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Introduction

Let A be an algebra over the field k and denote by M the category of k-vector spaces and
by ⊗ the tensor product over k. Assume that besides the algebra structures m : A⊗A→ A
and u : k → A, A comes with two algebra morphisms: ∆: A → A ⊗ A and ε : A → k.
We call it a bialgebra if these additional operations are coassociative and counital. It
can be proven (cfr. [Ka, Proposition XI.3.1]) that A is a bialgebra if and only if the
category of left (resp. right) A-modules AM (resp. MA) is a monoidal category, when
equipped with the tensor product of k-vector spaces and with the natural constraints
(a, l, r). For AM to be a monoidal category means that it looks like the category of
vector spaces or the category of groups, i.e., it is a category endowed with a bifunctor
−⊗− : AM× AM→ AM and a distinguished object k such that ⊗ is associative, up to a
natural isomorphism a, and k is a left and right unit for ⊗, up to natural isomorphisms
l, r. Bluntly speaking, the notion of a monoidal category is the ‘categorification’ of the
notion of a monoid.

Furthermore, a bialgebra H is a Hopf algebra if it admits an antipode, i.e., an
endomorphism of H that is the convolution inverse of the identity. Larson and Sweedler
proved in 1969 that if a (finite dimensional) bialgebra H is a Hopf algebra, then a certain
Structure Theorem holds for Hopf H-modules (cfr. [LS, Proposition 1, page 82]). A
(right) Hopf H-module is a (right) H-module that is also a (right) H-comodule over the
coassociative coalgebra H within the monoidal category of (right) H-modules MH . The
Structure Theorem, as it appears in [LS], states that every Hopf module over a Hopf
algebra is trivial, that is, for each Hopf module M there exists a vector space MCoH

(called the space of coinvariants of M) such that M has the form MCoH ⊗H. This result
allowed them to show that every finite dimensional Hopf algebra H admits non-zero
left integrals (actually, that for a finite dimensional bialgebra H, the existence of the
antipode is equivalent to the existence of non-singular left integrals; cfr. [LS, Theorem
on page 79]), from which they also proved that all finite dimensional Hopf algebras are
Frobenius algebras and that, in such a case, the antipode is always bijective. In Chapter
2 we will retrieve a modern version of the Structure Theorem, that states that a bialgebra
H admits an antipode if and only if the functor −⊗H : M→MH

H that associate to each
vector space V the free Hopf module V ⊗H•• is a category equivalence (cfr. also [Ab,
Theorem 3.1.8], [BW, Theorem 15.5] and [Sw, Theorem 4.1.1]).

The main aim of this thesis is to look for a proper analogue of the notion of antipode
for quasi-bialgebras and hence to extend the Structure Theorem to this more general
framework. Let us spend a few words to highlight that quasi-bialgebras became important
since 1989, because they are the basic structure on which quasi-Hopf algebras are
constructed and then they are related to conformal field theory, quantum groups, the
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Knizhnik-Zamolodchikov equations, the Yang-Baxter equation (cfr. for example [Dr1]
and [Dr2]), apart from being interesting in themselves.

Actually, Drinfel’d definition of a quasi-bialgebra A ensures that the category of
A-modules is still monoidal with tensor product given by the tensor product of k-vector
spaces, but with different constraints with respect to M ([Dr1]). However, if we try to
establish an analogue of the Structure Theorem criterion for quasi-bialgebras we run into
two difficulties.

The first one is that there are no Hopf modules: we will show in Chapter 3 that
a quasi-bialgebra A is an associative algebra with counit and comultiplication that is
coassociative only up to conjugation by an invertible element Φ ∈ A⊗A⊗A, i.e.

Φ(∆⊗A)(∆(·)) = (A⊗∆)(∆(·))Φ.

Therefore, one does not know how to define comodules without a coalgebra structure.
Fortunately, this problem was solved by Hausser and Nill in [HN], where they observe
that A, with the natural left and right A-actions, is a coalgebra in the category of
(A,A)-bimodules AMA. Hence, we can still define a quasi-Hopf A-(bi)module category
AM

A
A: namely, the category of (right) A-comodules over the coassociative coalgebra A

within the monoidal category AMA.
The second problem arises with the Structure Theorem itself. Consider a quasi-

bialgebra A; in [Dr1, page 1424], Drinfel’d introduced the notion of quasi-Hopf algebras
in order to have that the category of finite dimensional left A-modules is rigid (i.e., every
object admits a right dual object and a left dual object, just as vector spaces): they are
quasi-bialgebras endowed with a triple (s, α, β) composed by an antiendomorphism s and
two distinguished elements α and β that satisfies certain properties. Hausser and Nill
proved in [HN, Theorem 3.8] that if A is a quasi-Hopf algebra, then a certain functor
AM → AM

A
A is a category equivalence, i.e., there exists a generalization of the space

of coinvariants such that every quasi-Hopf bimodule M is isomorphic to •MCoA ⊗ •A••.
Since quasi-Hopf algebras seem to be a good generalization of Hopf algebras (cfr. [Dr1]),
it is a little bit surprising to discover that the converse of this Structure Theorem needs
not to be true.

Actually, there exists an example in the dual context, due to Schauenburg, of a dual
quasi-bialgebra (dual quasi-bialgebras are also referred to as coquasi-bialgebras) for which
the Structure Theorem holds, but that is not a dual quasi-Hopf algebra (cfr. [Sc1] and
[Sc3, Example 4.5.1]).

Ardizzoni and Pavarin studied the topic in depth in [AP1] and they came to the
conclusion that a correct generalization of the antipode to dual quasi-bialgebras is what
they called a preantipode: a k-linear map S : A→ A satisfying certain properties. Here
we fit what they got to the framework of quasi-bialgebras. Even if, at a first sight, it may
seem just dualizing, things are not so easy. First of all, the dual of a dual quasi-bialgebra
is not a quasi-bialgebra in general (unless we are in the finite dimensional case). Secondly,
we will see in Section 3.2 that, unlikely the ‘dual quasi’ case, we don’t have a pretty
definition of the space of coinvariants that helps us in defining the adjunction between
AM and AM

A
A by taking inspiration from the ordinary Hopf version. On the contrary,

our definition of coinvariants is a strict consequence of the Structure Theorem.
In details, the subsequent work is organized as follows.
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In Chapter 1 we recall some basic notions of category theory and monoidal categories.
In particular, we show explicitly that the category of vector spaces over the field k is a
monoidal category.

In Chapter 2 we retrieve some classical results concerning Hopf algebras and we prove
the Structure Theorem for Hopf modules we referred to at the very beginning.

Chapter 3 is devoted to quasi-bialgebras and the notion of preantipode. In Section 3.2
we prove the main result: the Fundamental Structure Theorem for quasi-Hopf bimodules.
It states that the adjunction −⊗A : AM→ AM

A
A of Hausser and Nill, that sends a left

A-module into the free quasi-Hopf bimodule •M ⊗ •A••, is an equivalence of categories
if and only if A admits a preantipode, if and only if there exists a projection map
τM : M → M for every quasi-Hopf bimodule M that satisfies certain properties. In
particular, every quasi-Hopf bimodule M is of the form N ⊗ A, where N is a suitably
defined space of coinvariants of M , namely N = τM (M).

In Section 3.3 we introduce quasi-Hopf algebras in order to show how the classical
results are now consequences of the theory we developed. The cornerstone of this section
is Theorem 3.3.4, which asserts that every quasi-Hopf algebra admits a preantipode.
From this result we can recover the Structure Theorem for Hopf modules (Remark 3.3.7)
and Hausser and Nill version of the Structure Theorem for quasi-Hopf bimodules (Remark
3.3.8) as corollaries. Unfortunately, and unlike the dual quasi case, we are not able to
exhibit an explicit example of a quasi-bialgebra with preantipode that does not admit a
quasi-antipode and so we cannot say with certainty that the two concepts don’t coincide,
though it is very unlikely to be so.

Nevertheless, even if it will turn out that the two are equivalent, we took a step
forward. Indeed, on one hand we will show how the preantipode is actually more handy
than the quasi-antipode. Primarily, because it is composed by a single data: the map
S : A→ A. Secondly, because it is unique (see Theorem 3.3.11) and not just unique up
to an invertible element (as the quasi-antipode is). On the other hand, we will be able to
choose the one that fits better our needs because, unluckily, the preantipode is just a
linear map: it is not an algebra nor a coalgebra antiendomorphism (cfr. Remark 3.3.16),
while the quasi-antipode is an algebra antiendomorphism by definition and it can become
a coalgebra antiendomorphism via a twist (cfr. [Dr1, Proposition 2] and the preceding
discussion on page 1426).

Another important result that we were able to prove is Proposition 3.3.13, that states
that quasi-bialgebras with preantipode form a class of bialgebras closed under gauge
twisting.

Note that all these results argue in favour of the thesis that preantipodes are a more
effective candidate for generalizing antipodes than quasi-antipodes (just in the case they
don’t coincide, obviously).

Even if we believe that quasi-bialgebras with preantipode are a strictly larger class of
quasi-bialgebras with respect to quasi-Hopf algebras, we are able to exhibit a number of
cases in which the two structures are equivalent. For example: ordinary bialgebras viewed
as quasi via the trivial reassociator (Proposition 3.4.1), commutative quasi-bialgebras
(Corollary 3.4.2) and, last but not the least, finite dimensional quasi-bialgebras. Indeed,
the very last theorem of Chapter 3 is due to Schauenburg again and it shows that, at
least in the finite dimensional case, the existence of a preantipode is equivalent to the
existence of a quasi-antipode.
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In some of this cases we are able to recover explicitly the quasi-antipode from the
preantipode, as shown at the very end of Chapter 3, for example when the distinguished
element α is invertible. We will also highlight that we can do it for much of the best known
examples of non-trivial quasi-Hopf algebra. Nevertheless, up to this moment, we are not
able to give general guidelines to recover the quasi-antipode from the preantipode, even in
the finite dimensional case. The heart of the problem lies in the fact that Schauenburg’s
proof invokes the Krull-Schmidt Theorem and this is a non-constructive result. Hence,
as we will see, the relation between the quasi-antipode and the preantipode stays hidden
behind an unknown isomorphism γ̃ (cfr. proof of Theorem 3.4.4).

We conclude by adding an appendix dedicated to prove the Krull-Schmidt Theorem
(Chapter 4).
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Chapter 1

Preliminaries

In this chapter we introduce some basic definitions and properties of category theory
and, in particular, we will concentrate on the category of k-vector spaces that forms the
framework for the subsequent work. Throughout the text, k will always denote a field.

1.1 Categories

This section consists of a collection of definition and elementary properties of categories
and functors that comes from the book of Kassel, [Ka, Chapter XI], and from Mac Lane’s
work, [ML]. For a more exhaustive treatment we refer to [ML].

Definition 1.1.1. (Category)
A category C consists of

1. a class Ob(C) of objects of the category,

2. a class hom(C) of morphisms (or arrows) of the category,

3. two operations

hom(C)
dom //

cod
// Ob(C)

called domain and codomain (or source and target) which assign to each arrow f
an object called, respectively, the domain of f and the codomain of f , and

4. two additional operations, Id and ◦, defined by the following assignments:

Id : Ob(C) −→ hom(C)
C 7−→ IdC

and ◦ : hom(C)×Ob(C) hom(C) −→ hom(C)
(g, f) 7−→ g ◦ f

called identity and composition such that

cod(IdC) = C = dom(IdC), dom(g ◦ f) = dom(f), cod(g ◦ f) = cod(g)

for every object C in Ob(C) and for every composable pair of arrows (g, f) in
hom(C)×Ob(C) hom(C), where hom(C)×Ob(C) hom(C) denotes the class of couples
(g, f) of composable morphisms in the category, i.e., such that dom(g) = cod(f).
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Furthermore, the associativity and unit axioms must be satisfied:

(ass) For any morphisms f, g, h satisfying dom(g) = cod(f) and dom(h) = cod(g),

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(un) For any morphism f in hom(C),

Idcod(f) ◦ f = f ◦ Iddom(f) = f.

As a matter of terminology, we will call endomorphism a morphism from an object to
itself and isomorphism (or simply iso) a morphism that admits a two-sided inverse, i.e.,
f : C → D in hom(C) is an isomorphism if there exists g : D → C in hom(C) such that
g ◦ f = IdC and f ◦ g = IdD. Moreover, if C,D are objects in Ob(C) we will indicate
with homC(C,D) the set of morphisms of the category C whose domain is C and whose
codomain is D; it could be abbreviated also in C(C,D). Note that we are requesting
explicitly that given two objects C,D of C, homC(C,D) is a set, i.e., C is actually a
set-category.
Remark 1.1.2. To each category C we can associate another category, called the opposite
category Cop. The class of objects of Cop is the class of objects of C, i.e., Ob(Cop) := Ob(C),
and the morphisms of Cop are given by

homCop(C,D) := homC(D,C)

for each pair of objects C,D of Cop. The composition operation in the opposite category
is defined by:

◦ : hom(Cop)×Ob(Cop) hom(Cop) −→ hom(Cop)
(g, f) 7−→ g ◦ f

where g ◦f is performed in C. Bluntly speaking, the opposite category is just the category
C with all arrows reversed. In order to avoid confusion, when we look at the morphism
f : D → C in C as a morphism in Cop, we denote it by fop : Cop → Dop.

In order to simplify the subsequent treatment, we are going to concentrate on
categories that are interpretations of the category axioms within set theory. This means
that Ob(C) and hom(C) will be sets, dom, cod, Id and ◦ will be functions and we will
even write simply C ∈ C or f ∈ C to mean that C is an object of C and f is a morphism
of C respectively (it will be always clear if we are considering an object or a morphism).

Example 1.1.3. Let us retrieve some examples of such categories:

Set: Objects: all small1 sets; arrows: all functions between them.

Grp: Objects: all small groups; arrows: all morphisms of groups.

Ab: Objects: all small abelian groups; arrows: all morphisms of abelian groups.
1Assume that there exists a ‘big enough’ set U , that we can call the universe. We describe a set as

small if it is a member of the universe (cfr. [ML, Section I.6]).
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Mod-R: Objects: all small right R-modules over the ring R; arrows: all R-linear
morphisms.

Vect(k): Objects: all small vector spaces over the field k; arrows: all linear maps
of vector spaces.

Top: Objects: all small topological spaces; arrows: continuous maps.

For more examples of this kind and also for some examples of categories whose objects
are not sets we refer to [ML].

Definition 1.1.4. (Functors and natural transformations)
A functor is a morphism of categories. In details, a functor F : C→ D from the category
C to the category D consists of two related functions:

• a map F : Ob(C)→ Ob(D), called object function, that assigns to each object C of
C an object F (C) of D, and

• a map F : hom(C)→ hom(D), called arrow function, which assigns to each arrow
f : C → C ′ in C an arrow F (f) : F (C)→ F (C ′) in D,

such that
F (IdC) = IdF (C) and F (g ◦ f) = F (g) ◦ F (f),

the latter whenever the composite g ◦ f is defined in C.
Let F,G be two parallel functors between the category C and the category D. A

natural transformation η : F → G from F to G (also referred to as morphism of functors)
is a family of morphisms ηC : F (C) → G(C) in D indexed by the objects C of C such
that, for any morphism f : C → D in C, the square:

F (C)

	

ηC //

F (f)
��

G(C)

G(f)
��

F (D) ηD
// G(D)

commutes. We call ηC , ηD, . . . the components of the natural transformation. Further-
more, if any component of a natural transformation is an isomorphism, then we call it a
natural isomorphism.

Note that if η : F → G is a natural isomorphism, then also η−1 : G→ F is.
Remark 1.1.5. The definition we gave above coincides with what is commonly known
as a covariant functor, in the sense that it preserves the order of compositions. There
also exists in literature the concept of contravariant functors. A functor F : C → D is
said to be contravariant if F (g ◦ f) = F (f) ◦ F (g) for all composable pairs (g, f) of
morphisms of C (i.e., it reverses compositions). We do not put too much emphasis on
this idea because a contravariant functor can be seen as a simple covariant functor from
the opposite category: F : Cop → D.
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Definition 1.1.6. (Isomorphism of categories, fullness and faithfulness)
An isomorphism of categories is a functor that is a bijection both on objects and on
arrows. Equivalently, a functor F : C → D is an isomorphism if and only if there is a
functor G : D→ C for which both composites F ◦G and G ◦ F are identity functors.

A functor F : C→ D is full if the associated arrow function is surjective. It is faithful
if the associated arrow function is injective.

Definition 1.1.7. (Category equivalence)
A functor F : C → D is an equivalence of categories (and the categories are said to be
equivalent) when there exists a functor G : D→ C and natural isomorphisms

η : IdC → GF and ε : FG→ IdD.

Definition 1.1.8. (Adjoint functors)
Let F : C → D and G : D → C be functors. Then G is right adjoint to F or F is left
adjoint to G if there exist natural transformations η : IdC → GF (called the unit) and
ε : FG→ IdD (called the counit) such that the following diagrams commute (triangular
identities):

GFG(D)
G(εD) // G(D)

G(D)

ηG(D)

OO

IdG(D)

99
(1.1)

FGF (C)
εF (C) // F (C)

F (C)

F (ηC)

OO

IdF (C)

99
(1.2)

We will write (F,G, η, ε) : C⇀ D or, simply, (F,G, η, ε).
If both the unit and the counit of the adjunction are natural isomorphisms, we call it

an adjoint equivalence.

Theorem 1.1.9. Let C and D be categories and let F : C→ D and G : D→ C be functors.
(F,G) is an adjunction if and only if there exists a natural isomorphism:

ϕC,D : homD(F (C), D)→ homC(C,G(D))

that is natural in both components.

Proof. For the ‘only if’ part, assume that (F,G, η, ε) is an adjunction and let

f : F (C)→ D

be a morphism in homD(F (C), D). Consider G(f) : GF (C) → G(D) and compose it
with ηC : C → GF (C):

ϕC,D(f) :=
(
C

ηC // GF (C)
G(f) // G(D)

)
(1.3)

Let us show that this ϕ is a natural isomorphism in both components.

10



• Naturality in the first component. Let g : B → C ∈ C(B,C) (this is just a shortcut
for homC(B,C)). Consider the diagram:

D(F (C), D)
ϕC,D //

−◦F (g)
��

C(C,G(D))

−◦g
��

D(F (B), D) ϕB,D
// C(B,G(D))

This is commutative, since for all f in D(F (C), D):

ϕB,D(f ◦F (g)) = G(f ◦F (g))◦ηB = G(f)◦GF (g)◦ηB
(∗)= G(f)◦ηC◦g = ϕC,D(f)◦g,

where in (∗) we used the naturality of η.

• Naturality in the second component. Let g : D → E ∈ D(D,E). Consider the
diagram:

D(F (C), D)
ϕC,D //

g◦−
��

C(C,G(D))

G(g)◦−
��

D(F (C), E) ϕC,E
// C(C,G(E))

This is commutative, since for all f in D(F (C), D):

ϕC,E(g ◦ f) = G(g ◦ f) ◦ ηC = G(g) ◦G(f) ◦ ηc = G(g) ◦ ϕC,D(f).

• Define, for all C in C, D in D and g in C(C,G(D)),

ψC,D(g) :=
(
F (C)

F (g) // FG(D) εD // D
)

(1.4)

For all f : C → G(D) we have that:

ϕ(ψ(f)) = ϕ(εD ◦ F (f)) = G(εD ◦ F (f)) ◦ ηC =

= G(εD) ◦GF (f) ◦ ηC
(∗)= G(εD) ◦ ηG(D) ◦ f

(1.1)= f.

where in (∗) we used the naturality of η again. In the same way, for all f : F (C)→ D
we have that:

ψ(ϕ(f)) = ψ(G(f) ◦ ηC) = εD ◦ F (G(f) ◦ ηC) =

= εD ◦ FG(f) ◦ F (ηC) (∗∗)= f ◦ εF (C) ◦ F (ηC) (1.2)= f.

where in (∗∗) we used the naturality of ε.

Conversely, for the ‘if’ part, define

ηC := ϕC,F (C)(IdF (C)) and εD := ϕ−1
G(D),D(IdG(D)) (1.5)

These are natural:
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• Let f : C → B ∈ C(C,B). Since ϕ is natural in both components, we get that:

GF (f) ◦ ηC = GF (f) ◦ϕC,F (C)(IdF (C)) = ϕC,F (B)(F (f) ◦ IdF (C)) = ϕC,F (B)(F (f))

by naturality on the second component, and:

ϕC,F (B)(F (f)) = ϕC,F (B)(IdF (B) ◦ F (f)) = ηB ◦ f

by naturality on the first component. This means that the following diagram
commutes:

C

	

ηC //

f

��

GF (C)

GF (f)
��

B ηB
// GF (B)

• Analogously, let g : D → E ∈ D(D,E). Since ϕ−1 is natural in both components,
we get that:

g ◦ (ϕG(D),D)−1(IdG(D)) = (ϕG(D),E)−1(G(g))
by naturality on the second component, and:

(ϕG(D),E)−1(G(g)) = (ϕG(D),E)−1(IdG(E) ◦G(g)) = εE ◦ FG(g)

by naturality on the first component. That means that the following diagram
commutes:

FG(D)

	

εD //

FG(g)
��

D

g

��
FG(E) εE

// E

And satisfy the triangular identities:

• Let f : B → C ∈ C and g : D → E ∈ D. By naturality of ϕ:

ϕB,D(− ◦ F (f)) = ϕC,D(−) ◦ f and ϕC,E(g ◦ −) = G(g) ◦ ϕC,D(−).

Hence:
G(εD) ◦ ηG(D) = G(εD) ◦ ϕG(D),FG(D)(IdFG(D)) = ϕG(D),D(εD ◦ IdFG(D)) =

= ϕG(D),D((ϕG(D),D)−1(IdG(D))) = IdG(D)

and (1.1) follows.

• In the same way, let f : B → C ∈ C and g : D → E ∈ D. By naturality of ϕ−1:

(ϕB,D)−1(− ◦ f) = (ϕC,D)−1(−) ◦ F (f) and
(ϕC,E)−1(G(g) ◦ −) = g ◦ (ϕC,D)−1(−).

Therefore:
εF (C) ◦ F (ηC) = (ϕGF (C),C)−1(IdGF (C)) ◦ F (ηC) = (ϕC,F (C))−1(ηC) =

= (ϕC,F (C))−1(ϕC,F (C)(IdF (C))) = IdF (C)

and (1.2) follows as well.

12



Remark 1.1.10. At the very beginning of Section 1.2 we will introduce the concept of
product of categories. With this notion, it will be easy to see that the isomorphism ϕ of
the previous theorem is just a natural isomorphism between the functors:

ϕ : D(F (−), ∗)→ C(−, G(∗))

where
D(∗, ∗) : Dop ×D→ Set

associate to each pair of objects (C,D) of D the set D(C,D) and to every pair of
morphisms (fop, g) : (C,D)→ (C ′, D′) the function:

D(f, g) : D(C,D) −→ D(C ′, D′) : σ 7−→ g ◦ σ ◦ f.

Analogously C(−,−).
There exists another useful characterization of adjoints, that depends on the following

definition.

Definition 1.1.11. (Dual to [ML, Section III.1]) (Universal arrows)
Let F : C→ D be a functor and let D ∈ Ob(D) be an object. A universal arrow from
F (−) to D is a pair (E, u) consisting of an object E of C and an arrow u : F (E)→ D in
D(F (E), D) that enjoys the following universal property: for each pair (C, f) consisting
of an object C of C and an arrow f : F (C) → D in D(F (C), D) there exists a unique
arrow f̃ : C → E in C(C,E) such that the following diagram commutes:

F (E)
u

%%
D

F (C)

F
(
f̃
) OO

f

99

In other words, every arrow f from F (−) to D factors uniquely through the universal
arrow u.

Corollary 1.1.12. (cfr. [ML, Theorem IV.1.2, page 83]) Let F : C → D be a functor.
Then F is a left adjoint if and only if for each object D ∈ D there exists a universal
arrow (ED, uD) from F (−) to D.

Proof. For the ‘only if’ part assume that there exists a functor G : D→ C and natural
transformations η : IdC → GF (−) and ε : FG(−) → IdD such that (F,G, η, ε) is an
adjunction. Let us prove that for each D ∈ D, (G(D), εD) is universal from F (−) to
D. In view of Theorem 1.1.9, for each pair (C, f) consisting of an object of C and an
arrow f : F (C) → D there exists a unique arrow f̃ := ϕC,D(f) : C → G(D) defined as
(cfr. (1.3))

ϕC,D(f) = G(f) ◦ ηC .
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Furthermore, the following diagram commutes

FG(D) εD // D

FG(F (C))

FG(f)

OO

εF (C) // F (C)

f

OO

F (C)

F (ηC)

OO

IdF (C)

99

by naturality of ε and (1.2). Thus:

εD ◦ F
(
f̃
)

= εD ◦ FG(f) ◦ F (ηC) = f

and (G(D), εD) is universal as claimed.
For the ‘if’ part, assume that for each D ∈ Ob(D) there exists a universal arrow

(ED, uD) from F (−) to D and let us construct a functor G : D → C and a natural
isomorphism

ψC,D : homC(C,G(D))→ homD(F (C), D).
First of all, consider the assignment

G : D −→ C : D 7−→ ED.

In order to define how G operates on morphisms, pick g : D → D′ in D(D,D′) and
consider the following diagram:

F (ED′)
uD′ // D′

F (ED)

F(ĝ)

OO

uD
//

g◦uD

<<

D

g

OO

By the universal property of (ED′ , uD′) there exists a unique morphism ĝ : ED → ED′

such that the above diagram commutes. Hence we can define

G : D(D,D′) −→ C(G(D), G(D′)) : g 7−→ ĝ

for all D,D′ ∈ Ob(D). Observe that in this way we automatically get that

u : FG(−)→ IdD

is natural. Let us show that this G is a functor. By functoriality of F we can note that:
• the identity IdED makes the following diagram commutes:

F (ED)

	

uD // D

F (ED) uD
//

F(IdED)
OO

D

IdD

OO

and so, by uniqueness, G(IdD) = ÎdD = IdED = IdG(D).

14



• for f : D → D′ and g : D′ → D′′ in hom(D) the following diagram commutes:

F (ED) uD //

F
(
f̂
)

��
F
(̂
g◦f
)

��

D

f

��
g◦f

��

F (ED′)
uD′ //

F(ĝ)
��

D′

g

��
F (ED′′)

uD′′ // D′′

Since F (ĝ) ◦ F
(
f̂
)

= F
(
ĝ ◦ f̂

)
, we have two morphisms that satisfy the universal

property: ĝ ◦ f and ĝ ◦ f̂ . Thus, G(g ◦ f) = G(g) ◦G(f).

Next, since (ED, uD) is universal from F (−) to D for every D ∈ Ob(D), we have that
for all g : F (C)→ D there exists a unique morphism g̃ : C → G(D) such that

FG(D) uD // D

F (C)

F(g̃)
OO

g

<<

commutes. Therefore, the assignment

ψC,D : homC(C,G(D)) −→ homD(F (C), D) : f 7−→ uD ◦ F (f)

is a well defined isomorphism, natural in both components (the proof of the naturality is
actually the same that we gave in the ‘only if’ part of Theorem 1.1.9 for ϕC,D, except that
here we should use naturality of u). By virtue of Theorem 1.1.9 itself, we conclude.

Remark 1.1.13. In view of (1.5) in the proof of Theorem 1.1.9 we have that the unit and
the counit of the adjunction that we get from the universal arrows are given explicitly
by:

ηC = ψ−1
C,F (C)

(
IdF (C)

)
, (1.6a)

εD = ψG(D),D
(
IdG(D)

)
= uD ◦ F

(
IdG(D)

)
= uD. (1.6b)

Actually, by definition, ηC is the unique arrow from C to GF (C) such that

εF (C) ◦ F (ηC) = IdF (C) (1.7)

for all objects C in C.
Observe that if (F,G, η, ε) is an adjoint equivalence, then the two functors that

compose the adjunction are category equivalences. The apparently unexpected claim is
that also the converse holds, as the subsequent result states.
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Theorem 1.1.14. ([ML, Theorem IV.4.1, page 93]) Let F : C→ D be a functor. Then
the following assertions are equivalent:

(1) F is an equivalence of categories,

(2) F is part of an adjoint equivalence (F,G, η, ε),

(3) F is fully faithful and each object D ∈ D is isomorphic to F (C) for some object
C ∈ C. In this case we say that F is essentially surjective (on objects).

Proof. We already observed that (2) implies (1). To prove that (1) implies (3), note
that since there exists a natural isomorphism ε : FG → IdD, for every object D ∈ D

D ∼= F (G(D)) and so F is essentially surjective. Moreover, naturality of η gives for each
f : C → C ′ a commutative square:

C

	

ηC //

f

��

GF (C)

GF (f)
��

C ′ ηC′
// GF (C ′)

Hence, f = η−1
C′ ◦GF (f) ◦ ηC and so F is faithful: if F (f) = F (g), then

f = η−1
C′ ◦GF (f) ◦ ηC = η−1

C′ ◦GF (g) ◦ ηC = g.

Analogously, naturality of ε ensures that also G is faithful.
To show that F is full, pick a morphism h : F (C)→ F (C ′) and define

f := η−1
C′ ◦G(h) ◦ ηC .

By construction, we have two morphisms from GF (C) to GF (C ′), namely GF (f) and
G(h), such that the following diagram commutes:

C

	

ηC //

f

��

GF (C)

GF (f)

��

G(h)

��
C ′ ηC′

// GF (C ′)

Therefore, since η is a natural isomorphism, we get thatGF (f) = G(h) and, by faithfulness
of G, F (f) = h.

Now, let us prove that (3) implies (2). For any object D ∈ D, we know that there
exists (at least) a pair (ED, uD) where ED is an object in C and uD : F (ED) → D is
an isomorphism in hom(D), since F is essentially surjective on objects. Moreover, if
f : F (C) → D is any other morphism from F (C) to D for some C ∈ Ob(C), we can
consider the composition u−1

D ◦ f that belongs to D(F (C), F (ED)). Since F is fully
faithful, it is bijective on morphisms, and so there exists a unique morphism f̃ : C → ED
such that F

(
f̃
)

= u−1
D ◦ f . This means exactly that (ED, uD) is universal from F (−) to
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D. In view of Corollary 1.1.12 and relation (1.6b) we can then construct an adjunction
(F,G, η, ε) where

G : D −→ C : D 7−→ ED,

G : D(D,D′) −→ C(G(D), G(D′)) : g 7−→ g̃ ◦ uD

and
εD := uD : FG(D)→ D ( ∀D ∈ Ob(D)) .

Furthermore, by (1.7) and since ε is a natural isomorphism, we have that F (ηC) is
invertible for all C, with inverse given by εF (C). Hence even ηC is invertible, because F
is fully faithful, and so (F,G, η, ε) is an adjoint equivalence.

Theorem 1.1.15. ([ML, Theorem IV.8.1, page 103]) Given two adjunctions

(F,G, η, ε) : C⇀ D and (F ,G, η, ε) : D⇀ E

the composite functors yield an adjunction

(F F,GG,Gη F ◦ η, ε ◦ F εG) : C⇀ E.

Proof. Define

ε′ =
(
F F GG

F εG // F G
ε // IdE

)
and

η′ =
(

IdC
η // GF

Gη F // GGF F

)
Let E,E′ ∈ Ob(E), f : E → E′ in hom(E) and consider the diagram:

F (FG(G(E)))
F

(
ε
G(E)

)
//

F (FG(G(f)))

��

F (G(E)) εE //

F (G(f))

��

E

f

��
F (FG(G(E′)))

F

(
ε
G(E′)

) // F (G(E′))
εE′

// E′

The external path represents naturality of ε′. The left hand square commutes by naturality
of ε applied to G(f) : G(E) → G(E′) and functoriality of F . The right hand square
commutes by naturality of ε.

Analogously, let C,C ′ ∈ Ob(C), f : C → C ′ in hom(C) and consider the diagram:

C
ηC //

f

��

G(F (C))
G(ηF (C)) //

G(F (f))

��

G(GF (F (C)))

G(GF (F (f)))

��
C ′ ηC′

// G(F (C ′))
G(ηF (C′))

// G(GF (F (C ′)))
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The external path represents naturality of η′. The left hand square commutes by naturality
of η. The right hand square commutes by naturality of η applied to F (C) and functoriality
of G. What is left is to prove that the triangular identities are satisfied.

(1.1): for E ∈ E the following diagram, that represents the first triangular identity,

GG(E)
η
GG(E) //

Id
GG(E)

��

GF GG(E)

G

(
η
FGG(E)

)
��

G

(
ε
G(E)

)
xx

GG(E)

Id
GG(E)

��

G

(
η
G(E)

)
&&

GGF F GG(E)

GGF

(
ε
G(E)

)
��

GG(E) GGF G(E)
GG(εE)

oo

commutes. Indeed, the upper left triangle is the triangular identity (1.1) satisfied by the
first adjunction applied to G(E) and so commutes. The lower left triangle commutes by
functoriality of G and because it represents the same triangular identity satisfied by the
second adjunction applied to E. The central square commutes by naturality of η applied
to εG(E) : FG(G(E))→ G(E).

(1.2): for C ∈ C the following diagram, that represents the second triangular identity,

F F (C)
F F (ηC) //

Id
F F (C)

��

F F GF (C)

F F G(ηF (C))

��

F(εF (C))

xx
F F (C)

Id
F F (C)

��

F(ηF (C))

&&

F F GGF F (C)

F

(
ε
GF F (C)

)
��

F F (C) F GF F (C)
ε
F F (C)

oo

commutes, too. As above, the upper left triangle commutes by functoriality of F and by
the triangular identity (1.2) satisfied by (F,G, η, ε). The lower left triangle represents
(1.2) again for (F ,G, η, ε) applied to F (C). Finally, the central square commutes by
naturality of ε and functoriality of F .

We will encounter several examples of adjunctions throughout the text.

Definition 1.1.16. ([ML, Section I.5])(Monic, epi, split monic, split epi)
Let C be a category. A morphism f : C → D in hom(C) is monic when for any two
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parallel arrows g, h : D → C the equality f ◦ g = f ◦ h implies g = h. In other words, if f
is left cancellable.

A morphism f : C → D in hom(C) is epi when for any two parallel arrows g, h : D → C
the equality g ◦ f = h ◦ f implies g = h. In other words, if f is right cancellable.

For a morphism f : C → D, a right inverse or section is a morphism r : D → C with
f ◦ r = IdD. A left inverse or retraction is a morphism l : D → C such that l ◦ f = IdC .

If f : C → D and g : D → C are two morphisms in homC such that g ◦ f = IdC , then
f is a split monic, g is a split epi, and the composite h := f ◦ g is defined and is an
idempotent (i.e., h ◦ h = h).

Proposition 1.1.17. Let (F,G, η, ε) be an adjunction between C and D. F is faithful if
and only if the unit ηC is monic, for all C ∈ Ob(C).

Proof. (F,G) is an adjunction if and only if D(F (C), D) ∼= C(C,G(D)) via ϕ defined by

ϕC,D(f) = G(f) ◦ ηC

for all C ∈ C, D ∈ D and f ∈ D(F (C), D).
Let us consider the following diagram:

C(B,C) F //

ηC◦−
��

D(F (B), F (C))

ϕ

��
C(B,GF (C))

It is commutative by naturality of η:

f � //
_

��

F (f)
_

��
ηC ◦ f GF (f) ◦ ηB

As a consequence we have that if F is faithful, then it is injective between hom-sets and
so ηC ◦ − is injective as well, by composition, for all C ∈ C. That means that for all
f, g ∈ C(B,C), ηC ◦ f = ηC ◦ g implies f = g, i.e. ηC is monic.

Conversely, again by commutativity of the diagram, if ηC is monic, then ηC ◦ − is
injective and so is F between hom-sets (since ϕ is bijective).

Proposition 1.1.18. Let (F,G, η, ε) be an adjunction. F is full if and only if ηC is split
epi for all C ∈ Ob(C).

Proof. Let ηC be split epi for all C ∈ C. That means that there exists γC : GF (C)→ C
such that ηC ◦ γC = IdGF (C).
Let g : F (B)→ F (C). Since ϕB,F (C) is bijective, there exists some f : B → GF (C) such
that g = (ϕB,F (C))−1(f). Moreover, by (1.4) in Theorem 1.1.9:

(ϕB,F (C))−1(f) = εF (C) ◦ F (f) (1.8)
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On the other hand, by (1.2),

IdF (C) = εF (C) ◦ F (ηC).

If we compose on the right, on both sides, with F (γC), we get F (γC) = εF (C). Substituting
in (1.8):

g = (ϕB,F (C))−1(f) = εF (C) ◦ F (f) = F (γC) ◦ F (f) = F (γC ◦ f).

Therefore, F is surjective on hom-sets (full).
Conversely, let F be full. For all C ∈ C consider the commutative diagram:

C(GF (C), C) F //

ηC◦−

��

D(FGF (C), F (C))

ϕ

��
C(GF (C), GF (C))

Since ϕGF (C),F (C) is iso, there exists γ : GF (C)→ C such that

IdGF (C) = ϕGF (C),F (C)(F (γ)) = ηC ◦ γ,

i.e., ηC is split epi for all C ∈ C.

Corollary 1.1.19. Let (F,G, η, ε) be an adjunction. F is fully faithful if and only if ηC
is iso for all C ∈ C.

1.2 Monoidal Categories

From now on we will indicate the generic objects of a category with letters M , N , P ,
Q, . . ., in order to avoid confusion when we will introduce the coalgebras.

We define the product of two categories C and D to be the category C ×D whose
objects are pairs of objects (M,N), where M ∈ Ob(C) and N ∈ Ob(D), and whose
morphisms are given by couples of morphism of C and D. In details, for all M , M ′ in C

and N , N ′ in D:

homC×D((M,N), (M ′, N ′)) = homC(M,M ′)× homD(N,N ′).

Definition 1.2.1. (Tensor product)
Let C be a category. Any functor ⊗ : C× C→ C is called a tensor product.

Remark 1.2.2. To have a tensor product means that one has:

• an object M ⊗N associated to each couple (M,N) of objects of C;

• a morphism f ⊗ g associated to each pair (f, g) of morphisms of C such that

dom(f ⊗ g) = dom(f)⊗ dom(g) and cod(f ⊗ g) = cod(f)⊗ cod(g).
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and the following identities are satisfied:

IdM⊗N = IdM ⊗ IdN and (f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g),

the latter whenever the composites f ′ ◦ f and g′ ◦ g are defined in C. Note also that the
last relation implies that

(Idcod(f) ⊗ g) ◦ (f ⊗ Iddom(g)) = f ⊗ g = (f ⊗ Idcod(g)) ◦ (Iddom(f) ⊗ g)

for all f, g in hom(C).

Definition 1.2.3. (Monoidal category)
A monoidal category (C,⊗, I, a, l, r) is a category C equipped with a tensor product ⊗
and with a distinguished object I, called the unit, such that ⊗ is associative ‘up to’ a
natural isomorphism a, I is a left and right unit for ⊗ ‘up to’ natural isomorphisms l
and r respectively and ‘all’ diagrams involving a, l and r must commute. Formally, this
means that we have three natural isomorphisms:

a : ⊗ (⊗× IdC)→ ⊗(IdC ×⊗) associativity constraint
l : ⊗ (I× IdC)→ IdC left unit constraint
r : ⊗ (IdC × I)→ IdC right unit constraint

that satisfy the Pentagon Axiom:

	

((M⊗N)⊗P )⊗Q
aM,N,P⊗Q //

aM⊗N,P,Q

||

(M⊗(N⊗P ))⊗Q

aM,N⊗P,Q

""
(M⊗N)⊗(P⊗Q)

aM,N,P⊗Q

((

M⊗((N⊗P )⊗Q)

M⊗aN,P,Q

vv
M⊗(N⊗(P⊗Q))

(1.9)

and the Triangle Axiom:

(M⊗I)⊗N
aM,I,N //

rM⊗N
��

	

M⊗(I⊗N)

M⊗lN
��

M⊗N

(1.10)

for all M , N , P , Q in C.
A monoidal category is said to be strict if the associativity and unit constraints are

all identities of the category.

Observe that Pentagon Axiom states that the two ways we have to go from (((M ⊗
N)⊗P )⊗Q) to (M ⊗ (N ⊗ (P ⊗Q))) must coincide and Triangle Axiom forces the unit
I to ‘behave well’ with respect to associativity. In what follows could happen that we
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refer to Pentagon and Triangle Axiom as simply ‘the Axioms’, for the sake of brevity.
Our first goal now is to prove that these two axioms are enough to solve all the problems
of this kind. The result that will take care of this is the so called ‘Mac Lane’s Coherence
Theorem’, but to come there we do not follow Mac Lane original work ([ML]). Instead,
we prefer Kassel’s approach ([Ka]), and this is why we will introduce soon the concept of
monoidal equivalence. For the moment, let us show that the Axioms imply commutativity
of other two triangular diagrams.

Proposition 1.2.4. ([Ka, Lemma XI.2.2]) Let (C,⊗, I, a, l, r) be a monoidal category.
The triangles

(I⊗M)⊗N
aI,M,N //

lM⊗N
��

I⊗(M⊗N)

lM⊗N

��
M⊗N

(1.11)

and
(M⊗N)⊗I

aM,N,I //

rM⊗N

��

M⊗(N⊗I)

M⊗rN
��

M⊗N

(1.12)

commute for all M , N in C.

Proof. The commutativity of the first triangle is proven in [Ka, Lemma XI.2.2], so let us
show that the second one commutes as well. Consider the following diagram, for M , N
and P in C:

((M⊗N)⊗I)⊗P

a⊗P

''

a

ww

r⊗P

��
(M⊗N)⊗(I⊗P )

a

��

(M⊗N)⊗l // (M⊗N)⊗P

a

��

(M⊗(N⊗I))⊗P
(M⊗r)⊗Poo

a

��

M⊗(N⊗P )

M⊗(N⊗(I⊗P ))

M⊗(N⊗l)

??

M⊗((N⊗I)⊗P )

M⊗(r⊗P )

__

M⊗a
oo

where we dropped the subscripts for the sake of simplicity (it is always clear which
subscripts are needed). The outside pentagon commutes by the Pentagon Axiom (1.9).
The two squares commute both by naturality of a. In view of the Triangle Axiom (1.10),
the lower and the upper left triangles commute. Thus the upper right triangle commutes
as well and we have that

((M ⊗ rN ) ◦ a)⊗ P = ((M ⊗ rN )⊗ P ) ◦ (a⊗ P ) = rM⊗N ⊗ P.
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Take P = I and recall that the right unit constraint is natural, i.e.:

Q⊗ I

	

rQ //

f⊗I
��

Q

f
��

Q′ ⊗ I rQ′
// Q′

commutes for each Q,Q′ ∈ C and every f : Q→ Q′ in hom(C). Thus, since rQ is always
an isomorphism, we get that

f = rQ′ ◦ (f ⊗ I) ◦ r−1
Q

for all f as above, and so

((M ⊗ rN ) ◦ a)⊗ I = rM⊗N ⊗ I

implies (M ⊗ rN ) ◦ a = rM⊗N for all M,N ∈ C, as desired.

Definition 1.2.5. ([Ka, Definition XI.4.1]) (Monoidal functor, natural monoidal trans-
formation, monoidal equivalence)
Let C = (C,⊗, I, a, l, r) and D = (D,�, I′, a′, l′, r′) be monoidal categories. A monoidal
functor from C to D is a triple (F,ϕ0, ϕ2) where F : C → D is a functor, ϕ0 is an
isomorphism from I′ to F (I), and

ϕ2(M,N) : F (M)� F (N)→ F (M ⊗N)

is a family of natural isomorphisms indexed by all couples (M,N) of objects of C, such
that the diagrams

(
F (M)� F (N)

)
� F (P )

a′
F (M),F (N),F (P ) //

ϕ2(M,N)�F (P )

��

F (M)�
(
F (N)� F (P )

)
F (M)�ϕ2(N,P )

��
F (M ⊗N)� F (P )

ϕ2(M⊗N,P )

��

F (M)� F (N ⊗ P )

ϕ2(M,N⊗P )

��
F ((M ⊗N)⊗ P )

F (aM,N,P )
// F (M ⊗ (N ⊗ P ))

(1.13)

I′ � F (M)
l′
F (M) //

ϕ0�F (M)

��

F (M)

F (I)� F (M)
ϕ2(I,M)

// F (I⊗M)

F (lM )

OO
(1.14)
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and

F (M)� I′
r′
F (M) //

F (M)�ϕ0

��

F (M)

F (M)� F (I)
ϕ2(M,I)

// F (M ⊗ I)

F (rM )

OO
(1.15)

commute for all objects M,N,P in C. The tensor functor (F,ϕ0, ϕ2) is said to be strict
if the isomorphisms ϕ0 and ϕ2 are identities of D.

A natural monoidal transformation η : (F,ϕ0, ϕ2)→ (F ′, ϕ′0, ϕ′2) between monoidal
functors from C to D is a natural transformation η : F → F ′ such that the following
diagrams commute for each couple (M,N) of objects in C:

F (I)

ηI

��

I′
ϕ0

;;

ϕ′0 ##
F ′(I)

F (M)� F (N)
ϕ2(M,N) //

ηM�ηN

��

F (M ⊗N)

ηM⊗N

��
F ′(M)� F ′(N)

ϕ′2(M,N)
// F ′(M ⊗N)

(1.16)

A natural monoidal isomorphism is a natural monoidal transformation that is also a
natural isomorphism.

A monoidal equivalence between monoidal categories is a monoidal functor F from C

to D such that there exist another monoidal functor G : D→ C and natural monoidal
isomorphisms η : IdC → GF and ε : FG → IdD. If, moreover, both composition are
actually identity functors, then it is called an isomorphism of monoidal categories.

Let C = (C,⊗, I, a, l, r), D = (D,�, I′, a′, l′, r′) and E = (E,�, I′′, a′′, l′′, r′′) be
monoidal categories. Assume that (F,ϕ0, ϕ2) and (G,ψ0, ψ2) are two monoidal functors,
F : C → D and G : D → E. Then we can consider the composite functor GF : C → E.
Moreover, if we apply G to ϕ0 : I′ → F (I) we obtain a map in E that we can compose
with ψ0 : I′′ → G(I′):

ξ0 =
(
I′′ ψ0 // G(I′) Gϕ0 // GF (I)

)
and analogously, for all M,N ∈ C:

ξ2(M,N)=
(
GF (M)�GF (N)

ψ2(F (M),F (N))// G(F (M)�F (N))
Gϕ2(M,N) // GF (M⊗N)

)
Lemma 1.2.6. In the previous context, the triple (GF, ξ0, ξ2) is a monoidal functor.

Proof. Clearly, GF is a functor as composition of two functors and ξ0 is an isomorphism as
composition of isomorphisms. Furthermore, ξ2 is a natural isomorphism as composition of
natural isomorphisms. Let us verify that the diagrams (1.13), (1.14) and (1.15) commute.
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Consider the following diagram:

(GF (M)�GF (N))�GF (P )
a′′ //

ψ2(F (M),F (N))�GF (P )

��

GF (M)�(GF (N)�GF (P ))

GF (M)�ψ2(F (N),F (P ))

��
G(F (M)�F (N))�GF (P )

ψ2(F (M)�F (N),F (P ))

��

Gϕ2(M,N)�GF (P )

{{

GF (M)�G(F (N)�F (P ))

ψ2(F (M),F (N)�F (P ))

{{
GF (M)�Gϕ2(N,P )

��

GF (M⊗N)�GF (P )

ψ2(F (M⊗N),F (P ))

��

G(F (M)�(F (N)�F (P )))

G(F (M)�ϕ2(N,P ))

��

G((F (M)�F (N))�F (P ))

G(ϕ2(M,N)�F (P ))

{{

G(a′)

;;

GF (M)�GF (N⊗P )

ψ2(F (M),F (N⊗P ))

{{
G(F (M⊗N)�F (P ))

Gϕ2(M⊗N,P )

��

G(F (M)�F (N⊗P ))

Gϕ2(M,N⊗P )

��
GF ((M⊗N)⊗P )

GF (a)
// GF (M⊗(N⊗P ))

The exterior path represents the compatibility of ξ2 with the associativity constraints
(i.e., diagram (1.13)). The upper hexagon commutes by compatibility of ψ2, while the
lower one by compatibility of ϕ2 and functoriality of G. The two rectangles, instead,
commute by naturality of ψ2. Next consider:

GF (M)�I′′
r′′
GF (M) //

GF (M)�ψ0

��

GF (M)

GF (M)�G(I′)

ψ2(F (M),I′)
$$

GF (M)�Gϕ0

zz
GF (M)�GF (I)

ψ2(F (M),F (I))
$$

G(F (M)�I′)

G(F (M)�ϕ0)
zz

G

(
r′
F (M)

)
CC

G(F (M)�F (I))
G(ϕ2(M,I))

// GF (M⊗I)

GF (rM )

OO

The exterior path represents again the compatibility of ξ0 with the right unit constraint
(i.e., diagram (1.15)). The upper square commutes by compatibility of ψ0, while the
lower right one by compatibility of ϕ0 and functoriality of G. The remaining square, the
left one, commutes by naturality of ψ2. Analogously, one can prove that also the third
diagram commutes.

Monoidal equivalences are quite a powerful tool. Indeed, as a result of the axioms
of monoidal functors, we have that if two monoidal categories are monoidal equivalent,
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then a diagram involving constraints, identities, tensors and compositions commutes in
one category if and only if its image commutes in the other. To get an idea of what
it means, recall (1.11) and let (F,ϕ0, ϕ2) : C → D be a monoidal equivalence between
(C,⊗, I, a, l, r) and (D,�, I′, a′, l′, r′). Look at the following diagram, where we dropped
any reference to objects while writing the arrows in order to lighten the notation (it
should be always clear which objects are involved):

(F (I)�F (V ))�F (W )
a′ //

ϕ2�F (W )

��

	

F (I)�(F (V )�F (W ))

F (I)�ϕ2

��
	

F ((I⊗V )⊗W )
F (a) //

F (l⊗W )

!!
	

F (I⊗(V⊗W ))

F (l)

}}

	

F (I⊗V )�F (W )

ϕ2

==

F (l)�F (W )

!!
	

F (V⊗W ) F (I)�F (V⊗W )

ϕ2

aa

	F (V )�F (W )

ϕ2

==

I′�F (V⊗W )

l′

aa

ϕ0�F (V⊗W )

==

(I′�F (V ))�F (W )

(ϕ0�F (V ))�F (W )

OO

l′�F (W )

66

a′
// I′�(F (V )�F (W ))

I′�ϕ2

hh

l′

kk

ϕ0�(F (V )�F (W ))

OO

The upper hexagon commutes by (1.13). The external square commutes by naturality of
a′. The central left square by naturality of ϕ2. The central right square is (1.14), as well
as the leftmost square. The central lower ‘square’ commutes by naturality of l′ and the
rightmost one because the two compositions are actually the same map.

Hence we can conclude that the central triangle commutes if and only if the lower
one commutes. That is: (1.11) commutes in C if and only if it commutes in D.
However, this cannot be used, in view of Mac Lane’s Coherence Theorem, to prove that
(1.11) commutes in all monoidal categories because it commutes in the associated strict
monoidal category, since we will need the commutativity of (1.11) in order to prove Mac
Lane’s Theorem. But it is a simple example of how monoidal equivalence works.

We are now ready to set out on the journey that will lead us to prove Mac Lane’s
Coherence Theorem. As we said, this proof is due to Kassel. For details, we refer to [Ka].

Let (C,⊗, I, a, l, r) be a monoidal category and start by considering the class of all
finite sequences of objects of C, including the empty sequence ∅. Denote it by S. An
object S in S is just

S = (C1, C2, . . . , Ck)
where Ci ∈ Ob(C) for all i = 1, . . . , k. The integer k is the length of S.

We can define the concatenation of two non empty sequences S = (C1, C2, . . . , Ck)
and S′ = (Ck+1, Ck+2, . . . , Ck+n) by simply placing the first after the second:

S ∗ S′ := (C1, C2, . . . , Ck, Ck+1, . . . , Ck+n) .

We set also ∅ ∗ S = S = S ∗ ∅. Now, to each sequence S = (C1, C2, . . . , Ck) we can assign
an object F (S) in C that is the tensor product of all the objects in S with parenthesis
associated on the left. That is, inductively:

F (∅) = I, F ((C)) = C, F (S ∗ (C)) = F (S)⊗ C (1.17)
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for each S ∈ S and C ∈ Ob(C). I.e.,

F (C1, C2, . . . , Ck) = ((· · · ((C1 ⊗ C2)⊗ C3)⊗ · · · )⊗ Ck−1)⊗ Ck.

Next we associate to the monoidal category C another category, denoted by Cstr, whose
objects are the sequences of S and whose morphisms are defined by:

homCstr(S, S′) := homC(F (S), F (S′)).

Proposition 1.2.7. ([Ka, Proposition XI.5.1]) The category Cstr is equivalent to C via
F : Cstr → C.

Proof. Consider the assignment

F : Cstr −→ C : S 7−→ F (S)

as defined above and such that it is the identity on morphisms (we are allowed to do so,
by how we defined morphisms in Cstr). Let us denote by f̂ : S → S′ the morphism in Cstr

obtained by f : F (S)→ F (S′).
The functor F is clearly fully faithful. Indeed, it is faithful by definition, and it is

full because if f : C → D is a morphism in C then f = F
(
f̂
)
, where f̂ : (C) → (D)

is a morphism in Cstr. Furthermore, for every C ∈ Ob(C), C = F ((C)) and so it also
essentially surjective on objects (actually, it is surjective). In view of Theorem 1.1.14, C
and Cstr are equivalent.

Consider the assignment

G : C→ Cstr : C 7→ (C) (1.18)

that operates as the identity on morphism (i.e., G(f) = f̂). Clearly FG(C) = F ((C)) = C,
while GF (S) = (F (S)). However, since

homCstr(S, (F (S))) = homC(F (S), F (S))

we can consider the natural isomorphism

ηS := ÎdF (S) : S → GF (S). (1.19)

Hence, G defines a functor which is the inverse equivalence to F .
Now, we give to Cstr a monoidal structure. The tensor product is given by concatena-

tion:
S ⊗ S′ := S ∗ S′.

This implies that, if we can show that it is actually a tensor product, (Cstr, ∗, ∅) is a strict
monoidal category (∗ is trivially associative). Therefore, we need to define the ∗ of two
maps in order to be able to verify that ∗ is a functor. And obviously we are going to
define it, in order to have that.

First of all, we construct a natural isomorphism

ϕ(S, S′) : F (S)⊗ F (S′)→ F (S ∗ S′)
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for every pair (S, S′) of objects in Cstr and we define it by induction on the length of S′.
Set

ϕ(∅, S′) := lF (S′) and ϕ(S, ∅) := rF (S). (1.20)

Next, set
ϕ(S, (C)) := IdF (S)⊗C : F (S)⊗ C → F (S ∗ (C)) (1.21)

and finally:
ϕ(S, S′ ∗ (C)) :=

(
ϕ(S, S′)⊗ C

)
◦ a−1

F (S),F (S′),C , (1.22)

i.e.,
F (S)⊗ F (S′ ∗ (C))

(1.17)

ϕ // F (S ∗ S′ ∗ (C))
(1.17)

F (S ∗ S′)⊗ C

F (S)⊗ (F (S′)⊗ C)
a−1
F (S),F (S′),C

// (F (S)⊗ F (S′))⊗ C
ϕ⊗C
OO

Note that it is an isomorphism because globally it is just the composition of morphisms
built from the associativity constraint and the identities by tensoring, in order to
reassociate all parenthesis on the left.

Lemma 1.2.8. The natural isomorphism ϕ defined above satisfies (1.13). That is, if S,
S′ and S′′ are sequences in Cstr, then

ϕ(S, S′ ∗ S′′) ◦ (F (S)⊗ϕ(S′, S′′)) ◦ aF (S),F (S′),F (S′′) = ϕ(S ∗ S′, S′′) ◦ (ϕ(S, S′)⊗F (S′′)).

Proof. Let us prove it by induction on the length of S′′. If S′′ = ∅, then F (S′′) = I and
S′ ∗ S′′ = S′. Thus, we have that:

ϕ(S, S′) ◦ (F (S)⊗ ϕ(S′, ∅)) ◦ aF (S),F (S′),I
(1.20)=

= ϕ(S, S′) ◦ (F (S)⊗ rF (S′)) ◦ aF (S),F (S′),I
(1.12)=

= ϕ(S, S′) ◦ rF (S)⊗F (S′)
(4)=

= rF (S∗S′) ◦ (ϕ(S, S′)⊗ I) (1.20)=
= ϕ(S ∗ S′, ∅) ◦ (ϕ(S, S′)⊗ I)

where in (4) we used naturality of r:

(F (S)⊗ F (S′))⊗ I
rF (S)⊗F (S′) //

ϕ(S,S′)⊗I
��

F (S)⊗ F (S′)

ϕ(S,S′)
��

F (S ∗ S′)⊗ I rF (S∗S′)
// F (S ∗ S′)
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Let C ∈ Ob(C) and let us prove that if the equality holds for the triple (S, S′, S′′) then it
holds for (S, S′, S′′ ∗ (C)).

ϕ(S,S′ ∗ S′′ ∗ (C)) ◦ (F (S)⊗ ϕ(S′, S′′ ∗ (C))) ◦ aF (S),F (S′),F (S′′∗(C))
(1.22)=

=
[

(ϕ(S, S′ ∗ S′′)⊗ C) ◦ a−1
F (S),F (S′∗S′′),C ◦ (F (S)⊗ (ϕ(S′, S′′)⊗ C))◦

◦(F (S)⊗ a−1
F (S′),F (S′′),C) ◦ aF (S),F (S′),F (S′′)⊗C

]
(N)=

=
[

(ϕ(S, S′ ∗ S′′)⊗ C) ◦ ((F (S)⊗ ϕ(S′, S′′))⊗ C)◦
◦a−1

F (S),F (S′)⊗F (S′′),C ◦ (F (S)⊗ a−1
F (S′),F (S′′),C) ◦ aF (S),F (S′),F (S′′)⊗C

]
(1.9)=

=
[

(ϕ(S, S′ ∗ S′′)⊗ C) ◦ ((F (S)⊗ ϕ(S′, S′′))⊗ C)◦
◦(aF (S),F (S′),F (S′′) ⊗ C) ◦ a−1

F (S)⊗F (S′),F (S′′),C

]
=

=
[

((ϕ(S, S′ ∗ S′′) ◦ (F (S)⊗ ϕ(S′, S′′)) ◦ aF (S),F (S′),F (S′′))⊗ C)◦
◦a−1

F (S)⊗F (S′),F (S′′),C

]
(•)=

= (ϕ(S ∗ S′, S′′)⊗ C) ◦ ((ϕ(S, S′)⊗ F (S′′))⊗ C) ◦ a−1
F (S)⊗F (S′),F (S′′),C

(N)=

= (ϕ(S ∗ S′, S′′)⊗ C) ◦ a−1
F (S∗S′),F (S′′),C ◦ (ϕ(S, S′)⊗ (F (S′′)⊗ C)) (1.22)=

= ϕ(S ∗ S′, S′′ ∗ (C)) ◦ (ϕ(S, S′)⊗ F (S′′ ∗ (C)))

where in (N) we used naturality of a and in (•) the induction hypothesis.

Now, take two morphisms f̂ : S → S′ and ĝ : T → T ′. By definition, f is a morphism
from F (S) to F (S′) and g is a morphism from F (T ) to F (T ′) in C. Therefore, we define
f̂ ∗ ĝ as the map that makes the following diagram commutative:

F (S)⊗ F (T )
ϕ(S,T ) //

f⊗g
��

F (S ∗ T )

F (f̂∗ĝ)
��

F (S′)⊗ F (T ′)
ϕ(S′,T ′)

// F (S′ ∗ T ′)

There are two things that should be noted here:

1. that such a map f̂ ∗ ĝ is unique, since ϕ is a natural isomorphism and F is faithful,

2. that ϕ is natural in both components, where the naturality is expressed by the
above diagram itself.

Theorem 1.2.9. ([Ka, Theorem XI.5.3]) Equipped with the tensor product ∗, Cstr is a
strict monoidal category. Furthermore, C and Cstr are monoidal equivalent.

Proof. To complete the proof of the first statement it is enough to show that ∗ preserves
the composition of maps. Hence consider

S
f̂ // S′

f̂ ′ // S′′

T
ĝ // T ′

ĝ′ // T ′′
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and look at the diagram

F (S)⊗ F (T )
ϕ(S,T ) //

f⊗g

��
(f ′◦f)⊗(g′◦g)

##

F (S ∗ T )

F (f̂∗ĝ)

��
F ((f̂ ′◦f̂)∗(ĝ′◦ĝ))

{{

F (S′)⊗ F (T ′)

f ′⊗g′

��

ϕ(S′,T ′) // F (S′ ∗ T ′)

F (f̂ ′∗ĝ′)

��
F (S′′)⊗ F (T ′′)

ϕ(S′′,T ′′) // F (S′′ ∗ T ′′)

We have two maps that make the external square commutes: (f̂ ′ ∗ ĝ′) ◦ (f̂ ∗ ĝ) and
(f̂ ′ ◦ f̂) ∗ (ĝ′ ◦ ĝ). Thus they must coincide and ∗ is a well defined functor.

Moreover, in view of Lemma 1.2.8 and the last observation, we have that

(F,ϕ0 := IdI, ϕ2 := ϕ)

is a monoidal functor. Indeed, the only properties that are left unverified are (1.14) and
(1.15), but

I⊗ F (S)

	

lF (S)=ϕ(∅,S)
//

IdI⊗F (S)
��

F (S)

F (∅)⊗ F (S)
ϕ(∅,S)

// F (∅ ∗ S)

F
(
ÎdF (S)

)OO
and F (S)⊗ I

	

rF (S)=ϕ(S,∅)
//

F (S)⊗IdI
��

F (S)

F (S)⊗ F (∅)
ϕ(S,∅)

// F (S ∗ ∅)

F
(
ÎdF (S)

)OO

Next, recall that we also know that F is an equivalence with inverse equivalence given by
G as defined in (1.18). From

homCstr(∅, (I)) = homC(I, I)

we can set ψ0 := ÎdI = Id∅ and from

homCstr((C,C ′), (C ⊗ C ′)) = homC(C ⊗ C ′, C ⊗ C ′)

we can set ψ2(C,C ′) := ÎdC⊗C′ . With this definitions, (G,ψ0, ψ2) is a (strict) monoidal
functor. Therefore, to conclude the proof we need to verify that the natural isomor-
phism η : IdCstr → GF defined in (1.19) is a natural monoidal transformation between
(IdCstr , Id∅, Id∗) and (GF, ξ0, ξ2), where

ξ0 = G(ϕ0) ◦ ψ0 and ξ2(S, T ) = G(ϕ2(S, T )) ◦ ψ2(F (S), F (T ))

as in Lemma 1.2.6.
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Let us begin by verifying the commutativity of the rightmost diagram in (1.16). If
we write it down and we apply F we get:

S ∗ T IdS∗T //

ηS∗ηT

��

S ∗ T

ηS∗T

��

F (S ∗ T )
IdF (S∗T ) //

F (ηS∗ηT )

��

F (S ∗ T )

F (ηS∗T )

��

F−→

(F (S), F (T ))
ϕ̂2(S,T )

// (F (S ∗ T )) F (S)⊗ F (T )
ϕ2(S,T )

// F (S ∗ T )

(1.23)

Recall that, by definition of ηS ∗ ηT , the following diagram commutes:

F (S)⊗ F (T )

IdF (S)⊗IdF (T )

��

ϕ(S,T ) // F (S ∗ T )

F (ηS∗ηT )
��

F (GF (S))⊗ F (GF (T ))
ϕ(GF (S),GF (T ))

// F (GF (S) ∗GF (T ))

(1.24)

However, since we have that:

• F (GF (S))⊗ F (GF (T )) = F (S)⊗ F (T ),

• ϕ(GF (S), GF (T )) = IdF ((F (S)))⊗F (T ) = IdF (S)⊗F (T ) by (1.21),

• F (GF (S) ∗GF (T )) = F (S)⊗ F (T ) by (1.17)

the commutativity of diagram (1.24) implies that F (ηS ∗ ηT ) ◦ ϕ(S, T ) = IdF (S)⊗F (T ),
from which we deduce that

F (ηS ∗ ηT ) = ϕ(S, T )−1.

Now, by recalling that ηS∗T = ÎdF (S∗T ), we have that the right hand diagram of (1.23)
commutes and, by faithfulness of F , we conclude that also the leftmost one commutes.

The remaining commutativity, i.e., the one of the leftmost diagram in (1.16), follows
since all maps involved are ÎdI.

As a corollary, we can now state Mac Lane’s result.

Theorem 1.2.10. (Mac Lane’s Coherence Theorem)
Let (C,⊗, I, a, l, r) be a monoidal category. Every diagram in C whose vertices are ‘words’
W of the same length n representing functors W : Cn → C and whose edges are natural
transformations IdI, IdIdC

, a, l, r and their ⊗-products commutes, where the functors in
question are I, IdC, −⊗− and their composites.

Remark 1.2.11. Bluntly speaking, Mac Lane’s Coherence Theorem states that Pentagon
Axiom and Triangle Axiom are necessary and sufficient to ensure that all diagrams built
from the constraints and the identities by composing and tensoring commutes.

Actually, Mac Lane’s and Kassel’s results are equivalent. However, this exceeds our
purposes, but the interested reader can find a proof in [ML, Section XI.3].
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Definition 1.2.12. (Algebra, coalgebra)
Let (C,⊗, I, a, l, r) be a monoidal category. An algebra (A,m, u) in C is an object
A ∈ Ob(C) together with two morphisms m : A ⊗ A → A (the multiplication) and
u : I→ A (the unit) such that the following diagrams commute:

(A⊗A)⊗A
aA,A,A //

m⊗A
��

A⊗ (A⊗A)

A⊗m
��

A⊗A m
// A A⊗Am
oo

(1.25)

I⊗A u⊗A //

lA %%

A⊗A
m
��

A⊗ IA⊗uoo

rA
zz

A

(1.26)

We express these commutativities by saying that A is associative and unital respectively.
A morphism of algebras f : A→ A′ between (A,m, u) and (A′,m′, u′) is a morphism in
hom(C) such that the following diagrams commutes

A⊗A f⊗f //

m
��

A′ ⊗A′

m′

��
A

f
// A′

A
f // A′

I
u

^^

u′

??

A coalgebra (C,∆, ε) is an object C ∈ C together with two morphisms ∆: C → C⊗C (the
comultiplication) and ε : C → I (the counit) such that the following diagrams commute:

C ⊗ C

∆⊗C
��

C
∆oo ∆ // C ⊗ C

C⊗∆
��

(C ⊗ C)⊗ C aC,C,C
// C ⊗ (C ⊗ C)

(1.27)

I⊗ C C ⊗ Cε⊗Coo C⊗ε // C ⊗ I

C
l−1
C

ee

r−1
C

99

∆

OO (1.28)

As above, we express these commutativities by saying that C is coassociative and counital
respectively. A morphism of coalgebras g : C → C ′ between (C,∆, ε) and (C ′,∆′, ε′) is a
morphism in hom(C) such that the following diagrams commutes

C
g //

∆
��

C ′

∆′
��

C ⊗ C
g⊗g
// C ′ ⊗ C ′

C
g //

ε
��

C ′

ε′��
I
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Example 1.2.13. I is always both an algebra and a coalgebra.
Let us start by showing that it is an algebra. For each M ∈ C, apply naturality of l

and r to lM and rM respectively:

I⊗ (I⊗M)

	

lI⊗M //

I⊗lM
��

I⊗M

lM
��

I⊗M
lM

//M

(M ⊗ I)⊗ I

	

rM⊗I //

rM⊗I
��

M ⊗ I
rM
��

M ⊗ I rM
//M

Recalling that the unit constraints are isomorphisms we get that

lI⊗M = I⊗ lM (1.29a)
rM⊗I = rM ⊗ I (1.29b)

Next, set M = N = I in (1.10) to get that:

(I⊗ I)⊗ I a //

rI⊗I %%

I⊗ (I⊗ I)

I⊗lIyy
I⊗ I

thus
(I⊗ rI) ◦ a

(1.12)= rI⊗I
(1.29b)= rI ⊗ I = (I⊗ lI) ◦ a.

Since a is invertible, we can erase it and obtain: I⊗ rI = I⊗ lI. However, recall that l is
a natural isomorphism: for each f : M → N in C we have that

I⊗M
	

lM //

I⊗f
��

M

f
��

I⊗N
lN
// N

and so f = lN ◦ (I⊗ f) ◦ l−1
M . We can conclude, then, that rI = lI. Therefore, we can set

m := rI = lI and u = IdI and they are both well defined maps in C. Now:

(I⊗ I)⊗ I a //

rI⊗I

++

lI⊗I

yy

I⊗ (I⊗ I)
I⊗lI

%%
I⊗ I

lI
**

I⊗ I

lI
ttI

commutes by the Triangle Axiom (1.10) and

I⊗ I u⊗I //

lI ##

I⊗ I
rIlI
��

I⊗ II⊗uoo

rI
{{I
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obviously commutes.
Next, proving that it is also a coalgebra is now really easy. Define ∆ := r−1

I = l−1
I

and ε = IdI. Again in view of (1.10), we have that both the following diagrams commute:

I
r−1
I //

r−1
I

��

I⊗ I
r−1
I ⊗I

��
I⊗ I

I⊗l−1
I ''

r−1
I ⊗I // (I⊗ I)⊗ I

I⊗ (I⊗ I)
a−1

77

I⊗ I I⊗ Iε⊗Ioo I⊗ε // I⊗ I

I

r−1
Il−1

I

OO

l−1
I

bb

r−1
I

<<

and this concludes the proof.

Let (C,⊗, I, a, l, r) be a monoidal category. A right action of an algebra (A,m, u) on
an object M ∈ Ob(C) is an arrow µ : M ⊗A→M of C such that the following diagram
commutes:

(M ⊗A)⊗A
aM,A,A //

µ⊗A

��

M ⊗ (A⊗A) M⊗m //M ⊗A

µ

��

M ⊗ IM⊗uoo

rM

yy
M ⊗A µ //M

(1.30)

In the same way, a right coaction of a coalgebra (C,∆, ε) on an object N ∈ Ob(C) is an
arrow ρ : N → N ⊗ C of C such that the following diagram commutes:

(N ⊗ C)⊗ C
aN,C,C // N ⊗ (C ⊗ C) N ⊗ CN⊗∆oo N⊗ε // N ⊗ I

N ⊗A

ρ⊗C

OO

N

ρ

OO

ρoo

r−1
N

:: (1.31)

Definition 1.2.14. (Modules, comodules and morphisms)
If (A,m, u) is an algebra, a right A-module is an object M ∈ Ob(C) together with a
right action of A on M . A morphism of right A-modules (M,µM ) and (N,µN ) is a map
f : M → N ∈ C(M,N) such that the following commutes:

M ⊗A
	

f⊗A //

µM
��

N ⊗A
µN
��

M
f

// N

Let us denote with CA the category of right A-modules.
If (C,∆, ε) is a coalgebra, a right C-comodule is an object M ∈ Ob(C) together with

a right coaction of C on M . A morphism of right C-comodules (M,ρM ) and (N, ρN ) is
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a map f : M → N ∈ C(M,N) such that the following commutes:

M

	

f //

ρM
��

N

ρN
��

M ⊗ C
f⊗C

// N ⊗ C

Let us denote with CC the category of right C-comodules.

Definition 1.2.15. (Bimodules)
Let (A,m, u) and (A′,m′, u′) be algebras in (C,⊗, I, a, l, r). An object M of C is an
(A,A′)-bimodule if there exists a right A′-action and a left A-action on M that are
compatible, i.e., two maps µ : A⊗M →M and µ′ : M ⊗A′ →M such that:

(M ⊗A′)⊗A′
a
M,A′,A′ //

µ′⊗A′

��

M ⊗ (A′ ⊗A′) M⊗m′ //M ⊗A′

µ′

��

M ⊗ IM⊗u′oo

rM

xx
M ⊗A′

µ′
//M

commutes,

(A⊗A)⊗M
aM,A,A

−1
//

m⊗M
��

A⊗ (A⊗M) A⊗µ // A⊗M

µ

��

I⊗Mu⊗Moo

lM
xx

A⊗M µ
//M

commutes and
(A⊗M)⊗A′

a
A,M,A′ //

µ⊗A′
��

A⊗ (M ⊗A′)

A⊗µ′
��

M ⊗A′
µ′

//M A⊗Mµ
oo

commutes.

1.3 The Monoidal Category of vector spaces

We shall henceforth consider the monoidal category (M = Vect(k),⊗, k, a, l, r) of k-vector
spaces, with tensor structure ⊗ given by the tensor product over k and with unit object
I the ground field k itself. An algebra in M = Vect(k) is an ordinary associative unital
k-algebra and the same for coalgebras. Let us spend just a few words to recall some facts
about these objects.

Definition 1.3.1. (Tensor product)
Let U, V be k-vector spaces and G be an abelian group. A map bG : U × V → G is said
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to be k-biadditive if, for all u, u′ ∈ U , v, v′ ∈ V and k ∈ k we have

bG(u+ u′, v) = bG(u, v) + bG(u′, v);
bG(u, v + v′) = bG(u, v) + bG(u, v′);

bG(uk, v) = bG(u, kv).

A tensor product of U and V is an ordered pair (T, bT ) where T is an abelian group and
bT : U × V → T is a k-biadditive map that satisfies the following universal property: for
every abelian group G and every k-biadditive map bG : U × V → G there exists a unique
morphism of abelian groups b̃G : T → G such that the following diagram commutes

U × V bT //

bG
��

T

b̃G{{
G

Remark 1.3.2. If a tensor product exists, then it is unique up to isomorphism. Indeed,
assume that (T, bT ) and (S, bS) are two tensor products. By the universal property, we
can fill in the following diagrams in a unique way:

U × V bT //

bS
��

T

f{{
S

U × V bS //

bT
��

S

g
{{

T

thus, we have that both IdT and g ◦ f make the following diagram commutative

U × V bT //

bT

��

T

IdT
||

g◦f

||
T

and so, by uniqueness, g ◦ f = IdT . In the same way, one proves that also f ◦ g = IdS .
Actually, it can be proven that the tensor product of two vector spaces always exists.

Let us recall just how it is constructed. Let S = U × V and consider the free abelian
group generated by S: ZS . Define L as the subgroup generated by all the elements of
the following type:

(u, v + v′)− (u, v)− (u, v′)
(u+ u′, v)− (u, v)− (u′, v)

(uk, v)− (u, kv)

for u, u′ ∈ U , v, v′ ∈ V , k ∈ k. Thus U ⊗ V := ZS
L and

bU⊗V : U × V −→ U ⊗ V : (u, v) 7−→ u⊗ v
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where u⊗ v is just the class of the generator (u, v) in the quotient. Note that U ⊗ V is
generated by elements of the form u⊗ v, so that the generic element x ∈ U ⊗ V has the
form

x =
<∞∑
i

ui ⊗ vi

for ui ∈ U and vi ∈ V , and this expression is not unique. For further details, we refer to
[Ro, Section 8.4].

Since k is a field, it is commutative, and therefore a k-vector space U is actually a
(k,k)-bimodule. Moreover, if u ∈ U and k ∈ k, we have that ku = uk. This implies that
also U ⊗ V is a k-vector space, for U, V k-vector spaces, with scalar multiplication given
by

k× (U ⊗ V ) −→ U ⊗ V : (k, u⊗ v) 7−→ ku⊗ v
and that the following identities hold:

k(u⊗ v) = ku⊗ v = uk ⊗ v = u⊗ kv = u⊗ vk = (u⊗ v)k (1.32)

for all u ∈ U , v ∈ V and k ∈ k.
Let U , V and W be k-vector spaces. Recall that a function f : U × V →W is called

a k-bilinear map if for each u ∈ U and v ∈ V the functions

fu : V −→W : v 7−→ f(u, v)
fv : U −→W : u 7−→ f(u, v)

are k-linear maps. Let us denote with hom(2)(U, V ;W ) the space of k-bilinear maps from
U ×V to W . Summing up what we have seen until now, the tensor product of two vector
spaces can be characterized as follows.
Theorem 1.3.3. ([Ka, Theorem II.1.1]) Given k-vector spaces U and V there exists
a k-vector space U ⊗ V and a bilinear map bU⊗V : U × V → U ⊗ V such that, for all
k-vector spaces W , the linear map

(− ◦ bU⊗V ) : hom(U ⊗ V,W ) −→ hom(2)(U, V ;W ) : f 7−→ f ◦ bU⊗V
is an isomorphism of k-vector spaces. The vector space U ⊗V is called the tensor product
of U and V and it is unique up to isomorphism.
Proof. We already know that U ⊗ V and bU⊗V exist and that U ⊗ V is a k-vector space
and bU⊗V is a k-biadditive map. Let us denote with simply b the map bU⊗V . In view of
(1.32) we have that b is k-bilinear, as claimed.

Next, if f : U × V → W is k-bilinear, then it is k-biadditive and so there exists a
unique morphism of abelian groups f̃ : U ⊗ V →W such that f̃ ◦ b = f , by the universal
property of the tensor product. This f̃ is also k-linear, for f is k-bilinear:

f̃(k(u⊗ v)) = f̃(b(ku, v)) = f(ku, v) = kf(u, v) = kf̃(u⊗ v).

Hence, in order to conclude, it is enough to observe that if g : U ⊗ V → W is another
k-linear map such that

U × V b //

f
��

U ⊗ V

g
yy

W
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commutes, then it is obviously Z-linear and so it has to coincide with f̃ .

Proposition 1.3.4. Let f : U → U ′ and g : V → V ′ be k-linear maps. Then we have a
k-linear map

f ⊗ g : U ⊗ V −→ U ′ ⊗ V ′ : u⊗ v 7−→ f(u)⊗ g(v).

Furthermore, if f ′ : U ′ → U ′′ and g′ : V ′ → V ′′ are other two k-linear maps, we have that

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g).

Proof. It’s enough to observe that the map

h : U × V −→ U ′ ⊗ V ′ : (u, v) 7−→ f(u)⊗ g(v)

is k-bilinear to have that there exists a unique k-linear map h̃ : U ⊗ V → U ′ ⊗ V ′ such
that h̃ ◦ b = h, i.e., h̃(u⊗ v) = f(u)⊗ g(v).

Next, consider the following diagram, where h′ : U ′ × V ′ → U ′′ ⊗ V ′′ is defined as h
above:

U × V
(f,g)

��

b //
b′◦(f,g)

&&

U ⊗ V

˜b′◦(f,g)yy
U ′ × V ′ b′ //

h′

��

U ′ ⊗ V ′

h̃′xx
U ′′ ⊗ V ′′

Every slashed arrow exists and it is unique by the universal property of the tensor product,
and makes the corresponding diagram commute. Hence the map

ξ := h̃′ ◦
(

˜b′ ◦ (f, g)
)

: U ⊗ V −→ U ′′ ⊗ V ′′ : u⊗ v 7−→ ((f ′ ⊗ g′) ◦ (f ⊗ g))(u⊗ v)

makes commutative the following diagram:

U × V b //

h′◦(f,g)
��

U ⊗ V

ξxx
U ′′ ⊗ V ′′

By the universal property of the tensor product again, we have that ξ = ˜h′ ◦ (f, g) and,
by definition,

˜h′ ◦ (f, g)(u, v) = ((f ′ ◦ f)⊗ (g′ ◦ g))(u, v)

for all u ∈ U , v ∈ V .

Corollary 1.3.5. The tensor product of k-vector spaces is a functor

⊗ : M×M→M.
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Proposition 1.3.6. ([Ka, Proposition II.1.3]) Let U , V , W be k-vector spaces. There
are isomorphisms

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

determined by (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w),

k⊗ V ∼= V ∼= V ⊗ k

determined by k ⊗ v 7→ kv and v 7→ v ⊗ 1, and

V ⊗W ∼= W ⊗ V

given by the flip τV,W defined by τV,W (v ⊗ w) = w ⊗ v.

Proof. It is self evident that all the maps are bijections. Thus we only need to show that
they are well defined.

For all w ∈W define a map

fw : U × V −→ U ⊗ (V ⊗W )
(u, v) 7−→ u⊗ (v ⊗ w)

It is clearly k-bilinear, thus there exists a unique k-linear map that fills in the commutative
diagram:

U × V
bU⊗V //

fw
��

U ⊗ V

f̃www
U ⊗ (V ⊗W )

Hence, we can define a map

a : (U ⊗ V )×W −→ U ⊗ (V ⊗W )
(z, w) 7−→ f̃w(z)

that is k-bilinear, too. Indeed, if we write z =
∑
i ui ⊗ vi, then for all z ∈ U ⊗ V , w ∈W ,

h, k ∈ k

a

(
k

(∑
i

ui ⊗ vi

)
, hw

)
= a

(∑
i

kui ⊗ vi, hw
)

= f̃hw

(∑
i

kui ⊗ vi

)
=

=
∑
i

kf̃hw(ui ⊗ vi) =
∑
i

kfhw(ui, vi) =

=
∑
i

k(ui ⊗ (vi ⊗ hw)) = kh
∑
i

(ui ⊗ (vi ⊗ w)) =

= kh a

(∑
i

ui ⊗ vi, w
)

Therefore, there exists a (unique) k-linear map

ã : (U ⊗ V )⊗W −→ U ⊗ (V ⊗W ) : (u⊗ v)⊗ w 7−→ u⊗ (v ⊗ w).
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Next, define a function

t : V ×W −→ W ⊗ V
(m,n) 7−→ n⊗m

It is k-bilinear and thus factors through the tensor product:

τ := t̃ : V ⊗W −→W ⊗ V : m⊗ n 7−→ n⊗m.

Finally, consider the k-linear morphism

i2 : V −→ k⊗ V : v 7−→ 1⊗ v.

If we can prove that the function

p2 : k⊗ V −→ V : k ⊗ v 7−→ kv

is well defined, then it follows easily that p2 ◦ i2 = IdV and i2 ◦ p2 = Idk⊗V . However,
the assignment (k, v) 7→ kv for k ∈ k and v ∈ V clearly defines a k-bilinear map from
k× V to V that factors through the tensor product and so p2 exists.

Corollary 1.3.7. The three canonical isomorphism of the previous proposition:

aU,V,W : (U ⊗ V )⊗W −→ U ⊗ (V ⊗W ) : (u⊗ v)⊗ w 7−→ u⊗ (v ⊗ w)
lV : k⊗ V −→ V : k ⊗ v 7−→ kv

rV : V ⊗ k −→ V : v ⊗ k 7−→ kv

are natural in all components and satisfy the Axioms (1.9) and (1.10).

Summing up, we have just proved that (M,⊗, k, a, l, r) is a monoidal category, where
the constraints are the ones given in the previous corollary. By Mac Lane’s Coherence
Theorem 1.2.10, we may omit all brackets from iterated tensor products and we may also
omit the constraints in any computation involving morphisms in M.

Now, fix a k-vector space V . Then the assignment

(−⊗ V ) : M→M

that maps a vector space U into U ⊗ V and a k-linear map g : U → U ′ into the k-linear
map g ⊗ V : U ⊗ V → U ′ ⊗ V : u⊗ v 7→ g(u)⊗ v defines a functor. Actually, in view of
Theorem 1.1.9, this functor is left adjoint to the representable functor

hom(V,−) : M −→M : W 7−→ hom(V,W )

where the k-vector space structure on hom(V,W ) is given by

(k g)(v) = k g(v) = g(k v) (1.33)

for all k ∈ k, g ∈ hom(V,W ) and v ∈ V . Indeed, we have the following result.

Proposition 1.3.8. ([Ka, Corollary II.1.2]) For any triple (U, V,W ) of k-vector spaces
there is a natural isomorphism of k-vector spaces

hom(U ⊗ V,W ) ∼= hom(U,hom(V,W )).
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Proof. Recall that, by Theorem 1.3.3,

hom(U ⊗ V,W ) ∼= hom(2)(U, V ;W )

via the k-linear morphism that assigns to each f : U ⊗ V →W in hom(U ⊗ V,W ), the
composition f ◦ bU⊗V , where bU⊗V : U × V → U ⊗ V is the canonical map.

Next, pick a k-bilinear map g : U × V →W . We already know that for each u ∈ U ,

gu : V −→W : v 7−→ g(u, v)

is a k-linear map, thus we can define a function:

g∗ : U −→ hom(V,W ) : u 7−→ gu

that is k-linear, too. Indeed, for all v ∈ V ,

g∗(ku)(v) = gku(v) = g(ku, v) = k g(u, v) = k gu(v) = k g∗(u)(v) (1.33)= (k g∗(u))(v).

This observation allows us to define another map:

ψ : hom(2)(U, V ;W ) −→ hom(U,hom(V,W )) : g 7−→ g∗. (1.34)

As one can expect, the k-vector space structure on hom(2)(U, V ;W ) is given by:

(k g)(u, v) = k g(u, v) (∀ k ∈ k, u ∈ U, v ∈ V, g ∈ hom(2)(U, V ;W )). (1.35)

Therefore, even ψ is k-linear, since for all u ∈ U and v ∈ V

(k g)∗(u)(v) = (k g)(u, v) (1.35)= k g(u, v) =

= k g∗(u)(v) (1.33)= (k g∗(u))(v) (1.33)=
= (k g∗)(u)(v),

for every k ∈ k, u ∈ U, v ∈ V, g ∈ hom(2)(U, V ;W ).
Conversely, consider

φ : hom(U,hom(V,W ))→ hom(2)(U, V ;W )

that maps g : U → hom(V,W ) to

φ(g) : U × V −→ W
(u, v) 7−→ g(u)(v) (1.36)

Let us show that φ is the inverse of ψ. First of all, let g ∈ hom(U,hom(V,W )). For
all u ∈ U and v ∈ V we have that

ψ(φ(g))(u)(v) (1.34)= (φ(g))∗(u)(v) = (φ(g))(u, v) (1.36)= g(u)(v)

and so, for all u ∈ U and g ∈ hom(U,hom(V,W )), ψ(φ(g))(u) = g(u). That is, ψ(φ(g)) =
g for every g ∈ hom(U,hom(V,W )).
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On the other hand, for all f ∈ hom(2)(U, V ;W ), u ∈ U , v ∈ V ,

φ(ψ(f))(u, v) (1.36)= ψ(f)(u)(v) (1.34)= f∗(u)(v) = f(u, v).

Hence, φ ◦ ψ = Idhom(2)(U,V ;W ).
What we got, is that we have an isomorphism of k-vector spaces

hom(U ⊗ V,W ) ∼= hom(U,hom(V,W )),

that is given by the composition of the two isomorphisms (− ◦ bU⊗V ) and ψ. Let us
denote it by ξU,W .

Explicitly, we have that: if f : U ⊗ V →W is a morphism in hom(U ⊗ V,W ), then
ξU,W (f) : U → hom(V,W ) is the k-linear map that assigns to each u ∈ U the function

ξU,W (f)(u) : V −→ W
v 7−→ f(u⊗ v) (1.37)

It remains to prove that ξ is natural. To do that, pick two morphisms of k-vector
spaces

α : U → U ′

β : W →W ′

and consider the diagram:

hom(U ′ ⊗ V,W )
ξU′,W //

β◦(−)◦(α⊗V )

��

hom(U ′,hom(V,W ))

hom(V,β)◦(−)◦α

��
hom(U ⊗ V,W ′)

ξU,W ′
// hom(U,hom(V,W ′))

where hom(V, β) is the function that assigns to each morphism g in hom(V,W ) the
morphism β ◦ g in hom(V,W ′). Let u be an element in U , v be an element in V , ϕ be in
hom(U ′ ⊗ V,W ) and set

X(−) := (hom(V, β) ◦ (ξU ′,W (ϕ)) ◦ α)(−)
Y (−) := (ξU,W ′)(β ◦ ϕ ◦ (α⊗ V ))(−)

Hence, we have that on one hand:

X(u)(v) =
[
(hom(V, β) ◦ (ξU ′,W (ϕ)) ◦ α)(u)

]
(v) =

=
{
hom(V, β)

[
(ξU ′,W (ϕ))(α(u))

]}
(v) =

=
[
β ◦ (ξU ′,W (ϕ))(α(u))

]
(v) =

= β
[
(ξU ′,W (ϕ))(α(u))(v)

] (1.37)=
= β(ϕ(α(u)⊗ v))
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on the other hand:

Y (u)(v) = ξU,W ′(β ◦ ϕ ◦ (α⊗ V ))(u)(v) (1.37)=
= (β ◦ ϕ ◦ (α⊗ V ))(u⊗ v) =
= β [ϕ(α(u)⊗ v)]

and so the diagram commutes and ξ is natural.

The previous proposition allows us to prove two more important properties of tensor
products. The first one is that it commutes with arbitrary direct sums. The second one
is that the functor −⊗ V is right exact.

Proposition 1.3.9. ([Ka, Proposition II.1.4]) Let {Ui}i∈I be a family of k-vector spaces
and V another k-vector space. Then we have that(⊕

i∈I
Ui

)
⊗ V ∼=

⊕
i∈I

(Ui ⊗ V )

Proof. By the universal property of the direct sum and Proposition 1.3.8 we have that

hom
((⊕

i∈I
Ui

)
⊗ V,W

)
∼= hom

(⊕
i∈I

Ui, hom(V,W )
)
∼=

∼=
∏
i∈I

hom(Ui,hom(V,W )) ∼=

∼=
∏
i∈I

hom(Ui ⊗ V,W ) ∼=

∼= hom
(⊕
i∈I

(Ui ⊗ V ),W
)

Call α the natural isomorphism given by the composition, i.e., for W k-vector space:

αW : hom
((⊕

i∈I
Ui

)
⊗ V,W

)
→ hom

(⊕
i∈I

(Ui ⊗ V ),W
)

First, consider the case W =
(⊕
i∈I

Ui

)
⊗ V and set ϕ := α

(
Id(
⊕

i∈I Ui)⊗V
)

. Then,

consider the case W =
⊕
i∈I

(Ui ⊗ V ) and set ψ := α−1
(
Id⊕

i∈I(Ui⊗V )

)
. The subscripts

are omitted in order to lighten the notation. We claim that ϕ and ψ are inverses one
another. Indeed, by naturality of α:

ψ ◦ ϕ = ψ ◦ α(Id) = α(ψ) = Id,

ϕ ◦ ψ = ϕ ◦ α−1(Id) = α−1(ϕ) = Id.
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Corollary 1.3.10. Let {ui | i ∈ I} be a basis of the vector space U and {vj | j ∈ J} be a
basis of V . Then the set {ui ⊗ vj | (i, j) ∈ I × J} is a basis of the tensor product U ⊗ V .
Consequently, we have dim(U ⊗ V ) = dim(U) dim(V ).

Proof. In view of Proposition 1.3.6 and Proposition 1.3.9 we have that

U ⊗ V ∼=
(⊕
i∈I

kui

)
⊗

⊕
j∈J

kvj

 ∼= ⊕
(i,j)∈I×J

k(ui ⊗ vj).

Proposition 1.3.11. Let U1
f // U2

g // U3 // 0 be an exact sequence of k-vector
spaces. Then, for each vector space V , the following sequence is exact too:

U1 ⊗ V
f⊗V // U2 ⊗ V

g⊗V // U3 ⊗ V // 0

Proof. There exists a result that states that if R is a commutative ring and

M1
f //M2

g //M3 // 0

is a sequence of R-modules, then it is exact if and only if, for each R-module N , is exact
the sequence of Z-modules

0 // hom(M3, N)
hom(g,N) // hom(M2, N)

hom(f,N) // hom(M1, N),

where hom(f,N) represents the morphism of groups that maps h ∈ hom(M2, N) into
h ◦ f ∈ hom(M1, N) (for details, refer to [Ro, Section 7.3]).

Obviously, k is a commutative ring, thus

U1 ⊗ V
f⊗V // U2 ⊗ V

g⊗V // U3 ⊗ V // 0

is exact if and only if

0 // hom(U3 ⊗ V,W )
hom(g⊗V,W )// hom(U2 ⊗ V,W )

hom(f⊗V,W )// hom(U1 ⊗ V,W )

is exact for every k-vector space W . However, if you set Z = hom(V,W ) and look at the
following diagram:

0 // hom(U3 ⊗ V,W )
hom(g⊗V,W )//

ξU3,W
��

hom(U2 ⊗ V,W )
hom(f⊗V,W )//

ξU2,W
��

hom(U1 ⊗ V,W )
ξU1,W

��
0 // hom(U3, Z)

hom(g,Z) // hom(U2, Z)
hom(f,Z) // hom(U1, Z)

it is commutative by naturality of ξ and the lower sequence is exact, since the sequence

U1
f // U2

g // U3 // 0 is by hypothesis.
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Actually, everything we have seen until now about tensor product holds true in
the more general context of R-modules over a commutative ring R. However, k-vector
spaces have something more than a simple R-module: they are all free k-modules. This
guarantees that for each vector space V , the functor −⊗ V is exact.

Proposition 1.3.12. Every k-vector space is flat. This means that, if V is a k-vector
space and

0 // U1
f // U2

g // U3 // 0

is a short exact sequence of k-vector spaces, then

0 // U1 ⊗ V
f⊗V // U2 ⊗ V

g⊗V // U3 ⊗ V // 0

is a short exact sequence as well.

Proof. We just have to prove that if f : U → V is an injective morphism, then also
f ⊗W : U ⊗W → V ⊗W is, for each W ∈ Vect(k). However, if {ei | i ∈ I} is a k-basis
for W , then

W ∼=
⊕
i∈I

k

as k-vector spaces. In light of Proposition 1.3.6 and Proposition 1.3.9, we have the
following commutative diagram:

U ⊗W f⊗W //
OO

∼=
��

V ⊗WOO
∼=
��

U ⊗ (
⊕
i∈I k) f⊗Id //
OO

∼=
��

V ⊗ (
⊕
i∈I k)
OO
∼=
��⊕

i∈I(U ⊗ k) //
OO

∼=
��

⊕
i∈I(V ⊗ k)
OO
∼=
��⊕

i∈I U ϕ
//⊕

i∈I V

that means that f ⊗W is injective if and only if ϕ is injective, where ϕ is the codiagonal
morphism of the family fi : Ui → Vi, i ∈ I, defined by fi(u) = f(u) for all u ∈ Ui = U .

Now, it is clear that ϕ is injective if and only if all fi are injective. Indeed, by
definition of ϕ the following diagram commutes:

Us
fs //

εs
��

Vs

εs
��⊕

i∈I U ϕ
//⊕

i∈I V

where εs is the canonical inclusion of the s-factor. That implies that if ϕ is injective,
then also fs is, for all s ∈ I. Conversely, if

(fi(ui))i∈I = ϕ((ui)i∈I) = ϕ((vi)i∈I) = (fi(vi))i∈I

45



then, taking the projection on the s-factor, we find that fs(us) = fs(vs) for all s ∈ I. By
hypothesis on the fs, we have that us = vs for all s ∈ I and so ϕ is injective.

As f is injective by hypothesis, ϕ is injective and so f ⊗W is.

Remark 1.3.13. As a general fact, any functor preserves split morphisms: if f and g are
morphisms in a certain category C such that g ◦ f = Iddom(f), and if F : C→ D is any
functor, then

F (g) ◦ F (f) = F (g ◦ f) = F (Iddom(f)) = IdF (dom(f)).

In particular the tensor product functor does (in any monoidal category). In our case of
vector spaces then, an alternative proof of Proposition 1.3.12 could be given by employing
such a fact. Indeed, any monomorphism (it is just a synonym for monic) in the category
of vector spaces splits.

Let us just recall briefly why: let f : U → V be a monomorphism of vector spaces.
Pick a basis {ei | i ∈ I} for U and consider its image in V : B = {f(ei) | i ∈ I}. Complete
it to a basis for V : B ∪B′, and define g : V → U by setting g(f(ei)) := ei for all i in I
and g(B′) = 0. This g is a well defined linear map and it is such that g ◦ f = IdU .

Now, since we have proved that M = Vect(k) is a monoidal category, we can consider
algebras and coalgebras in M. But as we said at the beginning of this section, algebras
and coalgebras in Vect(k) are nothing more than the usual k-algebras and k-coalgebras.
Moreover, we can consider modules and comodules as defined in Definition 1.2.14 and
these are the ordinary modules and comodules over (not necessarily commutative or
cocommutative) k-algebras and coalgebras. However, a quite interesting new concept
that we are going to introduce shortly is the one of bialgebras. Before, let us fix some
notations.
Remark 1.3.14. (Sweedler’ Sigma Notation) Consider the category of k-vector spaces
(M,⊗,k, a, l, r). Let (C,∆, ε) be a coalgebra in M and let x ∈ C be an element. Sweedler’
Sigma Notation is a formal writing to denote the image through the comultiplication of a
general element of the coalgebra:

∆(x) =
∑
(x)

x(1) ⊗ x(2) ∈ C ⊗ C.

Since ∆ is coassociative and ε is a counit for ∆, the following equalities hold:

∑
(x)

∑
(x(1))

(
x(1)

)
(1)
⊗
(
x(1)

)
(2)

⊗ x(2) =
∑
(x)

x(1) ⊗ x(2) ⊗ x(3)

∑
(x)

x(1) ⊗

∑
(x(2))

(
x(2)

)
(1)
⊗
(
x(2)

)
(2)

 =
∑
(x)

x(1) ⊗ x(2) ⊗ x(3)

(1.38a)

∑
(x)

ε(x(1))x(2) = x =
∑
(x)

x(1) ε(x(2)) (1.38b)

Nevertheless, we will prefer a slightly less heavy variation of the ‘Sweedler’ Sigma
notation’:

∆(x) =
∑
(x)

x(1) ⊗ x(2) = x1 ⊗ x2 (∀x ∈ C),
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without summation symbols and too many parenthesis.
In the same way, let (N, ρ) be a right C-comodule as defined in 1.2.14. For all n ∈ N ,

the following identities are immediate consequences of the definition and the formal
‘Sigma notation’ we introduced:

ρ(n) =
∑
(n)

n(0) ⊗ n(1) = n0 ⊗ n1 (1.39a)

n0 ⊗ ((n1)1 ⊗ (n1)2) = ((n0)0 ⊗ (n0)1)⊗ n1 = n0 ⊗ n1 ⊗ n2 (1.39b)
n0 ε(n1) = n (1.39c)

where n0 ⊗ ((n1)1 ⊗ (n1)2) = (N ⊗∆)(ρ(n)) and ((n0)0 ⊗ (n0)1)⊗ n1 = (ρ⊗ C)(ρ(n)).
Let (A,m, u) be an algebra in M. We know that A ⊗ A is an object in M as well.

Actually, it is an algebra too.

Proposition 1.3.15. Let (A,m, u) be an algebra in (M,⊗,k, a, l, r) and define:

m⊗ = (m⊗m) ◦ (aA,A,A⊗A)−1 ◦ (A⊗ aA,A,A) ◦ (A⊗ τ ⊗A) ◦
(
A⊗ (aA,A,A)−1

)
◦ aA,A,A⊗A

and u⊗ = (u⊗ u) ◦∆k, where τ is the twist: τ(a⊗ b) = b⊗ a. Then (A⊗A,m⊗, u⊗) is
an algebra in M.

Proof. Indeed, since:

m⊗((a⊗ b)⊗ (c⊗ d)) = ac⊗ bd and u⊗(1k ⊗ 1k) = 1A ⊗ 1A,

it is self evident that m⊗ inherits all the properties of m:

m⊗(m⊗((a⊗ b)⊗ (c⊗ d))⊗ (x⊗ y)) = (ac)x⊗ (bd)y =
= a(cx)⊗ b(dy) = m⊗((a⊗ b)⊗m⊗((c⊗ d)⊗ (x⊗ y))),

(associativity)

m⊗((u⊗ ⊗ (A⊗A))(k ⊗ (a⊗ b))) = k(a⊗ b),

m⊗(((A⊗A)⊗ u⊗)((a⊗ b)⊗ k)) = (a⊗ b)k.

 (unity)

Dually, the same holds true for coalgebras.

Proposition 1.3.16. Let (C,∆, ε) be a coalgebra in (M,⊗,k, a, l, r) and define

∆⊗ = (aA,A,A⊗A)−1 ◦ (A⊗ aA,A,A) ◦ (A⊗ τ ⊗A) ◦
(
A⊗ (aA,A,A)−1

)
◦ aA,A,A⊗A ◦ (∆⊗∆)

and ε⊗ = mk ◦ (ε⊗ ε). Then (C ⊗ C,∆⊗, ε⊗) is a coalgebra in M.

Proof. ∆⊗ and ε⊗ are morphisms in M, since they are composition of morphisms in M.
The coassociativity of ∆ guarantees that:

(∆⊗ ⊗ C) (∆⊗(x⊗ y)) = (((x1)1 ⊗ (y1)1)⊗ ((x1)2 ⊗ (y1)2))⊗ (x2 ⊗ y2) =
= (x1 ⊗ y1)⊗ (x2 ⊗ y2)⊗ (x3 ⊗ y3) =
= (x1 ⊗ y1)⊗ (((x2)1 ⊗ (y2)1)⊗ ((x2)2 ⊗ (y2)2)) =
= (C ⊗∆⊗) (∆⊗(x⊗ y)).
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Moreover:

(ε⊗ ⊗ C)(∆⊗(x⊗ y)) = ε(x1)ε(y1)⊗ x2 ⊗ y2 = 1k ⊗ x⊗ y = (lC⊗C)−1(x⊗ y)

and

(C ⊗ ε⊗)(∆⊗(x⊗ y)) = x1 ⊗ y1 ⊗ ε(x2)ε(y2) = x⊗ y ⊗ 1k = (rC⊗C)−1(x⊗ y).

Remark 1.3.17. That the tensor product of two algebras (or coalgebras) is an algebra (or
a coalgebra), is in fact mainly a consequence of the symmetry (given by the flip map τ)
of the tensor product of vector spaces. The same holds true in the monoidal category of
(say left) modules over a commutative ring. But unfortunately, there is no direct way to
endow a tensor product of two algebras (resp. coalgebras) with a structure of algebra
(resp. coalgebra), if the handled monoidal category is no longer symmetric (or at least
braided). This happens for instance in case of the category of bimodules over a non
commutative ring.

Assume now that A ∈ M is an object equipped simultaneously with an algebra
structure (A,m, u) and a coalgebra structure (C,∆, ε).

Theorem 1.3.18. ([Ka, Theorem III.2.1], [Sw, Proposition 3.1.1]) The following are
equivalent:

(1) ∆ and ε are morphisms of algebras.

(2) m and u are morphisms of coalgebras.

Proof. Observe that m and u are morphisms of coalgebras if and only if the following
diagrams commutes:

A⊗A

(a)

mA //

∆A⊗A
��

A

∆A

��
(A⊗A)⊗ (A⊗A)

mA⊗mA
// A⊗A

A⊗A

(b)

mA //

εA⊗A
��

A

εA
��

k

k
(c)

uA //

∆k
��

A

∆A

��
k⊗ k

uA⊗uA
// A⊗A

k
(d)

uA //

εk ��

A

εA��
k

On the other hand, ∆ and ε are morphisms of algebras if and only if the following
diagrams commute:

A⊗A

(i)

∆A⊗∆A //

mA
��

(A⊗A)⊗ (A⊗A)
mA⊗A
��

A
∆A

// A⊗A

(ii)

k
uA⊗A

��

uA

��
A

∆A

// A⊗A
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A⊗A
(iii)

εA⊗εA //

mA
��

k⊗ k
mk
��

A εA
// k

(iv)

k
uk

��

uA

��
A εA

// k

Omitting the associative constraints we have that:

• (a) commutes if and only if

∆A ◦mA = (mA ⊗mA) ◦∆A⊗A = (mA ⊗mA) ◦ (IdA ⊗ τ ⊗ IdA) ◦ (∆A ⊗∆A) =
= mA⊗A ◦ (∆A ⊗∆A),

if and only if (i) commutes.

• (b) commutes if and only if εA ◦mA = εA⊗A = mk ◦ (εA ⊗ εA), if and only if (iii)
commutes.

• (c) commutes if and only if ∆A ◦ uA = (uA ⊗ uA) ◦∆k = uA⊗A, if and only if (ii)
commutes.

• (d) commutes if and only if εA ◦ uA = εk = Idk, if and only if (iv) commutes.

Definition 1.3.19. (Bialgebra)
A bialgebra is a quintuple (B,m, u,∆, ε) where (B,m, u) is an algebra and (B,∆, ε) is a
coalgebra verifying the equivalent conditions of Theorem 1.3.18.

Note that in a bialgebra (B,m, u,∆, ε) the following identities hold:

(xy)1 ⊗ (xy)2 = x1y1 ⊗ x2y2

and
∆(1A) = 1A ⊗ 1A, ε(xy) = ε(x) ε(y), ε(1A) = 1k.

Remark 1.3.20. Let (A,m, u) be an algebra with a morphism of algebras ∆: A→ A⊗A,
called the comultiplication, and a morphism of algebras ε : A→ k, called the counit. If
(M,µM ) and (N,µN ) are right A-modules, then M ⊗N comes with a natural structure
of right A⊗A-module:

(m⊗ n) · (a⊗ b) = m · a⊗ n · b,

extended by linearity. Indeed:

(m⊗ n) · ((a⊗ b)(c⊗ d)) = m(ac)⊗ n(bd) = ((m⊗ n) · (a⊗ b)) · (c⊗ d)),

(m⊗ n) · (1⊗ 1) = m⊗ n.

The comultiplication allows us to convert this structure into an A-module structure:

(m⊗ n) · a = (m⊗ n) ·∆(a) ∀m ∈M,n ∈ N, a ∈ A,
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extended, again, by linearity. In view of the fact that ∆ is a morphism of algebras, we
have that:

(m⊗ n) · ab = (m⊗ n) ·∆(ab) = ((m⊗ n) ·∆(a)) ·∆(b) = ((m⊗ n) · a) · b.

Via ε we can give an A-module structure to k too:

k · a = k ε(a).

Thus the tensor product over k restricts to a tensor structure on the category MA, even
if ∆ is not coassociative or ε is not a counit for ∆.

The last Remark suggests a way to characterize bialgebras in terms of their categories
of modules.

Proposition 1.3.21. ([Ka, Proposition XI.3.1]) Let (A,m, u) be an algebra with comul-
tiplication ∆ and counit ε. (A,m, u,∆, ε) is a bialgebra if and only if (MA,⊗,k, a, l, r)
is a monoidal category, where a, l and r are the same constraints of (M,⊗,k, a, l, r).

Proof. Start assuming that (A,m, u,∆, ε) is a bialgebra. Obviously, a, l and r are natural
and satisfy the Axioms (1.9) and (1.10). Hence we are left to prove that aM,N,P , lM and
rM are morphisms of right A-modules for all M , N and P in MA. However, A-linearity is
a straightforward consequence of the coassociativity and counity of ∆ and ε. In particular,
in view of (1.38a) and (1.38b), for all m ∈M , n ∈ N , p ∈ P and x ∈ A:

aM,N,P ([(m⊗ n)⊗ p] · x) = aM,N,P ((m · (x1)1 ⊗ n · (x1)2)⊗ p · x2) =

= m · (x1)1 ⊗ (n · (x1)2 ⊗ p · x2) (1.38a)=
= m · x1 ⊗ (n · (x2)1 ⊗ p · (x2)2) =
= aM,N,P ((m⊗ n)⊗ p) · x,

lM ((1⊗m) · x) = lM (ε(x1)⊗m · x2) = m · ε(x1)x2
(1.38b)= lM (1⊗m) · x

and

rM ((m⊗ 1) · x) = rM (m · x1 ⊗ ε(x2)) = m · x1 ε(x2) (1.38b)= rM (m⊗ 1) · x

Proving the converse is immediate, too. Let m ∈M , n ∈ N , p ∈ P and x ∈ A. We know
that the associative constraint is right A-linear, thus

aM,N,P ([(m⊗ n)⊗ p] · x) = aM,N,P ((m⊗ n)⊗ p) · x.

By definition of the right A-action on the tensor product, this last relation can be
rewritten as:

(m⊗ (n⊗ p))(∆⊗A)(∆(x)) = (m⊗ (n⊗ p))(A⊗∆)(∆(x)).

Setting M = N = P = A and m = n = p = 1 gives coassociativity of ∆. In the same
way, since also the left and right unit constraints are A-linear, we have that:

m · ε(x1)x2 = lM ((1⊗m) · x) = lM (1⊗m) · x = m · x,
m · x1 ε(x2) = rM ((m⊗ 1) · x) = rM (m⊗ 1) · x = m · x.

Setting again M = A and m = 1 we find that ε is a counit.

50



Example 1.3.22. Let X be a set and V := kX =
⊕
x∈X kx be the k-vector space with

basis X. Define
∆(x) = x⊗ x and ε(x) = 1k

for all x ∈ X and extend them by k-linearity. Thus we have that

[aV,V,V ◦ (∆⊗ V ) ◦∆](x) = x⊗ (x⊗ x) = (V ⊗∆)(∆(x)),
(ε⊗ V )(∆(x)) = x = (V ⊗ ε)(∆(x))

and so (kX,∆, ε) is a coalgebra. Furthermore, assume that X is equipped with a unital
monoid structure, i.e., with an associative map µ : X ×X → X having a left and right
unit u. Then (kX,m, u,∆, ε) is a bialgebra, where m denotes the k-linear extension of µ
to kX.

Indeed, if we define the k-linear function

µ : kX × kX −→ kX :

<∞∑
i

kixi,
<∞∑
j

hjyj

 7−→ <∞∑
i,j

kihjµ(xi, yj).

then it is clearly k-bilinear and thus there exists a unique k-linear map:

m : kX ⊗ kX −→ kX :
<∞∑
i

ki(xi ⊗ yi) 7−→
<∞∑
i

kiµ(xi, yi).

Since µ is associative and unital, also m becomes associative and unital and so (kX,m, u)
is an algebra. For simplicity’s sake, denote µ(x, y) = xy. Since

∆(xy) = xy ⊗ xy = (x⊗ x)(y ⊗ y) = ∆(x)∆(y)
ε(xy) = 1 = ε(x) ε(y)

we have that, actually, (kX,m, u,∆, ε) is a bialgebra as claimed.
The best known example of such a construction is the group algebra kG defined on a

group G. We will come back to the group algebra later.
Example 1.3.23. Consider k[T ], the polynomial algebra of one indeterminate T . Besides
the bialgebra structure inherited by the previous example (it can be seen as the vector
space with basis the monoid {Tn | n ∈ N}), it can be equipped with another bialgebra
structure. Define

∆(T ) = T ⊗ 1 + 1⊗ T and ε(T ) = 0
and extend them by induction using polynomial multiplication:

∆(Tn+1) = ∆(Tn)∆(T ) and ε(Tn) = 0,

for all n ∈ N. By construction, ∆ and ε are morphisms of algebras, coassociative and
counital respectively:

(k[T ]⊗∆) (∆(T )) = T ⊗ 1⊗ 1 + 1⊗ T ⊗ 1 + 1⊗ 1⊗ T = (∆⊗ k[T ]) (∆(T ))
(r ◦ (k[T ]⊗ ε) ◦∆)(T ) = T = (l ◦ (ε⊗ k[T ]) ◦∆)(T )

Hence, k[T ] with this structure maps is again a bialgebra.
Moreover, take k[T, T−1], the Laurent polynomial algebra of one indeterminate T . It

is a bialgebra as it was seen in Example 1.3.22, by taking the cyclic free abelian group
generated by {T}.
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Chapter 2

The Structure Theorem for Hopf
modules

Throughout we will assume that M = (M,⊗,k, a, l, r) is the monoidal category of k-vector
spaces and that B = (B,m, u,∆, ε) is a bialgebra in M.

2.1 An equivalence between MB
B and M

Lemma 2.1.1. (B,m) is a right B-module and ((B,m),∆, ε) is a coalgebra within the
monoidal category (MB,⊗,k, a, l, r).

Proof. First of all, (B,m) is trivially a right B-module and then an object in MB.
Secondly, we have that ∆ and ε are both right B-module morphisms, since they are
morphisms of algebras:

∆(m) · b = m1b1 ⊗m2b2 = (mb)1 ⊗ (mb)2 = ∆(m · b),
ε(m) · b = ε(m) ε(b) = ε(m · b)

and, finally, we have that ε is a counit for ∆ and ∆ is coassociative, because B is a
bialgebra.

Thus we can construct the category MB
B := (MB)B.

Remark 2.1.2. By virtue of the symmetry that arises from Theorem 1.3.18, we can also
consider the algebra ((B,∆),m, u) within the monoidal category (MB,⊗, k, a, l, r) and
then define MB

B := (MB)B. Nevertheless, we will see in Chapter 3 that our choice is a
matter of consistency.

Definition 2.1.3. (Hopf modules)
An object M in Ob

(
MB
B

)
with two structures µM ∈ hom(M), µM : M ⊗ B → M , and

ρM ∈ hom(MB), ρM : M → M ⊗ B, is called a (right) Hopf B-module (where the B-
module structure on M ⊗B is given through ∆, as in Remark 1.3.20). We will usually
refer to M as simply an Hopf module, without further specifications, and the right
B-action will be denoted by:

µM (m⊗ b) := m · b
for the sake of simplicity.
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Remark 2.1.4. Observe that if (M,µM , ρM ) is an Hopf module, where we denote with
µM the right B-action and with ρM the right B-coaction, then ρM has to be a B-module
morphism, so that the following should commute:

M ⊗B ρM⊗B //

µM

��

(M ⊗B)⊗B
µM⊗B
��

M ρM
//M ⊗B

i.e.,
ρM (m · b) = (m0 ⊗m1) · b = (m0 ⊗m1) ·∆(b) = m0 · b1 ⊗m1b2. (2.1)

Lemma 2.1.5. Let M be a k-vector space. Then M ⊗ B becomes an Hopf module by
setting, for m ∈M and b, x ∈ B

(m⊗ b) · x := m⊗ bx (2.2)
ρM⊗B(m⊗ b) := (m⊗ b1)⊗ b2 (2.3)

Proof. Note that the following diagrams:

M ⊗B ⊗B ⊗B M⊗B⊗m //

µM⊗B⊗B
��

M ⊗B ⊗B
µM⊗B
��

M ⊗B ⊗B µM⊗B
//M ⊗B

M ⊗B ⊗ k M⊗B⊗u //

rM⊗B ))

M ⊗B ⊗B
µM⊗B
��

M ⊗B

M ⊗B
ρM⊗B //

ρM⊗B
��

M ⊗B ⊗B
ρM⊗B⊗B
��

M ⊗B ⊗B
M⊗B⊗∆

//M ⊗B ⊗B ⊗B

M ⊗B
ρM⊗B

��

r−1
M⊗B

))
M ⊗B ⊗B

M⊗B⊗ε
//M ⊗B ⊗ k

are simply the diagrams that express that m and u are associative and unital, and ∆
and ε are coassociative and counital, tensorized by M on the left. Moreover:

ρM⊗B((m⊗ b) · x) = ρM⊗B(m⊗ bx) = m⊗∆(bx) =
= m⊗∆(b)∆(x) = (m⊗∆(b)) · x =
= ρM⊗B(m⊗ b) · x,

so that ρM⊗B is a right B-module map.

Define the space of coinvariants of an Hopf module M as the equalizer in M of:

0 //MCoB //M
ρM //

i1
//M ⊗B

where
i1 : M −→ M ⊗B

m 7−→ m⊗ 1
i.e.,

MCoB := {m ∈M | ρM (m) = m⊗ 1} .
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Lemma 2.1.6. Let (B,m, u,∆, ε) be a bialgebra in M and M be an Hopf module over
B. There is an isomorphism of k-vector spaces:

ψ : homMB (k,M) −→ MCoB

σ 7−→ σ(1)

where the B-coaction on k is given through the unit u, dually with respect to the B-module
structure:

ρk : k −→ k⊗B : 1k 7−→ 1k ⊗ 1B

Proof. First of all, let us check that ψ is well defined. Since σ is a morphism of B-
comodules we have that

ρM ◦ σ = (σ ⊗B) ◦ ρk,

i.e., ρM (σ(1)) = σ(1)⊗ 1. Hence σ(1) ∈MCoB and ψ is obviously k-linear. To show that
it is an isomorphism, let us exhibit an explicit inverse:

φ : MCoB −→ homMB (k,M)
m 7−→ σm

where σm is defined by σm(1) = m and extended by k-linearity. It is well defined because,
for all k ∈ k,

ρM (σm(k)) = kρM (m) = km⊗ 1 = (σm ⊗B)(k ⊗ 1) = (σm ⊗B)ρK(k).

Moreover:

φ(ψ(σ)) = σσ(1) : 1 7→ σ(1),
ψ(φ(m)) = σm(1) = m,

and so it is the inverse map of ψ.

Next, consider the assignments

L : M −→MB
B : M 7−→M ⊗B

R : MB
B −→M : P 7−→ PCoB

that, on morphisms, operate as:

L(f) : M ⊗B −→ N ⊗B : m⊗ b 7−→ f(m)⊗ b (∀ f ∈ homM(M,N))

R(g) : PCoB −→ QCoB : p 7−→ g(p)
(
∀ g ∈ homMB

B
(P,Q)

)
Theorem 2.1.7. The pair (L,R) is an adjunction with unit

ηM : M −→ (M ⊗B)CoB : m 7−→ m⊗ 1 (2.4)

and counit
εM : PCoB ⊗B −→ P : p⊗ b 7−→ pb (2.5)
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Proof. L is trivially a functor. In order to prove that also R is a functor, it’s enough to
verify that R(g) maps PCoB into QCoB for all g ∈ homMB

B
(P,Q) and for all P,Q ∈MB

B.
Thus, pick p ∈ PCoB and consider g(p). Since g is in particular a morphism of B-
comodules:

ρQ(g(p)) = (g ⊗B)(ρP (p)) = (g ⊗B)(p⊗ 1) = g(p)⊗ 1

and so g(p) ∈ QCoB.
Next, the counit εP is clearly well defined for each P ∈MB

B. On the other hand, we
need to show that the unit ηM actually maps M into (M ⊗B)CoB for every M ∈ M.
Hence, let m ∈M and consider

ρM⊗B(m⊗ 1) = (M ⊗∆)(m⊗ 1) = m⊗ 1⊗ 1,

then m⊗ 1 ∈ (M ⊗B)CoB. Moreover, ηM is obviously k-linear for all M ∈M, but we
have to show that εP is an Hopf module map, for all P ∈MB

B:

εP ((p⊗ b) · x) = εP (p⊗ bx) = p(bx) = (pb)x = εP (p⊗ b) · x
ρP (εP (p⊗ b)) = ρP (pb) = ρP (p) · b = pb1 ⊗ b2 =

= (εP ⊗B)(p⊗ b1 ⊗ b2) =
= (εP ⊗B)(ρPCoB⊗B(p⊗ b))

for all p ∈ PCoB and b, x ∈ B. Let us prove now that they are both natural:

• Let f : M → N be a morphism in M, we have that:

M
ηM //

f

��

(M ⊗B)CoB

R(f⊗B)
��

N ηN
// (N ⊗B)CoB

m

	

� //
_

��

m⊗ 1_

��
f(m) � // f(m)⊗ 1

since R(f ⊗B) = f ⊗B. Hence η is natural.

• Let g : P → Q be a morphism in MB
B. We have that:

εQ ◦ (R(g)⊗B) = µQ ◦ (g ⊗B) = g ◦ µP = R(g) ◦ εP

since g is a morphism of B-modules, so that ε is natural.

It remains to prove that the Triangular Identities are satisfied:

R(P )
ηR(P ) // RLR(P )

R(εP ) // R(P )

PCoB ηR(P ) // (PCoB ⊗B)CoB εP // PCoB

p � // p⊗ 1 � // p
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for each P ∈MB
B. Furthermore:

L(M)
L(ηM ) // LRL(M)

εL(M) // L(M)

M ⊗B ηM⊗B// (M ⊗B)CoB ⊗B
εL(M) //M ⊗B

m⊗ b � // (m⊗ 1)⊗ b � // (m⊗ 1) · b

but (m ⊗ 1) · b = m ⊗ b and so even this last composition is the identity map, for all
M ∈M.

Proposition 2.1.8. The unit η of the adjunction (L,R, η, ε) of Theorem 2.1.7 is always
a natural isomorphism.

Proof. Let M be a k-vector space and consider ηM : M → (M ⊗B)CoB. Let

m :=
<∞∑
i

mi ⊗ bi ∈ (M ⊗B)CoB.

We know that ρM⊗B(m) = m⊗ 1. I.e.,

<∞∑
i

mi ⊗ (bi)1 ⊗ (bi)2 =
<∞∑
i

mi ⊗ bi ⊗ 1. (2.6)

Apply M ⊗ ε⊗B to both sides of (2.6) to get that:

<∞∑
i

mi ⊗ bi =
<∞∑
i

mi ε(bi)⊗ 1.

Hence m = ηM

(
<∞∑
i

mi ε(bi)
)

and we showed that ηM is surjective. To prove that it is

also injective consider the composition:

ψM =
(

(M ⊗B)CoB � � //M ⊗B M⊗ε //M ⊗ k ∼= M

)

If ηM (m) = m⊗ 1 = n⊗ 1 = ηM (n), then m = ψM (m⊗ 1) = ψM (n⊗ 1) = n and so ηM
is injective. Note that actually the map ψM is the inverse map of ηM in M.

What we ask now is if (and when) (L,R, η, ε) is an equivalence of categories. The
answer to this question is the so called ‘Structure Theorem for Hopf modules’ and involves
the concept of Hopf algebra that we are going to introduce.
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2.2 Hopf algebras

Let (C,∆, ε) and (A,m, u) be a coalgebra and an algebra respectively and consider the
k-vector space H = homM(C,A). We can equip H with a structure of k algebra in the
following way ([Sw, Section 4.0]). Let f, g ∈ H and consider the composition:

f ∗ g =
(
C

∆ // C ⊗ C f⊗g // A⊗A m // A

)

The map f ∗ g := m ◦ (f ⊗ g) ◦∆ is called the convolution product of f and g. We can
also consider the special map u ◦ ε : C → A.

Lemma 2.2.1. Within the above context, (H, ∗, u ◦ ε) is an associative unital algebra.

Proof. Let us start with the associativity of ∗. We should show that the following
commutes:

H ⊗H ⊗H
∗⊗H //

H⊗∗

��

H ⊗H

∗

��
H ⊗H ∗

// H

f ⊗ g ⊗ h � //
_

��

f ∗ g ⊗ h_
��

(f ∗ g) ∗ h

f ⊗ g ∗ h � // f ∗ (g ∗ h)

but, for all c ∈ C we have that:

((f ∗ g) ∗ h)(c) = (f ∗ g)(c1)h(c2) = [f((c1)1)g((c1)2)]h(c2) (1.38a)=

= f(c1)g(c2)h(c3) (1.38a)= f(c1)[g((c2)1)h((c2)2)] = (f ∗ (g ∗ h))(c).

Hence ∗ is associative. Furthermore,

(f ∗ (u ◦ ε))(c) = f(c1) ε(c2)u(1k) = f(c1 ε(c2)) (1.38b)= f(c)

((u ◦ ε) ∗ f)(c) = ε(c1)u(1k)f(c2) = f(ε(c1) c2) (1.38b)= f(c)

for all c ∈ C and f ∈ H, so that it is also unital with unit u ◦ ε.

Definition 2.2.2. (Antipode, Hopf algebra)
Let (B,m, u,∆, ε) be a bialgebra and let homM(B,B) be equipped with the structure of
algebra described in the previous lemma. An element s ∈ homM(B,B) such that

s ∗ Id = u ◦ ε = Id ∗ s (2.7)

is called an antipode for B. An Hopf algebra is a bialgebra B that admits an antipode.
Usually we indicate Hopf algebras with the capital letter H.

Remark 2.2.3. If B has an antipode, then it is unique, being a two-sided inverse. Moreover,
a k-linear map s : B → B is the antipode of B if and only if

b1s(b2) = ε(b)1B = s(b1)b2

for each b ∈ B.
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Example 2.2.4. Let G be a group and kG be the group algebra on G. We know
(Example 1.3.22) that kG is a bialgebra in (M,⊗,k, a, l, r) with structures given by, for
g, h ∈ G:

m(g ⊗ h) = gh u(1k) = 1G

∆(g) = g ⊗ g ε(g) = 1k
Consider the k-linear map

s : kG −→ kG : g 7−→ g−1 (2.8)

We have that, for all g ∈ G, (u ◦ ε(g)) = 1G and

(s ∗ Id)(g) = m((s⊗ Id)(g ⊗ g)) = m(g−1 ⊗ g) = 1G
(Id ∗ s)(g) = m((∈ ⊗s)(g ⊗ g)) = m(g ⊗ g−1) = 1G

so that, by k-linearity:

(s ∗ Id)
(
<∞∑
i

kigi

)
=
(
<∞∑
i

ki

)
1g = (u ◦ ε)

(
<∞∑
i

kigi

)
.

The first important thing about the antipode is that it is an antiendomorphism of H
as a bialgebra, as the following proposition states.

Proposition 2.2.5. Let (H,m, u,∆, ε, s) be a Hopf algebra. Then:

(1) s ◦m = m ◦ τ ◦ (s⊗ s), (2.9a)
(2) s ◦ u = u, (2.9b)
(3) τ ◦ (s⊗ s) ◦∆ = ∆ ◦ s, (2.9c)
(4) ε ◦ s = ε, (2.9d)

where τ denotes the twist:

τ : H ⊗H −→ H ⊗H
h⊗ l 7−→ l ⊗ h

Proof. The idea that lies behind the proof of (1) and (3) is the same: we will endow
hom(H ⊗H,H) and hom(H,H ⊗H) with the algebra structure of Lemma 2.2.1, where
the structure of algebra on H ⊗H is given in Proposition 1.3.15 and the structure of
coalgebra in Proposition 1.3.16, i.e.,

(h⊗ l)(g ⊗ f) = hg ⊗ lf u⊗(1k) = 1H ⊗ 1H

∆⊗(h⊗ l) = (h1 ⊗ l1)⊗ (h2 ⊗ l2) ε⊗(h⊗ l) = ε(h)ε(l)
(2.10)

Let us indicate with ? such an algebra structure for both hom(H⊗H,H) and hom(H,H⊗
H) indifferently.
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(1) Consider the following three maps:

X : H ⊗H −→ H : h⊗ l 7−→ hl

Y : H ⊗H −→ H : h⊗ l 7−→ s(l)s(h)
Z : H ⊗H −→ H : h⊗ l 7−→ s(hl)

We are going to prove that Z ? X = u ◦ ε⊗ = X ? Y , from which we deduce that
Z = Y by uniqueness of the inverse. For all h, l ∈ H:

(Z ? X)(h⊗ l) = (m ◦ (Z ⊗X) ◦∆⊗)(h⊗ l) (2.10)=
= (m ◦ (Z ⊗X))((h1 ⊗ l1)⊗ (h2 ⊗ l2)) =
= m(s(h1l1)⊗ h2l2) =

= s(h1l1)h2l2
(∗)=

= s((hl)1)(hl)2
(2.7)=

= (u ◦ ε)(hl) = (u ◦ ε⊗)(h⊗ l)

where (∗) is a consequence of the fact that ∆ is a morphism of algebras. On the
other hand, for every h, l ∈ H:

(X ? Y )(h⊗ l) = (m ◦ (X ⊗ Y ) ◦∆⊗)(h⊗ l) (2.10)=
= (m ◦ (X ⊗ Y ))((h1 ⊗ l1)⊗ (h2 ⊗ l2)) =
= m(h1l1 ⊗ s(l2)s(h2)) =

= h1l1s(l2)s(h2) (2.7)=

= h1s(h2) ε(l) (2.7)=
= (u ◦ ε)(hl) = (u ◦ ε⊗)(h⊗ l)

(2) Note that ε ◦ u = Idk since ε is a morphism of algebras, then:

u = u ◦ ε ◦ u (2.7)=

= (Id ∗ s) ◦ u = m ◦ (Id⊗ s) ◦∆ ◦ u (∗∗)=
= m ◦ (Id⊗ s) ◦ u⊗ =

= m ◦ (Id⊗ s) ◦ (u⊗ u) ◦∆k
(4)=

= s ◦ u

where in (∗∗) we used the fact that ∆ is a morphism of algebras and (4) follows
from:

(m ◦ (Id⊗ s) ◦ (u⊗ u) ◦∆k)(k) = ku(1k)s(u(1k)) = s(u(k)) (∀ k ∈ k)

since all maps are k-linear.
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(3) We replicate the idea of (1). Consider the three maps:

X : H −→ H ⊗H : h 7−→ h1 ⊗ h2

Y : H −→ H ⊗H : h 7−→ s(h2)⊗ s(h1)
Z : H −→ H ⊗H : h 7−→ s(h)1 ⊗ s(h)2

and let us show that Z ? X = u⊗ ◦ ε = X ? Y . For all h ∈ H:

(Z ? X)(h) = (m⊗ ◦ (Z ⊗X) ◦∆)(h) =
= (m⊗ ◦ (Z ⊗X))(h1 ⊗ h2) =
= m⊗[(s(h1)1 ⊗ s(h1)2)⊗ ((h2)1 ⊗ (h2)2)] =

= s(h1)1(h2)1 ⊗ s(h1)2(h2)2
(∗∗)=

= (s(h1)h2)1 ⊗ (s(h1)h2)2 =

= ∆((s ∗ Id)(h)) (2.7)=
= ∆(ε(h)1H) = ε(h)(1⊗ 1) = (u⊗ ◦ ε)(h)

(X ? Y )(h) = (m⊗ ◦ (X ⊗ Y ) ◦∆)(h) =
= (m⊗ ◦ (X ⊗ Y ))(h1 ⊗ h2) =
= m⊗[((h1)1 ⊗ (h1)2)⊗ (s((h2)2)⊗ s((h2)1))] =

= (h1)1s((h2)2)⊗ (h1)2s((h2)1) (1.38a)=

= h1s(h4)⊗ h2s(h3) (1.38a)=

= h1s(h3)⊗ (h2)1s((h2)2) (2.7)=
= h1s(h3)⊗ ε(h2)1H =

= h1s(h2)⊗ 1 (2.7)=
= ε(h)(1⊗ 1) = (u⊗ ◦ ε)(h)

where (∗∗) follows from the fact that ∆ is a morphism of algebras.

(4) Apply ε to both sides of (2.7) to get that:

ε ◦ (Id ∗ s) = ε ◦ u ◦ ε = ε.

Moreover, for all h ∈ H,

(ε ◦ (Id ∗ s))(h) = ε(h1s(h2)) = ε(h1)ε(s(h2)) = ε(s(h))

since all maps are k-linear and ε(h1) ∈ k.

The following lemma, that appears as an exercise in [Sw, Chapter 4], retrieve some
additional properties of the antipode.

Lemma 2.2.6. Let (H,m, u,∆, ε, s) be a Hopf algebra. Then, for all h ∈ H:
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(1) 1⊗ h = h1s(h2)⊗ h3

(2) 1⊗ h = s(h1)h2 ⊗ h3

(3) h⊗ 1 = h1 ⊗ h2s(h3)

(4) h⊗ 1 = h1 ⊗ s(h2)h3

Proof. All the four properties are just the same check and they are a trivial consequence
of (1.38a) and (2.7), e.g.:

h1s(h2)⊗ h3
(1.38a)= (h1)1s((h1)2)⊗ h2

(2.7)= ε(h1)1H ⊗ h2 = 1⊗ h.

2.3 The Structure Theorem for Hopf modules

The following theorem, commonly known as the Structure Theorem for Hopf modules,
answers to the question when the adjunction (L,R, η, ε) of Theorem 2.1.7 is an equivalence
of categories. For a less categorical approach refer to [Sw, Theorem 4.1.1] and [Ab,
Theorem 3.1.8].

Theorem 2.3.1. Let (H,m, u,∆, ε, s) be a Hopf algebra. Then the counit

εM : MCoH ⊗H −→M : m⊗ h 7−→ m · h

of the adjunction (L,R, η, ε) is a natural isomorphism. In particular, for each Hopf
module M on a Hopf algebra H,

M ∼= MCoH ⊗H.

Proof. First of all, for every Hopf module M in MH
H , consider the projection:

τ : M −→MCoH : m 7−→ m0 · s(m1) (2.11)

This map is well-defined as:

ρM (τ(m)) = (m0 · s(m1))0 ⊗ (m0 · s(m1))1
(2.1)=

= (m0)0 · s(m1)1 ⊗ (m0)1s(m1)2
(2.9c)=

= (m0)0 · s((m1)2)⊗ (m0)1s((m1)1) (1.38a)=

= m0 · s(m3)⊗m1s(m2) (2.7)=
= m0 · s(m2)⊗ ε(m1)1 =
= m0 · s(m1)⊗ 1 =
= τ(m)⊗ 1

so that τ maps M into MCoH . Now, we show that the map

β := (τ ⊗H) ◦ ρM : M −→MCoH ⊗H : m 7−→ m0 · s(m1)⊗m2 (2.12)
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is the inverse of the counit εM . For every m ∈M

εM (β(m)) = εM (m0 · s(m1)⊗m2) =

= m0 · s(m1)m2
(2.7)=

= m0 · ε(m1)1 = m.

On the other hand, for all n⊗ h ∈MCoH ⊗H,

β(εM (n⊗ h)) = β(n · h) = (n · h)0 · s((n · h)1)⊗ (n · h)2
(2.1)=

= n · h1s(h2)⊗ h3
(2.9a)=

= n ε(h1)⊗ h2 =
= n⊗ h

where the third equality involves also the fact that n ∈MCoH .

Actually, Theorem 2.3.1 retrieves just one side of an equivalence, in the sense that it
admits a converse. But before state it, we need some introductory considerations.
Remark 2.3.2. Let (H,m, u,∆, ε) be a bialgebra. If we consider the vector space H ⊗H,
we can equip it with the right H-action given by the multiplication on the second factor:

(x⊗ y) · h = x⊗ yh,

with the diagonal right H-coaction:

ρr⊗(x⊗ y) = x1 ⊗ y1 ⊗ x2y2,

and with the left H-comodule structure given by:

ρl⊗(x⊗ y) = x1 ⊗ x2 ⊗ y,

for all x, y, h ∈ H. If we indicate with a full dot the given structures and with an empty
dot the trivial structures we can summarize in:

•H•◦ ⊗H••

The multiplication on the second factor is trivially an H-action, as the comultiplication of
the first factor is an H-coaction. Let us just prove that the diagonal coaction is actually
a coaction:

(H ⊗H ⊗∆)(ρr⊗(x⊗ y)) = (H ⊗H ⊗∆)(x1 ⊗ y1 ⊗ x2y2) =
= x1 ⊗ y1 ⊗ (x2y2)1 ⊗ (x2y2)2 =

= x1 ⊗ y1 ⊗ (x2)1(y2)1 ⊗ (x2)2(y2)2
(1.38a)=

= x1 ⊗ y1 ⊗ x2y2 ⊗ x3y3

(ρr⊗ ⊗H)(ρr⊗(x⊗ y)) = (ρr⊗ ⊗H)(x1 ⊗ y1 ⊗ x2y2) =

= (x1)1 ⊗ (y1)1 ⊗ (x1)2(y1)2 ⊗ x2y2
(1.38a)=

= x1 ⊗ y1 ⊗ x2y2 ⊗ x3y3
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and:

r⊗((H ⊗H ⊗ ε)(ρr⊗(x⊗ y))) = r⊗((H ⊗H ⊗ ε)(x1 ⊗ y1 ⊗ x2y2)) =
= r⊗(x1 ⊗ y1 ⊗ ε(x2y2)) =
= r⊗(x⊗ y ⊗ 1k) = x⊗ y,

for all x, y ∈ H. Furthermore, we can equip (H ⊗H)CoH ⊗ H with the following
structures:

((x⊗ y)⊗ h) · l = (x⊗ y)⊗ hl
ρr(H⊗H)CoH⊗H((x⊗ y)⊗ h) = (x⊗ y)⊗ h1 ⊗ h2

ρl(H⊗H)CoH⊗H((x⊗ y)⊗ h) = x1 ⊗ (x2 ⊗ y)⊗ h

for all x, y, h, l ∈ H. The first one is clearly a right H-action, as the last two are
H-coactions. We should only prove that the image of ρl(H⊗H)CoH⊗H is actually within
H ⊗ (H ⊗H)CoH ⊗H. Observe that it’s enough to verify that:

ξ : (H ⊗H)CoH −→ H ⊗ (H ⊗H)CoH

x⊗ y 7−→ x1 ⊗ (x2 ⊗ y)

is well defined. Hence let us concentrate on this last claim. Initially, consider the following
k-linear map:

ψ : (H ⊗H) −→ (H ⊗H)⊗H : x⊗ y 7−→ ρr(H⊗H)(x⊗ y)− (x⊗ y ⊗ 1).

Note that z ∈ (H ⊗H)CoH if and only if ψ(z) = 0, so that ker(ψ) = (H ⊗H)CoH . Thus
we have the following exact sequence:

0 // (H ⊗H)CoH � � // H ⊗H ψ // (H ⊗H)⊗H

Since H, as k-vector space, is a free k-module, it is k-flat and so the functor H ⊗− is
exact. Hence we have another exact sequence:

0 // H ⊗ (H ⊗H)CoH � � // H ⊗ (H ⊗H) H⊗ψ // H ⊗ ((H ⊗H)⊗H),

from which we deduce that w ∈ H ⊗ (H ⊗H)CoH if and only if w ∈ H ⊗ (H ⊗H) and
w ∈ ker(H ⊗ ψ). Thus, let us apply H ⊗ ψ to x1 ⊗ (x2 ⊗ y):

(H ⊗ ψ)(x1 ⊗ (x2 ⊗ y)) = x1 ⊗ (((x2)1 ⊗ y1 ⊗ (x2)2y2)− (x2 ⊗ y ⊗ 1)) =

= (x1 ⊗ (x2)1 ⊗ y1 ⊗ (x2)2y2)− (x1 ⊗ x2 ⊗ y ⊗ 1) (1.38a)=
= ((x1)1 ⊗ (x1)2 ⊗ y1 ⊗ x2y2)− (x1 ⊗ x2 ⊗ y ⊗ 1) =
= (∆⊗H ⊗H)(ρr(H⊗H)(x⊗ y))− (∆⊗H ⊗H)(x⊗ y ⊗ 1) =
= 0

since x⊗ y ∈ (H ⊗H)CoH . Hence ξ(z) ∈ H ⊗ (H ⊗H)CoH for all z ∈ (H ⊗H)CoH , by
k-linearity.
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Lemma 2.3.3. The map εH⊗H : (H ⊗H)CoH ⊗H → H ⊗H is a morphism with respect
to all the structures that occur in Remark 2.3.2.

Proof. We will indicate εH⊗H with ε⊗, ρr/lH⊗H with ρ
r/l
⊗ and ρ

r/l

(H⊗H)CoH⊗H
with ρ

r/l
CoH in

order to lighten the notation.
That ε⊗ is linear with respect to the right H-action follows from Theorem 2.1.7. Let

us prove the other two linearities:

• Let us start with the right colinearity. We have to show that the following diagram
commutes:

(H ⊗H)CoH ⊗H
ε⊗ //

ρrCoH
��

H ⊗H

ρr⊗

��
[(H ⊗H)CoH ⊗H]⊗H

ε⊗⊗H
// (H ⊗H)⊗H

Actually, it does. Indeed:

(ε⊗ ⊗H)(ρrCoH((x⊗ y)⊗ h)) = (ε⊗ ⊗H)(x⊗ y ⊗ h1 ⊗ h2) =
= (x⊗ y) · h1 ⊗ h2 =
= x⊗ yh1 ⊗ h2

ρr⊗(ε⊗((x⊗ y)⊗ h)) = ρr⊗((x⊗ y) · h) = ρr⊗(x⊗ yh) =
= x1 ⊗ (yh)1 ⊗ x2(yh)2 = x1 ⊗ y1h1 ⊗ x2y2h2 =
= ρr⊗(x⊗ y)(H ⊗∆)(1⊗ h) =
= x⊗ yh1 ⊗ h2

since x⊗ y ∈ (H ⊗H)CoH and, by k-linearity, it holds for all z ∈ (H ⊗H)CoH and
h ∈ H.

• For the left H-colinearity, the following diagram should commute:

(H ⊗H)CoH ⊗H
ε⊗ //

ρlCoH
��

H ⊗H

ρl⊗
��

H ⊗ [(H ⊗H)CoH ⊗H]
H⊗ε⊗

// H ⊗ (H ⊗H)

but if we recall how the left H-coaction are defined, this is obvious:

ρl(H⊗H)CoH⊗H((x⊗ y)⊗ h) = x1 ⊗ (x2 ⊗ y)⊗ h

ρl⊗(x⊗ y) = x1 ⊗ x2 ⊗ y

and this concludes the proof.

Remark 2.3.4. Note that H ⊗H is a Hopf module with the right structures defined in
Remark 2.3.2:

ρr⊗((x⊗ y) · h) = ρr⊗(x⊗ yh) = x1 ⊗ (yh)1 ⊗ x2(yh)2 =
= x1 ⊗ y1h1 ⊗ x2y2h2 = (x1 ⊗ y1 ⊗ x2y2)(1⊗ h1 ⊗ h2) =
= ρr⊗(x⊗ y) · h,
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for all x, y, h ∈ H.

Theorem 2.3.5. Let (H,m, u,∆, ε) be a bialgebra and suppose that the adjunction
(L,R, η, ε) of Theorem 2.1.7 is a category equivalence. Then the map s : H → H defined
by, for all h ∈ H:

s(h) := (ε⊗H ⊗ ε)
(
ε−1
H⊗H(h⊗ 1)

)
(2.13)

is an antipode. In particular, (H,m, u,∆, ε, s) is a Hopf algebra.

Proof. Denote again ε⊗ := εH⊗H , ρr/lCoH := ρ
r/l

(H⊗H)CoH⊗H
, ρr/l⊗ := ρ

r/l
H⊗H and

h1 ⊗ h2 ⊗ h3 := ε−1
⊗ (h⊗ 1) ∈ (H ⊗H)CoH ⊗H

for all h ∈ H (summation understood). In view of Lemma 2.3.3 we know that ε⊗ is a
morphism of ‘Hopf bicomodules’ (meaning just a Hopf module with an additional left
comodule structure) with the structures given by the dots:

ε⊗ : •(H ⊗H)CoH ⊗H•• → •H•◦ ⊗H•• ,

thus ε−1
⊗ is a morphism with respect to the same structures as well. Since it is H-linear,

ε−1
⊗ (x⊗ y) = ε−1

⊗ ((x⊗ 1) · y) = ε−1
⊗ (x⊗ 1) · y,

for all x, y ∈ H, so that it is enough to work on elements of the form h⊗ 1. By the right
colinearity we get that:

(h1)1 ⊗ (h1)2 ⊗ (h1)3 ⊗ h2 = (ε−1
⊗ ⊗H)(ρr⊗(h⊗ 1)) =
= ρrCoH(ε−1

⊗ (h⊗ 1)) = h1 ⊗ h2 ⊗ (h3)1 ⊗ (h3)2. (2.14)

for each h ∈ H. On the other hand, by the left colinearity we have that:

h1 ⊗ (h2)1 ⊗ (h2)2 ⊗ (h2)3 = (H ⊗ ε−1
⊗ )(ρl⊗(h⊗ 1)) =

= ρlCoH(ε−1
⊗ (h⊗ 1)) = (h1)1 ⊗ (h1)2 ⊗ h2 ⊗ h3. (2.15)

for all h ∈ H. Furthermore, relation (2.13) that defines s now rewrites as:

s(h) = ε(h1)h2 ε(h3) (∀h ∈ H ). (2.16)

Keeping in mind these three last identities, we are going to derive some properties of s
that will be used to prove that it is, actually, the convolution inverse of the identity.

Start by applying ε⊗H ⊗ ε⊗H to both sides of (2.14). This becomes, for h ∈ H:

s(h1)⊗ h2 = ε((h1)1) (h1)2 ε((h1)3)⊗ h2 =
= ε(h1)h2 ⊗ ε((h3)1) (h3)2 = ε(h1)h2 ⊗ h3. (2.17)

Next, in view of the previous identity, apply H ⊗ ε⊗H ⊗H to both sides of (2.15) and
obtain, for h ∈ H:

h1 ⊗ s(h2)⊗ h3
(2.17)= h1 ⊗ ε((h2)1) (h2)2 ⊗ (h2)3 =

= (h1)1 ε((h1)2)⊗ h2 ⊗ h3 = ε−1
⊗ (h⊗ 1) (2.18)
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Relation (2.18) is one key to prove that s is an antipode. Indeed:

h⊗ 1 = ε⊗(ε−1
⊗ (h⊗ 1)) (2.18)= h1 ⊗ s(h2)h3 (2.19)

for each h ∈ H, so that, applying ε⊗H to both sides:

ε(h)1H = s(h1)h2. (2.20)

Moreover, applying ε ◦m to both sides of (2.19), we get also that:

ε(h) = ε(h1s(h2)h3) = ε(s(h)) (∀h ∈ H). (2.21)

The other key is the fact that, for h ∈ H:

h1 ⊗ s(h2)⊗ h3 = ε−1
⊗ (h⊗ 1) ∈ (H ⊗H)CoH ⊗H,

thus
(h1)1 ⊗ (s(h2))1 ⊗ (h1)2(s(h2))2 ⊗ h3 = h1 ⊗ s(h2)⊗ 1⊗ h3.

Apply m⊗H ⊗H to both sides:

(h1s(h2))1 ⊗ (h1s(h2))2 ⊗ h3 = h1s(h2)⊗ 1⊗ h3

and then apply ε⊗H ⊗H:

h1s(h2)⊗ h3 = ε(h1) ε(s(h2))1⊗ h3
(2.21)= 1⊗ h (∀h ∈ H).

As for relation (2.20), apply H ⊗ ε to this last identity:

h1s(h2) = ε(h)1H ( ∀h ∈ H),

to find out that s is also the right convolution inverse of the identity.

Following [BW], we refer to the subsequent result as the ‘Structure Theorem for Hopf
modules’, because it is the complete formulation of the original one.

Theorem 2.3.6. ([BW, Theorem 15.5]) (Structure Theorem for Hopf modules) Let
(H,m, u,∆, ε) be a bialgebra in (M,⊗, k, a, l, r). Then, the following assertions are
equivalent:

1. The bialgebra H is a Hopf algebra.

2. For each Hopf H-module M ∈MH
H , M ∼= MCoH ⊗H.
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Chapter 3

The Fundamental Structure
Theorem for quasi-Hopf
bimodules

3.1 Quasi-bialgebras

Recall that if we have an algebra with comultiplication and counit (A,m, u,∆, ε), then we
can equip the category of right A-modules with a tensor product (that is the restriction of
the tensor product between k-vector spaces) and a unit (the base field k itself): (MA,⊗, k).
We have seen in Chapter 1, Proposition 1.3.21, that (M,⊗,k, a, `, r) is monoidal if and
only if A is a bialgebra (Just for this section, we are going to indicate with ` the left unit
constraint and with r the right unit constraint, in order to avoid confusion). But if we
weaken our requests, e.g. don’t asking for coassociativity of ∆, we find out that there
exists a larger class of algebras such that the corresponding category of right A-modules
is monoidal.

Definition 3.1.1. (Quasi-bialgebra)
Let (A,m, u,∆, ε) be an algebra with comultiplication and counit as introduced in Remark
1.3.20. A is a quasi-bialgebra if (MA,⊗, k, α, λ, ρ) is monoidal.

Remark 3.1.2. Pay attention: we are not requesting that the constraints are the same
of the monoidal category (M,⊗, k, a, `, r), as for the ordinary bialgebra. We are saying
that there exists constraints (α, λ, ρ) such that they are natural isomorphisms of right
A-modules and satisfy the Pentagon and Triangle Axioms.

Theorem 3.1.3. Let (A,m, u,∆, ε) be an algebra with comultiplication and counit. A is
a quasi-bialgebra if and only if there exist an invertible element Φ ∈ A⊗A⊗A and two
invertible elements l, r in A such that:

(∆⊗A)(∆(x))Φ = Φ(A⊗∆)(∆(x)) (3.1)

(ε⊗A)(∆(x)) = lxl−1 (3.2)

(A⊗ ε)(∆(x)) = rxr−1 (3.3)
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for all x ∈ A, and

(∆⊗A⊗A)(Φ)(A⊗A⊗∆)(Φ) = (Φ⊗ 1)(A⊗∆⊗A)(Φ)(1⊗ Φ) (3.4)

(A⊗ ε⊗A)(Φ) = r ⊗ l−1 (3.5)
Usually, we will write Φ = Φ1⊗Φ2⊗Φ3 and Φ−1 = φ1⊗φ2⊗φ3 (summation understood).
Proof. Let us start by the ‘if’ part and assume that Φ, l and r exist. We can define:

αM,N,P : (M ⊗N)⊗ P −→ M ⊗ (N ⊗ P )
(m⊗ n)⊗ p 7−→ (m⊗ (n⊗ p)) · Φ (3.6)

λM : k⊗M −→ M
1⊗m 7−→ m · l (3.7)

ρM : M ⊗ k −→ M
m⊗ 1 7−→ m · r (3.8)

These are morphism of right A-modules. Indeed:
αM,N,P (((m⊗ n)⊗ p) · a) = αM,N,P (((m⊗ n)⊗ p) · (∆⊗A)(∆(a))) =

= (m⊗ (n⊗ p)) · (∆⊗A)(∆(a))Φ (3.1)=
= (m⊗ (n⊗ p)) · Φ(A⊗∆)(∆(a)) =
= (m⊗ (n⊗ p)) · Φ · a =
= αM,N,P ((m⊗ n)⊗ p) · a,

λM ((1⊗m) · a) = λM (ε(a1)⊗ (m · a2)) =

= m · ε(a1)a2l
(3.2)= m · la = λM (m) · a,

ρM ((m⊗ 1) · a) = ρM ((m · a1)⊗ ε(a2)) =

= m · a1ε(a2)r (3.3)= m · ra = ρM (m) · a.
for all m ∈M , n ∈ N , p ∈ P , a ∈ A. Moreover, since Φ, l and r are all invertibles, these
are bijective with inverses given by:

α−1
M,N,P : M ⊗ (N ⊗ P ) −→ (M ⊗N)⊗ P

m⊗ (n⊗ p) 7−→ ((m⊗ n)⊗ p) · Φ−1

λ−1
M : M −→ k⊗M

m 7−→ (1⊗m) · l−1

ρ−1
M : M −→ M ⊗ k

m 7−→ (m⊗ 1) · r−1

Next, we show that they are natural. Pick three morphisms of right A-modules:
f : M →M ′, g : N → N ′ and h : P → P ′ and observe that:

(f ⊗ (g ⊗ h))((m⊗ (n⊗ p)) · Φ) = (f ⊗ (g ⊗ h))((m · Φ1 ⊗ (n · Φ2 ⊗ p · Φ3))) =
= (f(m · Φ1)⊗ (g(n · Φ2)⊗ h(p · Φ3))) =
= (f(m) · Φ1 ⊗ (g(n) · Φ2 ⊗ h(p) · Φ3)) =
= (f ⊗ (g ⊗ h))((m⊗ (n⊗ p))) · Φ
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for all m ∈ M , n ∈ N , p ∈ P since f , g and h are right A-linear. Hence the following
diagram commutes:

(M ⊗N)⊗ P

	

αM,N,P //

(f⊗g)⊗h

��

M ⊗ (N ⊗ P )

f⊗(g⊗h)

��
(M ′ ⊗N ′)⊗ P ′ αM′,N′,P ′

//M ′ ⊗ (N ′ ⊗ P ′)

Furthermore, even the following diagrams commute, since f is right A-linear:

M ⊗ k

	

ρM //

f⊗k
��

M

f

��
M ′ ⊗ k ρM′

//M ′

m⊗ 1 � ρM //
_

f⊗k
��

m · r_

f

��
f(m)⊗ 1 �

ρM′
// f(m) · r

k⊗M

	

λM //

k⊗f
��

M

f

��
k⊗M ′

λM′
//M ′

1⊗m � λM //
_

k⊗f
��

m · l_

f

��
1⊗ f(m) �

λM′
// f(m) · l

It remains to prove that α, λ and ρ satisfies the Axioms (1.9) and (1.10).
Pentagon: for all m ∈M , n ∈ N , p ∈ P , q ∈ Q

(((m⊗ n)⊗ p)⊗ q) � αM⊗N,P,Q //
_

αM,N,P⊗Q

��

((m⊗ n)⊗ (p⊗ q)) · (∆⊗A⊗A)(Φ)
_

αM,N,P⊗Q

��
(m⊗ (n⊗ (p⊗ q))) · (∆⊗A⊗A)(Φ)(A⊗A⊗∆)(Φ)

(3.4)

(m⊗ ((n⊗ p)⊗ q)) · (Φ⊗ 1)(A⊗∆⊗A)(Φ)(1⊗ Φ)

((m⊗ (n⊗ p))⊗ q) · (Φ⊗ 1) �
αM,N⊗P,Q

// (m⊗ ((n⊗ p)⊗ q)) · (Φ⊗ 1)(A⊗∆⊗A)(Φ)
_

M⊗αN,P,Q

OO

Triangle: for all m ∈M , n ∈ N

(m⊗ 1)⊗ n
_

rM⊗N

��

� αM,k,N // (m⊗ (1⊗ n)) · (A⊗ ε⊗A)(Φ)
_

M⊗lN

��
(m⊗ n) · (r ⊗ 1)

(3.5)
(m⊗ n) · (A⊗ ε⊗A)(Φ)(1⊗ l)
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For the ‘only if’ part, assume that (MA,⊗,k, α, λ, ρ) is monoidal and define:

Φ = αA,A,A(1A ⊗ 1A ⊗ 1A) (3.9a)
l = λA(1k ⊗ 1A) (3.9b)
r = ρA(1A ⊗ 1k) (3.9c)

Observe that, for each m ∈ M right A-module, there exists a unique morphism of
A-modules

m̂ : A −→M : 1A 7−→ m

since every A-linear map from A into an A-module (right or left is the same) is uniquely
determined by the image of 1A. Hence, by naturality of α, for all m ∈ M , n ∈ N and
p ∈ P we have a commutative diagram:

(A⊗A)⊗A

	

αA,A,A //

(m̂⊗n̂)⊗p̂

��

A⊗ (A⊗A)

m̂⊗(n̂⊗p̂)

��
(M ⊗N)⊗ P αM,N,P

//M ⊗ (N ⊗ P )

If we apply it to 1A ⊗ 1A ⊗ 1A we find that for all m ∈M , n ∈ N , p ∈ P :

(m⊗ (n⊗ p)) · Φ = (m̂⊗ (n̂⊗ p̂))(Φ) = αM,N,P ((m⊗ n)⊗ p). (3.10)

Note that, since α is a natural isomorphism, there exists an element φ1 ⊗ φ2 ⊗ φ3 in
A⊗A⊗A such that αA,A,A(φ1 ⊗ φ2 ⊗ φ3) = 1⊗ 1⊗ 1. Thus:

1⊗ 1⊗ 1 = αA,A,A(α−1
A,A,A(1⊗ 1⊗ 1)) = (φ1 ⊗ (φ2 ⊗ φ3)) · Φ.

On the other hand, also α−1 is a natural isomorphism and if we indicate with

φ1 ⊗ φ2 ⊗ φ3 := α−1
A,A,A(1⊗ 1⊗ 1),

then naturality implies that:

α−1
M,N,P (m⊗ (n⊗ p)) = ((m⊗ n)⊗ p) · (φ1 ⊗ φ2 ⊗ φ3)

for all m ∈M , n ∈ N , p ∈ P . Therefore:

1⊗ 1⊗ 1 = α−1
A,A,A(αA,A,A(1⊗ 1⊗ 1)) = Φ · (φ1 ⊗ φ2 ⊗ φ3)

and we deduce that Φ is invertible, with two-sided inverse Φ−1 = φ1⊗φ2⊗φ3. Moreover,
α is also right A-linear:

((M ⊗N)⊗ P )⊗A

	

αM,N,P⊗A //

µ(M⊗N)⊗P

��

(M ⊗ (N ⊗ P ))⊗A

µM⊗(N⊗P )

��
((M ⊗N)⊗ P ) αM,N,P

// (M ⊗ (N ⊗ P ))
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so that:

(m⊗ (n⊗ p)) · Φ(A⊗∆)(∆(a)) = αM,N,P ((m⊗ n)⊗ p)(A⊗∆)(∆(a)) =
= αM,N,P (((m⊗ n)⊗ p) · (∆⊗A)(∆(a))) = (m⊗ (n⊗ p)) · (∆⊗A)(∆(a))Φ (3.11)

for all m ∈ M , n ∈ N , p ∈ P and a ∈ A. Taking M = N = P = A and evaluating at
1⊗ 1⊗ 1, (3.11) gives:

Φ(A⊗∆)(∆(a)) = (∆⊗A)(∆(a))Φ.

The same arguments that work for α, also work for λ and ρ. Hence, naturality of λ gives:

m · l = m̂(λA(1⊗ 1)) = λM ((k⊗ m̂)(1⊗ 1)) = λM (1⊗m)

for all m ∈M and for all M ∈MA. Since λ is a natural isomorphism too, we have that
there exists l−1 ∈ A such that

1⊗ l−1 := λ−1
A (1)

and
1⊗ml−1 = (k⊗ m̂)((λ−1

A )(1)) = λ−1
M (m̂(1)) = λ−1

M (m)

for all m ∈M . Then, in particular:

1 = λA(λ−1
A (1)) = λA(1⊗ l−1) = l−1l

and
1⊗ 1 = λ−1

A (λA(1⊗ 1)) = λ−1
A (l) = 1⊗ ll−1

ensure that l is invertible with two-sided inverse l−1. Moreover, A-linearity of λ implies
that

m · la = λM (1⊗m) · a = λM ((1⊗m) · (ε⊗A)(∆(a))) = m · ε(a1)a2l (3.12)

for every m ∈M and a ∈ A. Choosing M = A and evaluating (3.12) at m = 1 gives:

la = (ε⊗A)(∆(a))l.

Analogously:

• for all m ∈M and for each M ∈MA, ρM (m⊗ 1) = m · r;

• exists r−1 and it satisfies 1⊗ r−1 := ρ−1
A (1);

• for all m ∈M and a ∈ A,

m · ra = ρM (m⊗ 1) · a = ρM ((m⊗ 1) · (A⊗ ε)(∆(a))) = m · a1ε(a2)r. (3.13)

Evaluating (3.13) at m = 1 gives:

ra = (A⊗ ε)(∆(a))r.
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Next, we need to prove that also (3.4) and (3.5) are satisfied and, as one can expect,
these follow by the Pentagon and Triangle Axioms. By the Pentagon Axiom we have:

(A⊗ αA,A,A) ◦ αA,A⊗A,A ◦ (αA,A,A ⊗A) = αA,A,A⊗A ◦ αA⊗A,A,A

and evaluating it at 1⊗ 1⊗ 1 we get:

(Φ⊗ 1)(A⊗∆⊗A)(Φ)(1⊗ Φ) = (∆⊗A⊗A)(Φ)(A⊗A⊗∆)(Φ).

Instead, by the Triangle Axiom we know that:

(A⊗ lA) ◦ αA,k,A = rA ⊗A

and evaluating it at 1A ⊗ 1k ⊗ 1A this gives:

(A⊗ ε⊗A)(Φ)(1⊗ l) = (r ⊗ 1),

i.e., the last axiom of quasi-bialgebra that misses.

Remark 3.1.4. The equivalent conditions defining a quasi-bialgebra that we gave here
are not the traditional ones. Actually, the most common definition is: an algebra with
comultiplication and counit (A,m, u,∆, ε) is a quasi-bialgebra if the category of left
A-modules is monoidal (cfr. [Ka, Definition XV.1.1]). With this definition, the axioms of
Theorem 3.1.3 become (cfr. [Ka, Proposition XV.1.2]):

(A⊗∆)(∆(a))Φ = Φ(∆⊗A)(∆(a)) (3.14a)
(ε⊗A)(∆(a)) = l−1al (3.14b)
(A⊗ ε)(∆(a)) = r−1ar (3.14c)

for all a ∈ A, and

(A⊗A⊗∆)(Φ)(∆⊗A⊗A)(Φ) = (1⊗ Φ)(A⊗∆⊗A)(Φ)(Φ⊗ 1) (3.15a)
(A⊗ ε⊗A)(Φ) = r ⊗ l−1 (3.15b)

Moreover, the constraints α, λ and ρ need to be modified in:

αM,N,P ((m⊗ n)⊗ p) = Φ · (m⊗ (n⊗ p))
λM (1⊗m) = l ·m
ρM (m⊗ 1) = r ·m

Nevertheless, the two definitions are equivalent. Indeed, these last axioms can be obtained
by substituting Φ−1 to Φ, l−1 to l and r−1 to r into the previous ones. Anyhow, for
coherence’s sake, from now on we will use this last ordinary axioms, instead of the ones
that appears in Theorem 3.1.3.

Theorem 3.1.3 shows that there is at least one substantial difference within bialgebras
and quasi-bialgebras: in a bialgebra we can always reassign parenthesis and renumber the
indices of the Sweedler’ Sigma Notation. In a quasi-bialgebra we can reassign parenthesis,
but we cannot renumber the indices: we should need coassociativity of ∆, that we have
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no more. What happens in the quasi-bialgebra case is that ∆ is quasi-coassociative via
the Drinfel’d reassociator Φ, i.e.:

Φ · [((a1)1 ⊗ (a1)2)⊗ a2] = [a1 ⊗ ((a2)1 ⊗ (a2)2)] · Φ.

For the sake of completeness, we give also the definition of what a morphism of quasi-
bialgebras is.

Definition 3.1.5. (Quasi-bialgebra morphism)
A k-linear map f : A → A′ between two quasi-bialgebras (A,m, u,∆, ε,Φ, l, r) and
(A′,m′, u′,∆′, ε′,Φ′, l′, r′) is a quasi-bialgebra morphism if it is an algebra morphism such
that:

• Preserves the comultiplication and counit, in the sense that the following diagrams
commute:

A

	

f //

∆

��

A′

∆′

��
A⊗A

f⊗f
// A′ ⊗A′

A

	

f //

ε

��

A′

ε′

��
k

• Preserves Φ, l and r, i.e.,

(f ⊗ f ⊗ f)(Φ) = Φ′ f(l) = l′ f(r) = r′

It is quite a heavy job to deal with Φ, l and r. Unfortunately, Φ is what distinguish
quasi-bialgebras from bialgebras and so we cannot expect that there exists a way to get
rid of it, but, as we are going to show now, l and r are not so fundamental and we can
do without them.

Theorem 3.1.6. ([Ka, Proposition XV.3.2]) Let (A,m, u,∆, ε,Φ, l, r) be a quasi-bialgebra
and let F ∈ A⊗A be an invertible element. Define, for all a ∈ A:

∆F (a) := F∆(a)F−1 (3.16)

and the elements:

ΦF := (1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1) (3.17a)
lF := l(ε⊗A)(F−1) (3.17b)
rF := r(A⊗ ε)(F−1) (3.17c)

Then (A,m, u,∆F , ε,ΦF , lF , rF ) is a quasi-bialgebra denoted by AF . We say that AF is
obtained from A by twisting via the element F (cfr. [Dr1, Remark on page 1422]).

Proof. We have to verify that ∆F is a morphism of algebras (ε has been not modified)
and that all five axioms of quasi-bialgebra are satisfied: (3.14) and (3.15). Let us begin
with ∆F . Since ∆ is a morphism of algebras:

∆F (a)∆F (b) = F∆(a)F−1F∆(b)F−1 = F∆(a)∆(b)F−1 = F∆(ab)F−1 = ∆F (ab)
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and so ∆F is a morphism of algebras, too. Next, let us show that (3.14) are satisfied.
(3.14a). For all a ∈ A:

ΦF (∆F ⊗A)(∆F (a))
(3.16)
(3.17a)=

= (1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1)(F ⊗ 1)(∆⊗A)(∆F (a))(F−1 ⊗ 1) =
= (1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(∆⊗A)(F∆(a)F−1)(F−1 ⊗ 1) =

= (1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(∆(a))(∆⊗A)(F−1)(F−1 ⊗ 1) (3.14a)=
= (1⊗ F )(A⊗∆)(F )(A⊗∆)(∆(a))Φ(∆⊗A)(F−1)(F−1 ⊗ 1) =
= (1⊗ F )(A⊗∆)(F )(A⊗∆)(∆(a)F−1)(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1) =
= (1⊗ F )(A⊗∆)(∆F (a))(1⊗ F−1)(1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1) =
= (A⊗∆F )(∆F (a))ΦF

(3.14b). For all a ∈ A:

lF (ε⊗A)(∆F (a)) = l(ε⊗A)(F−1)(ε⊗A)(F∆(a)F−1) =

= l(ε⊗A)(∆(a))(ε⊗A)(F−1) (3.14b)=
= al(ε⊗A)(F−1) =
= alF

(3.14c). For all a ∈ A:

rF (A⊗ ε)(∆F (a)) = r(A⊗ ε)(F−1)(A⊗ ε)(F∆(a)F−1) =

= r(A⊗ ε)(∆(a))(A⊗ ε)(F−1) (3.14c)=
= ar(A⊗ ε)(F−1) =
= arF

In order to prove that (3.15a) is satisfied, we need to break it into smaller identities.
First of all, note that:

(A⊗A⊗∆)(ΦF ) = (A⊗A⊗∆)((1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1)) =
= (1⊗ (A⊗∆)(F ))(A⊗ (A⊗∆)∆)(F )(A⊗A⊗∆)(Φ)(∆⊗∆)(F−1)(F−1 ⊗ 1⊗ 1)

and that:

(∆⊗A⊗A)(ΦF ) = (∆⊗A⊗A)((1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1)) =
= (1⊗ 1⊗ F )(∆⊗∆)(F )(∆⊗A⊗A)(Φ)((∆⊗A)∆⊗A)(F−1)((∆⊗A)(F−1)⊗ 1)

and also that:

(1⊗ 1⊗ F−1)(F ⊗ 1⊗ 1) = (F ⊗ F−1) = (F ⊗ 1⊗ 1)(1⊗ 1⊗ F−1).
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Thus:
(A⊗A⊗∆F )(ΦF )(∆F ⊗A⊗A)(ΦF ) =
= (1⊗ 1⊗ F )(A⊗A⊗∆)(ΦF )(F ⊗ F−1)(∆⊗A⊗A)(ΦF )(F−1 ⊗ 1⊗ 1) =

=
[

(1⊗ 1⊗ F )(1⊗ (A⊗∆)(F ))(A⊗ (A⊗∆)∆)(F )(A⊗A⊗∆)(Φ)
(∆⊗A⊗A)(Φ)((∆⊗A)∆⊗A)(F−1)((∆⊗A)(F−1)⊗ 1)(F−1 ⊗ 1⊗ 1)

]
(3.15a)=

=
[

(1⊗ 1⊗ F )(1⊗ (A⊗∆)(F ))(A⊗ (A⊗∆)∆)(F )(1⊗ Φ)(A⊗∆⊗A)(Φ)
(Φ⊗ 1)((∆⊗A)∆⊗A)(F−1)((∆⊗A)(F−1)⊗ 1)(F−1 ⊗ 1⊗ 1)

]
(3.14a)=

=
[

(1⊗ 1⊗ F )(1⊗ (A⊗∆)(F ))(1⊗ Φ)(A⊗ (∆⊗A)∆)(F )(A⊗∆⊗A)(Φ)
((A⊗∆)∆⊗A)(F−1)(Φ⊗ 1)((∆⊗A)(F−1)⊗ 1)(F−1 ⊗ 1⊗ 1)

]
=

=

 (1⊗ 1⊗ F )(1⊗ (A⊗∆)(F ))(1⊗ Φ)
(A⊗∆⊗A)((A⊗∆)(F ))(A⊗∆⊗A)(Φ)(A⊗∆⊗A)((∆⊗A)(F−1))
(Φ⊗ 1)((∆⊗A)(F−1)⊗ 1)(F−1 ⊗ 1⊗ 1)

 =

=

 (1⊗ 1⊗ F )(1⊗ (A⊗∆)(F ))(1⊗ Φ)
(A⊗∆⊗A)((1⊗ F−1)(1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1)(F ⊗ 1))
(Φ⊗ 1)((∆⊗A)(F−1)⊗ 1)(F−1 ⊗ 1⊗ 1)

 =

=

 (1⊗ 1⊗ F )(1⊗ (A⊗∆)(F ))(1⊗ Φ)(1⊗ (∆⊗A)(F−1))
(A⊗∆⊗A)(ΦF )
((A⊗∆)(F )⊗ 1)(Φ⊗ 1)((∆⊗A)(F−1)⊗ 1)(F−1 ⊗ 1⊗ 1)

 =

=

 (1⊗ (1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1))(1⊗ F ⊗ 1)
(A⊗∆⊗A)(ΦF )
(1⊗ F−1 ⊗ 1)((1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1)⊗ 1)

 =

= (1⊗ ΦF )(A⊗∆F ⊗A)(ΦF )(ΦF ⊗ 1)

For the remaining axiom observe that:

(A⊗ ε⊗A)(ΦF ) = (A⊗ ε⊗A)((1⊗ F )(A⊗∆)(F )Φ(∆⊗A)(F−1)(F−1 ⊗ 1)) (3.15b)=

=
[

(1⊗ (ε⊗A)(F ))(A⊗ (ε⊗A)(∆))(F )(r ⊗ l−1)
((A⊗ ε)∆⊗A)(F−1)((A⊗ ε)(F−1)⊗ 1)

] (3.14b)
(3.14c)=

=
[

(1⊗ (ε⊗A)(F ))(1⊗ l−1)F (1⊗ l)(r ⊗ l−1)
(r−1 ⊗ 1)F−1(r ⊗ 1)((A⊗ ε)(F−1)⊗ 1)

] (3.17b)
(3.17c)=

= (1⊗ l−1
F )(rF ⊗ 1) = (rF ⊗ l−1

F )

Definition 3.1.7. (Twist equivalent quasi-bialgebras)
Two quasi-bialgebras (A,m, u,∆, ε,Φ, l, r) and (A′,m′, u′,∆′, ε′,Φ′, l′, r′) are twist equiv-
alent if there exists F ∈ A′ ⊗ A′ invertible and an isomorphism of quasi-bialgebras
f : A→ A′F .

Proposition 3.1.8. Let (A,m, u,∆, ε,Φ, l, r) be a quasi-bialgebra and let F ∈ A⊗A be
an invertible element. Then the triple:

(R,ϕ0, ϕ2) = (Id
AM, Idk, ϕ2) : (AM,⊗, k, α, λ, ρ)→ (AFM,�,k, αF , λF , ρF ),
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where, here, � is simply ⊗ (but it will be useful to remember explicitly in which category
the tensor product has been done),

ϕ2(M,N) : R(M)�R(N) −→ R(M ⊗N) : m� n 7−→ F−1 · (m⊗ n),

and

αF : (M �N)� P −→M � (N � P ) : (m� n)� p 7−→ ΦF · (m� (n� p))
λF : k�M −→M : 1�m 7−→ lF ·m
ρF : M � k −→M : m� 1 7−→ rF ·m

defines a monoidal functor between monoidal categories that is also an isomorphism.

Proof. Note that (A,m, u) and (AF ,m, u) are exactly the same algebra in (M,⊗,k, a, l, r),
and so the categories AM and AFM coincides. Thus R = Id is trivially a well defined
functor and ϕ0 = Idk is an isomorphism between R(k) = k and k. Moreover, ϕ2 is a
natural isomorphism of left AF -modules. Indeed, the fact that:

ϕ2(M,N)(a · (m� n)) = ϕ2(M,N)(∆F (a) · (m� n)) =
= F−1∆F (a) · (m⊗ n) =
= ∆(a)F−1 · (m⊗ n) =
= a · ϕ2(M,N)(m� n)

for all m ∈M , n ∈ N , a ∈ A, shows that it is a morphism, and

ψ2(M,N) : R(M ⊗N) −→ R(M)�R(N) : m⊗ n 7−→ F · (m� n)

is an explicit inverse for ϕ2(M,N), for each pair (M,N) in AM. Furthermore, if we let
g : M → M ′ and h : N → N ′ be two morphisms of left A-modules, then for all m ∈ M
and n ∈ N :

R(g ⊗ h)(ϕ2(M,N)(m� n)) = R(g ⊗ h)(f1 ·m⊗ f2 · n)) =
= g(f1 ·m)⊗ h(f2 · n) =
= F−1 · (g(m)⊗ h(n)) =
= ϕ2(M ′, N ′)(g(m)� h(n)) =
= ϕ2(M ′, N ′)((R(g)�R(h))(m� n))

where f1 ⊗ f2 := F−1, so that the following diagram commutes:

R(M)�R(N)
ϕ2(M,N) //

R(g)�R(h)

��

R(M ⊗N)

R(g⊗h)

��
R(M ′)�R(N ′)

ϕ2(M ′,N ′)
// R(M ′ ⊗N ′)
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and ϕ2 is natural. Now, observe that (1.13), (1.14) and (1.15) are satisfied since:

(m�n)�p � αF (R(M),R(N),R(P )) //
_

ϕ2(M,N)�R(P )

��

ΦF ·(m�(n�p))_

R(M)�ϕ2(N,P )

��
(F−1�1)·((m⊗n)�n)_

ϕ2(M⊗N,P )

��

(1�F−1)ΦF ·(m�(n⊗p))_

ϕ2(M,N⊗P )

��
(AF�∆)(F−1)(1⊗F−1)ΦF ·(m⊗(n⊗p))

(3.17a)

(∆�AF )(F−1)(F−1⊗1)·((m⊗n)⊗n)
R(α(M,N,P ))

// Φ(∆�AF )(F−1)(F−1⊗1)·((m⊗n)⊗n)

1�m
λF (R(M)) //

ϕ0�R(M)
��

l(ε⊗A)(F−1) · (1⊗m)

1�m
ϕ2(k,M)

// F−1 · (1⊗m)

R(λM )

OO

and
m� 1

ρF (R(M)) //

R(M)�ϕ0

��

r(A⊗ ε)(F−1) · (m⊗ 1)

m� 1
ϕ2(M,k)

// F−1 · (m⊗ 1)

R(ρM )

OO

so that, as claimed, (IdM, Idk, ϕ2) is a monoidal functor.
Next, recall that (Theorem 3.1.6) (AF ,m, u,∆F , ε,ΦF , lF , rF ) is a quasi-bialgebra,

too. Hence, in the same way as above, we can prove that

(L,ψ0, ψ2) : (AFM,�,k, αF , λF , ρF )→ ((AF )F−1M,⊗, k, (αF )F−1 , (λF )F−1 , (ρF )F−1)

is a monoidal functor between monoidal categories, where L = Id
AF

M, ψ0 = Idk and

ψ2(M,N) : L(M)⊗ L(N) −→ L(M �N) : m⊗ n 7−→ F · (m� n).

Observe now that (∆F )F−1 = ∆, (ΦF )F−1 = Φ, (lF )F−1 = l and (rF )F−1 = r. Therefore,
(AF )F−1 = A and

((AF )F−1M,⊗,k, (αF )F−1 , (λF )F−1 , (ρF )F−1) = (AM,⊗, k, α, λ, ρ).

This implies that we have another monoidal functor that goes the other way with respect
to R. Furthermore, both compositions RL and LR are actually the identity of AM, so
that R is an isomorphism of monoidal categories.

Lemma 3.1.9. Let (A,m, u,∆, ε,Φ, l, r) be a quasi-bialgebra. Then (ε⊗ ε) ◦∆ = ε.
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Proof. For all a ∈ A:

(ε⊗ ε)(∆(a)) = (ε⊗ ε)(a1 ⊗ a2) = ε(a1) ε(a2) = ε(a1 ε(a2)) =

= ε((A⊗ ε)(∆(a))) (3.14c)= ε(r−1ar) =
= ε(a)

Now we are ready for take care of the elements l and r.

Theorem 3.1.10. Every quasi-bialgebra (A,m, u,∆, ε,Φ, l, r) is twist equivalent to a
quasi-bialgebra (A′,m′, u′,∆′, ε′,Φ′, l′, r′) such that r′ = l′ = 1.

Proof. First of all, apply ε⊗ ε⊗ ε to both sides of (3.15a). In view of Lemma 3.1.9, we
get that:

[(ε⊗ ε⊗ ε)(Φ)]3 = [(ε⊗ ε⊗ ε)(Φ)]2.

Since Φ is invertible:
(ε⊗ ε⊗ ε)(Φ) = 1.

Now, if we apply ε⊗ k⊗ ε to both sides of (3.15b) we find out that:

ε(r) ε(l−1) = (ε⊗ ε⊗ ε)(Φ) = 1,

and so δ := ε(r)−1 = ε(l)−1. Define F := δ(r ⊗ l). F ∈ A⊗A is invertible with inverse
F−1 = δ−1(r−1 ⊗ l−1), thus A is twist equivalent to (AF ,m, u,∆F , ε,ΦF , lF , rF ), by
Theorem 3.1.6. Moreover:

lF = l(ε⊗A)(F−1) = l ε(r)ε(r)−1l−1 = 1
rF = r(A⊗ ε)(F−1) = r ε(l)r−1ε(l)−1 = 1

as desired.

Corollary 3.1.11. Let (A,m, u,∆, ε,Φ, l, r) be a quasi-bialgebra and let F = δ(r ⊗ l).
Then there exists an isomorphism of monoidal categories between (AM,⊗, k, α, λ, ρ) and
(AFM,⊗, k, αF , `, r), where ` and r are the same constraints of (M,⊗, k, a, `, r).

Remark 3.1.12. In view of Theorem 3.1.10, we can always assume that in a quasi-bialgebra
(A,m, u,∆, ε,Φ, l, r) one has l = 1 = r. With this assumption, let (A,m, u,∆, ε,Φ) and
(A′,m′, u′,∆′, ε′,Φ′) be twist equivalent quasi-bialgebras. Then there exists F ∈ A⊗A
invertible and an isomorphism of quasi-bialgebras ϕ : A′ → AF . Note that, by the
definitions we gave in Theorem 3.1.6, we have that

lF = l(ε⊗A)(F−1) and rF = r(A⊗ ε)(F−1).

On the other hand we have also that:

l = 1 = r, l′ = 1 = r′ and lF = ϕ(l′) = 1 = ϕ(r′) = rF .

Thus F satisfies:
(A⊗ ε)(F ) = 1 = (ε⊗A)(F ).
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Hence we are led to give the following definition (cfr. [Ka, Definition XV.3.1]).

Definition 3.1.13. (Gauge transformation)
Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. A gauge transformation on A is an invertible
element F of A⊗A such that

(A⊗ ε)(F ) = 1 = (ε⊗A)(F ). (3.18)

Remark 3.1.14. This twisting construction is due ultimately to Drinfel’d (cfr. [Dr1]),
but the idea of introducing a proper terminology to refer to the elements that satisfy
the conditions of Definition 3.1.13 comes to us from [Ka] and [BCT]. In the literature,
a gauge transformation is also referred to as a twist simply, however we preferred to
distinguish between the action of twisting (the twist) and the element via which we twist
(the gauge transformation).

If we twist a quasi-bialgebra with trivial l, r via a general invertible element F in
A⊗A, we do not find a quasi-bialgebra with trivial l, r; but if we twist it with a gauge
transformation, then we do.

Moreover, let (B,m, u,∆, ε) be an ordinary bialgebra. If we consider Φ = 1⊗ 1⊗ 1,
then (B,m, u,∆, ε,Φ) is a quasi-bialgebra. Now, take any gauge transformation F on B.
BF is a quasi-bialgebra (Theorem 3.1.6), but generally it is not an ordinary bialgebra.
Indeed:

ΦF = (1⊗ F )(A⊗∆)(F )(∆⊗A)(F−1)(F−1 ⊗ 1)
does not equal 1⊗ 1⊗ 1 in general, and ∆F is not coassociative. In such cases, BF is a
non trivial example of quasi-bialgebra.

3.2 The fundamental structure theorem for quasi-Hopf bi-
modules

From now on we will work with quasi-bialgebras such that r = l = 1, so that a quasi-
bialgebra is the datum of (A,m, u,∆, ε,Φ) where:

• (A,m, u) is an associative unital k-algebra,

• ∆: A→ A⊗A and ε : A→ k are morphisms of algebras,

• Φ ∈ A⊗A⊗A is an invertible element, called the Drinfel’d associator or simply
reassociator, such that:

(A⊗A⊗∆)(Φ)(∆⊗A⊗A)(Φ) = (1⊗ Φ)(A⊗∆⊗A)(Φ)(Φ⊗ 1) (3.19)

(A⊗ ε⊗A)(Φ) = 1⊗ 1 (3.20)

• ∆ and ε are quasi-coassociative and counital:

(A⊗∆)(∆(a))Φ = Φ(∆⊗A)(∆(a)) (3.21)

(ε⊗A)(∆(a)) = a (3.22)
(A⊗ ε)(∆(a)) = a (3.23)

for all a ∈ A.
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(cfr. [HN, Section 2], [Dr1, Section 1])

Lemma 3.2.1. Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. Then:

(ε⊗A⊗A)(Φ) = 1⊗ 1 = (A⊗ ε⊗A)(Φ) = 1⊗ 1 = (A⊗A⊗ ε)(Φ). (3.24)

Proof. The central identities come from condition (3.20). For the left identity, apply
ε⊗ ε⊗A⊗A to (3.19) to get:

(1⊗ (ε⊗A⊗A)(Φ))((ε⊗ (ε⊗A)∆⊗A)(Φ))((ε⊗ ε⊗A)(Φ)⊗ 1) =
= ((ε⊗ ε⊗∆)(Φ))(((ε⊗ ε)∆⊗A⊗A)(Φ)). (3.25)

Since the following identities hold:

• (ε⊗A)∆ = Id,

• (ε⊗ ε)∆ = ε,

• (ε⊗ ε⊗A)(Φ) = (ε⊗ k⊗A)(A⊗ ε⊗A)(Φ) = 1,

• (ε⊗ ε⊗∆)(Φ) = (ε⊗ k⊗∆)(A⊗ ε⊗A)(Φ) = 1⊗ 1

relation (3.25) can be written as

((ε⊗A⊗A)(Φ))2 = (ε⊗A⊗A)(Φ).

Since Φ is invertible, we can simplify to

(ε⊗A⊗A)(Φ) = 1⊗ 1.

Analogously, applying A⊗A⊗ ε⊗ ε to both sides of (3.19):

(1⊗ (A⊗ ε⊗ ε)(Φ))((A⊗ (A⊗ ε)∆⊗ ε)(Φ))((A⊗A⊗ ε)(Φ)⊗ 1) =
= ((A⊗A⊗ (ε⊗ ε)∆)(Φ))((∆⊗ ε⊗ ε)(Φ)) (3.26)

and simplifying as above:

((A⊗A⊗ ε)(Φ))2 = (A⊗A⊗ ε)(Φ),

from which we get:
(A⊗A⊗ ε)(Φ) = 1⊗ 1.

Conventionally, we will write

Φ = Φ1 ⊗ Φ2 ⊗ Φ3 and Φ−1 = φ1 ⊗ φ2 ⊗ φ3,

summation understood.
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Recall that, if (A,m, u,∆, ε,Φ) is a quasi-bialgebra, then (MA,⊗,k, αA, l, r) is a
monoidal category (Theorem 3.1.3) in the following way.
Given a right A-module M , we denote by:

µ = µrM : M ⊗A −→ M
m⊗ a 7−→ m · a

its right A-action. The tensor product of two A-modules M and N is a right A-module
via the diagonal action, i.e., µ((m⊗ n)⊗ a) = (m · a1 ⊗ n · a2). The unit is k, regarded
as a right A-module via the trivial right action µ(k ⊗ a) = k ε(a). The associativity and
unit constraints are defined by (cfr Theorem 3.1.3 and Remark 3.1.4):

αA(M,N,P )((m⊗ n)⊗ p) = (m⊗ (n⊗ p)) · Φ−1

lM (k ⊗m) = km and rM (m⊗ k) = mk.

Remark 3.2.2. There are two more monoidal category structures that we can construct
on a quasi-bialgebra (A,m, u,∆, ε,Φ):

1. Consider the category of left A-modules AM. Denote by µl = µlM : A⊗M → M
the left A-action. If M and N are left A-modules, then their tensor product is a
left A-module via the diagonal action: µl(a ⊗ (m ⊗ n)) = a1 ·m ⊗ a2 · n. k is a
left A-module via the trivial left action: µl(a ⊗ k) = ε(a) k. In view of Remark
3.1.4 and [Ka, Proposition XV.1.2], we have that (AM,⊗,k,Aα, l, r) is a monoidal
category, where:

Aα(M,N,P )((m⊗ n)⊗ p) = Φ · (m⊗ (n⊗ p)).

2. Consider the category of (A,A)-bimodules AMA. Putting together the two results
above we get that (AMA,⊗, k,AαA, l, r) is a monoidal category, where:

AαA(M,N,P )((m⊗ n)⊗ p) = Φ · (m⊗ (n⊗ p)) · Φ−1

(cfr. [Sc2, Section 3]).

The following proposition is the analogue of Lemma 2.1.1.

Proposition 3.2.3. ((A,m,m),∆, ε) is a coalgebra in (AMA,⊗,k,AαA, l, r).

Proof. (A,m,m) is either a right A-module and a left A-module and the structures are
compatible since (A,m, u) is an associative (unital) algebra.

• ∆ is an (A,A)-bimodule morphism. Indeed:

∆(m) · a = m1a1 ⊗m2a2 = (ma)1 ⊗ (ma)2 = ∆(m · a),

a ·∆(m) = a1m1 ⊗ a2m2 = (am)1 ⊗ (am)2 = ∆(a ·m),

since it is an algebra morphism.
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• In the same way, ε is an (A,A)-bimodule morphism. Indeed:

ε(m) · a = ε(m) ε(a) = ε(m · a),

a · ε(m) = ε(a) ε(m) = ε(a ·m),

since it is an algebra morphism.

• ε is a counit for ∆, in view of (3.22) and (3.23).

• ∆ is coassociative. Indeed:

A⊗A

∆⊗A
��

A
∆oo ∆ // A⊗A

A⊗∆
��

(A⊗A)⊗A
AαA(A,A,A)

// A⊗ (A⊗A)

commutes, since:

AαA(A,A,A)((∆⊗A)(∆(a))) = Φ · (∆⊗A)(∆(a)) · Φ−1 (3.21)= (A⊗∆)(∆(a)).

Remark 3.2.4. Coassociativity strictly depends on AαA. Note that A is not a coalgebra
in MA, nor in AM, in general.

Now we can define the correct generalization of Hopf modules to quasi-bialgebras
[HN, Definition 3.1].

Definition 3.2.5. (Quasi-Hopf bimodules)
The category of (right) quasi-Hopf A-bimodules is defined to be:

AM
A
A := (AMA)A

A morphism of quasi-Hopf bimodules is just a (A,A)-bimodule morphism that is also
right A-colinear.

Remark 3.2.6. Note that:

• For ((M,µl, µr), ρ) to be a quasi-Hopf bimodule, ρ has to be a (A,A)-bimodule
morphism, that is:

ρ(a ·m) = a1 ·m0 ⊗ a2 ·m1 and ρ(m · a) = m0 · a1 ⊗m1 · a2.

• The following relations hold:

m0 ε(m1) = m, (3.27)
(m0 ⊗ (m1)1 ⊗ (m1)2) · Φ = Φ · ((m0)0 ⊗ (m0)1 ⊗m1). (3.28)

(cfr. [HN, Definition 3.1], [BC, Definition 3.1])
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3.2.1 An adjunction between AM
A
A and AM.

Lemma 3.2.7. Let (C,∆, ε) be a coalgebra in a monoidal category (M,⊗, I, a, l, r). The
assignment T : M→MC that sends M to (M⊗C, (aM,C,C)−1◦(M⊗∆)) and f : M → N to
f ⊗C : M ⊗C → N ⊗C defines a functor. Moreover, T is right adjoint to U : MC →M,
the underlying functor. The unit and counit of the adjunction are given, for every
(M,ρM ) ∈MC and N ∈M, by:

ηM := ρM : M• →M ⊗ C• and εN := rN ◦ (N ⊗ ε) : N ⊗ C → N (3.29)

(the upper full dots denote the given C-coaction).

Proof. First of all, we should prove that (M ⊗C, (aM,C,C)−1 ◦ (M ⊗∆)) is a C-comodule.

• Consider the following diagram:

M ⊗ C M⊗∆ //

M⊗∆

��

M ⊗ (C ⊗ C)
a−1
M,C,C //

M⊗(∆⊗C)

��

(M ⊗ C)⊗ C

(M⊗∆)⊗C

��
M ⊗ ((C ⊗ C)⊗ C)

M⊗aC,C,C

��

a−1
M,C⊗C,C // (M ⊗ (C ⊗ C))⊗ C

a−1
M,C,C⊗C

��

M ⊗ (C ⊗ C)
M⊗(C⊗∆) //

a−1
M,C,C

��

M ⊗ (C ⊗ (C ⊗ C))

a−1
M,C,C⊗C

��
(M ⊗ C)⊗ C

(M⊗C)⊗∆
// (M ⊗ C)⊗ (C ⊗ C)

a−1
M⊗C,C,C

// ((M ⊗ C)⊗ C)⊗ C

The upper left square commutes since C is a coalgebra and M ⊗− is a functor. The
upper right square and the lower left square commute since a is natural. The lower
right square commutes in view of the Pentagon Axiom (1.9). The external square
is the first compatibility condition that a coaction should satisfy (cfr. (1.31)).

• Consider the following diagram:

M ⊗ C

M⊗∆

��

M ⊗ C

M ⊗ (C ⊗ C)
M⊗(C⊗ε) //

a−1
M,C,C

��

M ⊗ (C ⊗ I)

M⊗rC

77

a−1
M,C,I

&&
(M ⊗ C)⊗ C

(M⊗C)⊗ε
// (M ⊗ C)⊗ I

rM⊗C

OO
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The upper left square commutes because C is a coalgebra. The lower left square
commutes since a is natural. The right triangle commutes in view of (1.12). The
external path is the second compatibility condition that a coaction should satisfy
(cfr. (1.31)).

Thus (M ⊗C, (aM,C,C)−1 ◦ (M ⊗∆)) is a C-comodule. If f : M → N is a linear map, then
f ⊗ C : M ⊗ C → N ⊗ C is trivially a right C-comodule map. Therefore T : M→MC is
a functor. Let us prove that (U, T ) is an adjoint pair.

• Define the unit and counit of the adjunction:

ηM : M• → TU(M) = M ⊗ C•

εM : UT (M) = M ⊗ C →M

to be:

ηM = ρM
(
∀M ∈MC

)
and εM = rM ◦ (M ⊗ ε) (∀M ∈M) .

• Let us verify that ηM is a right C-comodule morphism:

ρM⊗C ◦ ηM = a−1
M,C,C ◦ (M ⊗∆) ◦ ρM

(1.31)= (ρM ⊗ C) ◦ ρM = (ηM ⊗ C) ◦ ρM

since (M,ρM ) is a C-comodule.

• We have that εM = rM ◦ (M ⊗ ε) and so it is a morphism in M.

• Naturality of η. For each f : M → N , right C-comodule morphism, we have that
(f ⊗ C) ◦ ρM = ρN ◦ f . Since ηM = ρM we deduce that η is natural.

• Naturality of ε. For every f : M → N , linear map,

M ⊗ C
	

M⊗ε //

f⊗C
��

M ⊗ k

f⊗k
��

rM //M

f
��

N ⊗ C
N⊗ε

// N ⊗ k rN
// N

commutes by naturality of rM .

• Triangular identities:

UTU(M)
εU(M) // U(M)

U(M)

U(ηM )

OO

IdU(M)

99
and TUT (M)

T (εM )// T (M)

T (M)

ηT (M)

OO

IdT (M)

99

If M• ∈MC , then UTU(M) = M ⊗ C. Thus

εU(M) ◦ U(ηM ) = rM ◦ (M ⊗ ε) ◦ ρM• = IdM ,

84



since (M,ρM ) is a right C-comodule.
If M ∈M, then TUT (M) = (M ⊗ C)⊗ C•. Consider the following diagram:

M ⊗ C

M⊗∆

��

M ⊗ C

M ⊗ (C ⊗ C)
M⊗(ε⊗C) //

a−1
M,C,C

��

M ⊗ (I⊗ C)

M⊗lC

77

a−1
M,I,C

&&
(M ⊗ C)⊗ C

(M⊗ε)⊗C
// (M ⊗ I)⊗ C

rM⊗C

OO

The upper left square commutes because C is a coalgebra. The lower left square
commutes since a is natural. The right triangle commutes in view of the Triangle
Axiom (1.10). Thus:

T (εM ) ◦ ηT (M) = (εM ⊗ C) ◦ ρM⊗C =
= ((rM ◦ (M ⊗ ε))⊗ C) ◦ a−1

M,C,C ◦ (M ⊗∆) =
= IdM .

The thesis now follows.

In view of Proposition 3.2.3 and Lemma 3.2.7, we have and adjunction:

(U, T, η, ε) : AMA
A ⇀ AMA.

Explicitly:
T : AMA −→ AM

A
A

•M• 7−→ •M• ⊗ •A••
where

ρM⊗A : M ⊗A −→ (M ⊗A)⊗A
m⊗ a 7−→ Φ−1 · ((m⊗ a1)⊗ a2) · Φ . (3.30)

The unit and counit of the adjunction are given by:

ηM : •M
•
• −→ •M• ⊗ •A••

m 7−→ m0 ⊗m1
∀M ∈ AM

A
A,

εM : •M• ⊗ •A• −→ •M•
m⊗ a 7−→ mε(a) ∀M ∈ AMA.

Now, recall that the structure theorem for ordinary Hopf modules involves the concept
of coinvariants as the equalizer in M of the maps:

0 //MCoH //M
ρM //

i1
//M ⊗H
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where
i1 : M −→ M ⊗H

m 7−→ m⊗ 1

The dual concept leads us to define what will be shown to be an appropriate generalization
of the coinvariants in the case of quasi-bialgebras.
Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra and (M,µlM , µ

r
M ) be a (A,A)-bimodule. Con-

sider the coequalizer in the category of k-vector spaces:

M ⊗A
µrM //

ξM
//M

π // M
Im(µrM−ξM )

// 0

where ξM is the trivial right A-action: ξ(m⊗ a) = mε(a).
Remark 3.2.8. Pay attention: µrM and ξM are maps in M. This means that the quotient
(as a coequalizer) comes with the structure of k-vector space. However, if we take
n ∈ Im(µ−ξ), there exists an element

∑
imi⊗ai ∈M⊗A such that n = (µ−ξ)(

∑
imi⊗

ai) =
∑
imi · (ai − ε(ai)1). Note that:

b ·n = b ·
∑
i

mi ·(ai−ε(ai)1) =
∑
i

b ·mi ·(ai−ε(ai)1) = (µ−ξ)(
∑
i

b ·mi⊗ai) ∈ Im(µ−ξ).

Thus we have that Im(µ− ξ) is a left A-submodule of M and M
Im(µ−ξ) is a left A-module.

Consider the short exact sequence (SES):

0 // A+ � � // A
ε // k // 0

where we set A+ := ker(ε). Note that A+ is a two-sides ideal of A, the so called
augmentation ideal of A (if A is an associative algebra over a ring R, then it is called
augmented or supplemented if it is equipped with a ring homomorphism ε : A→ R. The
kernel ker(ε) is called the augmentation ideal of A).

Lemma 3.2.9. Im(µ− ξ) = MA+.

Proof. Observe that a− ε(a)1 ∈ A+, so that Im(µ− ξ) ⊆MA+. On the other hand, if
a ∈ A+, then a = a− ε(a)1. That implies that, for all

∑
imi · ai ∈ MA+,

∑
imi · ai =∑

imi · (ai − ε(ai)1) ∈ Im(µ− ξ).

Remark 3.2.10. Note that Im(µ−ξ) is not a right A-submodule of M , in general. However,

m · a = mε(a) (3.31)

holds in M
MA+ .

Concluding, what we got is that

M

Im(µ− ξ) = M

MA+ ,

that is exactly what we need. Indeed, consider the assignment R : AM → AMA that
sends •M to •M◦ and f : •M → •N to f : •M◦ → •N◦, where the empty dot denotes the
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trivial right A-action.
R is a functor and it is right adjoint to the functor L : AMA → AM that sends •M• to
•

M
MA+ .

To see how L operates on morphism, let f : M → N be a morphism of (A,A)-bimodules.
Consider the following diagram:

0 //MA+ i //

πN◦f◦i
##

M

f��

πM // M
MA+

//

f
{{

0

N
πN��

N
NA+

��
0

If
∑
imiai ∈ MA+, then f(

∑
imiai) =

∑
i f(mi)ai ∈ NA+ since f is in particular a

morphism of right A-modules. Thus f passes to the quotient and we can set L(f) = f ,
morphism of left A-modules. Note that on elements we have: f(m) = f(m).

Proposition 3.2.11. (L,R) forms an adjunction between AMA and AM. The unit and
counit of the adjunction are given by:

η̃M = πM : •M• −→ •
M

MA+ ◦ : m 7−→ m (3.32)

ε̃M = IdM : •M −→ •M : m 7−→ m (3.33)

Proof. Note that LR(•M) = L(•M◦) = •
M

MA+ , but if m ∈ M and a ∈ A+, m · a =
mε(a) = 0. Thus MA+ = 0 and we can identify LR(•M) with •M . Moreover,
RL(•M•) = R

(
•

M
MA+

)
= •

M
MA+ ◦. These observations suggest the definitions of the unit

and the counit:
η̃M = πM : •M• −→ •

M
MA+ ◦

m 7−→ m
,

ε̃M = IdM : •M −→ •M
m 7−→ m

.

Clearly ε̃ is a natural isomorphism of left A-modules. Let us prove that also η̃ is a natural
morphism:

• η̃M is a morphism of (A,A)-bimodules, for all M ∈ AMA. Indeed, for every m ∈M
and a ∈ A:

a · η̃M (m) = a ·m = a ·m = η̃M (a ·m),

η̃M (m) · a = η̃M (m) ε(a) = mε(a) (3.31)= m · a = η̃M (m · a).

• η̃ is natural. Let f : M → N be a morphism of (A,A)-bimodules. RL(f) = R(f) =
f , thus:

f(η̃M (m)) = f(m) = f(m) = η̃N (f(m))

for all m ∈M .

87



Hence the only things left are the triangular identities. Now, η̃R(M) is again the identity,
since (•M◦)A+ = 0 and so the composition

R(M)
η̃R(M) // RLR(M)

R(ε̃M ) // R(M)

is trivially the identity. Moreover, since η̃M is just the projection, L(η̃M ) = η̃M is the
identity of the quotient. Therefore, even

L(M)
L(η̃M ) // LRL(M)

ε̃L(M) // L(M)

is the identity map.

In view of Theorem 1.1.15 we can compose the adjunctions that we constructed and
obtain an adjunction between AM

A
A and AM, as desired. Define:

F := LU : AMA
A → AM and G := TR : AM→ AM

A
A

so that F (•M••) = •
M

MA+ and G(•M) = •M◦ ⊗ •A••.
Explicitly, the structures on G(•M) are given by:

x · (m⊗ a) = x1 ·m⊗ x2a, (3.34)
(m⊗ a) · x = m⊗ ax, (3.35)

ρ(m⊗ a) = Φ−1 · ((m⊗ a1)⊗ a2) (3.36)

for every x, a ∈ A and m ∈M , as:

ρ(m⊗ a) (3.30)= Φ−1 · ((m⊗ a1)⊗ a2) · Φ = Φ−1 · ((m⊗ a1)⊗ a2) · (ε⊗A⊗A)(Φ) =
= Φ−1 · ((m⊗ a1)⊗ a2)

The unit and counit are given by the compositions:

η̂M := T (η̃U(M)) ◦ ηM = (η̃U(M) ⊗A) ◦ ηM ,

ε̂M := ε̃M ◦ L(εR(M)) = εR(M),

so that:
η̂M : M −→ M

MA+ ⊗A
m 7−→ m0 ⊗m1

∀M ∈ AM
A
A

and
ε̂M : M⊗A

(M⊗A)A+ −→ M

m⊗ a 7−→ mε(a)
∀M ∈ AM.

Remark 3.2.12. Note that, since the right A-module structure on G(•M) = •M◦⊗ •A•• is
given by the multiplication on the second factor, we have that (M ⊗A)A+ = M ⊗A+.
Moreover, if we tensor the SES

0 // A+ � � // A
ε // k // 0
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by M on the left we get the SES:

0 // M ⊗A+ � � // M ⊗A M⊗ε // M ⊗ k ∼= M // 0

from which we deduce that M⊗A
M⊗A+

∼= M via the isomorphism

M ⊗ ε : M ⊗A
M ⊗A+ −→ M

m⊗ a 7−→ mε(a)

Now, it is evident that M ⊗ ε = ε̂M for every M ∈ AM, i.e., ε̂ is a natural isomorphism.
Another way to see this is to observe that for all m⊗ a in M ⊗A, m⊗ (a− ε(a)1) is in
M ⊗A+, so that m⊗ a = mε(a)⊗ 1.

Summing up, we have just proved the following result (cfr. [Sc1, proof of Theorem
3.1]) where we use a different notation for the (co)unit for the sake of simplicity.

Theorem 3.2.13. The functor F : AMA
A → AM, F (M) = M

MA+ =: M , is left adjoint to
the functor G : AM→ AM

A
A, G(M) = M ⊗A. Moreover, the unit and the counit of this

adjunction are given by:

ηN : N −→ N ⊗A : n 7−→ n0 ⊗ n1 (3.37)
εM : M ⊗A −→M : m⊗ a 7−→ mε(a) (3.38)

for all M ∈ AM and for all N ∈ AM
A
A, and ε is a natural isomorphism.

Note that we dropped theˆdecoration on the unit and counit in order to lighten the
notation, since from now on we will be interested in this last adjunction only.

Theorem 3.2.14. (Dual to [AP1, Proposition 3.3]) Let (A,m, u,∆, ε,Φ) be a quasi-
bialgebra. The following assertions are equivalent:

(1) The adjunction (F,G, η, ε) is an equivalence of categories.

(2) For each M ∈ AM
A
A, there exists a k-linear map τ̃ : M →M such that:

(i) τ̃(m)0 ⊗ τ̃(m)1 = τ̃(φ1 ·m) · φ2 ⊗ φ3, where Φ−1 = φ1 ⊗ φ2 ⊗ φ3; (3.39)
(ii) a · τ̃(m) = τ̃(a1 ·m) · a2; (3.40)

(iii) τ̃(m0) ·m1 = m; (3.41)

for all m ∈M , a ∈ A.

(3) For each M ∈ AM
A
A, there exists a k-linear map τ̃ : M →M such that (iii) holds

and:

(iv) τ̃(m)0 ⊗ τ̃(m)1 = m⊗ 1; (3.42)

for all m ∈M .
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Proof. (1) ⇒ (2). By hypothesis (F,G, η, ε) is an equivalence, so that η is a natural
isomorphism. For each M ∈ AM

A
A define:

τ̃M =
(

M

MA+
i1 // M

MA+ ⊗A
η−1
M //M

)

where:
i1 : M

MA+ −→
M

MA+ ⊗A : m 7−→ m⊗ 1,

i.e., τ̃M (m) = η−1
M (m⊗ 1).

• Since ηM is right A-linear, also η−1
M is:

(
M

MA+ ⊗A
)
⊗A

	

η−1
M ⊗A //

µr
M⊗A

��

M ⊗A

µrM

��
M

MA+ ⊗A
η−1
M

//M

so that η−1
M (m⊗ a) · b = η−1

M (m⊗ ab). Evaluating at a = 1 we get that:

η−1
M (m⊗ a) = τ̃(m) · a. (3.43)

• Since ηM is right A-colinear, also η−1
M is:

M
MA+ ⊗A

	

η−1
M //

ρ
M⊗A

��

M

ρM

��(
M

MA+ ⊗A
)
⊗A

η−1
M ⊗A

//M ⊗A

so that

ρ(τ̃(m) · a) (3.43)= ρ
(
η−1
M (m⊗ a)

)
= η−1

M

(
φ1 ·m⊗ φ2 · a1

)
⊗ φ3 · a2 =

(3.43)= τ̃(φ1 ·m) · φ2 · a1 ⊗ φ3 · a2.

Evaluating at a = 1 we get (3.39):

τ̃(m)0 ⊗ τ̃(m)1 = τ̃
(
φ1 ·m

)
· φ2 ⊗ φ3.

• Again, ηM is left A-linear, and so is η−1
M :

b · η−1
M (m⊗ 1) = η−1

M (b1 ·m⊗ b2) ,

i.e., by (3.43), (3.40) holds:

b · τ̃(m) = τ̃ (b1 ·m) · b2.
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• η−1
M is the inverse of ηM :

m = η−1
M (ηM (m)) = η−1

M (m0 ⊗m1) (3.43)= τ̃ (m0) ·m1,

i.e., (3.41).

(2)⇒ (3). Applying the canonical projection on the quotient, π, to (3.41) and recalling
(3.31), we get that:

m = τ̃(m0) ·m1 = τ̃(m0) ε(m1) = τ̃(m),

i.e.:
τ̃(m) = m. (3.44)

In the same way, applying π ⊗A to (3.39) we find:

τ̃(m)0 ⊗ τ̃(m)1 = τ̃ (φ1 ·m) · φ2 ⊗ φ3 = τ̃ (φ1 ·m) ε (φ2)⊗ φ3 (3.24)=

= τ̃(m)⊗ 1 (3.44)= m⊗ 1

so that (3.42) holds.
(3) ⇒ (1). It’s enough to give an inverse for ηM , for all M ∈ AM

A
A. As ((1) ⇒ (2))

suggests, we can consider:

ψM =
(

M

MA+ ⊗A
τ̃⊗A //M ⊗A µM //M

)

so that ψM (m⊗ a) = τ̃(m) · a. Thus:

m � ηM // m0 ⊗m1
� ψM // τ̃(m0) ·m1

(3.41)= m

and:
m⊗ a � ψM // τ̃(m) · a � ηM // τ̃(m)0 · a1 ⊗ τ̃(m)1 · a2

but:

τ̃(m)0 · a1⊗τ̃(m)1 · a2
(3.31)= τ̃(m)0 ⊗ τ̃(m)1 · a =

(3.35)=
(
τ̃(m)0 ⊗ τ̃(m)1

)
· a (3.42)= (m⊗ 1) · a (3.35)= m⊗ a

Remark 3.2.15. It follows from the previous theorem that, if τ̃ : M → M is a k-linear
map that satisfies (3.41), then it satisfies (3.39) and (3.40) if and only if it satisfies (3.42).

Definition 3.2.16. (Preantipode)
A preantipode for a quasi-bialgebra (A,m, u,∆, ε,Φ) is a k-linear map S : A→ A such
that:

(P1) For every a, b ∈ A,
b1S(ab2) = S(a)ε(b). (3.45)

91



(P2) For every a, b ∈ A,
S(a1b)a2 = ε(a)S(b). (3.46)

(P3) If Φ = Φ1 ⊗ Φ2 ⊗ Φ3, then:
Φ1S(Φ2)Φ3 = 1 (3.47)

Remark 3.2.17. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S. Then
the following equalities hold, taking a = 1 in (P1) and b = 1 in (P2):

a1S(a2) = S(1)ε(a) = S(a1)a2.

Let us take a little bit of time to investigate some elementary properties of quasi-
bialgebras with preantipode.
Lemma 3.2.18. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S. The
following identities hold:

S(φ1)φ2S(φ3) = S(1) (3.48)
ε(S(1)) = 1 (3.49)
ε ◦ S = ε (3.50)

Proof. In what follows, the use of two copies of Φ−1 will be required, so that we are going
to indicate with Ψ−1 = ψ1 ⊗ ψ2 ⊗ ψ3 another copy of Φ−1, in order to avoid confusion.

In view of (3.19):

(∆⊗A⊗A)(Φ−1)(A⊗A⊗∆)(Ψ−1)(1⊗ Φ) = (Φ−1 ⊗ 1)(A⊗∆⊗A)(Ψ−1),

i.e.:

(φ1)1ψ
1 ⊗ (φ1)2ψ

2Φ1 ⊗ φ2(ψ3)1Φ2 ⊗ φ3(ψ3)2Φ3 = φ1ψ1 ⊗ φ2(ψ2)1 ⊗ φ3(ψ2)2 ⊗ ψ3.

Applying S ⊗A⊗ S ⊗A to both sides and then multiplying:

S((φ1)1ψ
1)(φ1)2︸ ︷︷ ︸

(3.46)
= ε(φ1)S(ψ1)

ψ2Φ1S(φ2(ψ3)1Φ2)φ3(ψ3)2Φ3 = S(φ1ψ1)φ2 (ψ2)1S(φ3(ψ2)2)︸ ︷︷ ︸
(3.45)

= ε(ψ2)S(φ3)

ψ3,

simplifying using (3.24):

S(ψ1)ψ2Φ1 S((ψ3)1Φ2)(ψ3)2︸ ︷︷ ︸
(3.46)

= ε(ψ3)S(Φ2)

Φ3 = S(φ1)φ2S(φ3)

and, in view of (3.47) and (3.24) again:

S(1) = S(φ1)φ2S(φ3).

To prove (3.49) it’s enough to apply ε to both sides of (3.47):

1 = ε(1) (3.47)= ε(Φ1S(Φ2)Φ3) = ε(ε(Φ1)S(Φ2)ε(Φ3)) (3.24)= ε(S(1)).

Now, (3.50) follows directly from (3.49) by applying ε to both sides of (3.46) and
evaluating at b = 1:

ε(a) (3.49)= ε(a)ε(S(1)) = ε(ε(a)S(1)) (3.46)= ε(a1S(a2)) = ε(a1)ε(S(a2)) = ε(S(a)),

for all a ∈ A.
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Note that, unless S(1) is invertible, (3.48) and (3.47) are not equivalent. Indeed, in
the last proof we showed that:

S(1)Φ1S(Φ2)Φ3 = S(φ1)φ2S(φ3).

The following Proposition is the natural generalization of [HN, Proposition 3.4], to
quasi-bialgebras with preantipode.

Proposition 3.2.19. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S
and M ∈ AM

A
A. Define

τ : M −→M : m 7−→ Φ1 ·m0 · S(Φ2m1)Φ3 (3.51)

and, for all a ∈ A, m ∈M ,
a I m := τ(a ·m). (3.52)

Then they satisfy:

(1) τ(m · a) = τ(m) ε(a),

(2) τ2 = τ ,

(3) a I τ(m) = τ(a ·m),

(4) a I (b I m) = (ab) I m,

(5) a · τ(m) = τ(a1 ·m) · a2 = (a1 I τ(m)) · a2,

(6) τ(m0) ·m1 = m,

(7) τ(τ(m)0)⊗ τ(m)1 = τ(m)⊗ 1,

for all a, b ∈ A, m ∈M .

Proof. Property (1) is quite easy to prove, indeed:

τ(m · a) = Φ1 ·m0 · a1S(Φ2m1a2)Φ3 (3.45)= Φ1 ·m0 · ε(a)S(Φ2m1)Φ3 = τ(m) ε(a).

To prove (3) one uses (1) to compute:

τ(a · τ(m)) = τ(aΦ1 ·m0 · S(Φ2m1)Φ3) =

= τ(aΦ1 ·m0) ε(S(Φ2m1))ε(Φ3) (3.50)=
= τ(aΦ1 ·m0) ε(Φ2m1)ε(Φ3) =
= τ(a ·m0)ε(m1) = τ(a ·m),

for all a ∈ A and m ∈M . Now, (2) is just (3) with a = 1 and (4) follows directly from
(3) since, for every a, b ∈ A and m ∈M :

a I (b I m) = a I τ(b ·m) = τ(ab ·m) = (ab) I m,
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Statement (5) is a consequence of the quasi-coassociativity of ∆:

τ(a1 ·m) · a2 = Φ1(a1)1 ·m0 · S(Φ2(a1)2m1)Φ3a2
(3.21)=

= a1Φ1 ·m0 · S((a2)1Φ2m1)(a2)2Φ3 (3.46)=
= a1Φ1 ·m0 · S(Φ2m1)Φ3ε(a2) = a · τ(m).

for all a ∈ A and m ∈M . Furthermore, (6) follows from the fact that, for all m ∈M :

τ(m0) ·m1 = Φ1 · (m0)0 · S(Φ2(m0)1)Φ3m1
(3.28)=

= m0 · Φ1S((m1)1Φ2)(m1)2Φ3 (3.46)=

= m0 · Φ1S(Φ2)ε(m1)Φ3 (3.47)= m

Now, let us prove (7). Again, in the calculations that follows, two copies of Φ will be
required, so that we are going to indicate with Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 another copy of Φ.

For all m ∈M

τ(τ(m)0)⊗ τ(m)1 = τ
((

Φ1 ·m0 · S(Φ2m1)Φ3
)

0

)
⊗
(
Φ1 ·m0 · S(Φ2m1)Φ3

)
1

(1)=

= τ
((

Φ1 ·m0
)

0

)
ε
((
S(Φ2m1)Φ3

)
1

)
⊗
(
Φ1 ·m0

)
1

(
S(Φ2m1)Φ3

)
2

=

= τ
(
(Φ1)1 · (m0)0

)
⊗ (Φ1)2(m0)1S(Φ2m1)Φ3 (3.28)=

= τ
(
(Φ1)1φ

1 ·m0 ·Ψ1
)
⊗ (Φ1)2φ

2(m1)1Ψ2S(Φ2φ3(m1)2Ψ3)Φ3 (1)=

= τ
(
(Φ1)1φ

1 ·m0
)
ε
(
Ψ1
)
⊗ (Φ1)2φ

2(m1)1Ψ2S(Φ2φ3(m1)2Ψ3)Φ3 (3.24)=

= τ
(
(Φ1)1φ

1 ·m0
)
⊗ (Φ1)2φ

2(m1)1S(Φ2φ3(m1)2)Φ3 (3.45)=

= τ
(
(Φ1)1φ

1 ·m0
)
⊗ (Φ1)2φ

2ε(m1)S(Φ2φ3)Φ3 (∗)=

= τ
(
φ1Ψ1 ·m

)
⊗ φ2Φ1

(
Ψ2
)

1
S
((
φ3
)

1
Φ2
(
Ψ2
)

2

) (
φ3
)

2
Φ3Ψ3 (3.45)=

= τ
(
φ1Ψ1 ·m

)
⊗ φ2Φ1 ε

(
Ψ2
)
S
((
φ3
)

1
Φ2
) (
φ3
)

2
Φ3Ψ3 (3.46)=

= τ
(
φ1 ·m

)
⊗ φ2Φ1S

(
Φ2
)
ε
(
φ3
)

Φ3 (3.24)=

= τ(m)⊗ Φ1S
(
Φ2
)

Φ3 (3.47)= τ(m)⊗ 1.

where in (∗) we used the identity (3.19):

(∆⊗A⊗A)(Φ)(Φ−1 ⊗ 1) = (A⊗A⊗∆)(Φ−1)(1⊗ Φ)(A⊗∆⊗A)(Ψ).

The following theorem shows how important are in this treatment the preantipode
and the map τ .
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Theorem 3.2.20. Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. Let S : A→ A be a prean-
tipode for A. Then the map

τ̃ : M

MA+ −→M : m 7−→ Φ1 ·m0 · S(Φ2m1)Φ3 (3.53)

is k-linear and satisfies (iii) and (iv) of Theorem 3.2.14.

Proof. Consider the k-linear map:

τ : M −→M : m 7−→ Φ1 ·m0 · S(Φ2m1)Φ3

defined in (3.51). It satisfies τ(m · a) = τ(m) ε(a) ((1) of Proposition 3.2.19). Thus τ
factors through the quotient:

τ̃ : M

MA+ →M,

since for all
∑
imi · ai ∈MA+

τ

(∑
i

mi · ai

)
=
∑
i

τ(mi) ε(ai) = 0.

Now, keeping in mind Proposition 3.2.19, let us show that τ̃ satisfies (iii) and (iv):

(iii) For all m ∈M
τ̃(m0) ·m1 = τ(m0) ·m1

(6)= m.

(iv) From (6) we deduce also that, for all m ∈M ,

m = τ̃(m0) ·m1 = τ̃(m) = τ(m), (3.54)

Putting together this last equality, (7) and the fact that τ̃(m) = τ(m) we find out
that:

τ̃(m)0 ⊗ τ̃(m)1 = τ(m)0 ⊗ τ(m)1
(3.54)=

= τ(τ(m)0)⊗ τ(m)1
(7)=

= τ(m)⊗ 1 (3.54)= m⊗ 1.

The proof is now complete.

Remark 3.2.21. Note that if (A,m, u,∆, ε,Φ) is a quasi-bialgebra and there exists a map
τ that satisfies (1)-(7) then τ̃ satisfies properties (iii) and (iv) of Theorem 3.2.14. Indeed,
nowhere in the previous proof we used the actual definition of τ , but only its properties.

What we are going to do now is to show that if the adjunction (F,G, η, ε) is an
equivalence, then we can construct a map S from η−1 that satisfies condition (P1), (P2)
and (P3) of Definition 3.2.16, i.e., a preantipode for A.

Indeed, consider the tensor product A⊗A with the following structures:

A⊗̂A := T (◦A•) = ◦A• ⊗ •A••
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where the tensor product is taken in AMA. Explicitly:

x · (a⊗ b) = a⊗ xb (3.55a)
(a⊗ b) · x = ax1 ⊗ bx2 (3.55b)

ρ(a⊗ b) = ((a⊗ b1)⊗ b2) · Φ (3.55c)

for all a, b, x ∈ A (recall relation (3.30)). Set

η̂A := ηA⊗̂A : A⊗̂A −→ A⊗̂A
(A⊗̂A)A+ ⊗A

a⊗ b 7−→ aΦ1 ⊗ b1Φ2 ⊗ b2Φ3
(3.56)

The structures on A⊗̂A
(A⊗̂A)A+ ⊗A are given by:

x · (a⊗ b⊗ c) = a⊗ x1b⊗ x2c

(a⊗ b⊗ c) · x = a⊗ b⊗ cx
ρ(a⊗ b⊗ c) = (a⊗ φ1b⊗ φ2c1)⊗ φ3c2

for all a, b, c, x ∈ A. If we assume that (F,G) is an equivalence, then η̂A is an isomorphism
in AM

A
A. This means that η̂−1

A exists and it is an isomorphism too.

• η̂−1
A is right A-linear. In particular:

η̂−1
A (a⊗ b⊗ c) = η̂−1

A (a⊗ b⊗ 1) · c, (3.57)

so that it suffices to see how it works on elements of the form a⊗ b⊗ 1.
Define

a1 ⊗ a2 := η̂−1
A (1⊗ a⊗ 1). (3.58)

• Define a new map:

β : A⊗̂A
(A⊗̂A)A+ −→ A : a⊗ b 7−→ (A⊗ ε)η̂−1

A (a⊗ b⊗ 1). (3.59)

Consider the left A-action on A⊗A given by the multiplication on the first factor.
It is trivially an action and (A⊗A)A+ is left A-submodule of A⊗A with this new
action. Consider the same A-action on the first factor on A⊗A

(A⊗A)A+ . Then η̂A in left
A-linear with respect to this A-action:

x⊗ (a⊗ b)

	

� A⊗η̂A //
_

m⊗A

��

x⊗ (aΦ1 ⊗ b1Φ2 ⊗ b2Φ3)
_

m⊗A⊗A

��
xa⊗ b �

η̂A
// xaΦ1 ⊗ b1Φ2 ⊗ b2Φ3

(3.60)
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This implies that also η̂−1
A is. In particular, if we write down this left A-linearity of

η̂−1
A and we apply it to 1⊗ a⊗ 1 we get that:

x⊗ (a1 ⊗ a2)

	

_

m⊗A

��

x⊗ (1⊗ a⊗ 1)�A⊗η̂−1
Aoo

_

m⊗A⊗A

��
xa1 ⊗ a2 x⊗ a⊗ 1�

η̂−1
A

oo

i.e.:

η̂−1
A (a⊗ b⊗ 1) = ab1 ⊗ b2 (3.61)
β(a⊗ b) = ab1 ε(b2) (3.62)

• Define
S(a) := a1 ε(a2)

for all a ∈ A. Then S : A→ A is clearly k-linear. Moreover

β(a⊗ b) = aS(b). (3.63)

• Since a⊗ b ∈ A⊗A
(A⊗A)A+ , we have that:

ax1 ⊗ bx2 = (a⊗ b) · x = a⊗ b ε(x).

This implies that:

ax1S(bx2) = β(ax1 ⊗ bx2) = β(a⊗ b) ε(x) = aS(b) ε(x).

Evaluating at a = 1, we get (P1): x1S(bx2) = ε(x)S(b).

• η̂−1
A is left A-linear with respect to the original left A-action too. Hence:

a1 ⊗ xa2 = x · (a1 ⊗ a2) = x · η̂−1
A (1⊗ a⊗ 1) = η̂−1

A (x · (1⊗ a⊗ 1)) =

= η̂−1
A (1⊗ x1a⊗ x2) =

(
(x1a)1 ⊗ (x1a)2

)
· x2 =

= (x1a)1(x2)1 ⊗ (x1a)2(x2)2.

Applying A⊗ ε on both sides we find (P2):

ε(x)S(a) = S(x1a)x2.

• η̂−1
A is the inverse of η̂A, so that:

a⊗ b = η̂−1
A (η̂A(a⊗ b)) = η̂−1

A (aΦ1 ⊗ b1Φ2 ⊗ b2Φ3) =

= η̂−1
A (aΦ1 ⊗ b1Φ2 ⊗ 1) · b2Φ3 (3.61)= (aΦ1(b1Φ2)1 ⊗ (b1Φ2)2) · b2Φ3.

Applying A⊗ ε to both sides we get:

a ε(b) = aΦ1S
(
b1Φ2

)
b2Φ3.

For a = b = 1 we find (P3):
1 = Φ1S(Φ2)Φ3.
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Remark 3.2.22. We can use the right A-colinearity of η̂−1
A to express it explicitly as a

function of S. Indeed, consider the following commutative diagram, that shows the
A-colinearity of η̂−1

A when applied to 1⊗ b⊗ 1:

1⊗ b⊗ 1

	

� η̂−1
A //

_
ρ
A⊗̂A⊗A

��

b1 ⊗ b2_

ρA⊗̂A

��(
1⊗ φ1b⊗ φ2

)
⊗ φ3 �

η̂−1
A ⊗A

// (∗)

where in (∗) should take place the following equality:(
b1Φ1 ⊗ (b2)1Φ2

)
⊗ (b2)2Φ3 = η̂−1

A

(
1⊗ φ1b⊗ φ2

)
⊗ φ3 (3.57)=

= η̂−1
A

(
1⊗ φ1b⊗ 1

)
· φ2 ⊗ φ3 Def.(3.58)=

=
(
(φ1b)1 ⊗ (φ1b)2

)
· φ2 ⊗ φ3 =

= (φ1b)1(φ2)1 ⊗ (φ1b)2(φ2)2 ⊗ φ3

Applying A⊗ ε⊗A to both sides and in view of (3.20):

η̂−1
A (1⊗ b⊗ 1) = b1 ⊗ b2 = S(φ1b)φ2 ⊗ φ3. (3.64)

Recalling (3.61) we can conclude that:

η̂−1
A (a⊗ b⊗ c) = aS(φ1b)φ2c1 ⊗ φ3c2. (3.65)

Theorem 3.2.23. (Fundamental Structure Theorem for quasi-Hopf bimodules)
For a quasi-bialgebra (A,m, u,∆, ε,Φ) the following assertions are equivalent:

(1) The adjunction (F,G, η, ε) is an equivalence of categories.

(2) η̂A is bijective.

(3) There exists a preantipode.

Proof. (1)⇒ (2). It follows from the fact that η̂A = ηA⊗̂A.
(2)⇒ (3). It is the preceding discussion.
(3)⇒ (1). It follows from Theorem 3.2.14 and Theorem 3.2.20.

A careful observer can object that the Structure Theorem for an ordinary Hopf module
M involves MCoH and not this unexpected quotient M

MA+ . Actually, they are the same
object, but to see this we need a different generalization of the concept of coinvariants
for a quasi-bialgebra.

The results that follow have been proven for quasi-Hopf algebras (that we will introduce
later) by Hausser and Nill in [HN]. Here we generalize these results to quasi-bialgebras
with preantipode and in the next section we will show how the classical ones can be
recovered from this new ones. The references that can be found near the statements refer
to the analogue result for ordinary quasi-Hopf algebras.
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Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S, let M be a quasi-
Hopf bimodule and consider again the map τ : M →M defined in (3.51),

τ(m) = Φ1 ·m0 · S(Φ2m1)Φ3.

Definition 3.2.24. ([HN, Definition 3.5]) (Coinvariants)
Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. The space of coinvariants
of a quasi-Hopf A-bimodule M is defined to be

MCoA := τ(M),

where τ is the map defined in (3.51).

Proposition 3.2.25. If A is a quasi-bialgebra with preantipode S and M is a quasi-Hopf
A-bimodule, then the following descriptions of MCoA hold:

MCoA = {n ∈M | τ(n) = n} = {n ∈M | τ(n0)⊗ n1 = τ(n)⊗ 1} . (3.66)

Proof. Let n ∈M be such that τ(n) = n. Trivially n ∈ τ(M), so that

MCoA ⊇ {n ∈M | τ(n) = n} .

Moreover, applying ρM to both sides, we find that:

n0 ⊗ n1 = τ(n)0 ⊗ τ(n)1.

Thus:
τ(n0)⊗ n1 = τ(τ(n)0)⊗ τ(n)1 = τ(n)⊗ 1,

in view of (7) of Proposition 3.2.19. Hence:

{n ∈M | τ(n) = n} ⊆ {n ∈M | τ(n0)⊗ n1 = τ(n)⊗ 1} .

Now, let n ∈M be such that τ(n0)⊗ n1 = τ(n)⊗ 1 and apply µrM to both sides:

n = τ(n0) · n1 = τ(n),

by (6), Proposition 3.2.19. This implies that:

{n ∈M | τ(n) = n} ⊇ {n ∈M | τ(n0)⊗ n1 = τ(n)⊗ 1} .

For the remaining inclusion, let n ∈M be such that n ∈ τ(M). Thus there exists m ∈M
such that n = τ(m). Applying τ to both sides and recalling (2) of Proposition 3.2.19 we
find that:

τ(n) = τ(τ(m)) = τ(m) = n.

Therefore MCoA ⊆ {n ∈M | τ(n) = n}.

Corollary 3.2.26. ([HN, Corollary 3.9]) For any quasi-Hopf A-bimodule M we have

MCoA =
{
n ∈M | ρM (n) = τ(φ1 · n) · φ2 ⊗ φ3

}
. (3.67)
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Proof. Let n ∈M be such that n0 ⊗ n1 = ρM (n) = τ(φ1 · n) · φ2 ⊗ φ3. Applying A⊗ ε
to both sides we get:

n = n0 ε(n1) = τ(φ1 · n) · φ2 ε(φ3) = τ(n).

Conversely, let us recall the A-colinearity of ηM (as defined in (3.37)):

M

	

ηM //

ρM

��

M ⊗A
ρ
M⊗A
��

M ⊗A
ηM⊗A

// (M ⊗A)⊗A

Hence:
ρM = (η−1

M ⊗A) ◦ ρM⊗A ◦ ηM .

Now, if n ∈MCoA then:

ρM (n) = ((η−1
M ⊗A) ◦ ρM⊗A ◦ ηM )(n) (3.37)=

= ((η−1
M ⊗A) ◦ ρM⊗A)(n0 ⊗ n1) n∈M

CoA
=

= ((η−1
M ⊗A) ◦ ρM⊗A)(τ(n)0 ⊗ τ(n)1) =

= ((η−1
M ⊗A) ◦ ρM⊗A)(τ̃(n)0 ⊗ τ̃(n)1) (3.42)=

= ((η−1
M ⊗A) ◦ ρM⊗A)(n⊗ 1) (3.43)=

= τ̃(φ1 · n) · φ2 ⊗ φ3 =
= τ(φ1 · n) · φ2 ⊗ φ3

and even the other inclusion holds.

Remark 3.2.27. Note that if n ∈M is such that ρM (n) = n⊗1, then n ∈MCoA. However,
up to this moment we found no evidence that the converse is true or not, in general.

Lemma 3.2.28. ([HN, Lemma 3.6]) Let M be a left A-module. Then the coinvariants
of the quasi-Hopf bimodule

G(M) = •M◦ ⊗ •A••
are given by

(M ⊗A)CoA = M ⊗ 1,

and for m ∈M and a ∈ A we have that τ(m⊗ a) = m⊗ ε(a).

Proof. In view of (3.35) and (1) of Proposition 3.2.19, we have that

τ(m⊗ a) = τ((m⊗ 1) · a) = τ(m⊗ 1) ε(a). (3.68)
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Moreover:

τ(m⊗ 1) = Φ1 · (m⊗ 1)0 · S(Φ2(m⊗ 1)1)Φ3 =

= Φ1 · (φ1m⊗ φ2) · S(Φ2φ3)Φ3 (∗)=

= φ1Φ1 ·m⊗ φ2Ψ1(Φ2)1S
(
(φ3)1Ψ2(Φ2)2

)
(φ3)2Ψ3Φ3 (3.46)=

= φ1Φ1 ·m⊗ φ2Ψ1 ε(Φ2)S
(
(φ3)1Ψ2

)
(φ3)2Ψ3Φ3 (3.45)=

= φ1Φ1 ·m⊗ φ2Ψ1 ε(Φ2)S
(
Ψ2
)
ε(φ3) Ψ3Φ3 (3.24)=

= m⊗Ψ1S(Ψ2)Ψ3 =
= m⊗ 1

(3.69)

where, again, we put Ψ = Φ in order to avoid confusion and in (∗) we used (3.19) in the
form:

(∆⊗A⊗A)(Φ)(Φ−1 ⊗ 1) = (A⊗A⊗∆)(Φ−1)(1⊗ Φ)(A⊗∆⊗A)(Φ).

Identity (3.69) implies that M ⊗ 1 ⊆ (M ⊗A)CoA. Furthermore, combined with (3.68),
shows that if m⊗ a ∈ (M ⊗A)CoA, then

m⊗ a = τ(m⊗ a) = m⊗ ε(a) = mε(a)⊗ 1.

Hence M ⊗ 1 ⊇ (M ⊗A)CoA.

Note that this last result is in accordance with the classical one about Hopf algebras:
if B is an ordinary bialgebra and V is a k-vector space, then the unit of the adjunction
(L,R) of Theorem 2.1.7 is always a natural isomorphism and we saw in Proposition 2.1.8
that (V ⊗B)CoB = V ⊗ 1 ∼= V .

Proposition 3.2.29. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode S
and consider MCoA as a left A-module with A-action given by (3.52). Then

τ̃ : M

MA+ →MCoA

as defined in (3.53) is an isomorphism of left A-modules with inverse given by

σ : MCoA −→ M

MA+
m 7−→ m

Proof. Let us start by showing that τ̃ is bijective:

m � τ̃ // τ̃(m) � σ // τ̃(m) (3.44)= m

n � σ // n � τ̃ // τ̃(n) = τ(n) (∗)= n
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where in (∗) we used the fact that n ∈MCoA by hypothesis and (3.66).
Now, consider the left A-action on MCoA given by (3.52):

a I m := τ(a ·m),

for all a ∈ A and m ∈ MCoA. By definition of MCoA = τ(M) and in view of (4) of
Proposition 3.2.19, in order to prove that I is an action it’s enough to prove that

u(k) I m = km,

but
u(k) I m = τ(ku(1) ·m) = kτ(m) (3.66)= km

for all k ∈ k and m ∈ MCoA. Moreover, (3) of Proposition 3.2.19 guarantees that τ is
A-linear with respect to this left A-action.

Corollary 3.2.30. ([HN, Theorem 3.8]) Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra
with preantipode. Let M be a quasi-Hopf A-bimodule. Consider N := MCoA as a left
A-module with A-action I as in (3.52), and •N◦ ⊗ •A•• as a quasi-Hopf A-bimodule with
structures indicated by the dots. Then:

ν : N ⊗A −→ M
n⊗ a 7−→ n · a

provides an isomorphism of quasi-Hopf A-bimodules with inverse given by

ν−1(m) = τ(m0)⊗m1.

Proof. In view of Proposition 3.2.29,

σ : •M
CoA

◦ −→ •
M

MA+ ◦

m 7−→ m

is an isomorphism of (A,A)-bimodules. Thus G(σ) = σ ⊗A : MCoA ⊗A→ M
MA+ ⊗A is

an isomorphism. Hence:
MCoA ⊗A σ⊗A //

η−1
M ◦(σ⊗A) ''

M
MA+ ⊗A

η−1
M
��
M

is an isomorphism and(
η−1
M ◦ (σ ⊗A)

)
(n⊗ a) (3.43)= τ̃(n) · a = τ(n) · a = n · a

for all n ∈MCoA and a ∈ A. The inverse is given by

((τ̃ ⊗A) ◦ ηM )(m) = τ̃(m0)⊗m1 = τ(m0)⊗m1,

for every m ∈M .
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3.3 Quasi-Hopf algebras and some classical results.

Once the Structure Theorem is proven, it is a good thing to verify if it is in accordance
with the classical results. This is why we open here a digression on quasi-Hopf algebras.

By the way, we also develop some new important results about quasi-bialgebras with
preantipode, as the uniqueness of the preantipode and the fact that quasi-bialgebras with
preantipode are closed under gauge twisting. Thereby we can highlight some links and
some differences that intervene between the ordinary quasi-antipode and our preantipode.

Definition 3.3.1. ([Dr1, page 1424]) (Quasi-Hopf algebra)
A quasi-bialgebra (A,m, u,∆, ε,Φ) is a quasi-Hopf algebra if there exist elements α and
β in A and an antiendomorphism s of A such that:

s(a1)αa2 = ε(a)α (3.70)
a1βs(a2) = ε(a)β (3.71)
Φ1βs(Φ2)αΦ3 = 1 (3.72)
s(φ1)αφ2βs(φ3) = 1 (3.73)

where, as usual, Φ = Φ1⊗Φ2⊗Φ3 and Φ−1 = φ1⊗φ2⊗φ3. The triple (s, α, β) is usually
called antipode ([HN]) or quasi-antipode ([Sc1]). We will use the second terminology, in
order to distinguish this one from the ordinary antipode of a Hopf algebra.

Actually, condition (3.72) is superfluous (as the subsequent proposition shows) since
it can be derived by the other three axioms. Nevertheless, expressing both (3.72) and
(3.73) as part of the definition of a quasi-Hopf algebra makes things more symmetric and
we will see that it does not make proofs dull.

Proposition 3.3.2. Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra, and suppose given an
antiendomorphism s of A and elements α and β in A that satisfy (3.70) and (3.71), then
g := Φ1βs(Φ2)αΦ3 is in the center of A and h := s(φ1)αφ2βs(φ3) commutes with s(A).
Moreover, if h is equal to 1, so is g.

Proof. Let us proceed step by step:

• First of all, we prove that Φ1βs(Φ2)αΦ3 belongs to the center of A. Let us apply
the map from A⊗A⊗A to A that sends a⊗ b⊗ c into aβs(b)αc to both sides of
(3.21):

Φ1(a1)1βs(Φ2(a1)2)αΦ3a2 = a1Φ1βs((a2)1Φ2)α(a2)2Φ3.

Simplifying the left hand side using (3.71) we get:

Φ1(a1)1βs(Φ2(a1)2)αΦ3a2 = Φ1(a1)1βs((a1)2)s(Φ2)αΦ3a2 = ga

and simplifying the right hand side using (3.70) we get:

a1Φ1βs((a2)1Φ2)α(a2)2Φ3 = a1Φ1βs(Φ2)s((a2)1)α(a2)2Φ3 = ag.

Hence ga = ag for all a ∈ A and g belongs to the center of A.

103



• Secondly, let us show that s(φ1)αφ2βs(φ3) commutes with s(A). In view of (3.21),
apply the k-linear map A⊗A⊗A −→ A that takes a⊗ b⊗ c into s(a)αbβs(c) to
both sides of

(∆⊗A)(∆(a)) · Φ−1 = Φ−1 · (A⊗∆)(∆(a)),
so that

s((a1)1φ
1)α(a1)2φ

2βs(a2φ
3) = s(φ1a1)αφ2(a2)1βs(φ3(a2)2).

On one hand, the left hand side simplifies to:

s((a1)1φ
1)α(a1)2φ

2βs(a2φ
3) = s(φ1)s((a1)1)α(a1)2φ

2βs(φ3)s(a2) (3.70)=
= s(φ1)αφ2βs(φ3)s(a).

On the other hand, the right hand side simplifies to:

s(φ1a1)αφ2(a2)1βs(φ3(a2)2) = s(a1)s(φ1)αφ2(a2)1βs((a2)2)s(φ3) (3.71)=
= s(a)s(φ1)αφ2βs(φ3).

Hence hs(a) = s(a)h for all a ∈ A.

• Now, consider (3.19) in the form:

(A⊗A⊗∆)(Φ)(∆⊗A⊗A)(Φ)(Φ−1 ⊗ 1) = (1⊗ Φ)(A⊗∆⊗A)(Φ)

and apply the map

A⊗A⊗A⊗A −→ A : a⊗ b⊗ c⊗ d 7−→ s(a)αbβs(c)αd

to both sides. If we write Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 = Φ, for clearness sake, we get:

s(Φ1(Ψ1)1φ
1)αΦ2(Ψ1)2φ

2βs((Φ3)1Ψ2φ3)α(Φ3)2Ψ3 =
= s(Ψ1)αΦ1(Ψ2)1βs(Φ2(Ψ2)2)αΦ3Ψ3.

For the left hand side:
s(Φ1(Ψ1)1φ

1)αΦ2(Ψ1)2φ
2βs((Φ3)1Ψ2φ3)α(Φ3)2Ψ3 =

= s(Φ1(Ψ1)1φ
1)αΦ2(Ψ1)2φ

2βs(Ψ2φ3)s((Φ3)1)α(Φ3)2Ψ3 (3.70)=
= s(Φ1(Ψ1)1φ

1)αΦ2(Ψ1)2φ
2βs(Ψ2φ3) ε(Φ3)αΨ3 =

= s((Ψ1)1φ
1)α(Ψ1)2φ

2βs(Ψ2φ3)αΨ3 =

= s(φ1)s((Ψ1)1)α(Ψ1)2φ
2βs(Ψ2φ3)αΨ3 (3.70)=

= s(φ1) ε(Ψ1)αφ2βs(Ψ2φ3)αΨ3 =
= hα

while, for the right hand side:

s(Ψ1)αΦ1(Ψ2)1βs(Φ2(Ψ2)2)αΦ3Ψ3 = s(Ψ1)αΦ1(Ψ2)1βs((Ψ2)2)s(Φ2)αΦ3Ψ3 (3.71)=
= s(Ψ1)αΦ1 ε(Ψ2)βs(Φ2)αΦ3Ψ3 =
= αΦ1βs(Φ2)αΦ3 =
= αg

so that we have αg = hα.
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• Pick an element f ∈ s(A)αA of the form f = s(a)αb:

fg = s(a)αbg = s(a)αgb = s(a)hαb = hs(a)αb = hf. (3.74)

If we choose f = h we get hg = h2. Hence, if h = 1, then g = 1.

Remark 3.3.3. ([Dr1, Proposition 1.3]) Note that if s is bijective (as it was in the original
definition of quasi-Hopf algebras given by Drinfel’d), then also s(φ1)αφ2βs(φ3) is in the
center of A (since s is surjective) and h = 1 if and only if g = 1. Indeed, it’s enough
to consider f = g in (3.74) to get that also g2 = hg holds. Observe further that if α is
cancellable, then from gα = αg = hα we get g = h.

Theorem 3.3.4. Let (A,m, u,∆, ε,Φ, s, α, β) be a quasi-Hopf algebra. The application
S(a) = βs(a)α is a preantipode.

Proof. It’s just a question of verifying that the axioms are satisfied:

(P1) b1S(ab2) = b1βs(ab2)α = b1βs(b2)s(a)α (3.71)= ε(b)βs(a)α = ε(b)S(a),

(P2) S(a1b)a2 = βs(b)s(a1)αa2
(3.70)= βs(b)αε(a) = S(b)ε(a),

(P3) Φ1S(Φ2)Φ3 = Φ1βs(Φ2)αΦ3 (3.72)= 1.

Therefore we have that every quasi-Hopf algebra is a quasi-bialgebra with preantipode.
It is more than likely that the converse does not hold, even if we are not able to provide
an example at the moment. Actually, there exists an example of a dual quasi-bialgebra
with preantipode that is not a dual quasi-Hopf algebra. The interested reader may refer
to [Sc3, Example 4.5.1], where Schauenburg exhibits a dual quasi-bialgebra H that does
not admit a quasi-antipode but such that the category HMf of finite dimensional left
H-comodules is left and right rigid. By the left-handed version of [Sc1, Theorem 2.6], this
is equivalent to say that the adjunction (F,G) of [AP1, Theorem 2.7] is an equivalence
of categories and hence, by [AP1, Theorem 3.9], H admits a preantipode (cfr. also [AP1,
Remark 3.12] and [AP2, Remark 2.17]).

Corollary 3.3.5. Let (A,m, u,∆, ε,Φ, s, α, β) be a quasi-Hopf algebra. Then ε ◦ s = ε.

Proof. We proved in Lemma 3.2.18 that if (A,m, u,∆, ε,Φ, S) is a quasi-bialgebra with
preantipode, then ε ◦ S = ε. In view of Theorem 3.3.4, S(·) = βs(·)α is a preantipode
and

1 = ε(S(1)) = ε(βs(1)α) = ε(β)ε(α). (3.75)

Hence
ε(a) = ε(S(a)) = ε(β)ε(s(a))ε(α) = ε(s(a))

for every a ∈ A.
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Corollary 3.3.6. Let (A,m, u,∆, ε,Φ, s, α, β) be a quasi-Hopf algebra. Then the adjunc-
tion (F,G, η, ε) is an equivalence of categories. In particular, for each M ∈ AM

A
A,

M ∼=
M

MA+ ⊗A,

where the structures on M
MA+ ⊗A are given by:

x · (m⊗ a) = x1 ·m⊗ x2a

(m⊗ a) · x = m⊗ ax
ρ(m⊗ a) = Φ−1 · ((m⊗ a1)⊗ a2)

for every a, x ∈ A and m ∈M , and the isomorphism is given by the unit of the adjunction:

ηM : M −→ M

MA+ ⊗A
m 7−→ m0 ⊗m1

(cfr. [Sc1, proof of Theorem 3.1]).

Remark 3.3.7. Let (H,m, u,∆, ε, s) be an ordinary Hopf algebra. Set Φ = 1⊗ 1⊗ 1 and
α = β = 1. Thus (H,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra with quasi-antipode
(s, 1, 1). By Theorem 3.3.4, s is a preantipode.

Now, note that if n ∈M is such that τ(n) = n, then

ρM (n) = n0 ⊗ n1
(3.67)= τ(φ1 · n) · φ2 ⊗ φ3 = τ(n)⊗ 1 = n⊗ 1,

so that the ordinary definition of coinvariants and Definition 3.2.24 coincides. As a
consequence, we can apply Corollary 3.2.30 to get back the ordinary Structure Theorem
for Hopf modules. Indeed, for every Hopf module M ,

M ∼= MCoH ⊗H

via the isomorphisms:

ν : MCoH ⊗H −→M : m⊗ h 7−→ m · h
ν−1 : M −→MCoH ⊗H : m 7−→ τ(m0)⊗m1

Moreover, note that τ(m) = Φ1 · m0 · s(Φ2m1)Φ3 = m0 · s(m1), so that ν−1(m) =
m0 · s(m1)⊗m2 as we found in Theorem 2.3.1.
Remark 3.3.8. Let (H,m, u,∆, ε,Φ, s, α, β) be a quasi-Hopf algebra with quasi-antipode
(s, α, β) and assume that s is bijective. By Theorem 3.3.4, S(·) = βs(·)α is a preantipode.
Thus the map τ has the form:

τ(m) = Φ1 ·m0 · βs(Φ2m1)αΦ3 = Φ1 ·m0 · βs(s−1(αΦ3)Φ2m1).

Note that this τ is exactly the projection E of Hausser and Nill ([HN]) and MCoH ,
obtained as image of τ , is the same MCoH that appears in [HN, Definition 3.5] and [HN,
Corollary 3.9]. Moreover, the A-action I coincides with the action they indicate with .
and Corollary 3.2.30 is precisely [HN, Theorem 3.8].
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This last remark and the previous one show how the theory we developed here latch
on to the traditional results about Hopf and quasi-Hopf bimodules. Now, let us spend
some time to show that the preantipode presents some advantages with respect to the
quasi-antipode.

First of all, we prove that the quasi-antipode is not unique, but it is just uniquely
determined up to an invertible element u.

Proposition 3.3.9. [Dr1, Proposition 1.1] Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. If
(s, α, β) is a quasi-antipode for A, then for any invertible element u ∈ A, also (s, α, β) is
still a quasi-antipode, where

s(a) = us(a)u−1, α = uα, β = βu−1. (3.76)

Furthermore, if A admits two quasi-antipodes (s, α, β) and (s, α, β), then they are con-
nected by a transformation (3.76), where u is uniquely determined.

Proof. The first statement is a trivial observation. Indeed:

s(a1)αa2 = us(a1)u−1uαa2 = us(a1)αa2
(3.70)= ε(a)uα = ε(a)α,

a1 β s(a2) = a1βu
−1us(a2)u−1 = a1βs(a2)u−1 (3.71)= ε(a)βu−1 = ε(a)β

Φ1 β s(Φ2)αΦ3 = Φ1βs(Φ2)αΦ3 (3.72)= 1

s(φ1)αφ2 β s(φ3) = us(φ1)αφ2βs(φ3)u−1 (3.73)= uu−1 = 1

For the second claim, define:
u = s(φ1)αφ2βs(φ3)

and let us verify that it fulfils (3.76). To prove that us(a) = s(a)u for all a ∈ A it is
enough to recall (3.21):

(∆⊗A)(∆(a))Φ−1 = Φ−1(A⊗∆)(∆(a)).

Indeed:

us(a) = s(φ1)αφ2βs(φ3)s(a) =
= s(φ1)αφ2βs(φ3)s(ε(a1)a2) =

= s(φ1) ε(a1)αφ2βs(φ3)s(a2) (3.70)=
= s(φ1) s((a1)1)α (a1)2 φ

2βs(φ3)s(a2) =

= s((a1)1φ
1)α (a1)2 φ

2βs(a2φ
3) (3.21)=

= s(φ1a1)αφ2(a2)1βs(φ3(a2)2) =

= s(a1)s(φ1)αφ2(a2)1βs((a2)2)s(φ3) (3.71)=
= s(a1)s(φ1)αφ2 ε(a2)βs(φ3) =
= s(a)u

To prove that uα = α apply

ξ : A⊗A⊗A⊗A −→ A : a⊗ b⊗ c⊗ d 7−→ s(a)α bβs(c)αd
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to both sides of (3.19) in the form:

(A⊗A⊗∆)(Φ)(∆⊗A⊗A)(Ψ)(Φ−1 ⊗ 1) = (1⊗ Φ)(A⊗∆⊗A)(Ψ)

where, again, Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 = Φ. What we get is:

s(Φ1(Ψ1)1φ
1)αΦ2(Ψ1)2φ

2βs((Φ3)1Ψ2φ3)α(Φ3)2Ψ3 =
= s(Ψ1)αΦ1(Ψ2)1βs(Φ2(Ψ2)2)αΦ3Ψ3

Consider the left hand member:

s(Φ1(Ψ1)1φ
1)αΦ2(Ψ1)2φ

2βs((Φ3)1Ψ2φ3)α(Φ3)2Ψ3 =

= s(Φ1(Ψ1)1φ
1)αΦ2(Ψ1)2φ

2βs(Ψ2φ3)s((Φ3)1)α(Φ3)2Ψ3 (3.70)=

= s(Φ1(Ψ1)1φ
1)αΦ2(Ψ1)2φ

2βs(Ψ2φ3)α ε(Φ3)Ψ3 (3.24)=

= s((Ψ1)1φ
1)α(Ψ1)2φ

2βs(Ψ2φ3)αΨ3 (3.70)=
= s(φ1)αφ2βs(φ3)α =
= uα.

On the other hand, the right hand member simplifies to:

s(Ψ1)αΦ1(Ψ2)1βs(Φ2(Ψ2)2)αΦ3Ψ3 (3.71)= αΦ1βs(Φ2)αΦ3 (3.72)= α.

Analogously, applying

ξ′ : A⊗A⊗A⊗A −→ A : a⊗ b⊗ c⊗ d 7−→ a β s(b)α cβs(d)

to both sides of (3.19) in the form:

(1⊗ Φ−1)(A⊗A⊗∆)(Φ)(∆⊗A⊗A)(Ψ) = (A⊗∆⊗A)(Φ)(Ψ⊗ 1)

leads us to βu = β. Finally, let us prove that u is invertible. We claim that

v := s(φ1)αφ2 β s(φ3)

is the inverse element to u. Indeed:

uv = us(φ1)αφ2 β s(φ3) (3.76)= s(φ1)uαφ2 β s(φ3) (3.76)= s(φ1)αφ2 β s(φ3) (3.73)= 1

and
vu = s(φ1)αφ2 β s(φ3)u = s(φ1)αφ2 βus(φ3) = s(φ1)αφ2βs(φ3) (3.73)= 1.

Remark 3.3.10. Note that (3.75) implies that ε(α) = ε(β)−1, so that we can always
assume, without loss of generality, that ε(α) = 1 = ε(β). In fact, (s, ε(α)−1α, β ε(β)−1)
is still a quasi-antipode (for example, by Proposition 3.3.9).

In spite of what happens with quasi-antipodes, it turns out that the preantipode is
unique.
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Theorem 3.3.11. Let (A,m, u,∆, ε,Φ) be a quasi-bialgebra. If there exists a preantipode
S for A, then it is unique.

Proof. Assume that S and T are both preantipodes for A. Then we know that the
adjunction (F,G, η, ε) defined in Theorem 3.2.13 is an equivalence and the unit η is a
natural isomorphism. Moreover, in view of Theorem 3.2.20, the maps

σ̃M : M

MA+ −→M : m 7−→ Φ1 ·m0 · S(Φ2m1)Φ3

τ̃M : M

MA+ −→M : m 7−→ Φ1 ·m0 · T (Φ2m1)Φ3

satisfies (iii) and (iv) of Theorem 3.2.14, so that, by (3)⇒ (1) in the proof of the same
theorem:

µM ◦ (σ̃M ⊗A) = η−1
M = µM ◦ (τ̃M ⊗A). (3.77)

Now, recall that we can construct a preantipode R for A from η̂−1
A . In particular, in view

of (3.59) and (3.63), for all a ∈ A:

R(a) = β(1⊗ a) = (A⊗ ε)(η̂−1
A (1⊗ a⊗ 1)).

If we use as η̂−1
A the one given by the left hand equality in (3.77):

R(a) = (A⊗ ε)(η̂−1
A (1⊗ a⊗ 1)) (3.65)=

= (A⊗ ε)(S(φ1a)φ2 ⊗ φ3) =
= S(a)

for all a ∈ A. Analogously, using the right hand side of (3.77), one finds out that
R(a) = T (a) for every a ∈ A, so that S = T .

Next, recall that we know that twisting a bialgebra A by an ordinary invertible
element F ∈ A⊗A takes us out of the class of ordinary bialgebras. Even if we consider
a gauge transformation F as defined in Definition 3.1.13, we do not get back a bialgebra,
since we introduce an associativity deficit

Φ = (1⊗ F )(A⊗∆)(F )(∆⊗A)(F−1)(F−1 ⊗ 1),

as we observed in Remark 3.1.14. This implies that, unless we strengthen the hypothesis
on F , we cannot hope to find a Hopf algebra by twisting another Hopf algebra. On the
other hand, this associativity deficit is not a problem if we start from a quasi-bialgebra
instead of an ordinary bialgebra, as we saw in Theorem 3.1.6. The following propositions
show that both quasi-Hopf algebras and quasi-bialgebras with preantipode behave well
with respect to gauge twisting.

Proposition 3.3.12. ([Dr1, Remark 5 on page 1425]) Let (H,m, u,∆, ε,Φ, s, α, β) be
a quasi-Hopf algebra and F = F 1 ⊗ F 2 be a gauge transformation on H with inverse
F−1 = f1 ⊗ f2. Set

αF := s(f1)αf2 and βF := F 1βs(F 2).

Then (HF ,m, u,∆F , ε,ΦF , s, αF , βF ) is a quasi-Hopf algebra.
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Proof. We already know that (HF ,m, u,∆F , ε,ΦF ) is a quasi-bialgebra, in view of
Theorem 3.1.6 and Remark 3.1.14. Thus let us show that (s, αF , βF ) is a quasi-antipode.

In what follows three copies of F and F−1 are required, let us denote with E = E1⊗E2

and G = G1⊗G2 other two copies of F and with E−1 = e1⊗ e2 and G−1 = g1⊗ g2 other
two copies of F−1.

By definition of ∆F we have that:

∆F (h) = F∆(h)F−1 = F 1h1f
1 ⊗ F 2h2f

2

for all h ∈ H. Hence:

s(F 1h1f
1)αFF 2h2f

2 = s(F 1h1f
1)s(g1)αg2F 2h2f

2 =
= s(g1F 1h1f

1)αg2F 2h2f
2 =

= s(h1f
1)αh2f

2 = s(f1)s(h1)αh2f
2 (3.70)=

= s(f1)αf2ε(h) = αF ε(h)

moreover:

F 1h1f
1βF s(F 2h2f

2) = F 1h1f
1G1βs(G2)s(F 2h2f

2) =
= F 1h1f

1G1βs(F 2h2f
2G2) =

= F 1h1βs(F 2h2) = F 1h1βs(h2)s(F 2) (3.71)=
= F 1βs(F 2)ε(h) = βF ε(h)

Furthermore, by definition of ΦF we have that:

ΦF = (1⊗G)(A⊗∆)(F )Φ(∆⊗A)(F−1)(G−1 ⊗ 1) =
= F 1Φ1(f1)1g

1 ⊗G1(F 2)1Φ2(f1)2g
2 ⊗G2(F 2)2Φ3f2.

Therefore

Φ1
FβF s(Φ2

F )αFΦ3
F =

= F 1Φ1(f1)1g
1E1βs(E2)s(G1(F 2)1Φ2(f1)2g

2)s(e1)αe2G2(F 2)2Φ3f2 =
= F 1Φ1(f1)1g

1E1βs(e1G1(F 2)1Φ2(f1)2g
2E2)αe2G2(F 2)2Φ3f2 =

= F 1Φ1(f1)1βs((F 2)1Φ2(f1)2)α(F 2)2Φ3f2 (3.71)=

= F 1Φ1ε(f1)βs((F 2)1Φ2)α(F 2)2Φ3f2 (3.70)=

= F 1Φ1ε(f1)βs(Φ2)αε(F 2)Φ3f2 (3.18)=

= Φ1βs(Φ2)αΦ3 (3.72)= 1

Finally, from:

Φ−1
F = (G⊗ 1)(∆⊗A)(F )Φ−1(A⊗∆)(F−1)(1⊗G−1) =

= G1(F 1)2φ
1f1 ⊗G2(F 1)2φ

2(f2)1g
1 ⊗ F 2φ3(f2)2g

2
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it follows that:
s(φ1

F )αFφ2
FβF s(φ3

F ) =
= s(G1(F 1)2φ

1f1)s(e1)αe2G2(F 1)2φ
2(f2)1g

1E1βs(E2)s(F 2φ3(f2)2g
2) =

= s(e1G1(F 1)2φ
1f1)αe2G2(F 1)2φ

2(f2)1g
1E1βs(F 2φ3(f2)2g

2E2) =

= s((F 1)2φ
1f1)α(F 1)2φ

2(f2)1βs(F 2φ3(f2)2) (3.70)=

= s(φ1f1)αε(F 1)φ2(f2)1βs(F 2φ3(f2)2) (3.71)=

= s(φ1f1)αε(F 1)φ2ε(f2)βs(F 2φ3) (3.18)=

= s(φ1)αφ2βs(φ3) (3.73)= 1

Quasi-Hopf algebras then are a larger class than ordinary Hopf algebras, but one that
is closed under gauge twisting. In the same way, quasi-bialgebras with preantipode are
an even larger class, but still closed under gauge twisting.

Proposition 3.3.13. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode and
F ∈ A⊗A be a gauge transformation on A. Define, for a ∈ A,

SF (a) := F 1S(f1aF 2)f2.

Then (AF ,m, u,∆F , ε,ΦF , SF ) is a quasi-bialgebra with preantipode.

Proof. As above, we already know that (AF ,m, u,∆F , ε,ΦF ) is a quasi-bialgebra, so that
it is enough to show that SF satisfies (3.45), (3.46) and (3.47) of Definition 3.2.16.

With the same notation used for proving Proposition 3.3.12, we have that

F 1b1f
1SF (aF 2b2f

2) = F 1b1f
1G1S(g1aF 2b2f

2G2)g2 =

= F 1b1S(g1aF 2b2)g2 (3.45)=
= F 1S(g1aF 2)g2ε(b) = SF (a)ε(b),

SF (F 1a1f
1b)F 2a2f

2 = G1S(g1F 1a1f
1bG2)g2F 2a2f

2 =

= G1S(a1f
1bG2)a2f

2 (3.46)=
= ε(a)G1S(f1bG2)f2 =
= ε(a)SF (b)

and, finally, that

Φ1
FSF (Φ2

F )Φ3
F = F 1Φ1(f1)1g

1E1S
(
e1G1(F 2)1Φ2(f1)2g

2E2
)
e2G2(F 2)2Φ3f2 =

= F 1Φ1(f1)1S
(
(F 2)1Φ2(f1)2

)
(F 2)2Φ3f2 (3.45)=

= F 1Φ1ε(f1)S
(
(F 2)1Φ2

)
(F 2)2Φ3f2 (3.46)=

= F 1Φ1ε(f1)S
(
Φ2
)
ε(F 2)Φ3f2 (3.18)=

= Φ1S
(
Φ2
)

Φ3 (3.47)= 1
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Remark 3.3.14. Assume that (H,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra and that
F is a gauge transformation on H. By Theorem 3.3.4, we can twist H via F , and then
consider it as a quasi-bialgebra with preantipode, obtaining

(HF ,m, u,∆F , ε,ΦF , S̃),

where
S̃(·) = βF s(·)αF .

Or, we can first consider it as a quasi-bialgebra with preantipode S(·) = βs(·)α and then
twist it via F . What we get is exactly the same quasi-bialgebra with preantipode, since
for all h ∈ H:

S̃(h) = βF s(h)αF = F 1βs(F 2)s(h)s(f1)αf2 =
= F 1βs(f1hF 2)αf2 = F 1S(f1hF 2)f2 =
= SF (h)

The following lemma comes from [Ma, Example 2.4.1] and it is retrieved here because
it has been the inspiration of the result in Remark 3.3.17.

Lemma 3.3.15. Let (H,m, u,∆, ε, s) be an ordinary Hopf algebra. Let Φ ∈ H ⊗H ⊗H
be an invertible element that satisfies (3.19), (3.20) and (3.21), that is:

• (H ⊗H ⊗∆)(Φ)(∆⊗H ⊗H)(Φ) = (1⊗ Φ)(H ⊗∆⊗H)(Φ)(Φ⊗ 1)

• (H ⊗ ε⊗H)(Φ) = 1⊗ 1

• (H ⊗∆)(∆(h))Φ = Φ(∆⊗H)(∆(h)), for all h ∈ H.

Assume that c := Φ1s(Φ2)Φ3 ∈ H is invertible. Let β =
(
Φ1s(Φ2)Φ3)−1 and α = 1. Then

(H,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra and β ∈ Z(H) where Z(H) is the center
of H, i.e., Z(H) := {h ∈ H | hl = lh,∀ l ∈ H}. Furthermore, (H,m, u,∆, ε,Φ, S) is a
quasi-bialgebra with preantipode defined by S(h) = βs(h), for each h ∈ H.

Proof. Obviously, if Φ satisfies (3.19), (3.20) and (3.21), then (H,m, u,∆, ε,Φ) is a
quasi-bialgebra.

Let us show that c ∈ Z(H). Consider (3.21) and apply

m ◦ (m⊗H) ◦ (H ⊗ s⊗H)

to both sides:
h1Φ1s(Φ2) s(h2)h3︸ ︷︷ ︸

ε(h2)

Φ3 = Φ1 h1s(h2)︸ ︷︷ ︸
ε(h1)

s(Φ2)Φ3h3,

from which we conclude that hc = ch for all h ∈ H.
Consider (3.19) in the form:

(A⊗A⊗∆)(Φ)(∆⊗A⊗A)(Ψ)(Φ−1 ⊗ 1) = (1⊗ Φ)(A⊗∆⊗A)(Ψ),
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where again Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 = Φ, and apply m ◦ (m⊗m) ◦ (s⊗A⊗ s⊗A) to both
sides:

s(φ1)s((Ψ1)1)s(Φ1)Φ2(Ψ1)2φ
2s(φ3)s(Ψ2)

ε(Φ3)︷ ︸︸ ︷
s((Φ3)1)(Φ3)2 Ψ3 =

= s(Ψ1)Φ1 (Ψ2)1s((Ψ2)2)︸ ︷︷ ︸
ε(Ψ2)

s(Φ2)Φ3Ψ3.

Simplifying in view of (3.24):

Φ1s(Φ2)Φ3 = s(φ1) s((Ψ1)1)(Ψ1)2︸ ︷︷ ︸
ε(Ψ1)

φ2s(φ3)s(Ψ2)Ψ3 = s(φ1)φ2s(φ3). (3.78)

Now, let us use these two properties to verify that the axioms of a quasi-Hopf algebra
are satisfied:

s(a1)αa2 = s(a1)a2 = ε(a)1 = ε(a)α
a1βs(a2) = a1s(a2)β = ε(a)β

Φ1βs(Φ2)αΦ3 = βΦ1s(Φ2)Φ3 = 1

What is left is (3.73) but, in view of (3.78):

s(φ1)αφ2βs(φ3) = βs(φ1)φ2s(φ3) = β
(
Φ1s(Φ2)Φ3

)
= 1

and (3.73) follows.

Remark 3.3.16. The previous example allows us to observe that S is not, in general, an
antiendomorphism of algebras, since:

S(ab) = βs(ab) = βs(b)s(a) = βs(b)β−1βs(a) = β−1S(b)S(a),

nor an antiendomorphism of coalgebras, since:

S(a2)⊗S(a1) = βs(a2)⊗βs(a1) (2.9c)= (β⊗β)(∆(s(a))) 6= β1s(a)1⊗β2s(a)2 = ∆(βs(a)).

Actually, in this particular situation, it depends on β.
Remark 3.3.17. Inspired by the following observations (that come out from Lemma
3.3.15):

β = S(1) s(·) = β−1S(·),

we tried to prove the converse of that lemma and we came to formulate the following
result:
Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. If S satisfies:

• S(1) is invertible in A,

• S(ab) = S(b)S(1)−1S(a) for all a, b ∈ A,
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then (A,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra with α = 1, β = S(1) and s(a) =
S(1)−1S(a), for all a ∈ A.
Indeed, we have that s is an antiendomorphism of A:

s(ab) = β−1S(ab) = β−1S(b)β−1S(a) = s(b)s(a)
s(u(k)) = s(k1) = β−1S(k1) = β−1βk = k1 = u(k)

and the axioms of quasi-Hopf algebra hold:

• s(a1)αa2 = β−1S(a1)a2 = β−1ε(a)S(1) = ε(a)1 = ε(a)α

• a1βs(a2) = a1S(a2) = ε(a)S(1) = ε(a)β

• Φ1βs(Φ2)αΦ3 = Φ1S(Φ2)Φ3 = 1

• s(φ1)αφ2βs(φ3) = β−1S(φ1)φ2S(φ3) = 1

3.4 The other way round: from preantipodes to quasi-
antipodes

Even though we claimed that a quasi-bialgebra with preantipode is not, in general, a
quasi-Hopf algebra, there exist partial converses to Theorem 3.3.4. The subsequent
proposition retrieves an easy one. We will conclude this last section with a result, due
to Schauenburg, that proves that in the finite dimensional case these two concepts are
equivalent and with some examples in which this equivalence is explicit.

Proposition 3.4.1. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. If Φ
is in the center of A⊗A⊗A, then (A,m, u,∆, ε, s) is an ordinary Hopf algebra where

s(a) = Φ1S(aΦ2)Φ3, (3.79)

for all a ∈ A. Furthermore (A,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra with α = 1
and β = S(1). Moreover one has

S(a) = βs(a) (3.80)

for all a ∈ A.

Proof. In view of (3.22) and (3.23), we know that ε is a counit for ∆. Moreover,
commutativity of Φ ensures that ∆ is coassociative. Indeed, by (3.21):

(∆⊗A)(∆(a)) = Φ−1((A⊗∆)(∆(a)))Φ = ((A⊗∆)(∆(a)))Φ−1Φ = (A⊗∆)(∆(a))

for every a ∈ A, so that (A,m, u,∆, ε) is an ordinary bialgebra. Let us show that s is an
antipode:

(s ∗ Id)(a) = s(a1)a2 = Φ1S(a1Φ2)Φ3a2
(∗)= Φ1S(a1Φ2)a2Φ3 (3.46)=

= Φ1S(Φ2)Φ3 ε(a) (3.47)= (u ◦ ε)(a)
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where in (∗) we used

(Φ1 ⊗ a1 ⊗ Φ2 ⊗ Φ3a2) = (Φ1 ⊗ a1 ⊗ Φ2 ⊗ a2Φ3). (3.81)

Analogously:

(Id ∗ s)(a) = a1s(a2) = a1Φ1S(a2Φ2)Φ3 (∗∗)= Φ1a1S(Φ2a2)Φ3 (3.45)=

= Φ1S(Φ2)Φ3 ε(a) (3.47)= (u ◦ ε)(a)

where (∗∗) follows from
(∆(a)⊗ 1)Φ = Φ(∆(a)⊗ 1).

Hence (A,m, u,∆, ε, s) is an ordinary Hopf algebra. Moreover:

S(a) = S(a1ε(a2)) = S(a1)ε(a2) (◦)= S(a1)a2s(a3) (3.46)= S(1)ε(a1)s(a2) = βs(a).

where in (◦) we used that Id ∗ s = u ◦ ε and coassociativity of ∆ to renumber. Now, let
us show that (A,m, u,∆, ε,Φ, s, α, β) is a quasi-Hopf algebra:

• We know that s is an antiendomorphism of A, since it is an ordinary antipode.

• Since α = 1, we have s(a1)αa2 = s(a1)a2 = ε(a)1 = ε(a)α

• In view of (3.80), a1βs(a2) = a1S(a2) (3.46)= ε(a)S(1) = ε(a)β.

• Again, by (3.80) Φ1βs(Φ2)αΦ3 = Φ1S(Φ2)Φ3 = 1.

• In order to prove the remaining identity, first of all apply

m ◦ (m⊗A) ◦ (S ⊗A⊗ S)

to both sides of:

(∆⊗A)(∆(a))Φ−1 (3.21)= Φ−1(A⊗∆)(∆(a))

and simplify using (3.45) and (3.46) to get that

S(φ1)φ2S(aφ3) = S(φ1a)φ2S(φ3) (3.82)

for all a ∈ A. Now:

s(φ1)αφ2βs(φ3) = s(φ1)φ2S(φ3) (3.79)= Φ1S(φ1Φ2)Φ3φ2S(φ3) (N)=

= Φ1S(φ1Φ2)φ2S(φ3)Φ3 (3.82)=

= Φ1S(φ1)φ2S(Φ2φ3)Φ3 (4)=

= Φ1S(φ1)φ2S(φ3)s(Φ2)Φ3 (3.48)=

= Φ1S(1)s(Φ2)Φ3 (3.80)= Φ1S(Φ2)Φ3 (3.47)= 1
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where in (4) we used: S(ab) = βs(ab) = βs(b)s(a) = S(b)s(a) and in (N) we used (3.81)
again, with a = φ2S(φ3).

Corollary 3.4.2. (Dual to [AP2, Theorem 2.16]) Let (A,m, u,∆, ε,Φ, S) be a quasi-
bialgebra with preantipode. If A is commutative, then all the conclusions of Proposition
3.4.1 hold for A. In particular, it is an ordinary Hopf algebra.

Remark 3.4.3. We can deduce from the proof of Proposition 3.4.1 that if (A,m, u,∆, ε,Φ)
is a quasi-bialgebra and Φ ∈ Z(A⊗ A⊗ A), then A is an ordinary bialgebra. Observe
also that, since S(1) is not 1 in general, we do not have that

(A,m, u,∆, ε, 1⊗ 1⊗ 1, s, 1, S(1))

is a quasi-Hopf algebra, as one can expect. Otherwise, in light of Proposition 3.3.9,
we should have that (s, 1, 1) and (s, 1, S(1)) are connected by an invertible element
(necessarily 1) and thus should coincide.

Let us retrieve now a less trivial result, due to Schauenburg, that states that, at least
in the finite dimensional case, the existence of a preantipode is equivalent to the existence
of a quasi-antipode.

Theorem 3.4.4. ([Sc1, Theorem 3.1]) Let (A,m, u,∆, ε,Φ) be a finite dimensional
quasi-bialgebra. The following are equivalent:

(1) A is a quasi-Hopf algebra,

(2) the adjunction (F,G, η, ε) is a category equivalence.

Proof. (1)⇒ (2) is Corollary 3.3.6. Hence, let us prove (2)⇒ (1). Recall that the map

η̂A := ηA⊗̂A : A⊗̂A −→ A⊗̂A
(A⊗̂A)A+ ⊗A

a⊗ b 7−→ aΦ1 ⊗ b1Φ2 ⊗ b2Φ3

defined in (3.56) is an isomorphism of quasi-Hopf A-bimodules and it is also A-linear
with respect to the left A-module structures given by multiplication on the first factor
(recall (3.60)). Hence we have an isomorphism:

η̂ : (•A• ⊗ ◦A••) −→ •
(A⊗A)

(A⊗A)A+ ◦ ⊗ •A
•
•.

Since A is finite dimensional as k-vector space, we have that A ∼= kdim(A). If we define
A⊗A := (A⊗A)

(A⊗A)A+ , we get (recalling that the tensor product distributes over the direct

sum) •A⊗A
dim(A) ∼= Adim(A), so that we have •A⊗A ∼= A as left A-modules by Krull-

Schmidt.
Indeed, note that both A and A⊗A are finite dimensional k-vector spaces. Moreover,

every A-submodule is, in particular, a k-vector subspace, so that they are both Artinian
and Noetherian as A-modules and we can apply Corollary 4.1.13.

Now, our target is to show that, at least in the finite dimensional case and theoretically,
a quasi-antipode could be constructed from η̂.
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In order to do this, pick an isomorphism γ̃ : A⊗A→ A of left A-modules and define
γ(a) = γ̃(1⊗ a), for every a ∈ A. Observe that

a1γ(a2) = γ̃ (a1 ⊗ a2) = γ̃
(
(1⊗ 1) · a

)
= γ̃

(
(1⊗ 1) ε(a)

)
= ε(a) γ(1). (3.83)

Furthermore, since γ̃ is A-linear with respect to the left A-action given by multiplication
on the first factor, we have that, for all a, b ∈ A:

γ̃(a⊗ b) = γ̃(a · 1⊗ b) = aγ(b). (3.84)

Next, A⊗A comes with a natural structure of left A⊗A-module given by its algebra
structure:

µA⊗A : (A⊗A)⊗ (A⊗A) −→ A⊗A
(a⊗ b)⊗ (x⊗ y) 7−→ ax⊗ by

which induces a left A⊗A-module structure on A⊗A (since (A⊗A)A+ is a left A⊗A-
submodule of A ⊗ A itself, w.r.t this left action). Let us indicate with µA⊗A this last
one:

µA⊗A : (A⊗A)⊗
(
A⊗A

)
−→ A⊗A

(a⊗ b)⊗ (x⊗ y) 7−→ ax⊗ by
(3.85)

Since γ̃ is bijective, we can fill in the following diagram in such a way that it becomes
commutative and we get an A⊗A-module structure on A:

A⊗A⊗A⊗A

	

A⊗A⊗γ̃ //

µ
A⊗A

��

A⊗A⊗A

µA

��
A⊗A

γ̃

// A

(3.86)

If we indicate with a1 ⊗ a2 the preimage γ̃−1(a), we have that

a = γ̃(γ̃−1(a)) = γ̃(a1 ⊗ a2) (3.84)= a1γ(a2) (∀ a ∈ A) (3.87)

and, if we indicate with (x⊗ y) . a := µA((x⊗ y)⊗ a) the left A⊗A-action we get from
(3.86), we can write, for all x, y, a ∈ A

(x⊗ y) . a = µA((x⊗ y)⊗ a) (3.86)= γ̃
(
µA⊗A

(
(x⊗ y)⊗ a1 ⊗ a2

)) (3.85)=

= γ̃(xa1 ⊗ ya2) (3.84)= xa1γ(ya2).
(3.88)

Note that A gains also two left A-module structures via the algebra maps

i1 : A −→ A⊗A : a 7−→ a⊗ 1
i2 : A −→ A⊗A : a 7−→ 1⊗ a

The action of the left tensor factor is given by:

x · a := (x⊗ 1) . a (3.88)= xa1γ(a2) (3.87)= xa
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for all a, x ∈ A, i.e. the regular module structure of A. Now, observe that as γ̃ is A-linear
with respect to the left A-action given by the multiplication on the first factor, even γ̃−1

is. Therefore, we have:

a⊗ b1 ⊗ b2

	

_

·
��

a⊗ b�A⊗γ̃−1
oo

_

·
��

ab1 ⊗ b2 ab�
γ̃−1

oo

for every a, b ∈ A. This implies that, evaluating at b = 1:

a · 11 ⊗ 12 = a1 ⊗ a2 ( ∀ a ∈ A) (3.89)

and that (3.87) becomes:
a = a11γ(12) (3.90)

Define, for each y ∈ A,
s(y) := y • 1, (3.91)

where y • a := (1⊗ y) . a for all a, y ∈ A. We have that

s(y) (3.88)= 11γ(y12) (3.92)

and

y • a = (1⊗ y) . a = γ̃((1⊗ y) · (a1 ⊗ a2)) (3.89)=

= γ̃((1⊗ y) · (a11 ⊗ 12)) (3.85)= γ̃((a11 ⊗ y12)) (3.84)=

= a11γ(y12) (3.92)= as(y).

(3.93)

Thus, by definition of s, we can deduce also that, for all a, y ∈ A,

y • a = a(y • 1) (3.94)

Let us show that s defined above is an algebra antiendomorphism on A:

s(ab) = ab • 1 = a • (b • 1) (3.94)= (b • 1)(a • 1) = s(b)s(a),

s(1) (3.92)= 11γ(12) (3.87)= 1.

Hence we have the candidate quasi-antipode that we were looking for: s. What is left is
to find α and β and to verify the axioms of a quasi-Hopf algebra. Until now we proved
only that there exists an antiendomorphism s such that the action of the right tensor
factor has the form:

y • a = as(y).
Observe that, for all a, b, x ∈ A

aγ(xb) (3.84)= γ̃(a⊗ xb) (3.85)= γ̃((1⊗ x) · (a⊗ b)) =
(3.86)= (1⊗ x) . γ̃(a⊗ b) (3.93)= γ̃(a⊗ b)s(x) =
(3.84)= aγ(b)s(x)
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In particular, evaluating in a = b = 1, we have

γ(x) = βs(x) (3.95)

where β := γ(1). Define

θ := (γ̃ ⊗A) ◦ η̂ : A⊗A −→ A⊗A. (3.96)

We find that:

θ(a⊗ b) = (γ̃ ⊗A)(η̂(a⊗ b)) (3.56)= (γ̃ ⊗A)(aΦ1 ⊗ b1Φ2 ⊗ b2Φ3) (3.84)=

= aΦ1γ(b1Φ2)⊗ b2Φ3 (3.95)= aΦ1βs(b1Φ2)⊗ b2Φ3.

Note that

θ : ◦A• ⊗ •A•• −→ •(sA)◦ ⊗ •A•• : a⊗ b 7−→ aΦ1βs(b1Φ2)⊗ b2Φ3 (3.97)

is a morphism in AM
A
A with the indicated structures, where sA denotes the left A-module

structure on A given by s, that is:

x • a = as(x)

for all a, x ∈ A. Indeed, if we let a⊗ b vary in A⊗A:

θ(x · (a⊗ b)) = θ(a⊗ xb) (3.97)= aΦ1βs(x1b1Φ2)⊗ x2b2Φ3 =
= aΦ1βs(b1Φ2)s(x1)⊗ x2b2Φ3 =
= x1 • (aΦ1βs(b1Φ2))⊗ x2b2Φ3 =

= x · (aΦ1βs(b1Φ2))⊗ b2Φ3) (3.97)= x · θ(a⊗ b),

(3.98)

θ((a⊗ b) · x) = θ(ax1 ⊗ bx2) (3.97)= ax1Φ1βs(b1(x2)1Φ2))⊗ b2(x2)2Φ3 (3.21)=
= aΦ1(x1)1βs(b1Φ2(x1)2))⊗ b2Φ3x2 =

= aΦ1(x1)1βs((x1)2)s(b1Φ2)⊗ b2Φ3x2
(3.83)=

= aΦ1 ε(x1)βs(b1Φ2)⊗ b2Φ3x2 =

= aΦ1βs(b1Φ2)⊗ b2Φ3x
(3.97)= θ(a⊗ b) · x

(3.99)

for all a, b, x ∈ A and the right colinearity follows from the fact that η̂ is right colinear
and γ̃ ⊗A does not affect the two rightmost factors. In addition, θ is an A-module map
with respect to the left A-module structures given by the regular action of A on the left
tensor factor. Indeed, for all a, b, x ∈ A:

θ(x ? (a⊗ b)) = θ(xa⊗ b) (3.97)= xaΦ1βs(b1Φ2)⊗ b2Φ3 (3.97)= x ? θ(a⊗ b). (3.100)

We may summarize the three variants of A-linearity in the formula:

θ((x⊗ y)ξ(z1 ⊗ z2)) (3.100)= (x⊗ 1)θ((1⊗ y)ξ(z1 ⊗ z2)) (3.99)=

= (x⊗ 1)θ((1⊗ y)ξ)(1⊗ z) (3.98)= (x⊗ y2)θ(ξ)(s(y1)⊗ z) (3.101)
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for x, y, z ∈ A and ξ ∈ A⊗A. Now we are ready to show that the axioms of quasi-Hopf
algebra are satisfied. Let us begin with (3.71): by (3.83) we know that a1γ(a2) = ε(a)β
and by (3.95) γ(x) = βs(x), so that

a1βs(a2) = ε(a)β ( ∀ a ∈ A) .

Next, observe that since θ is A-linear with respect to the three A-actions, the same holds
true for θ−1, so that:

θ−1(a⊗ b) = θ−1((a⊗ 1)(1⊗ 1)(1⊗ b)) = (a⊗ 1)θ−1(1⊗ 1)(b1 ⊗ b2), (3.102)

then we set α := (A⊗ ε)(θ−1(1⊗ 1)), and find:

(A⊗ ε)(θ−1(a⊗ b)) = (A⊗ ε)((a⊗ 1)θ−1(1⊗ 1)(b1 ⊗ b2)) = aαb (3.103)

for all a, b ∈ A. This implies further

s(a1)αa2
(3.103)= (A⊗ ε)(θ−1(s(a1)⊗ a2)) =

= (A⊗ ε)(θ−1((1⊗ a2)(1⊗ 1)(s(a1)⊗ 1))) =
= (A⊗ ε)((1⊗ a)θ−1(1⊗ 1)) = ε(a)α

for all a ∈ A, and

Φ1βs(Φ2)αΦ3 (3.103)= (A⊗ ε)(θ−1(Φ1βs(Φ2)⊗ Φ3)) (3.97)= (A⊗ ε)(θ−1(θ(1⊗ 1))) = 1.

In order to prove the remaining axiom observe that:

◦A• ⊗ •A••

ρ
◦A•⊗•A

•
•

��

A⊗A

(◦A• ⊗ •A••)⊗A (A⊗ε⊗A)
// A⊗ k⊗A

A⊗lA

OO a⊗ b

	

_

��

a⊗ b

((a⊗ b1)⊗ b2)Φ � // a⊗ 1⊗ b
_

OO

For the sake of clearness, let us define ρ := ρ◦A•⊗•A•• and ρ′ := ρ•(sA)◦⊗•A•• . In view of
(3.30):

ρ′(a⊗ b) = φ1 • a⊗ φ2b1 ⊗ φ3b2 = as(φ1)⊗ φ2b1 ⊗ φ3b2. (3.104)

Since θ−1 is A-colinear with respect to these two coactions, we can determine explicitly
its form:

θ−1(a⊗ b) = (A⊗ ε⊗A)(ρ(θ−1(a⊗ b))) =

= (A⊗ ε⊗A)(θ−1 ⊗A)(ρ′(a⊗ b)) (3.104)=
= (A⊗ ε⊗A)(θ−1 ⊗A)(as(φ1)⊗ φ2b1 ⊗ φ3b2) =

= (A⊗ ε)(θ−1)(as(φ1)⊗ φ2b1)⊗ φ3b2
(3.103)=

= as(φ1)αφ2b1 ⊗ φ3b2.
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This implies that:

s(φ1)αφ2βs(φ3) (∗)= (A⊗ ε)(θ(s(φ1)αφ2 ⊗ φ3)) = (A⊗ ε)(θ(θ−1(1⊗ 1))) = 1

where in (∗) we used:

(A⊗ ε)(θ(a⊗ b)) (3.97)= (A⊗ ε)(aΦ1βs(b1Φ2)⊗ b2Φ3) = aβs(b).

This concludes the proof.

Note that the maps γ̃ and γ that appear in the previous proof remind us of the map
β and the preantipode S (compare relations (3.45) and (3.63) with (3.83) and (3.84)).
The problem is that β needs not to be bijective, and so cannot be used in lieu of γ̃.
Nevertheless, the subsequent result holds. In order to avoid confusion, let us denote with
ξ the map β, i.e.,

ξ : A⊗A −→ A : a⊗ b 7−→ aS(b). (3.105)

Corollary 3.4.5. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. If ξ as
defined in (3.105) is bijective, then A is a quasi-Hopf algebra with quasi-antipode given
by α = 1, β = S(1) and, for all a ∈ A,

s(a) = ξ
(
(1⊗ a) · ξ−1(1)

)
= 11S(a12)

where 11 ⊗ 12 = ξ−1(1).

Proof. In proving Schauenburg’s result 3.4.4 we used the finiteness condition on A
just to find an isomorphism γ̃ : A⊗A → A. By hypothesis, we already have such an
isomorphism:

ξ : A⊗A −→ A : a⊗ b 7−→ aS(b).

Hence, let us substitute this ξ to γ̃ in the previous proof. We get that γ = S and β = S(1).
Moreover, with the same conventions as above (see also (3.88), (3.91) and (3.92)),

s(a) = (1⊗ a) . 1 = ξ
(
(1⊗ a) · ξ−1(1)

)
= ξ

(
11 ⊗ a12

)
= 11S(a12)

and, recalling (3.96),

α = (A⊗ ε)
(
θ−1(1⊗ 1)

)
= (A⊗ ε)

(
η̂−1
A (ξ−1(1)⊗ 1)

) (3.59)= ξ
(
ξ−1(1)

)
= 1

as claimed.

Example 3.4.6. ([EG, Preliminaries 2.3], [BCT, Example 2.5]) Let C2 = 〈g〉 be the
cyclic group of order 2 with generator g and let k be a field of characteristic different
from 2. Consider the group algebra H(2) := kC2 with bialgebra structure given as in
Example 1.3.22, i.e.,

∆(g) = g ⊗ g and ε(g) = 1.

Observe that H(2) is a two dimensional commutative algebra. Now, let us denote by

p := 1
2(1− g) (3.106)
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and note that the following relations hold:

pg = 1
2(1− g)g = 1

2(g − 1) = −p (3.107a)

p2 = 1
4(1− 2g + g2) = 1

2(1− g) = p (3.107b)

∆(p) = 1
2((1⊗ 1)± (1⊗ g)− (g ⊗ g)) = (1⊗ p) + (p⊗ g) (3.107c)

∆(p) = 1
2((1⊗ 1)± (g ⊗ 1)− (g ⊗ g)) = (p⊗ 1) + (g ⊗ p) (3.107d)

ε(p) = 1
2(1− 1) = 0 (3.107e)

(p⊗ p)∆(p) = 1
2(p⊗ p)((1⊗ 1)− (g ⊗ g)) (3.107a)= 1

2((p⊗ p)− (p⊗ p)) = 0 (3.107f)

Next, let us introduce the non trivial reassociator

Φ := (1⊗ 1⊗ 1)− 2(p⊗ p⊗ p).

Since H(2) is commutative, (3.21) is fulfilled, and since ε is a counit for ∆ also (3.22)
and (3.23) are satisfied. Moreover, (3.107e) implies that

(H(2)⊗ ε⊗H(2))(Φ) = 1⊗ 1.

Hence, it remains to verify (3.19). Therefore consider:

(1⊗ Φ)(H(2)⊗∆⊗H(2))(Φ)(Φ⊗ 1) =

=


((1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p))·
· ((1⊗ 1⊗ 1⊗ 1)− 2(p⊗∆(p)⊗ p))·
· ((1⊗ 1⊗ 1⊗ 1)− 2(p⊗ p⊗ p⊗ 1))

 =

=
[
((1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p)− 2(p⊗∆(p)⊗ p)+
+ 4(p⊗ (p⊗ p)∆(p)⊗ p)) · ((1⊗ 1⊗ 1⊗ 1)− 2(p⊗ p⊗ p⊗ 1))

]
(3.107f)=

=
[
(1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p)− 2(p⊗∆(p)⊗ p)+
− 2(p⊗ p⊗ p⊗ 1) + 4(p⊗ p⊗ p⊗ p) + 4(p⊗∆(p)(p⊗ p)⊗ p)

] (3.107f)
(3.107d)=

=
[
(1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p)− 2(p⊗ g ⊗ p⊗ p)+
− 2(p⊗ p⊗ 1⊗ p)− 2(p⊗ p⊗ p⊗ 1) + 4(p⊗ p⊗ p⊗ p)

]
(3.106)=

=


(1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p)− 2(p⊗ g ⊗ p⊗ p)+
− 2(p⊗ p⊗ 1⊗ p)− 2(p⊗ p⊗ p⊗ 1) + 2(p⊗ p⊗ 1⊗ p)+
− 2(p⊗ p⊗ g ⊗ p)

 =

=
[
(1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p)− 2(p⊗ g ⊗ p⊗ p)+
− 2(p⊗ p⊗ p⊗ 1)− 2(p⊗ p⊗ g ⊗ p)

]
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and

(H(2)⊗H(2)⊗∆)(Φ)(∆⊗H(2)⊗H(2))(Φ) =
= ((1⊗ 1⊗ 1⊗ 1)− 2(p⊗ p⊗∆(p)))((1⊗ 1⊗ 1⊗ 1)− 2(∆(p)⊗ p⊗ p)) =

=
[
(1⊗ 1⊗ 1⊗ 1)− 2(∆(p)⊗ p⊗ p)− 2(p⊗ p⊗∆(p))+
+ 4(∆(p)(p⊗ p)⊗∆(p)(p⊗ p))

]
(3.107f)=

= (1⊗ 1⊗ 1⊗ 1)− 2(∆(p)⊗ p⊗ p)− 2(p⊗ p⊗∆(p)) (3.107c)=

=
[
(1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p)+
− 2(p⊗ g ⊗ p⊗ p)− 2(p⊗ p⊗∆(p))

]
(3.107d)=

=
[
(1⊗ 1⊗ 1⊗ 1)− 2(1⊗ p⊗ p⊗ p)− 2(p⊗ g ⊗ p⊗ p)+
− 2(p⊗ p⊗ p⊗ 1)− 2(p⊗ p⊗ g ⊗ p)

]

then even (3.19) is fulfilled. Furthermore, note that

Φ2 = (1⊗ 1⊗ 1)− 4(p⊗ p⊗ p) + 4(p⊗ p⊗ p) = 1⊗ 1⊗ 1

and so Φ is invertible. By [EG], H(2) is a quasi-Hopf algebra with quasi-antipode given
by β = 1, α = g and s = IdH(2). However, for the moment we don’t care about this. By
the contrary, we consider the linear map:

S : H(2) −→ H(2) : x 7−→ xg.

Write x = a+ bg and y = c+ dg in H(2), for a, b, c, d in k. Since

∆(x) = ∆(a+ bg) = a(1⊗ 1) + b(g ⊗ g),

we have that

S(x1y)x2 = x1ygx2 = ayg + bgygg = (a+ b)yg = ε(x)S(y)
y1S(xy2) = y1xy2g = cxg + dgxgg = (c+ d)xg = ε(y)S(x)

Φ1S(Φ2)Φ3 = g − 2ppgp (3.107a)= g + 2p = 1

and then S is a preantipode. As above consider the map ξ of (3.105):

ξ : H(2)⊗H(2) −→ H(2) : x⊗ y 7−→ xyg.

We have that ξ is surjective, because x = ξ(x⊗ g) for each x ∈ H(2). Hence it is bijective
and so we can construct a quasi-antipode by virtue of Corollary 3.4.5. What we find is
α = 1, β = S(1) = g and

s(x) = 11S(x12)

where 11 ⊗ 12 = ξ−1(1). However, we can give an explicit inverse for ξ. Indeed, consider
the function

ψ : H(2) −→ H(2)⊗H(2) : x 7−→ x⊗ g.

By composing with ξ we find:

x
ψ // x⊗ g ξ // xgg = x
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and since we know that ξ is invertible, we have that ψ = ξ−1. Therefore,

11 ⊗ 12 = ξ−1(1) = ψ(1) = 1⊗ g

and s(x) = S(xg) = xgg = x. Finally, by recalling that g is trivially invertible, it is easy
to see that g itself plays the role of u of Proposition 3.3.9 and thus we recovered the
structure given previously.

Remark 3.4.7. Observe that, once we have proven that H(2) is a quasi-bialgebra with
preantipode S, we can come to the same conclusions of Example 3.4.6 by simply applying
Corollary 3.4.2.

In [EG] is claimed that H(2) is not twist equivalent to an ordinary Hopf algebra. We
can give an alternative proof to this claim, based on the theory we developed and the
following lemma.

Lemma 3.4.8. Let (A,mA, uA,∆A, εA,ΦA) and (B,mB, uB,∆B, εB,ΦB) be isomorphic
quasi-bialgebra, via the isomorphism ϕ : A→ B, and assume that A admits a preantipode
S. Then B admits a preantipode.

Proof. Since ϕ is invertible, we can define a preantipode for B by setting T := ϕ◦S ◦ϕ−1.
Indeed:

T (x1y)x2 = ϕ
(
S
(
ϕ−1 (x1y)

))
x2 = ϕ

(
S
(
ϕ−1 (x1y)

)
ϕ−1 (x2)

) (∗)=

= ϕ
(
S
(
ϕ−1 (x1)ϕ−1 (y)

)
ϕ−1 (x2)

) (∗)=

= ϕ
(
S
((
ϕ−1(x)

)
1
ϕ−1(y)

) (
ϕ−1(x)

)
2

) (3.46)=

= ϕ
(
S
(
ϕ−1(y)

)
εA
(
ϕ−1(x)

)) (∗)= T (y) εB(x),

y1T (xy2) = y1ϕ
(
S
(
ϕ−1(xy2)

)) (∗)= ϕ
(
ϕ−1(y1)S

(
ϕ−1(x)ϕ−1(y2)

)) (∗)=

= ϕ
((
ϕ−1(y)

)
1
S
(
ϕ−1(x)

(
ϕ−1(y)

)
2

)) (3.45)= T (x) εB(x)

and

Φ1
BT (Φ2

B)Φ3
B = ϕ

(
ϕ−1

(
Φ1
B

)
S
(
ϕ−1(Φ2

B)
)
ϕ−1(Φ3

B)
) (∗)=

= ϕ
(
Φ1
AS(Φ2

A)Φ3
A

) (3.47)= ϕ(1) (∗)= 1

where in (∗) we used the fact that ϕ and ϕ−1 are morphisms of quasi-bialgebras.

Now, assume by contradiction that there exists a Hopf algebra (H,mH , uH ,∆H , εH , s)
and a gauge transformation F on H(2) such that H ∼= H(2)F via an isomorphism of
quasi-bialgebras that we can denote again by ϕ : H(2)F → H. In view of Proposition
3.3.13, the twisted SF is a preantipode for H(2)F and by Lemma 3.4.8 we have that
T := ϕ ◦ SF ◦ ϕ−1 is a preantipode for H. However, a preantipode for an ordinary Hopf
algebra with trivial associator 1⊗ 1⊗ 1 should be an ordinary antipode, by Proposition
3.4.1, and so T should coincide with s, but

T (1) = ϕ
(
SF
(
ϕ−1(1)

))
= ϕ

(
F 1f1F 2gf2

)
= ϕ(g) 6= 1 = s(1).
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Contradiction.
Going back to Theorem 3.4.4, we should observe that it states that, at least in the

finite dimensional case, there is a close connection between the preantipode and the
quasi-antipode, but this connection is not explicit because of the Krull-Schmidt Theorem.
Indeed, we have no informations about the isomorphism γ̃ and we don’t know how
to relate it with the preantipode, in general. Corollary 3.4.5 retrieves, in particular,
what it seems to be a limited family of quasi-bialgebras with preantipode for which it
is possible to recover an explicit relation with the quasi-Hopf algebra structure (as the
one of Example 3.4.6). Let us show briefly that it is actually a large class of quasi-Hopf
algebras.

Let (H,m, u,∆, ε,Φ, s, α, β) be a finite dimensional quasi-Hopf algebra. Then we
know, by Theorem 3.3.4, that H admits a preantipode S(·) := βs(·)α and so the
Structure Theorem holds for the quasi-Hopf H-bimodules. Applying Schauenburg’s result
3.4.4 we get, a posteriori, a quasi-antipode (s′, α′, β′) for H such that the morphism
γ̃(x⊗ y) = xβ′s′(y) is invertible. By Proposition 3.3.9 there exists an invertible element
u ∈ H such that (s, α, β) and (s′, α′, β′) are connected by relations (3.76). In particular,
if α is invertible, then also α′ is invertible. By the way, note that s′, α′ and β′ are not
known to us, since they are obtained by γ̃.

Next, assume that α is invertible in H. Hence

ξ : H ⊗H −→ H : x⊗ y 7−→ xS(y) = xβ′s′(y)α′ = γ̃(x⊗ y)α′ (3.108)

is invertible with ‘explicit’ inverse given by

ξ−1(h) := γ̃−1
(
h(α′)−1

)
= γ̃−1

(
hα−1u−1

)
. (3.109)

Thus we can apply Corollary 3.4.5. This implies that, if α is invertible, it is always possible
to recover explicitly the quasi-antipode from the preantipode, at least theoretically. It is
just a question of finding an explicit inverse to the map ξ, that we know it is invertible.

There is even something more that we can say in this situation. Indeed, recall relations
(3.88) and (3.93). These together implies that for all x, y, h ∈ H

γ̃
(
(x⊗ y) · γ̃−1(h)

)
= xhs′(y). (3.110)

Now, denote with (ŝ, α̂, β̂) the quasi-antipode that we get from the last corollary. If we
write it down a posteriori, we find

α̂ = 1, β̂ = S(1) = βα and (3.111a)

ŝ(h) = ξ
(
(1⊗ h) · ξ−1 (1)

) (3.109)= ξ
(
(1⊗ h) · γ̃−1

(
α−1u−1

)) (3.108)=

= γ̃
(
(1⊗ h) · γ̃−1

(
α−1u−1

))
uα

(3.110)= α−1u−1s′(h)uα (3.76)=

= α−1s(h)α

(3.111b)

for each h ∈ H, i.e., the same quasi-antipode that we would get from relations (3.76)
with u = α−1.

Observe that in this setting fall all finite dimensional Hopf algebras, the quasi-Hopf
algebras H(2), H±(8) and H(32) of [EG], the twisted quantum doubles Dω(G) introduced
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by Dijkgraaf, Pasquier and Roche (cfr. [DPR], [Ka, Section XV.5], [CP, Chapter 16]),
the basic quasi-Hopf algebras A(q) of [Ge].

In order to find interesting examples of the relation that intervenes between quasi-
antipodes and preantipodes, one should look for a quasi-Hopf algebra that is finite
dimensional and such that α is not invertible. Unfortunately, it will not be enough to
twist a quasi-Hopf algebra with trivial α (let us call trivial α when it is invertible) via a
gauge transformation F , as the following remark shows.
Remark 3.4.9. Let (H,m, u,∆, ε,Φ, s, α, β) be a (finite dimensional) quasi-Hopf algebra
with α invertible. We have the preantipode S(·) = βs(·)α and the quasi-antipode (ŝ, α̂, β̂)
obtained from S with the same steps as above. Let F ∈ H⊗H be a gauge transformation
on H and consider the quasi-antipode (s, αF , βF ) as defined in Proposition 3.3.12. In
general, αF = s(f1)αf2 needs not to be invertible.

Nevertheless, consider the preantipode SF (·) = βF s(·)αF (it is effectively the twisting
of S, as we observed in Remark 3.3.14) and denote by E = E1 ⊗ E2 and G = G1 ⊗G2

other two copies of F . We have that, for all h ∈ H:

ŝ(h) = 11S(h12) = 11 (SF )F−1 (h12) = 11f1SF (F 1h12f2)F 2,

α̂F = ŝ(g1)α̂g2 = 11f1SF (F 1g112f2)F 2g2 = 11f1SF (12f2),
β̂F = G1 β̂ ŝ(G2) = G1S(1)ŝ(G2) = G1e1SF (E1e2)E211f1SF (F 1G212f2)F 2

and this quasi-antipode (ŝ, α̂F , β̂F ) on HF is written ‘explicitly’ using just F , SF and
ξ−1(1). Furthermore, it is connected to (s, αF , βF ) by relations (3.76) where α−1 plays
the role of u. Indeed, recalling relations (3.111) we have that:

ŝ(·) = α−1s(·)α,
α̂F = ŝ(f1)f2 = α−1s(f1)αf2 = α−1αF ,

β̂F = F 1βαŝ(F 2) = F 1βs(F 2)α = βFα.

126



Chapter 4

Appendix

4.1 The Krull Schmidt Theorem

This appendix is devoted to the proof of the Krull Schmidt Theorem, that states that
every module that is both Artinian and Noetherian admits a unique decomposition into
indecomposable components, up to isomorphism. For an exhaustive treatment, we refer
to [AF, Section 12] and [Ja, Section 3.4].

In what follows, A will always denote a (unital) associative ring. By ‘module’ we will
always mean left A-module. Recall that a module M is said to be an (internal) direct
sum of the submodules M1,M2, . . . ,Mn if these satisfies:

M = M1 +M2 + · · ·Mn (4.1)
Ms ∩ (M1 + · · ·+Ms−1 +Ms+1 + · · ·+Mn) = {0} ( ∀ s = 1, . . . , n) (4.2)

and we denote it by
M = M1 ⊕M2 ⊕ · · · ⊕Mn.

Observe that (4.1) and (4.2) implies that every element m of M can be written in one
and only one way in the form

m = m1 +m2 + · · ·+mn

for mi ∈Mi. Indeed, suppose that m1 +m2 + · · ·+mn = 0 for some mi ∈Mi, i = 1, . . . , n.
Then

mi = −(m1 + · · ·+mi−1 +mi+1 + · · ·+mn) ∈Mi∩ (M1 + · · ·+Mi−1 +Mi+1 + · · ·+Mn)

so that mi = 0 for all i = 1, . . . , n and this is enough to show that the claim holds.
Hence we have injections js : Ms →M for all s ∈ {1, . . . , n}, that are just the usual

injections, and projections:

πs : M −→Ms : m = m1 +m2 + · · ·+mn 7−→ ms.

Observe that πs ◦ is = IdMs =: 1s, for all s ∈ {1, . . . , n}.
Let us denote with End(M) := homA(M,M) and with 1M := IdM ∈ End(M) or

simply 1, if it clear the identity of which object it is. The same for the 0 morphism.
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Consider the compositions es := js ◦ πs for each s = 1, . . . , n. These are idempotent,
pairwise orthogonal, endomorphisms of M . Indeed, we have that

e2
s = js ◦ πs ◦ js ◦ πs = js ◦ πs = es.

Moreover, if s 6= t, then
es(et(m)) = es(mt) = 0,

for all m ∈M . Let us call them projections and forget about the previous projections
πs. Note that Ms is the image of es for each s. Thus every internal direct summand of
M is the image of an idempotent endomorphism of M . Also the converse holds, as the
following lemma shows.

Lemma 4.1.1. Let e be an idempotent in End(M). Then 1 − e is an idempotent in
End(M), orthogonal to e and such that

M = e(M)⊕ (1− e)(M).

Proof. Actually, it is easy to see that:

(1− e)2 = 1− 2e+ e2 = 1− 2e+ e = 1− e

and that
e(1− e) = e− e2 = 0 = (1− e)e.

Moreover, every m ∈M can be written as

m = e(m) + (1− e)(m)

and if there exists elements m,n ∈M such that e(n) = (1− e)(m) ∈ e(M) ∩ (1− e)(M),
then

e(n) = e2(n) = e((1− e)(m)) = 0.

Furthermore, note that since es is idempotent for all s = 1, . . . , n, then it is the
identity of Ms when restricted to it.

Definition 4.1.2. (Decomposable and indecomposable modules)
An A-module M 6= 0 is said to be decomposable if there exist submodules M1,M2 such
that M = M1 ⊕M2 and Mi 6= 0 for i = 1, 2. Otherwise, it is said to be indecomposable.

Proposition 4.1.3. A module M 6= 0 is indecomposable if and only if End(M) contains
no idempotent except the trivial ones: 0, 1M .

Proof. Assume that M is decomposable, M = M1 ⊕M2, and consider the projections e1
and e2. These are idempotents in End(M). Moreover, since Mi 6= 0, also ei 6= 0 for both
i, j = 1, 2. Observe that, if e1 = 1M , then e2 = e2 ◦ 1M = e2 ◦ e1 = 0, that is impossible
by what we have just said. Thus e1 6= 1M and analogously e2 6= 1M .

On the other hand, suppose that End(M) contains an idempotent e 6= 0, 1. Then also
1− e is an idempotent different from 0, 1 and M is decomposable by Lemma 4.1.1.
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Definition 4.1.4. (Local rings)
A ring A is called local if the set of non units forms additive group. Equivalently, A is
said to be local in case for each pair a, b ∈ A if a+ b is invertible, then either a or b is
invertible.

Remark 4.1.5. There’s plenty of characterizations of local rings. For example, A is
local if and only if for each a ∈ A, either a or 1 − a is invertible in A, if and only if
Jac(A) = {a ∈ A | a is not invertible}, where Jac(A) denotes the Jacobson radical of A.
For the moment, we can simply observe that if A is local, then it admits only the trivial
idempotents 0, 1. Indeed, if e is an idempotent different from 0, 1, then also 1 − e is
idempotent and neither e nor 1− e is invertible. The interested reader may refer to [AF,
Section 15]

Observe also that if End(M) for a module M 6= 0 is local, then M is indecomposable
by Proposition 4.1.3. This justifies the following definition.

Definition 4.1.6. (Strongly indecomposable modules)
A module M is said to be strongly indecomposable if M 6= 0 and End(M) is local.

Lemma 4.1.7. Let M and N be modules such that N is indecomposable and M 6= 0.
Let f : M → N and g : N →M be homomorphisms such that g ◦ f is an automorphism
of M . Then f and g are isomorphisms.

Proof. Let us simplify the notation by setting g ◦ f = gf and let h : M → M be the
inverse of gf . Then hgf = 1M . Set l = hg. We find that e = fl : N → N is idempotent,
since e2 = flfl = f1M l = e, thus e = 0, 1 because N is indecomposable. Since e = 0
would imply that 1M = 12

M = lf lf = lef = 0, we have that e = 1 and both f and g are
then invertibles.

Theorem 4.1.8. ([Ja, Theorem 3.6]) Let

M = M1 ⊕M2 ⊕ · · · ⊕Mn (4.3)
N = N1 ⊕N2 ⊕ · · · ⊕Nm (4.4)

where the Mi are strongly indecomposable for i = 1, . . . , n and the Nj are indecomposable
for j = 1, . . . ,m and suppose M ∼= N . Then m = n and there is a permutation σ of the
indexes j such that Mi

∼= Nσ(i) for 1 ≤ i ≤ n.

Proof. We proceed by induction on n. If n = 1, then M is indecomposable and N is
indecomposable, too. Thus all the Nj are 0 except one, that we may assume to be N1.

Now assume that n > 1. Let e1, . . . , en be the projections defined by the decomposition
(4.3) of M , and let f1, . . . , fm be those determined by the decomposition (4.4) of N . Let
also g : M → N be an isomorphism and set

hj := fjge1 kj := e1g
−1fj , (1 ≤ j ≤ m).

Observe that
∑m
j=1 fj = 1N by definition of the projections, thus

m∑
j=1

kjhj =
m∑
j=1

e1g
−1fjfjge1 = e1g

−1

 m∑
j=1

fj

 ge1 = e1.
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Now, the restrictions of e1 and kjhj to M1 are endomorphisms of M1. Let us indicate
them with e′1 and (kjhj)′ respectively. We already know that e′1 = 1M1 , hence we have
that

m∑
j=1

(kjhj)′ = 1M1 .

However, End(M1) is local and so at least one of the (kjhj)′ is invertible. Reordering the
indexes j we can assume that (k1h1)′ is an automorphism of M1.

Restricting both h1 and k1 to M1 and N1 respectively, we find that h′1 : M1 → N1
and k′1 : N1 → M1 are morphisms such that k′1h′1 = (k1h1)′ is an automorphism of M1
and N1 is an indecomposable module. By Lemma 4.1.7 we have that they actually are
isomorphisms between M1 and N1.

Next, let us prove that

M = g−1(N1)⊕ (M2 + · · ·+Mn).

Let x ∈ g−1(N1) ∩ (M2 + · · ·+Mn). Since x ∈M2 + · · ·+Mn, we have that e1(x) = 0.
On the other hand, x = g−1(y) = g−1f1(y), so that

0 = e1(x) = e1g
−1f1(y) = k1(y) = k′1(y).

Hence y = 0 because k′1 is an isomorphism and consequently x = 0. Now set

M ′ := g−1(N1) +M2 + · · ·+Mn

and pick x ∈ g−1(N1). We have that x, e2(x), e3(x), . . . , en(x) are all in M ′, but we also
have that x =

∑n
i=1 ei(x), so that e1(x) ∈M ′. This implies that

M ′ ⊇ e1(g−1(N1)) = e1g
−1f1(N1) = k1(N1) = k′1(N1) = M1

and so M ′ ⊇M .
Finally, since g is an isomorphism from M to N , it clearly maps g−1(N1) onto N1, so

that it induces an isomorphism

g̃ : M

g−1(N1)
∼−→ N

N1
.

This implies that we have isomorphisms:

N2 ⊕N3 ⊕ · · · ⊕Nm
∼=

N

N1
∼=

M

g−1(N1)
∼= M2 ⊕M3 ⊕ · · · ⊕Mn.

Now, we conclude by induction.

Observe that the hypothesis of the previous theorem are quite strong. Recall where
we would like to come: we would say that a certain family of modules admits a unique
decomposition into indecomposable components (up to isomorphism, of course). The
result we have just proven is practically what we need, but we are requesting that at least
one decomposition exists and that it is composed by strongly indecomposable submodules.
We are going to show now that modules that are both Artinian and Noetherian satisfy
all these conditions. However, before going on, we need a lemma.
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Lemma 4.1.9. (Fitting’s Lemma) Let M be a module and f ∈ End(M) be an endo-
morphism of M . Set fn := f ◦ f ◦ · · · ◦ f for n times. Note that we have a descending
chain:

M ⊃ f(M) ⊃ f2(M) ⊃ · · ·

Moreover, if fn(m) = 0, then also fn+1(m) = 0, so that we have an ascending chain:

0 ⊂ ker(f) ⊂ ker(f2) ⊂ · · ·

Define f∞(M) =
⋂∞
n=1 f

n(M) and f−∞0 =
⋃∞
n=1 ker(fn). If M is both Artinian and

Noetherian, then we have the Fitting decomposition

M = f∞(M)⊕ f−∞0.

Moreover, the restriction of f to f∞(M) is an automorphism and the restriction of f to
f−∞0 is nilpotent.

Proof. Since M is Artinian, there is an integer s such that

fs(M) = f s+1(M) = · · · = f∞(M).

Let m ∈ M . Since fs(M) = f2s(M), there exists an n ∈ M such that f s(m) = f2s(n),
which implies also that fs(m− fs(n)) = 0. Therefore, we can write m as

m = fs(n) + (m− fs(n)) ∈ fs(M) + ker(fs)

and so
M = fs(M) + ker(fs).

Moreover, since M is Noetherian, there exists an integer t such that

ker(f t) = ker(f t+1) = · · · = f−∞0.

If m ∈ f t(M) ∩ ker(f t), then there exists a n in M such that m = f t(n) and we have
that 0 = f t(m) = f2t(n). Hence, n ∈ ker(f2t) = ker(f t) and m = 0.

Let r = max(s, t), so that f∞(M) = f r(M) and f−∞0 = ker(f r). By the previous
observations we can conclude that

M = f r(M)⊕ ker(f r).

Now, indicate with f ′ the restriction of f to f∞(M) = f r(M) and let p ∈ f r(M)
be such that f ′(p) = 0. Since p ∈ f r(M), there exists m ∈ M such that p = f r(m).
On the other hand, p ∈ ker(f ′), so that 0 = f ′(p) = f(p) = f r+1(m) and then m ∈
ker(f r+1) = ker(f r). This implies that actually p = 0 and f ′ is injective. Moreover,
f ′(f r(M)) = f r+1(M) = f r(M) so that f ′ : f r(M) → f r(M) is an automorphism, as
claimed. Finally, f r restricted to ker(f r) is identically 0. That means that f restricted
to f−∞0 is nilpotent.

The following corollary is the analogue of Schur’s Lemma for indecomposable modules
that are both Artinian and Noetherian.

131



Corollary 4.1.10. Let M be an indecomposable module that is both Artinian and Noethe-
rian. Then End(M) is a local ring and M is strongly indecomposable.

Proof. Let f ∈ End(M) be an endomorphism of M . Since M is indecomposable, by
Fitting’s Lemma we have that M = f∞(M) or M = f−∞0. In the first case, f is an
automorphism (recall that f restricted to f∞(M) is always an automorphism). In the
second case, it is nilpotent. To show that End(M) is local, it is enough to show that the
sum of two non invertible elements is still non invertible. Hence, let f, g ∈ End(M) be
nilpotents (otherwise they should be invertibles). If h is any other endomorphism, gh
is again nilpotent, since it cannot be invertible. Indeed, assume that n is the minimum
integer such that gn = 0 and that there exists k ∈ End(M) such that ghk = 1M . Then
we should have 0 = gnhk = gn−1, which contradict our choice of n.

Now, consider f + g and assume, by contradiction, that it is invertible. Hence we
have h ∈ End(M) such that 1 = (f +g)h = fh+gh. However, gh is nilpotent. Therefore,
there exists an n such that (gh)n = 0 and so f is invertible, since:

(1 + gh+ (gh)2 + · · ·+ (gh)n−1)f = (1− (gh)n) =
= 1 = (1− (gh)n) = (1− gh)(1 + gh+ (gh)2 + · · ·+ (gh)n−1) =

= f(1 + gh+ (gh)2 + · · ·+ (gh)n−1).

Contradiction.

Proposition 4.1.11. ([AF, Proposition 10.14]) Let M 6= 0 be a module that is either
Artinian or Noetherian. Then M is the direct sum

M = M1 ⊕ · · · ⊕Mn

of a finite set of indecomposable submodules.

Proof. If M is indecomposable, then the claim holds and there’s nothing to prove.
Therefore we can assume that M is decomposable and, by contradiction, that it does not
have a finite indecomposable decomposition. Choose a proper decomposition

M = M1 ⊕N1

such that N1 has no finite indecomposable decomposition. Inductively,

N1 = M2 ⊕N2, N2 = M3 ⊕N3, . . .

so that we can construct two infinite chains:

M1 ⊂M1 ⊕M2 ⊂M1 ⊕M2 ⊕M3 ⊂ · · ·

and
N1 ⊃ N2 ⊃ N3 ⊃ · · ·

contradicting Artinianity and Noetherianity.

Now, the following theorem is just an immediate consequence of the previous results.
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Theorem 4.1.12. (Krull-Schmidt Theorem)
Let M be a module that is both Artinian and Noetherian and let

N1 ⊕N2 ⊕ · · · ⊕Nm = M = M1 ⊕M2 ⊕ · · · ⊕Mn

be two indecomposable decompositions of M . Then n = m and there exists a permutation
σ of the indexes i such that

Mi
∼= Nσ(i)

for 1 ≤ i ≤ n.

Proof. By Proposition 4.1.11, M admits a finite indecomposable decomposition. If it
admits two,

N1 ⊕N2 ⊕ · · · ⊕Nm = M = M1 ⊕M2 ⊕ · · · ⊕Mn,

then we can apply Corollary 4.1.10 to obtain that the Mi are strongly indecomposable
and then apply Theorem 4.1.8 to obtain uniqueness, as desired.

Corollary 4.1.13. Let M and N be two Artinian and Noetherian modules. Assume that
there exists a positive integer n such that Mn ∼= Nn. Then M ∼= N .

Proof. By Proposition 4.1.11 we can write

M = M1 ⊕M2 ⊕ · · · ⊕Ms

and
N = N1 ⊕N2 ⊕ · · · ⊕Nt.

Since the n-th power just represents the direct sum of n copies, we have that:

Mn
1 ⊕Mn

2 ⊕ · · · ⊕Mn
s
∼= Nn

1 ⊕Nn
2 ⊕ · · · ⊕Nn

t . (4.5)

Therefore Krull-Schmidt Theorem implies that:

• ns = nt, so that s = t;

• there exists an index j such that M1 ∼= Nj . We can assume without loss of generality
that j = 1;

• killing all the occurrences of M1 and N1 from (4.5), we can apply again Krull-
Schmidt Theorem to find out that M2 ∼= N2 and so on.

To conclude, we have that Mi
∼= Ni for all i = 1, . . . , s and so M ∼= N .
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