ωB : Prim (B)→ Derk (A) is the anchor of equation (33). Write ϑB : Uk (Prim (B))→ B
for the unique algebra map extending the inclusion θB : Prim (B) ⊆ B. Then the unit and
the counit of this adjunction are given by

γL : (L, ω)→ (Prim (A� Uk (L)� A) , ωA�Uk(L)�A) , X 7→ JL(X) = 1A ⊗ x⊗ 1A, (43)
and εB : A� Uk (Prim (B))� A→ B, a⊗ u⊗ b 7→ sB (a) tB (bo)ϑB (u) ,

respectively, where x = jL(X), as usual. Furthermore, every component of the unit is a
monomorphism and hence B is faithful.
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Proof. We need to see how B operates on morphisms. Let f : (L, ω) → (L′, ω′) be a
morphism of A-anchored Lie algebras. In view of the fact that

ωBL (γL (X)) (a) (43)= ωBL (1A ⊗ x⊗ 1A) (a) (33)= (1A ⊗ x⊗ 1A) � a
(19)= εBL ((1A ⊗ x⊗ 1A) (a⊗ 1U ⊗ 1A))
(18)= εBL ((x · a)⊗ 1U ⊗ 1A + a⊗ x⊗ 1A + a⊗ 1U ⊗ (x · 1A))
(27)= x · a+ aεU (x) (27)= ω (X) (a)

for all X ∈ L and a ∈ A, the morphism γL : L→ Prim(BL) induced by JL (namely, we have
JL = θBL ◦ γL) is a morphism of A-anchored Lie algebras for every L in AnchLieA and hence,
by Corollary 3.5, there exists a unique morphism of A-bialgebroids Φ : BL → BL′ such that
Φ ◦ JL = JL′ ◦ f = θBL′ ◦ γL′ ◦ f and it is explicitly given by (30). We set B(f) = Φ.

In order to conclude, consider the natural assignment
BialgdA (A� Uk(L)� A,B)→ AnchLieA (L,Prim(B)) , Ψ 7→ Prim(Ψ) ◦ γL. (44)

Corollary 3.5 states that for every φL in AnchLieA (L,Prim(B)) there exists a unique Φ in
BialgdA (A� Uk(L)� A,B) such that Φ◦JL = θB◦φL, which implies that (44) is bijective. �
Remark 3.7. In the context of the proof above, let F : U → U ′ be the unique k-algebra
morphism satisfying F ◦ jL = jL′ ◦ f . Since

ψ : U → BL′ , u 7→ 1A ⊗ F (u)⊗ 1A,
is a k-algebra morphism such that ψ ◦ jL = JL′ ◦ f , the unique morphism of A-bialgebroids
B(f) : BL → BL′ induced by f : L→ L′ has the form

B(f) (a⊗ u⊗ b) = a⊗ F (u)⊗ b
for all a, b ∈ A and u ∈ U . Thus, if f : (L, ω)→ (L′, ω′) is a morphism of A-anchored Lie
algebras, we will also write A�U(f)�A to denote the A-bialgebroid morphism B(f), where
U(f) : Uk(L)→ Uk(L′) is the unique k-algebra morphism such that U(f) ◦ jL = jL′ ◦ f .
Example 3.8. Let A be a finite-dimensional algebra and let B = Endk(A) with the A-
bialgebroid structure of Example 1.7(c). It is clear that Prim(B) = Derk (A). Then, the
image of the associated Connes-Moscovici bialgebroid A � Uk(Derk (A)) � A in Endk(A)
via εB is the Ae-subring of Endk(A) generated by Ae and Derk (A). In this sense, it can be
interpreted as the derivation Ae-ring of A in the sense of [33, Chapter 15, §1.4].

In particular, the counit of the adjunction is not surjective in general. We will see with
Corollary 4.4 why also the unit is not surjective.

4. An intrinsic description of A� Uk(L)� A
Inspired by the results of Milnor-Moore and Moerdijk-Mrčun, which give an intrinsic

description of those bialgebras/bialgebroids that are universal enveloping algebras of Lie
algebras/Lie-Rinehart algebras, we look for necessary and sufficient conditions on an A-
bialgebroid B in order to claim that it is a Connes-Moscovici bialgebroid A�Uk(L)�A for
some A-anchored Lie algebra (L, ω).
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4.1. The primitives of the Connes-Moscovici bialgebroid. To begin with, we need
a more detailed analysis of the space of primitives of BL.
Lemma 4.1. Let B be an A-bialgebroid. Then the k-vector subspace

〈sB − tB〉 := {sB(a)− tB(ao) | a ∈ A} ⊆ B
is an ideal in Prim(B). The Lie bracket is explicitly given by[

sB(a)− tB(ao), sB(b)− tB(bo)
]

= sB
(
[a, b]A

)
− tB

(
[a, b]oA

)
and the anchor by

ω′B : 〈sB − tB〉 → Derk (A) , sB(a)− tB(ao) 7→ [a,−]A,
for all a, b ∈ A.
Proof. Set s := sB and t := tB. The fact that 〈s− t〉 is contained in Prim(B) follows from

∆B(s(a)− t(ao)) (13)= s(a)⊗A 1B − 1B ⊗A t(ao)
(3)=
(
s(a)− t(ao)

)
⊗A 1B − 1B ⊗A

(
s(a)− t(ao)

)
.

The fact that it is a Lie ideal in Prim(B) with respect to the commutator bracket follows
because[
X, s(a)− t(ao)

]
B

= Xs(a)−Xt(ao)− s(a)X + t(ao)X (34)= s
(
ε (Xs(a))

)
− t

(
ε (Xt(ao))o

)
(B5)= s

(
ε (Xs(a))

)
− t

(
ε (Xs(a))o

)
∈ 〈s− t〉.

Now, a direct computation shows that[
s(a)− t(ao), s(b)− t(bo)

]
B

= s
(
[a, b]A

)
− t

(
[a, b]oA

)
for all a, b ∈ A as claimed. Furthermore,

ωB
(
s(a)− t(ao)

)
(b) (33)=

(
s(a)− t(ao)

)
� b

(19)= εB(s(a)s(b))− εB(t(ao)t(bo)) = [a, b]A
for all a, b ∈ A and hence the proof is concluded. �

Lemma 4.1 makes it clear why the counit εB : BPrim(B) → B of Theorem 3.6 is not injective in
general. Namely, every element of the form a⊗1U⊗1A−1A⊗1U⊗a−1A⊗(sB(a)− tB(ao))⊗1A
for a ∈ A lives in the kernel of εB.
Example 4.2. Consider the A-bialgebroid B = Endk(A) from Example 1.7(c). As we have
seen in Example 3.8, the primitive elements of B are the derivations of A. It is easy to see
that 〈s− t〉 are exactly the inner derivations.

For H a Hopf algebra and A an H-module algebra, we will often write 1A⊗Prim(H)⊗ 1A
for {1A ⊗ h⊗ 1A | h ∈ Prim(H)}.
Proposition 4.3. For any Hopf algebra H and any H-module algebra A, we have that
1A ⊗ Prim(H)⊗ 1A and 〈s− t〉 are subalgebras of Prim (A�H � A). Moreover, we have an
isomorphism of A-anchored Lie algebras(

1A ⊗ Prim(H)⊗ 1A
)
nδ 〈s− t〉 ∼= Prim (A�H � A)

given by the vector space sum.
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Proof. The fact that 〈s − t〉 is an ideal in Prim(A � H � A) has been established in
Lemma 4.1 for a general A-bialgebroid. The fact that 1A⊗Prim(H)⊗1A is a subalgebra is a
straightforward computation. Moreover, notice that if 1A⊗X⊗1A = a⊗1H⊗1A−1A⊗1H⊗a
for some X ∈ Prim(H) and some a ∈ A, then

0 = (A⊗ εH ⊗ A)(1A ⊗X ⊗ 1A) = (A⊗ εH ⊗ A)(a⊗ 1H ⊗ 1A − 1A ⊗ 1H ⊗ a)
= a⊗ 1A − 1A ⊗ a

which implies that

a⊗ 1H ⊗ 1A − 1A ⊗ 1H ⊗ a = η(a⊗ 1oA − 1A ⊗ ao)(1A ⊗ 1H ⊗ 1A) = 0.

In view of Lemma 2.6, we are left to check that

Prim (A�H � A) ⊆ (1A ⊗ Prim(H)⊗ 1A) + 〈s− t〉. (45)

Let us consider a primitive element ξ ∈ A � H � A. Fix a basis {ei | i ∈ S} for A as
a vector space, where S is some set of indexes with a distinguished index 0 and e0 = 1A.
Write

ξ =
∑
i,j

ei ⊗ hij ⊗ ej

where almost all the hij are 0. Consider also the dual elements {e∗i | i ∈ S} of the ei’s. Since
ξ is primitive, the following relation holds∑

i,j

(
ei ⊗ (hij)(1) ⊗ 1A

)
⊗A

(
1A ⊗ (hij)(2) ⊗ ej

)
=
∑
i,j

(ei ⊗ hij ⊗ ej)⊗A (1A ⊗ 1H ⊗ 1A) + (1A ⊗ 1H ⊗ 1A)⊗A (ei ⊗ hij ⊗ ej) .
(46)

For k 6= 0 6= l, let us apply the k-linear morphism (e∗k ⊗H ⊗ A)⊗A (A⊗H ⊗ e∗l ) to both
sides of the identity (46). We find out that∑(

(hkl)(1) ⊗ 1A
)
⊗A

(
1A ⊗ (hkl)(2)

)
= 0

from which it follows that hkl = 0, by applying (H ⊗ A)⊗A (A⊗ εH) to both sides again.
Therefore,

ξ = 1A ⊗ h00 ⊗ 1A +
∑
i6=0

ei ⊗ hi0 ⊗ 1A +
∑
i6=0

1A ⊗ h0i ⊗ ei.

Consider again the identity (46), that now rewrites
∑(

1A ⊗ (h00)(1) ⊗ 1A
)
⊗A

(
1A ⊗ (h00)(2) ⊗ 1A

)
+

+∑
i 6=0

(
ei ⊗ (hi0)(1) ⊗ 1A

)
⊗A

(
1A ⊗ (hi0)(2) ⊗ 1A

)
+

+∑
i6=0

(
1A ⊗ (h0i)(1) ⊗ 1A

)
⊗A

(
1A ⊗ (h0i)(2) ⊗ ei

)


=

 (1A ⊗ h00 ⊗ 1A)⊗A (1A ⊗ 1H ⊗ 1A) + (1A ⊗ 1H ⊗ 1A)⊗A (1A ⊗ h00 ⊗ 1A) +
+∑

i 6=0 (ei ⊗ hi0 ⊗ 1A)⊗A (1A ⊗ 1H ⊗ 1A) + (1A ⊗ 1H ⊗ 1A)⊗A (ei ⊗ hi0 ⊗ 1A) +
+∑

i 6=0 (1A ⊗ h0i ⊗ ei)⊗A (1A ⊗ 1H ⊗ 1A) + (1A ⊗ 1H ⊗ 1A)⊗A (1A ⊗ h0i ⊗ ei)

 .
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If we apply (1∗A ⊗H ⊗ A)⊗A (A⊗H ⊗ 1∗A) then we get that∑(
(h00)(1) ⊗ 1A

)
⊗A

(
1A ⊗ (h00)(2)

)
=[

(h00 ⊗ 1A)⊗A (1A ⊗ 1H) + (1H ⊗ 1A)⊗A (1A ⊗ h00) +
+∑

i 6=0 (1H ⊗ 1A)⊗A (ei ⊗ hi0) + (h0i ⊗ ei)⊗A (1A ⊗ 1H)

]
.

(47)

By resorting to the k-linear isomorphism (H ⊗ A)⊗A (A⊗H) ∼= H ⊗ A⊗H, the equality
(47) becomes∑

(h00)(1)⊗1A⊗(h00)(2) = h00⊗1A⊗1H+1H⊗1A⊗h00 +
∑
i 6=0

h0i⊗ei⊗1H+1H⊗ei⊗hi0. (48)

By applying H ⊗ 1∗A ⊗H to both sides of the identity (48) we get that∑
(h00)(1) ⊗ (h00)(2) = h00 ⊗ 1H + 1H ⊗ h00,

whence h00 is primitive in H, and by applying H ⊗ e∗k ⊗H for all k 6= 0 we get
1H ⊗ hk0 + h0k ⊗ 1H = 0. (49)

By applying further H ⊗ εH we find that h0k = −ε(hk0)1H and hence from (49) we deduce
that

0 = 1H ⊗ hk0 − ε(hk0)1H ⊗ 1H = 1H ⊗ (hk0 − ε(hk0)1H) ,
which in turn entails that hk0 − ε(hk0)1H = 0 by applying εH ⊗H to both sides, that is,
hk0 = ε(hk0)1H for all k 6= 0. Summing up,

ξ = 1A ⊗ h00 ⊗ 1A +
∑
k 6=0

ε(hk0) (ek ⊗ 1H ⊗ 1A − 1A ⊗ 1H ⊗ ek)

which proves that the inclusion (45) holds. �

Corollary 4.4. For any A-anchored Lie algebra (L, ω) we have
Prim (A� Uk (L)� A) ∼= Lnδ 〈sBL − tBL〉 .

Proof. It follows from [34, Theorem 5.18] that Prim(Uk(L)) = L. Moreover, it is clear that
L ∼= 1A ⊗ L⊗ 1A as A-anchored Lie algebras. �

It is evident from Corollary 4.4 why, in general, the unit γL : L→ Prim(BL) from Theorem
3.6 cannot be surjective.

4.2. Primitively generated bialgebroids. Let B be an A-bialgebroid and consider the
Ae-bimodule

MB := Ae ⊗ Prim(B)⊗ Ae.

There is a canonical Ae-bilinear map ϕB : MB → B given by

Ae ⊗ Prim(B)⊗ Ae
ηB⊗θB⊗ηB // B ⊗ B ⊗ B m2 // B,

where θB : Prim(B) → B is the inclusion and m2 : B ⊗ B ⊗ B → B, x ⊗ y ⊗ z 7→ xyz.
Therefore, by the universal property of the tensor Ae-ring TAe (MB) (considered as the free
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Ae-ring on the Ae-bimodule MB; see [30, Theorem VII.3.2] or [37, Proposition 1.4.1]), there
exists a unique morphism of Ae-rings

ΦB : TAe (MB)→ B (50)

that extends ϕB. We set ςB : MB → TAe (MB) for the canonical inclusion.
Since TAe (MB) is a graded Ae-ring with grading given by

TAe (MB)0 := Ae and TAe (MB)n := MB ⊗Ae · · · ⊗Ae MB (n times),

for all n ≥ 1, B inherits a natural filtration as Ae-ring given by

Fn(B) := ΦB
(

n⊕
k=0

TAe (MB)k
)
. (51)

We set by definition F−1(B) := 0, as usual. Notice that F1(B) is the Ae-subbimodule of B
generated by Ae and Prim(B), thus we call {Fn(B) | n ∈ N} the primitive filtration.

Example 4.5. Let (L, ω) be an A-anchored Lie algebra and consider the Connes-Moscovici
bialgebroid BL = A� Uk(L)� A. Recall that Uk(L) is a filtered k-algebra with filtration
induced by the canonical projection Tk(L)→ Uk(L). Then

Fn (A� Uk(L)� A) = A⊗ Fn (Uk(L))⊗ A. (52)

Definition 4.6. We say that an A-bialgebroid B is primitively generated if B = ⋃
n≥0 Fn(B).

Remark 4.7. Definition 4.6 is given in the same spirit of [34, page 239]. In particular,
the Connes-Moscovici bialgebroid A � Uk(L) � A of an A-anchored Lie algebra (L, ω) is
primitively generated. Notice also that B is primitively generated if and only if ΦB of (50)
is surjective.

Proposition 4.8. The canonical morphism ΦB is natural in B ∈ BialgdA. Namely, every
morphism φ : B → B′ of A-bialgebroids induces a morphism Tφ : TAe (MB)→ TAe (MB′) of
graded Ae-rings in a functorial way and the following diagram commutes

TAe (MB)
Tφ //

ΦB
��

TAe (MB′)
ΦB′
��

B
φ

// B′.

(53)

Proof. By the universal property of the tensor Ae-ring and a standard argument, any
morphism φ : B → B′ of A-bialgebroids induces a unique morphism Tφ : TAe (MB) →
TAe (MB′) of graded Ae-rings extending Ae ⊗ P(φ)⊗ Ae. It satisfies φ ◦ ΦB = ΦB′ ◦ Tφ. �

Corollary 4.9. Any morphism φ : B → B′ of A-bialgebroids is filtered with respect to the
primitive filtration, that is to say, φ (Fn (B)) ⊆ Fn(B′) for all n ≥ 0. In particular, the
component of the counit εB corresponding to an A-bialgebroid B is a filtered morphism.
Furthermore, εB is surjective if and only if B is primitively generated.
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Proof. The fact that any morphism of A-bialgebroids is filtered follows from the commuta-
tivity of (53) and the definition of the primitive filtration. Now, set U := Uk(Prim(B)) and
L := Prim(B). Since, by Proposition 4.3,

Prim (A� U � A) = (1A ⊗ L⊗ 1A)⊕ 〈sBL − tBL〉
and since P(εB) (1A ⊗X ⊗ 1A) = X for all X ∈ Prim(B), it is clear that P(εB) is surjective.
Thus, TεB : TAe (MBL)→ TAe (MB) is surjective as well and we know from Example 4.5 that
ΦBL is surjective. Since, by naturality of ΦB, the following diagram commutes

TAe (MBL)
TεB // //

ΦBL ����

TAe (MB)
ΦB
��

BL εB
// B,

εB is surjective if and only if ΦB is. �

Example 4.10. Let A = Matn(k) be the algebra of n× n matrices with coefficients in k,
for n ≥ 2. Consider again the bialgebroid B = Endk(A) of Example 1.7(c), its space of
primitive elements Prim(B) = Derk (A) and the associated Connes-Moscovici bialgebroid
A� Uk(Derk (A))�A as in Example 3.8. Every f ∈ Endk(A) is uniquely determined by the
images f (Ei,j) = ∑

h,k f
i,j
h,kEh,k for all i, j and it satisfies

f(M) =
∑
h,k

(∑
i,j

mi,jf
i,j

h,k

)
Eh,k =

∑
h,k

∑
i,j

f i,jh,kEh,iMEj,k = ηB

(∑
i,j,h,k

f i,jh,kEh,i ⊗ Ej,k

)
(M),

whence εB is surjective and B is primitively generated.

Let B be an A-bialgebroid. Recall that, given the filtered left Ae-module B with filtration
{Fn(B) | n ≥ 0} as in (51), we can consider the associated graded left Ae-module gr(B)
as in §1.1. Since εB is a morphism of filtered Ae-modules, it induces a left Ae-linear
homomorphism

gr(εB) : gr (A� U(Prim(B))� A)→ gr(B).
The following lemma, which should be well-known, is implicitly needed in the proof of

Theorem 4.13 below. Its statement resembles closely [35, Remark 2.4]. Its proof can be
deduced from the results in [17, Appendix B] and it follows closely the argument reported
in [48, page 229] for coalgebras over a field, but we sketch it here for the sake of the reader.

Lemma 4.11. Let B be a primitively generated A-bialgebroid. Then (sBto ,∆B, εB) is a
filtered A-coring with the primitive filtration. In particular, if grn(B) is a projective left
Ae-module for all n ≥ 0, then Fn(B) is a projective left Ae-module for all n ≥ 0, the map
gr(B)⊗A gr(B)→ gr(B ⊗A B), (x+ Fh(B))⊗A (y + Fk(B)) 7→ x⊗A y + Fh+k+1(B ⊗A B),

is an isomorphism of left Ae-modules and the A-coring structure on B induces an A-coring
structure on gr(B). Furthermore, any morphism φ : B → B′ of primitively generated
A-bialgebroids which are graded projective as A-corings induces a morphism of graded
A-corings gr(φ) : gr (B)→ gr(B′).
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Proof. It follows from Lemma 1.1 and Proposition 1.2, once proved that B with the filtration
{Fn(B) | n ∈ N} is a filtered A-coring. To this aim observe that, as a left Ae-submodule
of B, Fn(B) is generated by 1B and by elements of the form X1 · · ·Xk for 1 ≤ k ≤ n and
Xi ∈ Prim(B) for all i. By applying ∆B we find that

∆B(1B) = 1B ⊗A 1B ∈ F0(B)⊗A F0(B) and that

∆B (X1 · · ·Xk) =
k∏
i=1

(Xi ⊗A 1B + 1B ⊗A Xi) =
∑
t+s=k

Xp1 · · ·Xpt ⊗A Xq1 · · ·Xqs

belongs to ∑t+s=k Ft(B) ⊗A Fs(B), where {pi | 1 ≤ i ≤ t} ∪ {qj | 1 ≤ j ≤ s} = {1, . . . , k},
p1 < p2 < · · · < pt and q1 < q2 < · · · < qs. By left Ae-linearity of ∆B, we may conclude that
it is filtered. On the other hand, εB is obviously filtered (by definition of the filtration on
A). Therefore, (sBto ,∆B, εB) is in fact a filtered A-coring. �

In view of Lemma 4.11 and by mimicking [35, page 3140] and §1.2, we give the following
definition.

Definition 4.12. A primitively generated A-bialgebroid B is called graded projective if
each associated graded component grn(B) is a projective left Ae-module.

The following can be understood as an analogue of the celebrated Heyneman-Radford
Theorem for coalgebras [20, Proposition 2.4.2] (extending the earlier Heyneman-Sweedler
Theorem [22, Lemma 3.2.6]).

Theorem 4.13. Let φ : B → B′ be a morphism of graded projective primitively generated
A-bialgebroids. If gr (B) is strongly graded as an A-coring and φ is injective when restricted
to the left Ae-submodule of B generated by Prim (B), then φ is injective.

Proof. In order to prove that φ is injective, we are going to prove that gr (φ) is injective. In
view of [36, Chapter D, Corollary III.6], the latter implies that φ is injective as well.

To this aim, let us prove that grn (φ) is injective for every n ≥ 0. To begin with, let us
prove that gr0(φ) is injective. Since gr0 (B) = F0 (B) /F−1 (B) = F0 (B) = ΦB (Ae), we may
take ∑i sB (ai) tB (boi ) as generic element in ker (gr0 (φ)). Then

0 = gr0 (φ)
(∑

i

sB (ai) tB (boi )
)

=
∑
i

sB′ (ai) tB′ (boi ) .

By applying εB′ to both sides we find out that ∑i aibi = 0 in A, whence∑
i

ai ⊗ boi =
∑
i

(ai ⊗ 1oA) (bi ⊗ 1oA − 1A ⊗ boi )

in Ae and so ∑
i

sB (ai) tB (boi ) =
∑
i

sB (ai) (sB (bi)− tB (boi )) ∈ Ae · 〈sB − tB〉.

Being φ injective on Ae · Prim (B), we conclude that ∑i sB (ai) tB (boi ) = 0 and hence gr0 (φ)
is injective.
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To prove that gr1 (φ) is injective, notice that an element in F1 (B) /F0 (B) is of the form∑
i

sB (ai) tB (boi ) +
∑
j

sB
(
a′j
)
tB
(
b′j
o
)
XjsB

(
a′′j
)
tB
(
b′′j

o
)

+ F0 (B)

(35)=
∑
j

sB
(
a′ja

′′
j

)
tB
((
b′′j b

′
j

)o)
Xj + F0 (B)

for Xj ∈ Prim (B) and ai, bi, a
′
j, b
′
j, a

′′
j , b

′′
j ∈ A for all i, j. Therefore, we may assume that∑

i sB (ai) tB (boi )Xi +F0 (B) is a generic element belonging to ker (gr1 (φ)). This implies that

0 = gr1 (φ)
(∑

i

sB (ai) tB (boi )Xi + F0 (B)
)

=
∑
i

sB′ (ai) tB′ (boi )φ (Xi) + F0 (B′)

and hence there exists ∑j sB′
(
a′j
)
tB′
(
b′j
o
)
∈ F0 (B′) such that∑

i

sB′ (ai) tB′ (boi )φ (Xi) +
∑
j

sB′
(
a′j
)
tB′
(
b′j
o
)

= 0

in B′. By applying εB′ again we find out that ∑j a
′
jb
′
j = 0 and hence∑

j

sB′
(
a′j
)
tB′
(
b′j
o
)

=
∑
j

sB′
(
a′j
) (
sB′
(
b′j
)
− tB′

(
b′j
o
))
∈ Ae · 〈sB′ − tB′〉.

Summing up,

0 =
∑
i

sB′ (ai) tB′ (boi )φ (Xi) +
∑
j

sB′
(
a′j
) (
sB′
(
b′j
)
− tB′

(
b′j
o
))

= φ

(∑
i

sB (ai) tB (boi )Xi +
∑
j

sB
(
a′j
) (
sB
(
b′j
)
− tB

(
b′j
o
)))

,

but, being φ injective on Ae · Prim(B), this yields that

0 =
∑
i

sB (ai) tB (boi )Xi +
∑
j

sB
(
a′j
) (
sB
(
b′j
)
− tB

(
b′j
o
))

in B and hence ∑
i

sB (ai) tB (boi )Xi + F0 (B) = 0.

Finally, let us prove that grn(φ) is injective for all n ≥ 1 by induction. We just showed
the case n = 1. Assume that gr1(φ), . . . , grn(φ) are all injective for a certain n ≥ 1 and
consider an element z ∈ ker

(
grn+1(φ)

)
. Consider also the canonical projections

pBh,k :
⊕

i+j=n+1

gri(B)⊗A grj(B)→ grh(B)⊗A grk(B)

for h+ k = n+ 1, as in (9). For all p, q such that p+ q = n+ 1 we have that

pB
′

h,k ◦
( ⊕
i+j=n+1

gri(φ)⊗A grj(φ)
)

= (grh(φ)⊗A grk(φ)) ◦ pBh,k. (54)
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Therefore, for all 1 ≤ h ≤ n we have that

0 =
(
pB
′

h,k ◦∆[n+1]
gr(B′) ◦

(
grn+1(φ)

))
(z) (10)=

(
pB
′

h,k ◦
( ⊕
i+j=n+1

gri(φ)⊗A grj(φ)
)
◦∆[n+1]

gr(B)

)
(z)

(54)=
(
(grh(φ)⊗A grk(φ)) ◦ pBh,k ◦∆[n+1]

gr(B)

)
(z) .

By the induction hypothesis and projectivity of grs(B) and grs(B′) as left Ae-modules for
all s ≥ 0, we know that grh(φ)⊗A grk(φ) is injective and hence(

pBh,k ◦∆[n+1]
gr(B)

)
(z) = 0

for all h+ k = n+ 1, 1 ≤ h ≤ n. Since gr (B) is strongly graded by hypothesis, pBh,k ◦∆[n+1]
gr(B)

is injective and hence z = 0. �

Theorem 4.14. Let B be an A-bialgebroid. Then we have an isomorphism

B ∼= A� Uk (L)� A

for an A-anchored Lie algebra (L, ω) if and only if
(CM1) L is a subalgebra of Prim(B) and Prim(B) ∼= Lnδ 〈sB − tB〉,
(CM2) B is graded projective and primitively generated,
(CM3) the left Ae-submodule of B generated by L is 0 (in which case we require ηB to be

injective) or it is free and generated by a k-basis of L,
(CM4) Ae · 〈sB − tB〉 ∩ Ae · L = 0 (in particular, Ae · Prim(B) = (Ae · L)⊕ (Ae · 〈sB − tB〉)).

Proof. We want to apply Theorem 4.13 to show that the conditions listed are sufficient.
First of all, let us prove that for any A-anchored Lie algebra (L, ω) the Connes-Moscovici
bialgebroid BL is graded projective and that gr (BL) is strongly graded (we already know
that BL is primitively generated from Example 4.5 and Remark 4.7).

In view of (52), we know that Fn (BL) = A⊗ Fn(Uk(L))⊗ A. By exactness of the tensor
product over a field, the short exact sequence of k-vector spaces

0 // Fn−1(Uk(L)) // Fn(Uk(L)) // grn(Uk(L)) // 0

induces a short exact sequence of left Ae-modules

0 // A⊗ Fn−1(Uk(L))⊗ A // A⊗ Fn(Uk(L))⊗ A // A⊗ grn(Uk(L))⊗ A // 0.

Therefore, we have grn(BL) ∼= A⊗ grn(Uk(L))⊗A as left Ae-modules. In particular, grn (BL)
is a free left Ae-module.

To show that gr (BL) is strongly graded, consider an element

z :=
∑
α,β

aα ⊗ uα,β ⊗ bβ ∈ A⊗ grn(U)⊗ A

such that
(
pBLh,k ◦∆[n]

gr(BL)

)
(z) = 0 for some h, k satisfying h + k = n, where the elements

{aα}α in A are linearly independent over k as well as the elements {bβ}β. Now, consider
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the commutative diagram

A⊗ grn(U)⊗ A
a∗α⊗grn(U)⊗b∗

β //

∆[n]
gr(BL)

��

grn(U)

∆[n]
gr(U)

��

⊕
i+j=n

(A⊗ gri(U)⊗ A)⊗A

(
A⊗ grj(U)⊗ A

)
p
BL
h,k

��
(A⊗ grh(U)⊗ A)⊗A (A⊗ grk(U)⊗ A)

∼=

��

⊕
i+j=n

gri(U)⊗ grj(U)

p
gr(U)
h,k��

A⊗ grh(U)⊗ A⊗ grk(U)⊗ A
a∗α⊗grh(U)⊗1∗A⊗grk(U)⊗b∗

β

// grh(U)⊗ grk(U).

If we plug z in it and we recall that gr(U) is strongly graded (that is, pgr(U)
h,k ◦∆[n]

gr(U) is injective
for all n ≥ 0 and for all h+ k = n) then we find uα,β = 0 for all α, β and hence z = 0.

Now, the inclusion of A-anchored Lie algebras L → Prim(B) extends uniquely to a
morphism of A-bialgebroids Ψ : BL → B, in view of the universal property of BL (Corollary
3.5). Moreover, similarly to what we did in the proof of Corollary 4.9, one can show that
Ψ is surjective (because B is primitively generated and P(Ψ) is surjective). Therefore, to
conclude by applying Theorem 4.13 we are left to check that the candidate isomorphism Ψ
is injective when restricted to Ae · Prim(BL). Since Prim(BL) = (1A ⊗ L⊗ 1A)⊕ 〈sBL − tBL〉,
a generic element in Ae · Prim(BL) is of the form∑

i,j

ai,j ⊗ xi ⊗ bi,j +
∑
h,k

a′′h,ka
′
h ⊗ 1U ⊗ b′′h,k − a′′h,k ⊗ 1U ⊗ a′hb′′h,k

for Xi ∈ L and ai,j, bi,j, a
′′
h,k, b

′′
h,k, a

′
h ∈ A, where we may assume that the Xk’s are elements

of a k-basis of L, without loss of generality. Thus,

0 = Ψ
(∑

i,j

ai,j ⊗ xi ⊗ bi,j +
∑
h,k

a′′h,ka
′
h ⊗ 1U ⊗ b′′h,k − a′′h,k ⊗ 1U ⊗ a′hb′′h,k

)

=
∑
i,j

sB (ai,j) tB (bi,j)Xi +
∑
h,k

sB
(
a′′h,ka

′
h

)
tB
(
b′′h,k

)
−
∑
h,k

sB
(
a′′h,k

)
tB
(
a′hb

′′
h,k

)
.

By (CM4), this entails that

0 =
∑
i,j

sB (ai,j) tB (bi,j)Xi and (55)

0 =
∑
h,k

sB
(
a′′h,ka

′
h

)
tB
(
b′′h,k

)
− sB

(
a′′h,k

)
tB
(
a′hb

′′
h,k

)
. (56)

By (CM3), relation (55) yields that ∑
j

ai,j ⊗ bi,j = 0
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in Ae for all i. Relation (56), instead, implies that

0 = ηB

(∑
h,k

a′′h,ka
′
h ⊗ b′′h,k − a′′h,k ⊗ a′hb′′h,k

)
.

However, since Ae · L is a free left Ae-module with action given via ηB (or ηB is injective by
hypothesis), ηB itself has to be injective and hence

0 =
∑
h,k

a′′h,ka
′
h ⊗ b′′h,k − a′′h,k ⊗ a′hb′′h,k,

which, in turn, yields

0 =
∑
h,k

a′′h,ka
′
h ⊗ 1U ⊗ b′′h,k − a′′h,k ⊗ 1U ⊗ a′hb′′h,k.

Summing up, (CM1) ensures the existence of a morphism Ψ and (CM2) entails that Ψ is
surjective. Conditions (CM3) and (CM4), instead, allow us to conclude that Ψ is injective on
Ae ·Prim (BL) and hence, by Theorem 4.13, Ψ is injective on BL. Thus, Ψ is an isomorphism.

The fact that the conditions (CM1) – (CM4) are necessary is clear �

Remark 4.15. In the context of the proof above, observe that if L = 0, then Prim(B) =
〈sB − tB〉. If moreover B is primitively generated, then Ψ : A� k�A→ B is surjective and
it coincides with ηB : Ae → B up to the isomorphism A � k � A ∼= Ae. This is the point
where injectivity of ηB enters the picture.

Example 4.16. Let A = Matn(k) for n ≥ 2 and let B = Endk(A) as in Example 1.7(c). It
follows from the Skolem-Noether theorem that every derivation of A is inner. In particular,
Prim(B) = 〈sB − tB〉 and conditions (CM1) and (CM4) are satisfied. Moreover, as we have
seen in Example 4.10, B is also primitively generated and, in fact, grn(B) = 0 for all n ≥ 1.

In order to apply Theorem 4.14, we are left to show that ηB is injective (notice that we
already know it is surjective), but a straightforward computation reveals that ηB coincides
with the composition of isomorphisms

Matn(k)⊗Matn(k)o Matn(k)⊗(−)T

−−−−−−−→ Matn(k)⊗Matn(k) ∼= Matn2(k) ∼= Endk(Matn(k)).
Therefore, (CM2) and (CM3) are satisfied as well and, by Theorem 4.14, B ∼= A�Uk(0)�A.

4.3. Bialgebroids over commutative algebras. A slightly more favourable situation is
provided by the case of bialgebroids over a commutative base.

Let us assume henceforth that A is a commutative k-algebra. This implies that now we
can consider the target tB of an A-bialgebroid B as an algebra map tB : A→ B and hence
we will omit the (−)o. By Lemma 4.1, we may consider the quotient Lie algebra

Prim(B) := Prim(B)/〈sB − tB〉,
which is A-anchored with anchor ωB induced by ωB, because now 〈sB − tB〉 is abelian with
zero anchor. This induces a well-defined functor

P′ : BialgdA → AnchLieA, B 7→ Prim(B).
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As we have seen in Proposition 4.3 and in Corollary 4.4, BL satisfies the additional
property that Prim(BL) ∼= Prim(BL)nδ 〈sBL − tBL〉 as A-anchored Lie algebras. If we restrict
our attention to the full subcategory BialgdA of BialgdA composed by all those A-bialgebroids
B such that Prim(B) ∼= Prim(B) nδ 〈sB − tB〉 as A-anchored Lie algebras, then the functors
B and P′ induce functors

P : BialgdA → AnchLieA, B 7→ Prim(B)
and

B : AnchLieA → BialgdA, (L, ω) 7→ A� Uk(L)� A.
It can be shown that, in this case, we always have a natural isomorphism

γL :=
(
L

γL−→ Prim(BL)� Prim(BL)
)

inducing a surjective map
BialgdA (BL,B)→ AnchLieA

(
(L, ω),

(
Prim(B), ωB

))
,

which, however, is not injective in general (that is, B and P are not adjoint functors).
Nevertheless, we may always consider a “preferred” morphism of A-bialgebroids

εB :=
(
A� Uk

(
Prim(B)

)
� A A�Uk(ιB)�A−−−−−−→ A� Uk

(
Prim(B)

)
� A εB−→ B

)
induced by a chosen injection ιB : Prim(B)→ Prim(B) and by the counit of the adjunction
in Theorem 3.6. Since the hypothesis on Prim(B) ensures that

P(εB) : Prim
(
A� Uk

(
Prim(B)

)
� A

)
→ Prim(B)

is an epimorphism, we may conclude that B is primitively generated if and only if εB is
surjective, as in Corollary 4.9, and we may restate Theorem 4.14 in the present framework.

Theorem 4.17. Let B be an A-bialgebroid over a commutative algebra A. Then
B ∼= A� Uk

(
Prim(B)

)
� A

if and only if
(CM1) Prim(B) ∼= Prim(B) nδ 〈sB − tB〉,
(CM2) B is graded projective and primitively generated,
(CM3) the left Ae-submodule of B generated by Prim(B) is 0 (in which case we require ηB

to be injective) or it is free and generated by a k-basis of Prim(B),
(CM4) Ae · 〈sB − tB〉 ∩ Ae · Prim(B) = 0.

Example 4.18. Let A := C[X] and consider the A-bialgebroid

H := C
[
x, y, t, z,

1
t

]
studied in [15, §5.6] and inspired by the coordinate ring of the Malgrange’s groupoid. Its
bialgebroid structure is uniquely determined by

sH(X) = x, tH(X) = y, εH(x) = X = εH(y), εH(t) = 1, εH(z) = 0,
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∆H(x) = x⊗A 1, ∆H(y) = 1⊗A y, ∆H(t) = t⊗A t, ∆H(z) = z ⊗A t+ t2 ⊗A z

and ordinary multiplication and unit. The ideal I = 〈t− 1〉 generated by t− 1 in H is a
bi-ideal (it is an ideal by construction and a coideal by [8, §2.4]) and hence the quotient
H/I is an A-bialgebroid. It can be identified with B := C[u, v, w] with

s(X) = u, t(X) = w, ε(u) = X = ε(w), ε(v) = 0,
∆(u) = u⊗A 1, ∆(w) = 1⊗A w, ∆(v) = v ⊗A 1 + 1⊗A v.

The space of primitive elements of B is

Prim(B) = 〈ui − wi | i ≥ 0〉 ⊕ Cv

with Prim(B) ∼= Cv, whence (CM1), (CM3) and (CM4) are satisfied (in this case, δ ≡ 0 by
Lemma 2.6, as everything is commutative). Concerning (CM2), we observe that B with
the foregoing structures is the free left Ae-module generated by {vk | k ≥ 0}, whence it is
primitively generated and graded projective (even free). Thus, Theorem 4.17 ensures that

B ∼= A� UC(Cv)� A.

The same conclusion could have been drawn by observing that B ∼= C[X]⊗C[Y ]⊗C[X] is
the scalar extension commutative (Hopf) C[X]-bialgebroid obtained from the Hopf algebra
C[Y ] and that, as Hopf algebras, C[Y ] ∼= UC(CY ).

4.4. Final Remarks. An additional step which deserve to be taken is to restrict the
attention further to those A-bialgebroids B over a commutative algebra A such that sB = tB
(for example, cocommutative A-bialgebroids). However, in this case the Connes-Moscovici
construction is not the correct construction to look at. One may prove that the assignment

A� Uk(L)� A→ A # Uk(L), a⊗ u⊗ b 7→ ab⊗ u

provides a surjective homomorphism of A-bialgebroids with kernel the ideal generated by
〈sBL − tBL〉 in BL. The A-bialgebroid structure on A # Uk(L) is that of extension of scalars
with trivial coaction on A, that is to say,

s = t : a 7→ a⊗ 1Uk(L), ε : a⊗ u 7→ aε(u), ∆ : a⊗ u 7→
∑

(a⊗ u(1))⊗A (1A ⊗ u(2))

and semi-direct product algebra structure, that is,

(a⊗ u)(b⊗ v) =
∑

a(u(1) · b)⊗ u(2)v and 1A#Uk(L) = 1A ⊗ 1Uk(L).

In view of the results from §2.2 and §3.2, the foregoing observations suggest that A # Uk(L)
would be the right A-bialgebroid construction to consider, in order to recover the universal
property of Theorem 2.9 and an adjunction as in Theorem 3.6. Nevertheless, we keep this
question for a future investigation.
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5. The finite-dimensional case and flat bimodule connections

In this last section we show how, for a finite-dimensional A-anchored Lie algebra (L, ω),
representations of (A,L, ω) in the sense of Corollary 2.10 naturally give rise to a family of A-
bimodules with flat bimodule connection for the first-order differential calculus Homk (L,A).
As a consequence, we see how the latter forms a closed monoidal category with closed
monoidal underlying functor to A-bimodules and with the associated Connes-Moscovici
bialgebroid A� Uk(L)� A as the bialgebroid representing it in the spirit of [18]. For the
general theory of differential calculi and bimodule connections, we refer the reader to [4, 12].

5.1. Anchored Lie algebras, representations and bimodule connections. Recall
(e.g. from [4, Definition 1.1] or [12, §6]) that a (generalised) first-order differential calculus
over a k-algebra A is an A-bimodule Ω1 with a derivation d ∈ Derk (A,Ω1) (the exterior
derivative), that is, a k-linear map d : A→ Ω1 satisfying d(ab) = d(a) · b+ a · d(b) for all
a, b ∈ A. A first-order differential calculus (Ω1, d) is parallelised with cotangent codimension
n if Ω1 is free as a left and right A-module, with basis of cardinality n ([4, Definition 1.2]).

Proposition 5.1. There is a bijective correspondence between k-linear morphisms ω : L→
Derk (A) and derivations d : A→ Homk (L,A) making of Ω1 = Homk (L,A) a first-order dif-
ferential calculus, where the A-bimodule structure on Ω1 is provided by the regular A-bimodule
structure on A. In particular, the first-order differential calculus (Ω1 = Homk (L,A) , d) as-
sociated with (A,L, ω) is parallelised with cotangent dimension n if and only if L is a
finite-dimensional k-vector space of dimension n.

Proof. The first claim follows from the bijective correspondence

ΨA : Homk (L, Homk (A,N)) oo // Homk (A, Homk (L,N))
f � // [a 7→ [X 7→ f(X)(a)]]

[X 7→ [a 7→ g(a)(X)]] g�oo

(57)

induced by the hom-tensor adjunction, where N is any A-bimodule. The second one follows
from the fact that Homk (L,A) ∼= Adimk(L) as left and right A-module. �

Let ω : L→ Derk (A) be a k-linear map. By following [21, §1], we set Ω0 := A and
Ωn := Homk (ΛnL,A) ,

for all n ≥ 1, that is, Ωn is the space of n-linear alternating functions from L× · · · × L to
A. For the sake of the interested reader, these are the n-dimensional A-cochains of [9, §23].
For every f ∈ Ωn and for all X,X1, . . . , Xn ∈ L we set

(X · f) (X1 ⊗ · · · ⊗Xn) := ω(X)
(
f (X1 ⊗ · · · ⊗Xn)

)
−

n∑
i=1

f (X1 ⊗ · · · ⊗ [X,Xi]⊗ · · · ⊗Xn)

and fX (X1 ⊗ · · · ⊗Xn−1) := f (X ⊗X1 ⊗ · · · ⊗Xn−1) ,
and we define the differentials d : Ωn → Ωn+1 inductively by setting d(a)(X) = ω(X)(a) and

d(f)X = X · f − d (fX) (58)



ANCHORED LIE ALGEBRAS AND C-M BIALGEBROIDS 35

for all a ∈ A, X ∈ L, f ∈ Ωn with n ≥ 1. In the notation of [12, §3], (58) reads
(iX ◦ d)(f) = LX(f)− (d ◦ iX)(f).

Lemma 5.2. The complex (Ω•, d) is a cochain complex if and only if ω : L→ Derk (A) is
a morphism of Lie algebras.

Proof. If ω is a morphism of Lie algebras then A is an L-module and the claim follows from
[21, §1]. Conversely, if (Ω•, d) is a cochain complex then, for all a ∈ A, X, Y ∈ L,

0 = d2(a)(X ⊗ Y ) = ω(X)ω(Y )(a)− ω(Y )ω(X)(a)− ω
(
[X, Y ]

)
(a). �

Therefore, if (L, ω) is an A-anchored Lie algebra, then (Ω•, d) provides a DGA with

(f ∧ g)(X1 ⊗ · · · ⊗Xp+q) :=
∑
S

(−1)ν(S)f
(
Xs1 ⊗ · · · ⊗Xsp

)
g
(
Xt1 ⊗ · · · ⊗Xtq

)
(59)

as multiplication for all f ∈ Ωp, g ∈ Ωq, where the sum runs over all ordered subsets
S = (s1, . . . , sp) of {1, 2, . . . , p+ q}, (t1, . . . , tq) is an ordered complement of S and ν(S) =∑q

j=1 S(j) with S(j) equal to the number of indices i for which si is greater than tj.
Let (Ω1, d) be a differential calculus on the algebra A. Recall from [12, §10] that a left

bimodule connection (also called left bimodule covariant derivative) on an A-bimodule M is
a k-linear map ∇ : M → Ω1 ⊗A M (the left connection) together with an A-bimodule map
σ : M ⊗A Ω1 → Ω1 ⊗A M (the intertwining map) such that
∇(a ·m) = a · ∇(m) + d(a)⊗A m and ∇(m · a) = ∇(m) · a+ σ(m⊗A d(a)) (60)

for all a ∈ A, m ∈M . The curvature R : M → Ω2 ⊗A M of ∇ is defined by
R(m) :=

(
(d⊗A M)− (∧ ⊗A M) ◦ (Ω1 ⊗A ∇)

)(
∇(m)

)
(i.e., R = ∇2) and ∇ is said to be flat if R = 0. Furthermore, a bimodule with left
connection (M,∇, σ) is called extendable ([4, Definition 4.10]) if for all n ≥ 1, σ extends to
σn : M ⊗A Ωn → Ωn ⊗A M such that

(∧ ⊗A M) ◦ (Ωn ⊗A σm) ◦ (σn ⊗A Ωm) = σm+n ◦ (M ⊗A ∧)
as maps from M ⊗A Ωn ⊗A Ωm to Ωm+n ⊗A M .

Assume henceforth that (L, ω) is an A-anchored Lie algebra such that L is finite-
dimensional as k-vector space with dual basis {ei, e∗i | i = 1, . . . , n}. For every A-bimodule
M we have an isomorphism of A-bimodules

ΦM : Ω1 ⊗A M oo // Homk (L,M)
f ⊗A m

� // [X 7→ f(X) ·m]∑
i 1Ae∗i ⊗A ϕ(ei) ϕ�oo

(61)

Inspired by Corollary 2.10, we may take as definition of representation of (A,L, ω) an
A-bimodule M together with a Lie algebra map ρ : L→ Endk(M) such that

ρ(X)(a ·m · b) = a · ρ(X)(m) · b+ ω(X)(a) ·m · b+ a ·m · ω(X)(b) (62)
for all a, b ∈ A, X ∈ L, m ∈M .
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Proposition 5.3. There is a bijective correspondence between A-bimodules M together
with a k-linear morphism ρ : L → Endk(M) and A-bimodules M together with a k-linear
morphism ∇ : M → Ω1⊗AM . Furthermore, for every A-bimodule M we have an A-bilinear
isomorphism σ : M ⊗A Ω1 → Ω1 ⊗A M uniquely determined by

ΦM(σ(m⊗A f))(X) = m · f(X) (63)

for all m ∈M , f ∈ Ω1 and X ∈ L, where ΦM is the isomorphism (61).

Proof. Since we have the isomorphism of A-bimodules ΦM of (61) and an analogue ΨM

of the bijective correspondence (57), we have a bijective correspondence between maps
ρ : L→ Endk(M) and maps ∇ : M → Ω1 ⊗A M given by the relation

ΦM ◦ ∇ = ΨM(ρ). (64)

Furthermore, we may consider the chain of A-bilinear isomorphisms

M ⊗A Ω1 ∼= M ⊗AA⊗L∗ ∼= M ⊗L∗ ∼= Homk (L,M) ∼= L∗⊗M ∼= L∗⊗A⊗AM ∼= Ω1⊗AM

which descends from the finite-dimensionality of L. It is straightforward to check that the
composition σ of the latter ones satisfies (63). �

Lemma 5.4. Under the correspondence established in Proposition 5.3, (M,∇, σ) is an
A-bimodule with left bimodule connection and invertible intertwining satisfying (63) if and
only if (62) holds.

Proof. For all a ∈ A, m ∈M , X ∈ L, we compute, up to the isomorphism (61),

ΦM

(
∇(a ·m)

)
(X) = ρ(X)(a ·m),

ΦM

(
a · ∇(m) + d(a)⊗A m

)
(X) = a · ρ(X)(m) + ω(X)(a) ·m,

ΦM

(
∇(m · a)

)
(X) = ρ(X)(m · a)

and, in view of (63),

ΦM

(
∇(m) · a+ σ(m⊗A d(a))

)
(X) = ρ(X)(m) · a+m · ω(X)(a). �

Lemma 5.5. Under the correspondence established in Lemma 5.4, (M,∇, σ) is, in addition,
an A-bimodule with flat left bimodule connection and invertible intertwining satisfying (63)
if and only if ρ : L→ Endk(M) is, in addition, a Lie algebra map.

Proof. Observe that the A-bilinear isomorphism Ω1 ⊗A M ∼= Homk (L,M) of (61) can be
extended to an A-bilinear isomorphism Ωn⊗AM ∼= Homk (ΛnL,M). In particular, for every
m ∈ M we can see R(m) as an element in Homk (Λ2L,M), up to the latter isomorphism.
For all X, Y ∈ L and for every m ∈M we have that R(m) satisfies

R(m)(X ⊗ Y ) = −ρ([X, Y ])(m)− ρ(Y )(ρ(X)(m)) + ρ(X)(ρ(Y )(m)). �

Summing up, we proved the following theorem.
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Theorem 5.6. We have an isomorphism of categories between the category of representa-
tions (M,ρ) of (A,L, ω) in the sense of Corollary 2.10 and the full subcategory of the category
of A-bimodules with flat left bimodule connection and invertible intertwining (M,∇, σ) such
that σ satisfies (63).

The interested reader may check that an A-bimodule with left bimodule connection
(M,∇, σ) as in Theorem 5.6 is extendable and satisfies the condition of [4, Lemma 4.74].

Theorem 5.7. Let (L, ω) be an A-anchored Lie algebra with L of finite dimension n. For
(Ω•, d) induced by (A,L, ω) as in Proposition 5.1, the category of A-bimodules with flat left
bimodule connection and invertible intertwining (M,∇, σ), where σ satisfies (63) is a closed
monoidal category with closed monoidal underlying functor to A-bimodules.

Proof. By Theorem 5.6, the category of A-bimodules with flat left bimodule connection
and invertible intertwining (M,∇, σ), where σ satisfies (63) is isomorphic to the category of
representations of (A,L, ω) which, in turn, is isomorphic to the category of A� Uk(L)� A-
modules (by Corollary 2.10). Since Uk(L) is an involutive Hopf algebra, A� Uk(L)�A is a
Hopf algebroid with antipode in the sense of Böhm and Szlachányi [6, Definition 4.1] (see
[27, Theorem 3.1], [40, Remark 2.6]). In particular, it is a×A-Hopf algebra in the sense of
Schauenburg [46, Theorem and Definition 3.5], whence the category of A�Uk(L)�A-modules
is a closed monoidal category with closed monoidal forgetful functor to A-bimodules. �

Let us conclude this subsection with an elementary example.

Example 5.8. Let A be any algebra and ∂ ∈ Derk (A) a derivation on A. The (generalised)
derivation calculus over A (see [4, Example 1.7]) is given by the regular A-bimodule Ω1 = A
with exterior derivative d = ∂. If we let L := kY and ω : L → Derk (A) , Y 7→ ∂, then
Ω1 ∼= Homk (L,A) as A-bimodules. The datum of a left connection ∇ on an A-bimodule M
is equivalent to the datum of a k-linear endomorphism h : M →M such that the left-hand
side of (60) is satisfied:

h(a ·m) = a · h(m) + ∂(a) ·m
for all a ∈ A, m ∈M . That is to say, a left module structure over the skew polynomial ring
A[Y ; ∂] (also called Ore extension; see [33, §1.2.3] and [38, §I.1]). The left connection ∇ is
a bimodule connection if and only if there exists an A-bilinear endomorphism σ : M →M
such that

h(m · a) = h(m) · a+ σ(m) · ∂(a)
for all a ∈ A, m ∈ M . Since the additional condition (63) implies that σ = IdM , we have
that an A-bimodule with left bimodule connection as in Theorem 5.7 is an A-bimodule
together with a k-linear endomorphism h such that

h(a ·m) = a · h(m) + ∂(a) ·m and h(m · a) = h(m) · a+m · ∂(a)
for all a ∈ A, m ∈ M . These are bimodules over A[Y ; ∂] whose left and right action
by Y coincide. In the particular case of A = C[X] and ∂ : C[X] → C[X] uniquely
determined by ∂(X) = 1, an A-bimodule is a C-vector space M together with two commuting
endomorphisms f and g (representing the left and the right action by X) and the datum of
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a left bimodule connection ∇ as in Theorem 5.7 on M is equivalent to the datum of a third
endomorphism h : M →M such that

h ◦ f = f ◦ h+ IdM and h ◦ g = g ◦ h+ IdM .
These are exactly the modules over the bialgebroid B = A� UC(Cv)� A of Example 4.18.

5.2. Final remarks and further directions. As correctly noticed by the referee, there
is a relationship between the theory of connections on A-(bi)modules with respect to the so-
called derivation-based differential calculi studied by M. Dubois-Violette and collaborators
(see [12] for a summary of the topic) and the connections arising as discussed above from a
slightly more general notion than anchored Lie algebras. We sketch it briefly here, for the
sake of the interested reader, but it will be the subject of a future work.

Anchored Lie algebras and Lie-Rinehart algebras are the extreme cases of a more general,
unifying notion. A central anchored Lie algebra over A is a Lie algebra L endowed with
a (left) Z(A)-module structure Z(A) ⊗ L → L, z ⊗ X 7→ z · X, and with a Lie algebra
morphism ω : L→ Derk(A) such that

ω(z ·X) = z · ω(X) and [X, z · Y ] = z · [X, Y ] + ω(X)(z) · Y
for all z ∈ Z(A) and X, Y ∈ L, where Z(A) is the center of A. Anchored Lie algebras
correspond to the case Z(A) = k, while Lie-Rinehart algebras correspond to the case
Z(A) = A. The study of central anchored Lie algebras and, in particular, of the flat
bimodule connections arising from them as in §5.1 is related to the flat left bimodule
Ω1

Der(A)-connections on central A-bimodules with respect to the derivation-based differential
calculus Ω1

Der(A) introduced by Dubois-Violette and Michor in [14, §3.4].
To see how, recall that Ω1

Der(A) is, by definition, Z(A)Hom (Derk(A), A) and that a central
A-bimodule is an A-bimodule whose left and right Z(A)-module structures coincide (i.e.,
z ·m = m · z for all z ∈ Z(A) and m ∈ M). Now, given a central anchored Lie algebra
(A,L, ω), Proposition 5.1 can be adapted to prove that

Z(A)Hom (L,Derk(A)) ∼= Derk
(
A, Z(A)Hom (L,A)

)
,

whence Ω1 := Z(A)Hom (L,A) becomes a first-order differential calculus on A via the
derivation induced by ω. If we define a representation of (A,L, ω) to be a central A-
bimodule M together with a Lie algebra map ρ : L→ Endk(M) such that

ρ(z ·X)(m) = z · ρ(X)(m) and
ρ(X)(a ·m · b) = a · ρ(X)(m) · b+ ω(X)(a) ·m · b+ a ·m · ω(X)(b)

for all a, b ∈ A, X ∈ L, m ∈ M , and if we assume that L is finitely generated and
projective as a (left) Z(A)-module, then one can prove, along the lines of §5.1, that we have
an isomorphism of categories between the category of representations (M,ρ) of (A,L, ω)
and the full subcategory of the category of central A-bimodules with flat left bimodule
connection and invertible intertwining (M,∇, σ) such that σ satisfies the analogue of (63).

In the particular case of L = Derk(A) with ω equal to the identity, Ω1 = Ω1
Der(A) by

definition and we find that representations of (A,Derk(A), Id) in a central A-bimodule M
are derivation-based flat connections on M in the sense of [13, §2] (see also [12, page 296]).
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