

On a correspondence between ideal coideals and coideal subrings of Hopf algebroids

Paolo Saracco

ULB - Université Libre de Bruxelles

Fonds de la Recherche Scientifique - FNRS

The Tenth Congress of Romanian Mathematicians

Pitești, June 30 - July 5, 2023

(based on an ongoing joint project with L. El Kaoutit, A. Ghobadi, J. Vercruysse)

A soft (?!) introduction

- ightharpoonup Let G be a (discrete, linear, Lie) group.
- ▶ Let $\mathcal{R}_{\Bbbk}(G)$ be the algebra of "representative" functions on G

$$\operatorname{\mathsf{Fun}}(G,\Bbbk)$$
 $\Bbbk[G]$ $\mathcal{R}_{\Bbbk}(G)$ (finite, discrete) (linear) (Lie)

 $ightharpoonup \mathcal{R}_{\Bbbk}(G)$ is a Hopf algebra with $\varepsilon(f)=f(1_G),\ S(f)=f\circ (-)^{-1}$ and

$$\Delta(f) = \sum f_1 \otimes f_2 \quad \Longleftrightarrow \quad \sum f_1(x)f_2(y) = f(xy), \quad \forall x, y \in G.$$

- ▶ If $I \subseteq \mathcal{R}_{\Bbbk}(G)$ is an ideal, then $\mathcal{R}_{\Bbbk}(G)/I$ "is a subspace of" G. If I is also a coideal, $\mathcal{R}_{\Bbbk}(G)/I$ "is a submonoid of" G. If I is also compatible with S, then $\mathcal{R}_{\Bbbk}(G)/I$ "is a subgroup of" G.
- If B ⊆ R_k(G) is a subalgebra, then B "is a quotient space of" G.
 If B is also a subcoalgebra, B "is a quotient monoid of" G.
 If B is also a sub-Hopf algebra, then B "is a quotient group of" G.

Where do we want to go?

Let H be a Hopf algebra over a field k (a bialgebra would suffice).

▶ If $I \subseteq H$ is a coideal, then $\pi \colon H \to \frac{H}{I}$ is a coalgebra map and

$${}^{\operatorname{co} \frac{H}{I}}H:=\{h\in H\mid \pi(h_1)\otimes h_2=1\otimes h\}.$$

▶ If $B \subseteq H$ is a subalgebra,

$$B^+ := B \cap \ker(\varepsilon)$$
.

Fact [T] $\begin{cases} & \text{left ideal} \\ & \text{coideals of } H \end{cases} \xrightarrow{\Psi} \begin{cases} & \text{right coideal} \\ & \text{subalgebras of } H \end{cases}$ $I \longmapsto_{CO} \frac{H}{I} H$ $HB^{+} \longleftarrow_{B} H$

[T] M. Takeuchi, Relative Hopf modules-equivalences and freeness criteria. J. Algebra 60 (1979), no. 2, 452–471.

Saracco ULB & FN

Why do we want to go there?

- T] Suppose that H is commutative. The correspondence (★) is a bijection between sub-Hopf algebras of H and normal Hopf ideals of H. This gives algebraic proofs of a number of results on affine k-groups, among which that affine abelian groups form an abelian category.
- N Suppose that H is cocommutative (i.e., a formal group scheme). The correspondence (★) is a bijection between sub-Hopf algebras of H and left ideal coideals of H.
- ▶ [S] The correspondence (\star) is a bijection between normal Hopf subalgebras B such that H_B is faithfully flat and normal Hopf ideals I such that $H^{H/I}$ is faithfully coflat. This suggests the "correct" definition of s.e.s. of quantum groups.
- (*) can be extended to Hopf-Galois extensions of k different from H. For a classical Galois extension K/k with Galois group G and for $H := \mathcal{F}un(G, k)$, it is the well-known Galois correspondence.
- [N] K. Newman, A correspondence between bi-ideals and sub-Hopf algebras in cocommutative Hopf algebras. J. Algebra 36 (1975), no. 1, 1–15.
- [S] H.-J. Schneider, Some remarks on exact sequences of quantum groups. Comm. Algebra 21 (1993), no. 9, 3337–3357.
- [T] M. Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras. Manuscripta Math. 7 (1972), 251–270.

Why (and what are) Hopf algebroids?

What

- A (left) Hopf algebroid is a pair (A, \mathcal{H}) of \mathbb{k} -algebras such that
- $ightharpoonup \mathcal{H}$ is an $A^e = A \otimes A^o$ -ring via an algebra map $s \otimes t = \eta \colon A^e \to \mathcal{H}$;
- ightharpoonup $_{n}\mathcal{H}$ admits an A-coring structure $(\mathcal{H}, \Delta \colon \mathcal{H} \to \mathcal{H} \otimes_{A} \mathcal{H}, \varepsilon \colon \mathcal{H} \to A)$;
- \triangleright \triangle is multiplicative, i.e. $\triangle(u)\triangle(v)$ makes sense and equals $\triangle(uv)$;
- \triangleright ε is a left character, i.e. $\varepsilon(u \, \mathsf{s} \varepsilon(v)) = \varepsilon(uv) = \varepsilon(u \, \mathsf{t} \varepsilon(v))$;
- ▶ β : $\mathcal{H} \otimes_{A^{\circ}} \mathcal{H} \to \mathcal{H} \otimes_{A} \mathcal{H}$, $u \otimes_{A^{\circ}} v \mapsto u_{(1)} \otimes_{A} u_{(2)} v$ is bijective.

Why (sloppily)

- Affine groupoid schemes are commutative Hopf algebroids.
- Algebras of differential operators are cocommutative Hopf algebroids.

Hopf algebroids are quantum groupoids.

Examples

Commutative

- ▶ $(A, A \otimes A)$ is a Hopf algebroid w.r.t. $s(a) = a \otimes 1$, $t(a) = 1 \otimes a$, $\Delta(a \otimes b) = (a \otimes 1) \otimes_A (1 \otimes b)$, $\varepsilon(a \otimes b) = ab$, $S(a \otimes b) = b \otimes a$. It corresponds to the groupoid of pairs $(X, X \times X)$ on the set X.
- $(A, (A \otimes A)[T])$ is a Hopf algebroid w.r.t. the structure above and $\Delta(T) = T \otimes_A 1 + 1 \otimes_A T$, $\varepsilon(T) = 0$, S(T) = -T.

It corresponds to the additive groupoid $(X, X \times G \times X)$ where X is a set, G an abelian group, and $(x, a, y) \circ (y, b, z) = (x, a + b, z)$.

Cocommutative

The Weyl algebra $\mathbb{k}\langle x, p \rangle / \langle px - xp - 1 \rangle$ is a Hopf algebroid over $A := \mathbb{k}[x]$: $\Delta(p) = p \otimes_A 1 + 1 \otimes_A p$, $\varepsilon(p) = 0$, $\beta^{-1}(p \otimes_A 1) = p \otimes_A 1 - 1 \otimes_A p$.

Quantum

- ▶ The pair $(A, A \otimes A^{\circ})$ is a Hopf algebroid as above.
- ▶ If U is a Hopf algebra and A is a left U-module algebra, then the Connes-Moscovici bialgebroid $A \odot U \odot A$ is a Hopf algebroid over A.

Coideal subrings and ideal coideals

Let (A, \mathcal{H}) be a bialgebroid.

▶ If $I \subseteq \mathcal{H}$ is a coideal, then $\pi \colon \mathcal{H} \to \frac{\mathcal{H}}{I}$ is an A-coring map and

$${}^{\operatorname{co} \frac{\mathcal{H}}{I}}\mathcal{H} \coloneqq \{h \in \mathcal{H} \mid \pi(h_1) \otimes_A h_2 = \pi(1) \otimes_A h\}.$$

▶ If $B \subseteq \mathcal{H}$ is a subalgebra,

$$B^+ := B \cap \ker(\varepsilon)$$
.

Proposition

Under the assumption that ${}_s\mathcal{H}$ is A-flat, we have well-defined inclusion-preserving correspondences

$$\left\{ \begin{array}{c} \text{left ideal} \\ \text{coideals of } \mathcal{H} \end{array} \right\} \xrightarrow{\Psi} \left\{ \begin{array}{c} \text{right } \mathcal{H}\text{-comodule} \\ A^{\text{o}}\text{-subrings of } \mathcal{H} \text{ via } t \end{array} \right\}$$

$$I \longmapsto^{\text{co} \frac{\mathcal{H}}{I}} \mathcal{H}$$

$$\mathcal{H}B^{+} \longleftarrow \qquad \qquad \mid B$$

The canonical inclusions and the Galois connection

Theorem

Let (A, \mathcal{H}) be a bialgebroid such that $_s\mathcal{H}$ is A-flat.

- ▶ If *B* is a right \mathcal{H} -comodule A° -subring via t of \mathcal{H} , then we have an inclusion $\eta_B : B \subseteq {}^{\circ \circ} \frac{\mathcal{H}}{\mathcal{H}B^+} \mathcal{H} = \Psi \Phi(B)$. Moreover, $\Phi \Psi \Phi(B) = \Phi(B)$.
- ▶ If I is a left ideal coideal in \mathcal{H} , then we have an inclusion $\epsilon_I \colon \Psi \Phi(I) = \mathcal{H} \left(^{\operatorname{co} \frac{\mathcal{H}}{I}} \mathcal{H} \right)^+ \subseteq I$. Moreover, $\Psi \Phi \Psi(I) = \Psi(I)$.

In other words, Φ and Ψ form a monotone Galois connection (or, equivalently, an adjunction) between the two lattices and we have that

$$\mathcal{H}B^+ \subseteq I \iff B \subseteq {}^{\operatorname{co}\frac{\mathcal{H}}{I}}\mathcal{H}.$$

The Hopf algebroid case

Let us fix a Hopf algebroid (A, \mathcal{H}) such that $_s\mathcal{H}$ is A-flat.

Proposition

Let B be a right $\mathcal{H}\text{-comodule }A^{\operatorname{o}}\text{-subring via }t$ of \mathcal{H} such that

- $B \longrightarrow \mathcal{H} \xrightarrow[x \mapsto x \otimes_B 1]{x \mapsto x \otimes_B 1} \mathcal{H} \otimes_B \mathcal{H} \text{ is an equalizer,}$
- $ightharpoonup eta^{-1}(B\otimes_A 1)$ lies in the image of $B\otimes_{A^\circ}\mathcal{H}$ inside $\mathcal{H}\otimes_{A^\circ}\mathcal{H}$.

Then $B = {}^{\operatorname{co}} \frac{\mathcal{H}}{\mathcal{H}B^+} \mathcal{H}$, that is $\Psi \Phi(B) = B$.

Proposition

Let $I \subseteq \mathcal{H}$ be a left ideal coideal such that

- $\mathcal{H} \square^{\frac{\mathcal{H}}{I}} \mathcal{H} \xrightarrow{\varepsilon \otimes_A \mathcal{H}} \mathcal{H} \longrightarrow \mathcal{H}/I \text{ is a coequalizer,}$
- $ightharpoonup \mathcal{H} \otimes_{A^{\circ}} {}^{\operatorname{co} \frac{\mathcal{H}}{I}} \mathcal{H}$ injects into $\mathcal{H} \otimes_{A^{\circ}} \mathcal{H}$.

Then $I = \mathcal{H}({}^{\operatorname{co}\frac{\mathcal{H}}{I}}\mathcal{H})^+$, that is to say, $\Phi \Psi(I) = I$.

Purity

Purity

Given a ring R and a morphism of left (resp. right) R-modules $M \to N$, this is left (resp. right) pure if and only if

$$P \otimes_R M \to P \otimes_R N$$
 (resp. $M \otimes_R P \to N \otimes_R P$)

is injective for every right (resp. left) R-module P.

Examples

- ▶ If *R* is a von Neumann regular ring (e.g. if *R* is a field), then every morphism is pure.
- ▶ If $M \rightarrow N$ is split injective, then it is pure.
- ▶ A ring extension $R \to S$ is pure as a morphism of left (resp. right) R-modules if and only if $\otimes_R S$ (resp. $S \otimes_R -$) is a faithful functor.

The main result

$\mathsf{Theorem}$

Let (A,\mathcal{H}) be a Hopf algebroid such that ${}_s\mathcal{H}$ is A-flat. We have a well-defined inclusion-preserving bijective correspondence

left ideal coideals
$$I$$
 for which $\mathcal{H} \Box \overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}{\overset{\mathcal{H}}}\overset{\mathcal{H}}{\overset{\mathcal{H}}}}{\overset{\mathcal{H}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}{\overset{\mathcal{H}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset{\mathcal{H}}}}\overset{\mathcal{H}}}{\overset$

$$I \longmapsto {}^{co} \frac{\mathcal{H}}{I} \mathcal{H}$$

The commutative case

- A commutative Hopf algebroid is a cogroupoid object in the category of commutative algebras or, equivalently, an affine groupoid scheme (i.e. a representable presheaf of groupoids on Aff_k).
- ▶ It consists of a pair of commutative k-algebras (A, \mathcal{H}) together with a diagram of algebra maps

$$A \xrightarrow{\stackrel{s}{\longleftarrow} \stackrel{\varepsilon}{\longleftarrow} \stackrel{\longrightarrow}{\longrightarrow}} \mathcal{H} \xrightarrow{\Delta} \mathcal{H} \otimes_{A} \mathcal{H}$$

satisfying the duals of the groupoid conditions.

▶ the inverse of the Hopf-Galois map β : $u \otimes_A v \mapsto u_1 \otimes_A u_2 v$ is

$$\beta^{-1}: \mathcal{H} \otimes_{\Delta} \mathcal{H} \to \mathcal{H} \otimes_{\Delta} \mathcal{H}, \qquad u \otimes_{\Delta} v \mapsto u_1 \otimes_{\Delta} \mathcal{S}(u_2)v.$$

▶ If (A, \mathcal{H}) is a commutative Hopf algebroid then $\mathscr{G} := (\mathscr{G}_A, \mathscr{G}_{\mathcal{H}})$ is the associated groupoid scheme:

$$\mathscr{G}(R) = \left(\mathsf{CAlg}_{\Bbbk}(A, R), \mathsf{CAlg}_{\Bbbk}(\mathcal{H}, R)\right)$$

Paolo Saracco

Hopf ideals and subgroupoids

▶ An ideal $I \subseteq \mathcal{H}$ in a commutative Hopf algebroid (A, \mathcal{H}) is called a (wide) Hopf ideal if

$$\varepsilon(I) = 0,$$
 $\Delta(I) \subseteq \operatorname{im}(\mathcal{H} \otimes_A I + I \otimes_A \mathcal{H}),$ $S(I) \subseteq I.$

▶ $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}/I})$ is a (wide closed) subgroupoid of $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}})$ if $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}/I})$ is a groupoid itself and $\pi^* : \mathcal{G}_{\mathcal{H}/I} \hookrightarrow \mathcal{G}_{\mathcal{H}}$ induces a morphism of groupoids $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}/I}) \to (\mathcal{G}_A, \mathcal{G}_{\mathcal{H}})$, that is, if and only if I is a Hopf ideal.

Example (The isotropy Hopf algebroid)

- ▶ The ideal $\langle s(a) t(a) | a \in A \rangle$ is a Hopf ideal in \mathcal{H} .
- $ightharpoonup \mathcal{H}_{(i)} \coloneqq \mathcal{H}/\langle s-t \rangle$ is a commutative Hopf A-algebra.
- ▶ The presheaf of groupoids $(\mathscr{G}_A, \mathscr{G}_{\mathcal{H}}^{(i)})$ obtained by taking the isotropy groupoid of $(\mathscr{G}_A(R), \mathscr{G}_{\mathcal{H}}(R))$ for all R in $\mathsf{CAlg}_{\mathbb{k}}$ is represented by $\mathcal{H}_{(i)}$:

$$\left(\mathscr{G}_{A},\mathscr{G}_{\mathcal{H}}^{(i)}\right)\cong\left(\mathscr{G}_{A},\mathscr{G}_{\mathcal{H}_{(i)}}\right).$$

Normal Hopf ideals and normal subgroupoids

 \triangleright $\mathcal{H}_{(i)}$ is a right \mathcal{H} -comodule algebra with coaction defined by

$$\delta_{\mathcal{H}_{(i)}} \colon \mathcal{H}_{(i)} o \mathcal{H}_{(i)} \otimes_A \mathcal{H}, \qquad \overline{h} \mapsto \overline{h_2} \otimes_A \mathcal{S}(h_1)h_3.$$

▶ A Hopf ideal I of $\mathcal H$ is said to be *normal* if $\langle s-t\rangle\subseteq I$ and for all $\overline x$ in $I_{(i)}:=I/\langle s-t\rangle$, we have

$$\delta_{\mathcal{H}_{(i)}}(\overline{x}) = \overline{x_2} \otimes_A \mathcal{S}(x_1)x_3 \in \operatorname{im}(I_{(i)} \otimes_A \mathcal{H}).$$

▶ I is a normal Hopf ideal of (A, \mathcal{H}) if and only if $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}/I})$ is a normal subgroupoid of $(\mathcal{G}_A, \mathcal{G}_{\mathcal{H}})$.

The main result in the commutative setting

Theorem

If (A,\mathcal{H}) is a commutative Hopf algebroid such that ${}_s\mathcal{H}$ is flat, then we have a well-defined inclusion-preserving bijective correspondence

$$\left\{ \begin{array}{l} \text{normal Hopf ideals I in \mathcal{H} s.t.} \\ \mathcal{H}\square^{\frac{\mathcal{H}}{I}}\mathcal{H} \rightrightarrows \mathcal{H} \to \mathcal{H}/I \text{ is a} \\ \text{coeq. and \mathcal{H} is pure over } {}^{\text{co}\frac{\mathcal{H}}{I}}\mathcal{H} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{sub-Hopf algebroids $\mathcal{K} \subseteq \mathcal{H}$} \\ \text{such that \mathcal{H} is pure over \mathcal{K}} \end{array} \right\}$$

$$I \longmapsto {}^{\text{co}\frac{\mathcal{H}}{I}}\mathcal{H}} \\ \mathcal{H}\mathcal{K}^{+} \longleftrightarrow {}^{\text{co}\frac{\mathcal{H}}{I}}\mathcal{H}$$

Proposition

Let $\Bbbk=\overline{\Bbbk}$ and (A,\mathcal{K}) be a sub-Hopf algebroid of (A,\mathcal{H}) such that \mathcal{H} is pure over \mathcal{K} . Then $\Theta\colon\mathsf{CAlg}_{\Bbbk}(\mathcal{H},\Bbbk)\to\mathsf{CAlg}_{\Bbbk}(\mathcal{K},\Bbbk)$ is surjective. In the setting of the theorem there are canonical isomorphisms

$$\mathscr{G}_{\mathcal{H}}(\Bbbk)/\mathscr{G}_{\mathcal{H}/\mathcal{H}\mathcal{K}^+}(\Bbbk) \cong \mathscr{G}_{\mathcal{K}}(\Bbbk) \quad \text{and} \quad \mathscr{G}_{\mathcal{H}}(\Bbbk)/\mathscr{G}_{\mathcal{H}/I}(\Bbbk) \cong \mathscr{G}_{\varpi\mathcal{H}/I_{\mathcal{H}}}(\Bbbk).$$

The Hopf algebra case

For Hopf algebras over a field k, our main result becomes

Theorem

There is an inclusion-preserving bijective correspondence

$$\left\{ \begin{array}{l} \text{left ideal coideals } I \text{ s.t.} \\ H \square^{\frac{H}{I}} H \rightrightarrows H \to H/I \\ \text{is a coequalizer} \end{array} \right\} \stackrel{\Psi}{\rightleftharpoons} \left\{ \begin{array}{l} \text{right coideal subalgebras } B \\ \text{s.t. } B \to H \rightrightarrows H \otimes_B H \\ \text{is an equalizer} \end{array} \right\}$$

This extends the known cases such as Takeuchi, Newman, Schneider.

Example

 $\mathbb{C}[x,y]$ is a right coideal subalgebra of $H := \mathcal{O}(\mathsf{SL}_2(\mathbb{C}))$ which satisfies the condition above, but over which H is not faithfully flat.

Paolo Saracco

The end

Thank you

Paolo Saracco