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Introduction

Let A be an algebra over the field k and denote by M the category of k-vector spaces and
by ® the tensor product over k. Assume that besides the algebra structures m: AQA — A
and u: k — A, A comes with two algebra morphisms: A: A - A® A and ¢: A — k.
We call it a bialgebra if these additional operations are coassociative and counital. It
can be proven (cfr. [Ka, Proposition XI.3.1]) that A is a bialgebra if and only if the
category of left (resp. right) A-modules 4M (resp. M) is a monoidal category, when
equipped with the tensor product of k-vector spaces and with the natural constraints
(a,l,r). For 4M to be a monoidal category means that it looks like the category of
vector spaces or the category of groups, i.e., it is a category endowed with a bifunctor
—®—: aAM X 4M — 4M and a distinguished object k such that ® is associative, up to a
natural isomorphism a, and k is a left and right unit for ®, up to natural isomorphisms
[,r. Bluntly speaking, the notion of a monoidal category is the ‘categorification’ of the
notion of a monoid.

Furthermore, a bialgebra H is a Hopf algebra if it admits an antipode, i.e., an
endomorphism of H that is the convolution inverse of the identity. Larson and Sweedler
proved in 1969 that if a (finite dimensional) bialgebra H is a Hopf algebra, then a certain
Structure Theorem holds for Hopf H-modules (cfr. [LS, Proposition 1, page 82]). A
(right) Hopf H-module is a (right) H-module that is also a (right) H-comodule over the
coassociative coalgebra H within the monoidal category of (right) H-modules Mg. The
Structure Theorem, as it appears in [LS], states that every Hopf module over a Hopf
algebra is trivial, that is, for each Hopf module M there exists a vector space Mo
(called the space of coinvariants of M) such that M has the form M©°H ® H. This result
allowed them to show that every finite dimensional Hopf algebra H admits non-zero
left integrals (actually, that for a finite dimensional bialgebra H, the existence of the
antipode is equivalent to the existence of non-singular left integrals; cfr. [LS, Theorem
on page 79]), from which they also proved that all finite dimensional Hopf algebras are
Frobenius algebras and that, in such a case, the antipode is always bijective. In Chapter
2 we will retrieve a modern version of the Structure Theorem, that states that a bialgebra
H admits an antipode if and only if the functor — ® H: M — Mf[ that associate to each
vector space V' the free Hopf module V' ® H{ is a category equivalence (cfr. also [Ab,
Theorem 3.1.8], [BW, Theorem 15.5] and [Sw, Theorem 4.1.1]).

The main aim of this thesis is to look for a proper analogue of the notion of antipode
for quasi-bialgebras and hence to extend the Structure Theorem to this more general
framework. Let us spend a few words to highlight that quasi-bialgebras became important
since 1989, because they are the basic structure on which quasi-Hopf algebras are
constructed and then they are related to conformal field theory, quantum groups, the



Knizhnik-Zamolodchikov equations, the Yang-Baxter equation (cfr. for example [Drl]
and [Dr2]), apart from being interesting in themselves.

Actually, Drinfel’d definition of a quasi-bialgebra A ensures that the category of
A-modules is still monoidal with tensor product given by the tensor product of k-vector
spaces, but with different constraints with respect to M ([Drl]). However, if we try to
establish an analogue of the Structure Theorem criterion for quasi-bialgebras we run into
two difficulties.

The first one is that there are no Hopf modules: we will show in Chapter 3 that
a quasi-bialgebra A is an associative algebra with counit and comultiplication that is
coassociative only up to conjugation by an invertible element ® € A ® A® A, i.e.

(A A)(A()) = (A2 A)(A())®.

Therefore, one does not know how to define comodules without a coalgebra structure.
Fortunately, this problem was solved by Hausser and Nill in [HN], where they observe
that A, with the natural left and right A-actions, is a coalgebra in the category of
(A, A)-bimodules 4M 4. Hence, we can still define a quasi-Hopf A-(bi)module category
AMﬂ: namely, the category of (right) A-comodules over the coassociative coalgebra A
within the monoidal category ,M 4.

The second problem arises with the Structure Theorem itself. Consider a quasi-
bialgebra A; in [Drl, page 1424], Drinfel’d introduced the notion of quasi-Hopf algebras
in order to have that the category of finite dimensional left A-modules is rigid (i.e., every
object admits a right dual object and a left dual object, just as vector spaces): they are
quasi-bialgebras endowed with a triple (s, a, ) composed by an antiendomorphism s and
two distinguished elements o and § that satisfies certain properties. Hausser and Nill
proved in [HN, Theorem 3.8] that if A is a quasi-Hopf algebra, then a certain functor
AM — AMﬁ is a category equivalence, i.e., there exists a generalization of the space
of coinvariants such that every quasi-Hopf bimodule M is isomorphic to (M4 @ , AS.
Since quasi-Hopf algebras seem to be a good generalization of Hopf algebras (cfr. [Drl]),
it is a little bit surprising to discover that the converse of this Structure Theorem needs
not to be true.

Actually, there exists an example in the dual context, due to Schauenburg, of a dual
quasi-bialgebra (dual quasi-bialgebras are also referred to as coquasi-bialgebras) for which
the Structure Theorem holds, but that is not a dual quasi-Hopf algebra (cfr. [Scl] and
[Sc3, Example 4.5.1]).

Ardizzoni and Pavarin studied the topic in depth in [AP1] and they came to the
conclusion that a correct generalization of the antipode to dual quasi-bialgebras is what
they called a preantipode: a k-linear map S: A — A satisfying certain properties. Here
we fit what they got to the framework of quasi-bialgebras. Even if, at a first sight, it may
seem just dualizing, things are not so easy. First of all, the dual of a dual quasi-bialgebra
is not a quasi-bialgebra in general (unless we are in the finite dimensional case). Secondly,
we will see in Section 3.2 that, unlikely the ‘dual quasi’ case, we don’t have a pretty
definition of the space of coinvariants that helps us in defining the adjunction between
AM and AMﬁ by taking inspiration from the ordinary Hopf version. On the contrary,
our definition of coinvariants is a strict consequence of the Structure Theorem.

In details, the subsequent work is organized as follows.



In Chapter 1 we recall some basic notions of category theory and monoidal categories.
In particular, we show explicitly that the category of vector spaces over the field k is a
monoidal category.

In Chapter 2 we retrieve some classical results concerning Hopf algebras and we prove
the Structure Theorem for Hopf modules we referred to at the very beginning.

Chapter 3 is devoted to quasi-bialgebras and the notion of preantipode. In Section 3.2
we prove the main result: the Fundamental Structure Theorem for quasi-Hopf bimodules.
It states that the adjunction — ® A: ;M — ,M4 of Hausser and Nill, that sends a left
A-module into the free quasi-Hopf bimodule ;M ® , A2, is an equivalence of categories
if and only if A admits a preantipode, if and only if there exists a projection map
v M — M for every quasi-Hopf bimodule M that satisfies certain properties. In
particular, every quasi-Hopf bimodule M is of the form N ® A, where N is a suitably
defined space of coinvariants of M, namely N = 75;(M).

In Section 3.3 we introduce quasi-Hopf algebras in order to show how the classical
results are now consequences of the theory we developed. The cornerstone of this section
is Theorem 3.3.4, which asserts that every quasi-Hopf algebra admits a preantipode.
From this result we can recover the Structure Theorem for Hopf modules (Remark 3.3.7)
and Hausser and Nill version of the Structure Theorem for quasi-Hopf bimodules (Remark
3.3.8) as corollaries. Unfortunately, and unlike the dual quasi case, we are not able to
exhibit an explicit example of a quasi-bialgebra with preantipode that does not admit a
quasi-antipode and so we cannot say with certainty that the two concepts don’t coincide,
though it is very unlikely to be so.

Nevertheless, even if it will turn out that the two are equivalent, we took a step
forward. Indeed, on one hand we will show how the preantipode is actually more handy
than the quasi-antipode. Primarily, because it is composed by a single data: the map
S: A — A. Secondly, because it is unique (see Theorem 3.3.11) and not just unique up
to an invertible element (as the quasi-antipode is). On the other hand, we will be able to
choose the one that fits better our needs because, unluckily, the preantipode is just a
linear map: it is not an algebra nor a coalgebra antiendomorphism (cfr. Remark 3.3.16),
while the quasi-antipode is an algebra antiendomorphism by definition and it can become
a coalgebra antiendomorphism via a twist (cfr. [Drl, Proposition 2] and the preceding
discussion on page 1426).

Another important result that we were able to prove is Proposition 3.3.13, that states
that quasi-bialgebras with preantipode form a class of bialgebras closed under gauge
twisting.

Note that all these results argue in favour of the thesis that preantipodes are a more
effective candidate for generalizing antipodes than quasi-antipodes (just in the case they
don’t coincide, obviously).

Even if we believe that quasi-bialgebras with preantipode are a strictly larger class of
quasi-bialgebras with respect to quasi-Hopf algebras, we are able to exhibit a number of
cases in which the two structures are equivalent. For example: ordinary bialgebras viewed
as quasi via the trivial reassociator (Proposition 3.4.1), commutative quasi-bialgebras
(Corollary 3.4.2) and, last but not the least, finite dimensional quasi-bialgebras. Indeed,
the very last theorem of Chapter 3 is due to Schauenburg again and it shows that, at
least in the finite dimensional case, the existence of a preantipode is equivalent to the
existence of a quasi-antipode.



In some of this cases we are able to recover explicitly the quasi-antipode from the
preantipode, as shown at the very end of Chapter 3, for example when the distinguished
element « is invertible. We will also highlight that we can do it for much of the best known
examples of non-trivial quasi-Hopf algebra. Nevertheless, up to this moment, we are not
able to give general guidelines to recover the quasi-antipode from the preantipode, even in
the finite dimensional case. The heart of the problem lies in the fact that Schauenburg’s
proof invokes the Krull-Schmidt Theorem and this is a non-constructive result. Hence,
as we will see, the relation between the quasi-antipode and the preantipode stays hidden
behind an unknown isomorphism 7 (cfr. proof of Theorem 3.4.4).

We conclude by adding an appendix dedicated to prove the Krull-Schmidt Theorem
(Chapter 4).
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Chapter 1

Preliminaries

In this chapter we introduce some basic definitions and properties of category theory
and, in particular, we will concentrate on the category of k-vector spaces that forms the
framework for the subsequent work. Throughout the text, k will always denote a field.

1.1 Categories

This section consists of a collection of definition and elementary properties of categories
and functors that comes from the book of Kassel, [Ka, Chapter XI], and from Mac Lane’s
work, [ML]. For a more exhaustive treatment we refer to [ML].

Definition 1.1.1. (Category)
A category C consists of

1.
2.

3.

a class Ob(C) of objects of the category,
a class hom(C) of morphisms (or arrows) of the category,

two operations
dom

hom(€C) ——Z Ob(C)

cod

called domain and codomain (or source and target) which assign to each arrow f
an object called, respectively, the domain of f and the codomain of f, and

two additional operations, Id and o, defined by the following assignments:

Id: Ob(€) — hom(C) and O hom(€) X op(e) hom(€) — hom(C)
¢ r— ldo (9, f) —  gof

called identity and composition such that
cod(Idg) = C = dom(Id¢), dom(go f) =dom(f), cod(go f)=cod(g)

for every object C' in Ob(€) and for every composable pair of arrows (g, f) in
hom(C) xgp(e) hom(€), where hom(€) x g1,y hom(€) denotes the class of couples
(g, f) of composable morphisms in the category, i.e., such that dom(g) = cod(f).



Furthermore, the associativity and unit axioms must be satisfied:

(ass) For any morphisms f, g, h satisfying dom(g) = cod(f) and dom(h) = cod(g),
ho(gof)=(hog)of.
(un) For any morphism f in hom(C),
Ideoq(py o f = f o ldgom(r) = [-

As a matter of terminology, we will call endomorphism a morphism from an object to
itself and isomorphism (or simply iso) a morphism that admits a two-sided inverse, i.e.,
f: C — D in hom(@) is an isomorphism if there exists g: D — C' in hom(€) such that
go f=1d¢ and fog = Idp. Moreover, if C, D are objects in Ob(C) we will indicate
with home(C, D) the set of morphisms of the category € whose domain is C' and whose
codomain is Dj; it could be abbreviated also in C(C, D). Note that we are requesting
explicitly that given two objects C, D of €, home(C, D) is a set, i.e., C is actually a
set-category.

Remark 1.1.2. To each category € we can associate another category, called the opposite
category C°P. The class of objects of C°P is the class of objects of C, i.e., Ob(C°P) := Ob(C),
and the morphisms of C°P are given by

homeor (C, D) := home(D, C)

for each pair of objects C, D of C°P. The composition operation in the opposite category
is defined by:

o: hom(C°) xgp(eor) hom(CP) — hom(C°P)
(9, ) —  gof

where go f is performed in €. Bluntly speaking, the opposite category is just the category
C with all arrows reversed. In order to avoid confusion, when we look at the morphism
f: D — C in € as a morphism in C°P, we denote it by f°P: C°P — D°P,

In order to simplify the subsequent treatment, we are going to concentrate on
categories that are interpretations of the category axioms within set theory. This means
that Ob(€) and hom(C€) will be sets, dom, cod, Id and o will be functions and we will
even write simply C' € € or f € C to mean that C is an object of € and f is a morphism
of € respectively (it will be always clear if we are considering an object or a morphism).

Example 1.1.3. Let us retrieve some examples of such categories:
Set: Objects: all small! sets; arrows: all functions between them.
Grp: Objects: all small groups; arrows: all morphisms of groups.

Ab: Objects: all small abelian groups; arrows: all morphisms of abelian groups.

! Assume that there exists a ‘big enough’ set U, that we can call the universe. We describe a set as
small if it is a member of the universe (cfr. [ML, Section 1.6]).



Mod-R: Objects: all small right R-modules over the ring R; arrows: all R-linear
morphisms.

Vect(k): Objects: all small vector spaces over the field k; arrows: all linear maps
of vector spaces.

Top: Objects: all small topological spaces; arrows: continuous maps.

For more examples of this kind and also for some examples of categories whose objects
are not sets we refer to [ML].

Definition 1.1.4. (Functors and natural transformations)
A functor is a morphism of categories. In details, a functor F': € — D from the category
C to the category D consists of two related functions:

e a map F': Ob(C) — Ob(D), called object function, that assigns to each object C' of
€ an object F'(C) of D, and

e a map F: hom(C) — hom(D), called arrow function, which assigns to each arrow
f:C — C"in € an arrow F(f): F(C) — F(C') in D,

such that
F(lde) =Ildp) and F(go f) = F(g) o F(f),

the latter whenever the composite g o f is defined in C.

Let F,G be two parallel functors between the category C and the category D. A
natural transformation n: F — G from F to G (also referred to as morphism of functors)
is a family of morphisms n¢: F(C) — G(C) in D indexed by the objects C of € such
that, for any morphism f: C' — D in C, the square:

F(C) 2~ G(0)
F(f)l o iam

F(D) =5~ G(D)
commutes. We call o, np, ... the components of the natural transformation. Further-
more, if any component of a natural transformation is an isomorphism, then we call it a
natural isomorphism.

Note that if : ' — G is a natural isomorphism, then also n=!: G — F is.

Remark 1.1.5. The definition we gave above coincides with what is commonly known
as a covariant functor, in the sense that it preserves the order of compositions. There
also exists in literature the concept of contravariant functors. A functor F': € — D is
said to be contravariant if F(go f) = F(f) o F(g) for all composable pairs (g, f) of
morphisms of € (i.e., it reverses compositions). We do not put too much emphasis on
this idea because a contravariant functor can be seen as a simple covariant functor from
the opposite category: F': C°P — D,



Definition 1.1.6. (Isomorphism of categories, fullness and faithfulness)
An isomorphism of categories is a functor that is a bijection both on objects and on
arrows. Equivalently, a functor F': € — D is an isomorphism if and only if there is a
functor G: D — € for which both composites F o G and G o F' are identity functors.

A functor F': € — D is full if the associated arrow function is surjective. It is faithful
if the associated arrow function is injective.

Definition 1.1.7. (Category equivalence)
A functor F': € — D is an equivalence of categories (and the categories are said to be
equivalent) when there exists a functor G: D — € and natural isomorphisms

n:Ilde = GF and e: FG — Idyp.

Definition 1.1.8. (Adjoint functors)

Let F: € — D and G: D — € be functors. Then G is right adjoint to F or F is left
adjoint to G if there exist natural transformations n: Ide — GF (called the unit) and
e: FG — Idp (called the counit) such that the following diagrams commute (triangular
identities):

ara(p) E2 q(p) (1.1)

G(D)

Salte))

FGF(C)——=F(C) (1.2)
F(WC)T A}
F(C)

We will write (F,G,n,¢€): € = D or, simply, (F,G,n,¢€).
If both the unit and the counit of the adjunction are natural isomorphisms, we call it
an adjoint equivalence.

Theorem 1.1.9. Let C and D be categories and let F': € — D and G: D — C be functors.
(F,G) is an adjunction if and only if there exists a natural isomorphism:

¢c,p: homp(F(C), D) — home(C, G(D))
that is natural in both components.
Proof. For the ‘only if’ part, assume that (F,G,n,¢€) is an adjunction and let
f:F(C)—D

be a morphism in homq (F(C), D). Consider G(f): GF(C) — G(D) and compose it
with nc: C' — GF(C):

pon(f) = (€= ar() 2

G(D)) (1.3)

Let us show that this ¢ is a natural isomorphism in both components.
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e Naturality in the first component. Let g: B — C € C(B, ) (this is just a shortcut
for home(B, C)). Consider the diagram:

®Yc,D

D(F(C), D) —=C(C,G(D))

OF(H)J/ i—og

D(F(B), D) 457z €(B,G(D))

This is commutative, since for all f in D(F(C), D):

on.0(foF(g)) = G(foF(g))ons = G(f)oGF(g)ons 2 G(f)oncog = vo.n(f)og,

where in (%) we used the naturality of 7.
e Naturality in the second component. Let g: D — E € D(D, FE). Consider the

diagram:
¥YC,D

D(F(C), D) —€(C,G(D))

go—l lG(g)O—

D(F(C), E) 5 €(C, G(E))

This is commutative, since for all f in D(F(C), D):
ec,p(go f)=G(go f)onc =G(g) o G(f)one = G(g) o pc,p(f)

e Define, for all C'in €, D in D and g in C(C, G(D)),

venly) = (F(C) % FG(D) ~2~ D)

For all f: C — G(D) we have that:
e(W(f)) = plep o F(f)) = Glep o F(f)) ene =
= Glep) o GF(f) one € Glep) ongm o f = f.

where in (%) we used the naturality of  again. In the same way, for all f: F(C') — D
we have that:

U(p(f) =(G(f) enc) = ep o F(G(f) one) =
— 0o FG(f) o F(no) ™ f o epcy o Plne) =2 .
where in (xx) we used the naturality of e.
Conversely, for the ‘if” part, define
ne = vere)(dre) and  ep = ¢g ) pdan) (1.5)

These are natural:

11



Let f: C — B € C(C, B). Since ¢ is natural in both components, we get that:
GF(f)onc = GF(f)ovcrc)ldrc)) = ¢ors) (F(f)oldre) = ¢ors) (F(f))

by naturality on the second component, and:

ocr) (F(f) = vorm(Idpmy o F(f) =ngo f

by naturality on the first component. This means that the following diagram

commutes:
C
fl
B

Analogously, let g: D — E € D(D, E). Since ¢! is natural in both components,
we get that:

. GF(C)
O lGF(f)
T GF(B)

9o (ecp),n) "dep)) = (¢c(p).r) " (G(g))
by naturality on the second component, and:
(pap).r) (G(9) = (¢cp).p) " (Idgr) © G(g)) = ep o FG(g)

by naturality on the first component. That means that the following diagram
commutes:

FG(D) -2~

D
FG(g)\L O lg
E

FG(E) —(~

And satisfy the triangular identities:

e let f: B—~Ce€Candg: D— F € D. By naturality of ¢:
¢B,p(—oF(f)) =vcp(=)of and ¢cr(go—)=G(g)opcn(—).
Hence:
G(ep) o ng(p) = G(ep) © va(p),rap)(Idra(p)) = vap),pep © ldrgp)) =
= ¢c(),p((c(p),p) " dg(p))) = Idgp)
and (1.1) follows.
e In the same way, let f: B — C € Cand g: D — E € D. By naturality of ¢~ !:
(¢,0) (=0 f) = (pc,p) (=)o F(f) and
(ec,p) " (G(g) o =) = g o (¢c,p) ().
Therefore:
er(c) © F(ne) = (earc).c) " dare)) © Fne) = (eorc)” (ne) =
= (ec,r(c))” (eorc)(Idpc))) = ldp)

and (1.2) follows as well.

12



O]

Remark 1.1.10. At the very beginning of Section 1.2 we will introduce the concept of
product of categories. With this notion, it will be easy to see that the isomorphism ¢ of
the previous theorem is just a natural isomorphism between the functors:

@: D(F(=),*) = C(=, G(+))

where

D(*,%): DP x D — Set

associate to each pair of objects (C,D) of D the set D(C, D) and to every pair of
morphisms (f°P, g): (C, D) — (C', D’) the function:

D(f,g): D(C,D) — D(C',D'): 6 —> gooo f.

Analogously C(—, —).

There exists another useful characterization of adjoints, that depends on the following
definition.

Definition 1.1.11. (Dual to [ML, Section III.1]) (Universal arrows)

Let F': € — D be a functor and let D € Ob(D) be an object. A universal arrow from
F(—) to D is a pair (F,u) consisting of an object E of € and an arrow u: F(E) — D in
D(F(FE), D) that enjoys the following universal property: for each pair (C, f) consisting
of an object C of € and an arrow f: F(C) — D in D(F(C), D) there exists a unique
arrow f: C — E in C(C, E) such that the following diagram commutes:

In other words, every arrow f from F(—) to D factors uniquely through the universal
aArrow .

Corollary 1.1.12. (cfr. [ML, Theorem IV.1.2, page 83]) Let F': C — D be a functor.
Then F is a left adjoint if and only if for each object D € D there exists a universal
arrow (Ep,up) from F(—) to D.

Proof. For the ‘only if’ part assume that there exists a functor G: D — € and natural
transformations n: Ide — GF(—) and e: FG(—) — Idp such that (F,G,n,¢€) is an
adjunction. Let us prove that for each D € D, (G(D),ep) is universal from F(—) to
D. In view of Theorem 1.1.9, for each pair (C, f) consisting of an object of € and an
arrow f: F(C) — D there exists a unique arrow f := pop(f): C — G(D) defined as
(cfr. (1.3))

vcp(f)=G(f)onc.

13



Furthermore, the following diagram commutes

FG(D)—2—=D

FG(f) !

FG(F(C)) 2L F(C)

oo
F(C)

by naturality of € and (1.2). Thus:
eDoF(f) =epoFG(f)oF(ne)=f

and (G(D),ep) is universal as claimed.

For the ‘if’ part, assume that for each D € Ob(D) there exists a universal arrow
(Ep,up) from F(—) to D and let us construct a functor G: D — € and a natural
isomorphism

Ye,p: home(C, G(D)) — homyp (F(C), D).
First of all, consider the assignment
G:D— C: D+ Ep.

In order to define how G operates on morphisms, pick g: D — D’ in D(D, D’) and
consider the following diagram:

F(Ep)—2 D'

D

F(Ep)

up

By the universal property of (Eps,up:) there exists a unique morphism g: Ep — Epy
such that the above diagram commutes. Hence we can define

G: D(D,D') — C(G(D),G(D")): g— g
for all D, D" € Ob(D). Observe that in this way we automatically get that
u: FG(—) — Idp
is natural. Let us show that this G is a functor. By functoriality of F' we can note that:
e the identity Idg,, makes the following diagram commutes:
F(Ep) —2~D

F(IdED)T o TIdD
F(Ep) —>>D

and so, by uniqueness, G(Idp) = Idp = ldg, = Idg(p)-

14



e for f: D — D' and g: D' — D" in hom(D) the following diagram commutes:
F(Ep) —2>D

F(¥) f

r@@f)| F(Ep) —2=D'  |opf

F(g) g

UDII

F(Ep:) —2~ D"

Since F'(g) o F' (f) =F (§ ° f), we have two morphisms that satisfy the universal

property: go f and go f. Thus, G(go f)=G(g) o G(f).

Next, since (Ep,up) is universal from F(—) to D for every D € Ob(D), we have that
for all g: F(C') — D there exists a unique morphism g: C' — G(D) such that

FG(D)—2~D

ol

F(C)
commutes. Therefore, the assignment
Y¢,p: home(C, G(D)) — homp (F(C), D): f — up o F(f)

is a well defined isomorphism, natural in both components (the proof of the naturality is
actually the same that we gave in the ‘only if” part of Theorem 1.1.9 for ¢ p, except that
here we should use naturality of u). By virtue of Theorem 1.1.9 itself, we conclude. [J

Remark 1.1.13. In view of (1.5) in the proof of Theorem 1.1.9 we have that the unit and
the counit of the adjunction that we get from the universal arrows are given explicitly
by:

ne =gy (1)) (1.6a)
€Ep = wG(D),D (Idg(D)) = Uup o F (IdG(D)) = Uup. (16b)

Actually, by definition, n¢ is the unique arrow from C' to GF(C) such that
EF(C) o F(nc) = IdF(C) (17)

for all objects C' in C.

Observe that if (F,G,n,€) is an adjoint equivalence, then the two functors that
compose the adjunction are category equivalences. The apparently unexpected claim is
that also the converse holds, as the subsequent result states.
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Theorem 1.1.14. ([ML, Theorem IV.4.1, page 93]) Let F': € — D be a functor. Then
the following assertions are equivalent:

(1) F is an equivalence of categories,
(2) F is part of an adjoint equivalence (F,G,n,€),

(3) F is fully faithful and each object D € D is isomorphic to F(C) for some object
C € C. In this case we say that F' is essentially surjective (on objects).

Proof. We already observed that (2) implies (1). To prove that (1) implies (3), note
that since there exists a natural isomorphism e¢: FG — Idp, for every object D € D
D = F(G(D)) and so F is essentially surjective. Moreover, naturality of n gives for each
f: C — C" a commutative square:

125 GF(C)
f O lGF(f)
C’ o GF(C")
Hence, f =15/ o GF(f) one and so F is faithful: if F(f) = F(g), then
f=mna o GE(f)onc =g o GF(g) onc = g.

Analogously, naturality of € ensures that also G is faithful.
To show that F is full, pick a morphism h: F(C) — F(C’) and define

f=mngl o G(h)enc.

By construction, we have two morphisms from GF(C) to GF(C"), namely GF(f) and
G(h), such that the following diagram commutes:

c— ~GF(C)

f O G(h) | |GF(f)

C/

e GF(C")
Therefore, since 7 is a natural isomorphism, we get that GF'(f) = G(h) and, by faithfulness
of G, F(f)=h.

Now, let us prove that (3) implies (2). For any object D € D, we know that there
exists (at least) a pair (Ep,up) where Ep is an object in € and up: F(Ep) — D is
an isomorphism in hom(D), since F' is essentially surjective on objects. Moreover, if
f: F(C) — D is any other morphism from F(C) to D for some C' € Ob(C), we can
consider the composition up' o f that belongs to D(F(C), F(Ep)). Since F is fully
faithful, it is bijective on morphisms, and so there exists a unique morphism f: C — Ep
such that F' (f) =up' o f. This means exactly that (Ep,up) is universal from F(—) to

16



D. In view of Corollary 1.1.12 and relation (1.6b) we can then construct an adjunction
(F,G,n,€) where

G:D—C: D+ Ep,
G:D(D,D') — C(G(D),G(D")): g— goup

and
ep ' =up: FG(D) — D (VD € Ob(D)).

Furthermore, by (1.7) and since € is a natural isomorphism, we have that F(n¢) is
invertible for all C, with inverse given by €p ). Hence even nc is invertible, because F
is fully faithful, and so (F,G,n,¢€) is an adjoint equivalence. O

Theorem 1.1.15. ([ML, Theorem IV.8.1, page 103]) Given two adjunctions
(F,G,n,¢e): € =D and (F,G,1,6): D — €&
the composite functors yield an adjunction
(FEGG.GTFoneoFeG): C—&.
Proof. Define

II\
N
Bl
g
@
Ql
:1\
Ql
!
Ql
al
13
S~—

and

F(FG(G(E) F(G(E)) E

F(FG(G(f)) F(G(f)) f

F(FG(G(E))) — FGE) ———F
F(ea(E,)> 2

The external path represents naturality of €. The left hand square commutes by naturality
of € applied to G(f): G(E) — G(FE') and functoriality of F. The right hand square
commutes by naturality of €.

Analogously, let C,C" € Ob(C€), f: C — C' in hom(C) and consider the diagram:

c— o) ") a@rrEey)
! G(F(f)) G(GFE(F(f)))
O GF(O) s GER(F(C)
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The external path represents naturality of /. The left hand square commutes by naturality
of n. The right hand square commutes by naturality of 77 applied to F'(C') and functoriality
of G. What is left is to prove that the triangular identities are satisfied.

(1.1): for E € & the following diagram, that represents the first triangular identity,

_ Uletel .
GG(E) " L GFGG(E)
ez ?(EE(E)) G(EFGE(E))
A .
GG(E) GGFFGG(E)
65 m) G(WE(E)) GEF(€5(E)>
— ) \iiii
G GFGE
(B)———— ()

commutes. Indeed, the upper left triangle is the triangular identity (1.1) satisfied by the
first adjunction applied to G(F) and so commutes. The lower left triangle commutes by
functoriality of G' and because it represents the same triangular identity satisfied by the
second adjunction applied to E. The central square commutes by naturality of 77 applied
to €g(p): FG(G(R)) — G(B).

(1.2): for C € C the following diagram, that represents the second triangular identity,

= F F(nc)

FF(C) FFGF(C)

7 ) F(er(o)) FFG(irc))
FF(C) FFGGFF(C)
IdFF(C) f\(ﬁmc\) f(géf F‘(C))

_ R
FF(C) FGFF(C)

€FF(0)

commutes, too. As above, the upper left triangle commutes by functoriality of F' and by
the triangular identity (1.2) satisfied by (F,G,n,¢€). The lower left triangle represents
(1.2) again for (F,G,7,¢) applied to F(C). Finally, the central square commutes by
naturality of € and functoriality of F. O

We will encounter several examples of adjunctions throughout the text.
Definition 1.1.16. (ML, Section I.5])(Monic, epi, split monic, split epi)

Let € be a category. A morphism f: C — D in hom(C) is monic when for any two
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parallel arrows g, h: D — C the equality fog = foh implies g = h. In other words, if f
is left cancellable.

A morphism f: C'— D in hom(C) is epi when for any two parallel arrows g, h: D — C
the equality go f = h o f implies g = h. In other words, if f is right cancellable.

For a morphism f: C' — D, a right inverse or section is a morphism r: D — C with
for=1Idp. A left inverse or retraction is a morphism [: D — C such that [ o f = Id¢.

If f: C = D and g: D — C are two morphisms in hom € such that go f = Id¢, then
f is a split monic, g is a split epi, and the composite h := f o g is defined and is an
idempotent (i.e., hoh = h).

Proposition 1.1.17. Let (F,G,n,¢€) be an adjunction between C and D. F is faithful if
and only if the unit nc is monic, for all C € Ob(C).

Proof. (F,Q) is an adjunction if and only if D(F(C), D) = C(C,G(D)) via ¢ defined by
po.n(f) =G(f)enc

forall C € €, D € D and f € D(F(C),D).
Let us consider the following diagram:

N

C(B,C) — = D(F(B), F(C))
nco— Y
C(B,GF(C))

It is commutative by naturality of n:

fr—"—=F(f)

P

nco f==GF(f)ons

As a consequence we have that if F'is faithful, then it is injective between hom-sets and
S0 n¢ o — is injective as well, by composition, for all C' € €. That means that for all
fig € C(B,C), nco f=mncogimplies f = g, i.e. N is monic.

Conversely, again by commutativity of the diagram, if n¢o is monic, then no o — is
injective and so is F' between hom-sets (since ¢ is bijective). O

Proposition 1.1.18. Let (F,G,n,€) be an adjunction. F is full if and only if nc is split
epi for all C € 0b(C).

Proof. Let no be split epi for all C' € €. That means that there exists yo: GF(C) — C
such that nc o ye = Idgpc)-

Let g: F(B) — F(C). Since ¢ p(c) is bijective, there exists some f: B — GF(C) such
that g = (¢B,F(C))71(f)- Moreover, by (1.4) in Theorem 1.1.9:

(pB.r)  (f) = €rc) o F(f) (1.8)
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On the other hand, by (1.2),

ldpc) = erc) o Fne).

If we compose on the right, on both sides, with F'(y¢), we get F'(y¢) = €p(¢). Substituting
in (1.8):

9= (en,r) " (f) =€r) o F(f) = F(vc) o F(f) = F(yc o f).

Therefore, F is surjective on hom-sets (full).
Conversely, let F' be full. For all C € C consider the commutative diagram:

C(GF(C),C) —E = D(FGF(C), F(C))

nco— ¥
C(GF(C),GF(C))
Since par(c),F(c) 18 is0, there exists v: GF(C) — C' such that

ldgrc) = varc),re)(F () =nc o,
i.e., no is split epi for all C € C. O

Corollary 1.1.19. Let (F,G,n,¢€) be an adjunction. F is fully faithful if and only if nc
is iso for all C € C.

1.2 Monoidal Categories

From now on we will indicate the generic objects of a category with letters M, N, P,
Q, ..., in order to avoid confusion when we will introduce the coalgebras.

We define the product of two categories € and D to be the category € x D whose
objects are pairs of objects (M, N), where M € Ob(C) and N € Ob(D), and whose
morphisms are given by couples of morphism of € and D. In details, for all M, M’ in €
and N, N’ in D:

hOm@XD((M, N), (M,,N/)) = hom@(M, M/) X hom@(N, N/).

Definition 1.2.1. (Tensor product)
Let € be a category. Any functor ®: € x € — C is called a tensor product.

Remark 1.2.2. To have a tensor product means that one has:
e an object M ® N associated to each couple (M, N) of objects of C;

e a morphism f ® g associated to each pair (f,g) of morphisms of € such that

dom(f ® g) = dom(f) ® dom(g) and cod(f® g) = cod(f)® cod(g).

20



and the following identities are satisfied:

Idyeny =Idy ®Idy and (ff®@¢)o(f®g)=(fof)® (4 og),

the latter whenever the composites f’ o f and ¢’ o g are defined in €. Note also that the
last relation implies that

(Idcod(f) ® g) (f ® Iddom ) f®g= (f ® Idcod(g)) (Iddom(f) ® g)
for all f, g in hom(C).

Definition 1.2.3. (Monoidal category)

A monoidal category (C,®,1,a,l,r) is a category C equipped with a tensor product ®
and with a distinguished object I, called the unit, such that ® is associative ‘up to’ a
natural isomorphism a, I is a left and right unit for ® ‘up to’ natural isomorphisms [
and r respectively and ‘all’ diagrams involving a, [ and r must commute. Formally, this
means that we have three natural isomorphisms:

a: ®(® xIde) = ®(Ide x ®)  associativity constraint
I: @ (Ix1de) = Ide left unit constraint
r: @ (Ide x I) — Ide  right unit constraint

that satisfy the Pentagon Axiom:

(MeMePIse P20 (a(ver)ee (1.9)
e \\
(M®N)®(£@) O M@((N®P)®Q)
AM,N,PRQ M®an, p,q
and the Triangle Axiom:
(MeDON ———" > Me(IeN) (1.10)

TM%\ %N
forall M, N, P, @ in C.

A monoidal category is said to be strict if the associativity and unit constraints are
all identities of the category.

Observe that Pentagon Axiom states that the two ways we have to go from (((M ®
N)®P)®@Q) to (M ® (N ® (P ®Q))) must coincide and Triangle Axiom forces the unit
I to ‘behave well’ with respect to associativity. In what follows could happen that we
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refer to Pentagon and Triangle Axiom as simply ‘the Axioms’, for the sake of brevity.
Our first goal now is to prove that these two axioms are enough to solve all the problems
of this kind. The result that will take care of this is the so called ‘Mac Lane’s Coherence
Theorem’, but to come there we do not follow Mac Lane original work ([ML]). Instead,
we prefer Kassel’s approach ([Kal), and this is why we will introduce soon the concept of
monoidal equivalence. For the moment, let us show that the Axioms imply commutativity
of other two triangular diagrams.

Proposition 1.2.4. ([Ka, Lemma XI1.2.2]) Let (C,®,1,a,l,r) be a monoidal category.
The triangles

(I8 M)®N DN I®(M®N) (1.11)
ZM% %N
and
(MeN)el ——— > Me(Nel) (1.12)

7‘1\& A’I‘N

Proof. The commutativity of the first triangle is proven in [Ka, Lemma XI.2.2], so let us
show that the second one commutes as well. Consider the following diagram, for M, N
and P in C:

commute for all M, N in C.

M®N RN®
(M®N) ®(]I®P) M®N ®P % (M®(NQI))

N®P
M®(N®l M® T®P

M®(N®(]I®P <— M&( (N®]I)®P

where we dropped the subscripts for the sake of simplicity (it is always clear which
subscripts are needed). The outside pentagon commutes by the Pentagon Axiom (1.9).
The two squares commute both by naturality of a. In view of the Triangle Axiom (1.10),
the lower and the upper left triangles commute. Thus the upper right triangle commutes
as well and we have that

(M®rn)oa)®P =(M®ry)®@P)o(a® P)=ryen @ P.
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Take P =1 and recall that the right unit constraint is natural, i.e.:

Qel—2-Q

f®ﬂl O J{f
/ !
Qel——>Q

commutes for each @, Q" € € and every f: @ — Q' in hom(C). Thus, since rq is always
an isomorphism, we get that

f=rgo(felorg
for all f as above, and so
(M@ry)oa) @I =rygy ®1
implies (M ® ry) o a = ryen for all M, N € @, as desired. O

Definition 1.2.5. ([Ka, Definition XI.4.1]) (Monoidal functor, natural monoidal trans-
formation, monoidal equivalence)
Let € = (€, ®,1,a,l,r) and D = (D,0,T',d’,I',r") be monoidal categories. A monoidal
functor from € to D is a triple (F,¢p,p2) where F': € — D is a functor, ¢g is an
isomorphism from I’ to F(I), and

@a(M,N): F(M) @ F(N) = F(M ® N)

is a family of natural isomorphisms indexed by all couples (M, N) of objects of €, such
that the diagrams

(F(M) o F(N)) 0 F(P) SOOI g 6 (F(N) o F(P)) (1.13)
w2 (M.N)OF(P) F(M)2p2(N,P)
F(M®N)o F(P) F(M)o F(N @ P)
p2(M®N,P) w2(M,N®P)

F((M®N)® P) F(M®(N®P))

' o F(M)—" - p(M) (1.14)




and

F(M)ol — 0 . p(h) (1.15)

F(M)ogo F(ryy)

F(M) o F(I) F(M®T)

w2(MI)
commute for all objects M, N, P in €. The tensor functor (F, ¢y, p2) is said to be strict
if the isomorphisms g and @y are identities of D.

A natural monoidal transformation n: (F, po,2) = (F', ¢}, ¢5) between monoidal
functors from € to D is a natural transformation n: F' — F’ such that the following
diagrams commute for each couple (M, N) of objects in C:

LPQ(MvN)
_—

F(I) F(M) o F(N) F(M ® N) (1.16)
¥o
r / y nMONN NM@N
F'(I) F'(M) @ F'(N) G F'(M ® N)

A natural monoidal isomorphism is a natural monoidal transformation that is also a
natural isomorphism.

A monoidal equivalence between monoidal categories is a monoidal functor F' from C
to D such that there exist another monoidal functor G: D — € and natural monoidal
isomorphisms 7: Ide — GF and e¢: FG — Idp. If, moreover, both composition are
actually identity functors, then it is called an isomorphism of monoidal categories.

Let ¢ = (€,®,La,l,r), D = (D,0,I',d,l',r) and & = (&,o,1",d",1",7") be
monoidal categories. Assume that (F, o, ¢2) and (G, 1, 12) are two monoidal functors,
F:€C— Dand G: D — &£ Then we can consider the composite functor GF': € — €.
Moreover, if we apply G to ¢o: I’ — F(I) we obtain a map in € that we can compose
with ¢g: I” — G(I'):

€ = (H” B, Gy £ GF(]I))
and analogously, for all M, N € C:

wQ(F(M)vF(N)) G@Q(MPN)
& (M,N)= (GF(M)@GF(N) ——— > G F(M)oF(N)) — > GF(M@N))

Lemma 1.2.6. In the previous context, the triple (GF, &y, &2) is a monoidal functor.

Proof. Clearly, GF is a functor as composition of two functors and &j is an isomorphism as
composition of isomorphisms. Furthermore, & is a natural isomorphism as composition of
natural isomorphisms. Let us verify that the diagrams (1.13), (1.14) and (1.15) commute.
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Consider the following diagram:

] (GF(M)OGF(N))OGF(P) } < >{ GF(M)®(GF(N)OGF(P)) ‘
¢2(F(M),FJN))®GF(P) GF(M)Oyo(F(N),F(P))
[G(FADHOF(N)OGF(P) | [GFONeGEW)0FP) |
Gy (M,N)OGF(P) o (F(M),F(N)QF(P))

GF(M@N)OGF(P) Yo (F(M)QF(N),F(P)) ’G(F(IM)@(F(N)@F(P)))‘ GF(M)®Gpg(N,P)

G(a')

Yo (F(M®N),F(P)) ’ G((F(M)QF(N))QF(P)) ‘ G(F(M)Qgpo(N,P)) GF(M)OGF(NQ®P)

G(wz(M»N@P)) o (F(M),E(N& P))

G(F(MQN)QF(P))

G(F(M)QF(N®P))

Gpo(M®N,P) Gpo(M,N®P)
GF((M®N)®P) >J1GF(J\4®(N®P))
GF(a)

The exterior path represents the compatibility of & with the associativity constraints
(i.e., diagram (1.13)). The upper hexagon commutes by compatibility of 15, while the
lower one by compatibility of 2 and functoriality of G. The two rectangles, instead,
commute by naturality of 1. Next consider:

GF(M)CT” “oran GF (M)
GF(M)®¢o
G(’"}(M)
GF(M)EGo0  $a(P(M)T) GF(rar)

Yo (F(M),F(I))  G(F(M)po)
i i e
G(F(M)oF(I)) TN GF(M@®I)

The exterior path represents again the compatibility of &y with the right unit constraint
(i.e., diagram (1.15)). The upper square commutes by compatibility of 1y, while the
lower right one by compatibility of ¢g and functoriality of G. The remaining square, the
left one, commutes by naturality of 1. Analogously, one can prove that also the third
diagram commutes. O

Monoidal equivalences are quite a powerful tool. Indeed, as a result of the axioms
of monoidal functors, we have that if two monoidal categories are monoidal equivalent,
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then a diagram involving constraints, identities, tensors and compositions commutes in
one category if and only if its image commutes in the other. To get an idea of what
it means, recall (1.11) and let (F, ¢, p2): € — D be a monoidal equivalence between
(€, ®,La,l,r) and (D,0,I',a’,l',7"). Look at the following diagram, where we dropped
any reference to objects while writing the arrows in order to lighten the notation (it
should be always clear which objects are involved):

’
a

(FHoF(V)oF (W) Fo(F(V)oF(W))
o)
POEW)  F((I8V)eW) — > Fn(Vew))  Fhbe

N
P2 F(IW) F(l) et

/ AN

(po@F(V)QF (W) F(IQV)oF(W) © F(VeW) o FOoF(VeW) wo@(F(V)OF(W))
Fb@NW) sa/ ¢} \l/ wo@F(\/é’W)
e AN
o F(V)oF(W) TVoF (VW) o
/ / \ \/

(IoF(V)oF(W)

’
a

I'o(F(V)oF(W))

The upper hexagon commutes by (1.13). The external square commutes by naturality of
a’. The central left square by naturality of po. The central right square is (1.14), as well
as the leftmost square. The central lower ‘square’ commutes by naturality of I’ and the
rightmost one because the two compositions are actually the same map.

Hence we can conclude that the central triangle commutes if and only if the lower
one commutes. That is: (1.11) commutes in € if and only if it commutes in D.
However, this cannot be used, in view of Mac Lane’s Coherence Theorem, to prove that
(1.11) commutes in all monoidal categories because it commutes in the associated strict
monoidal category, since we will need the commutativity of (1.11) in order to prove Mac
Lane’s Theorem. But it is a simple example of how monoidal equivalence works.

We are now ready to set out on the journey that will lead us to prove Mac Lane’s
Coherence Theorem. As we said, this proof is due to Kassel. For details, we refer to [Ka].

Let (C,®,1,a,l,r) be a monoidal category and start by considering the class of all
finite sequences of objects of €, including the empty sequence (). Denote it by S. An
object S in 8 is just

S =(C1,Cy,...,Ck)

where C; € Ob(C) for all i = 1,...,k. The integer k is the length of S.
We can define the concatenation of two non empty sequences S = (C1,Cy, . ..
and S" = (Cky1,Cry2,...,Ckin) by simply placing the first after the second:

S*S, = (01,02,...,Ck,CkJrl,...,CkJrn).

We set also 0+ S =S = S *0. Now, to each sequence S = (C1,C, ...,Ck) we can assign
an object F'(S) in € that is the tensor product of all the objects in S with parenthesis
associated on the left. That is, inductively:

FO) =1 F((C) =0,

,Ck)

F(S*(C)) = F(S)®C (1.17)
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for each S € § and C' € Ob(C). Le.,
F(C1,Co...,C) = (- (C1®C) @C3) @) R Cr_1) @ Ck.

Next we associate to the monoidal category € another category, denoted by 5% whose
objects are the sequences of 8§ and whose morphisms are defined by:

homest: (S, S') := home(F(S), F(S")).

Proposition 1.2.7. ([Ka, Proposition XI.5.1]) The category C*' is equivalent to € via
F: e — C.

Proof. Consider the assignment
F: % —C: S+ F(9)

as defined above and such that it is the identity on morphisms (we are allowed to do so,
by how we defined morphisms in €5t¥). Let us denote by f: S — S the morphism in G5
obtained by f: F(S) — F(5).

The functor F' is clearly fully faithful. Indeed, it is faithful by definition, and it is
full because if f: C — D is a morphism in € then f = F (f), where f: (C) — (D)
is a morphism in €. Furthermore, for every C € Ob(€), C = F((C)) and so it also
essentially surjective on objects (actually, it is surjective). In view of Theorem 1.1.14, C
and G are equivalent. O

Consider the assignment
G:C—C": C s (O) (1.18)

that operates as the identity on morphism (i.e., G(f) = f). Clearly FG(C) = F((C)) = C,
while GF(S) = (F(S)). However, since

homear (S, (F(S))) = home(F(S), F(S))
we can consider the natural isomorphism
ns == Idp(g): S — GF(S). (1.19)

Hence, G defines a functor which is the inverse equivalence to F'.
Now, we give to G a monoidal structure. The tensor product is given by concatena-
tion:
S8 :=8x%5".

This implies that, if we can show that it is actually a tensor product, (€5, x, () is a strict
monoidal category (* is trivially associative). Therefore, we need to define the * of two
maps in order to be able to verify that = is a functor. And obviously we are going to
define it, in order to have that.

First of all, we construct a natural isomorphism

0(S8,8): F(S)®@ F(S") — F(SS5")
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for every pair (S,S’) of objects in C** and we define it by induction on the length of S’.
Set

©(0,5") :==lpsy and @(S,0) :=rps). (1.20)
Next, set
©(5,(0)) = ldp)gc: F(S)®C — F(S*(C)) (1.21)
and finally:
@(S, 8" % (C)) = (p(S,8")® C) o a;ﬂ%S)’F(S,)’C, (1.22)
i.e.,
F(S)@F(S'%(0) -~~~ —=F(S% 5« (C))
H(1.17)
(1.17) FS+S)Y®C
Tw@c

F(S)® (F(S")®C) (F(S)Y®@ F(9)eC

—1
Ap(s),F(s"),C

Note that it is an isomorphism because globally it is just the composition of morphisms
built from the associativity constraint and the identities by tensoring, in order to
reassociate all parenthesis on the left.

Lemma 1.2.8. The natural isomorphism ¢ defined above satisfies (1.13). That is, if S,
S" and S" are sequences in G, then

@(8, 8" % 5") o (F(S) @ p(5',5")) 0 ap(s),ris),rsm) = ¢(S*5',8") o (p(8,8") @ F(S")).

Proof. Let us prove it by induction on the length of S”. If S” = (), then F(S”) =1 and
S' % 8" = §’. Thus, we have that:

, , (1.20)
©(8,8") o (F(S) @ p(5',0)) 0o apisy,r(sns =
(1.12)

= ¢(8,5") o (F(S) @ Tr(s1)) © ap(s),r(sn1 =

(»)
= ¢(5,5") orps)or(s) =

(1.20)
=TF(Sx8") © (¢(S, S,) ®l) =

= (S*5",0) o (¢(S,8) ®1)

where in (A) we used naturality of 7:

(F(S)® F(S) © — 220 pis) & P(S)
@(S,S’)@]I\L icp(S,S’)
FS*8) Ol — o F(5+ )
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Let C' € Ob(€) and let us prove that if the equality holds for the triple (S,.5’,S”) then it
holds for (5,5, 5" (C)).

(1.22)
@(8,8" % 8" % (C)) o (F(S) @ (5", 8" * (C))) 0 ap(s),p(s),F(s75(C)) =

[ (p(S.5" % 8") ® C) 0 apl) pisgm.c © (F(S) ® (9(S',8") @ C)o ] w

| o(F(S) ® a;%S,) F(s"), ©) © AF(S),F(5"),F(5")&C
(¢ (5 S'x 8" & C)o ((F(S) ®p(s,5") ® C)o (
- I OaF(S) Fisnersn,c © (F(S )®aF%S’) (SH),C)an(S),F(S’),F(S”)é@C]
[ (p(S,8" % 8") @ C) o (F(S )®90(5' SM)®Clo |

i o(ag(s),r(s),F(sm) ®C)oa S)RF(S),F(S"),C ]_

_ [ (((S, 8"« 8") o (F(S) ®90(S',5")) o ap(s),F(s),F(s)) ® C)o ] Q)

-1
| PAr(S)®F(5),F(S"),C

1.9)

_ (a)
= (p(S %5, 8") ® C) o ((9(S,8") @ F(S")) @ C) 0 apfs)opisy pism.c =

_ (1.22)
= (p(S % 5',8") © C) 0 aplg,s psmc © (5.5 @ (F(S") @ C) "=
= (55,5 (C)) o ((8,8) @ F(S" * (C)))
where in (A) we used naturality of a and in (e) the induction hypothesis. ]

Now, take two morphisms f: S — S and §: T — T". By definition, f is a morphism
from F(S) to F(S’) and g is a morphism from F(7T') to F(T") in €. Therefore, we define
f * g as the map that makes the following diagram commutative:

F(S)® F(T) —251 . p(s+T)
|
f®gl | F(f*g)
\
! ! ! /
F(S) & F(T') — o (S T)

There are two things that should be noted here:
1. that such a map f * § is unique, since @ is a natural isomorphism and F' is faithful,

2. that ¢ is natural in both components, where the naturality is expressed by the
above diagram itself.

Theorem 1.2.9. ([Ka, Theorem X1.5.3]) Equipped with the tensor product *, C% is a
strict monoidal category. Furthermore, C and C*% are monoidal equivalent.

Proof. To complete the proof of the first statement it is enough to show that * preserves
the composition of maps. Hence consider

f/

/ g I

S S S//

A L I L
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and look at the diagram

@(S,T)

F(S)® F(T) F(S+T)

f®g F(f*)

o(8,T)
—_—

(f'of)®(g'og) | F(S) @ F(T") F(S"«T") F((f'of)*(§'09))

f’®g’ F(f/*gl)

(8", T")
_—

F(S//) ® F(T//) F(S// * T//)

We have two maps that make the external square commutes: ( fr=q )o( fx g) and
(f"o f)*(§' o g). Thus they must coincide and * is a well defined functor.
Moreover, in view of Lemma 1.2.8 and the last observation, we have that

(F, o == 1dg, 2 := @)

is a monoidal functor. Indeed, the only properties that are left unverified are (1.14) and
(1.15), but

lpsy=¢(0,S) rrs)=%(S,0)
- > -

I® F(S) F(S) and F(S)®I F(S)
IdH®F(S)i o TF(I’&F(S)) F(S)®Idﬂl o TF(I/EIF(S))
F())® F(S) —i5 F()*29) F(S) ® F(0) T F(S *0)

Next, recall that we also know that F' is an equivalence with inverse equivalence given by
G as defined in (1.18). From

homest: (0, (I)) = home(I, I)
we can set g 1= IEH = Idy and from
homesi ((C, C"), (C @ C")) = home(C @ C',C ® C')

we can set o (C,C") = fc\10®cz. With this definitions, (G, 1o, 2) is a (strict) monoidal
functor. Therefore, to conclude the proof we need to verify that the natural isomor-

phism 7: Idest= — GF defined in (1.19) is a natural monoidal transformation between
(Id@str, Id@, Id*) and (GF, fo, 52), where

§o=G(po) oo and &(S,T) = G(p2(5,T)) o p2(F(S), F(T))

as in Lemma 1.2.6.
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Let us begin by verifying the commutativity of the rightmost diagram in (1.16). If
we write it down and we apply F we get:

Idp(s«
G Msr g F(S*T)—T L p(S+T)  (1.23)
HS%T ST o Flssr) F(ns.r)
F F(T F T F F(T F T
(F(S5), F(T)) 5T (F(S*T)) (5) @ F(T) 25T (5*T)

Recall that, by definition of ng * nr, the following diagram commutes:

w(S,T)

F(S)® F(T) F(S*T) (1.24)

IdF(S) ®IdF(T)

lF(ns*nT)

F(GF(S)) ® F(GF(T)) F(GF(S) * GF(T))

P(GF(S),GF(T))

However, since we have that:
e F(GF(S))® F(GF(T)) = F(S)® F(T),
o o(GF(5),GF(T)) = ldp(rs))erm) = drs)erT by (1.21),
o F(GF(S)*GF(T))=F(S)® F(T) by (1.17)
the commutativity of diagram (1.24) implies that F(ns * n7) 0 9(S, T) = Idp(syer),

from which we deduce that

F(ns *nr) = ¢(S,T)7".

Now, by recalling that ng.r = ﬁF( 5+T), We have that the right hand diagram of (1.23)
commutes and, by faithfulness of F', we conclude that also the leftmost one commutes.

The remaining commutativity, i.e., the one of the leftmost diagram in (1.16), follows
since all maps involved are Idy. O

As a corollary, we can now state Mac Lane’s result.

Theorem 1.2.10. (Mac Lane’s Coherence Theorem)

Let (C,®,1,a,l,r) be a monoidal category. Every diagram in C whose vertices are ‘words
W of the same length n representing functors W: €™ — € and whose edges are natural
transformations Idy, Idiq,, a, I, v and their ®-products commutes, where the functors in
question are I, Ide, — ® — and their composites.

2

Remark 1.2.11. Bluntly speaking, Mac Lane’s Coherence Theorem states that Pentagon
Axiom and Triangle Axiom are necessary and sufficient to ensure that all diagrams built
from the constraints and the identities by composing and tensoring commutes.

Actually, Mac Lane’s and Kassel’s results are equivalent. However, this exceeds our
purposes, but the interested reader can find a proof in [ML, Section XI.3].
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Definition 1.2.12. (Algebra, coalgebra)

Let (C,®,1,a,l,7) be a monoidal category. An algebra (A,m,u) in C is an object
A € Ob(C) together with two morphisms m: A ® A — A (the multiplication) and
u: I — A (the unit) such that the following diagrams commute:

QA AA

(A0 A)® A AR (A® A) (1.25)
m®A\L lA@m

A® A A AR A

m m

I A4 A AL2 Axl (1.26)

R

A
We express these commutativities by saying that A is associative and unital respectively.
A morphism of algebras f: A — A’ between (A, m,u) and (A", m', ) is a morphism in
hom(€) such that the following diagrams commutes

A AL 4o a A

O

A Al

A coalgebra (C, A, ¢) is an object C' € C together with two morphisms A: C' — C®C (the
comultiplication) and e: C' — I (the counit) such that the following diagrams commute:

CeC<>—C—2-CaC (1.27)
sec] Joos
(CeC)®C—e—>C R (CR0)
IeC< cocfe ool (1.28)
=t AT rot
C C
C

As above, we express these commutativities by saying that C is coassociative and counital
respectively. A morphism of coalgebras g: C — C’ between (C, A, ¢) and (C', A’ &) is a
morphism in hom(€) such that the following diagrams commutes

C v C g c’

I <7

CRC—C'aC'
99

32



Example 1.2.13. T is always both an algebra and a coalgebra.
Let us start by showing that it is an algebra. For each M € €, apply naturality of [
and 7 to lj; and rj; respectively:

Iy TMQI

[@(IQM) ——>1Q M Mool —> Mgl
H®l1\/]i o llM mu@lli o er4
ITeM " M MeI—:-— M
Recalling that the unit constraints are isomorphisms we get that
o =1® Uy (1.29a)
Mgl =TM @1 (1.29Db)

Next, set M = N =1 1in (1.10) to get that:

Il eI a I®(IxI)

I®I

thus
1.12 1.29b
(]I®rﬂ)oa(:)r]1®]1( = )T']I(X)H: (I®!)oa.
Since a is invertible, we can erase it and obtain: I ® r; = I ® . However, recall that [ is
a natural isomorphism: for each f: M — N in € we have that

Te M- M

o] o |

I N——N

In

andso f=Ilyo(I® f)o l;j. We can conclude, then, that r; = l;. Therefore, we can set
m = rp = Iy and u = Id; and they are both well defined maps in €. Now:

IeD)QI- I (I®I)
;fﬁ/’ T el \\@1
S Y

I®l
\ /
I

commutes by the Triangle Axiom (1.10) and




obviously commutes.
Next, proving that it is also a coalgebra is now really easy. Define A :=r = Iy !
and ¢ = Idp. Again in view of (1.10), we have that both the following diagrams commute:

and this concludes the proof.

Let (€, ®,1,a,l,7) be a monoidal category. A right action of an algebra (A, m,u) on
an object M € Ob(C) is an arrow pu: M ® A — M of € such that the following diagram
commutes:

ap, A A Mem M@u

(M®A)® A M@ (A® A) M®A M®I (1.30)
neA " M
M@ A r M

In the same way, a right coaction of a coalgebra (C,A,¢) on an object N € Ob(C) is an
arrow p: N — N ® C of € such that the following diagram commutes:

(NeC)®C -2 NoCeC) <222 Neoc-N% . NI (1.31)
pRC
N®A &

Definition 1.2.14. (Modules, comodules and morphisms)

If (A, m,u) is an algebra, a right A-module is an object M € Ob(C) together with a
right action of A on M. A morphism of right A-modules (M, pps) and (N, uy) is a map
f: M — N € C(M,N) such that the following commutes:

fRA

M®A N®A
MMi O llw
M N

Let us denote with C4 the category of right A-modules.
If (C,A,¢) is a coalgebra, a right C-comodule is an object M € Ob(C) together with
a right coaction of C' on M. A morphism of right C-comodules (M, pps) and (N, py) is
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amap f: M — N € C(M, N) such that the following commutes:

M / N
PMl O le
M C o0 N®C

Let us denote with €° the category of right C-comodules.

Definition 1.2.15. (Bimodules)

Let (A,m,u) and (A’,m/,u’) be algebras in (€,®,1,a,l,7). An object M of C is an
(A, A")-bimodule if there exists a right A’-action and a left A-action on M that are
compatible, i.e., two maps p: A® M — M and u': M ® A’ — M such that:

a / / ! !
(Mo A)@ ALY oA ed)- 22 vea M2 Mol
M’®A’l w M
Mo A - M
o
commutes,
-1
(Ao A)@ M2 Ao (Ao M)~ Ao M <" 19 M
meM m
l Iv
A M i M
commutes and
a ’
AM)@ A — 220 S Ag (Mo A)
u®A'i \LA@;L’
M A M A M
W #

commutes.

1.3 The Monoidal Category of vector spaces

We shall henceforth consider the monoidal category (M = Vect(k), ®,k, a,,r) of k-vector
spaces, with tensor structure ® given by the tensor product over k and with unit object
I the ground field k itself. An algebra in M = Vect(k) is an ordinary associative unital
k-algebra and the same for coalgebras. Let us spend just a few words to recall some facts
about these objects.

Definition 1.3.1. (Tensor product)
Let U,V be k-vector spaces and G be an abelian group. A map bg: U x V — G is said
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to be k-biadditive if, for all u,u’ € U, v,v' € V and k € k we have

ba(u+u',v) = ba(u,v) + bg (v, v);
bG(U, v+ UI) = bG’(u7 'l)) + bG(U, UI);
ba(uk,v) = b (u, kv).

A tensor product of U and V is an ordered pair (T, br) where T is an abelian group and
br: U xV — T is a k-biadditive map that satisfies the following universal property: for
every abelian group G' and every k-biadditive map bg: U x V' — G there exists a unique
morphism of abelian groups bg: T — G such that the following diagram commutes

UxV-2er
£ ba
G

Remark 1.3.2. If a tensor product exists, then it is unique up to isomorphism. Indeed,
assume that (T, bp) and (S, bg) are two tensor products. By the universal property, we
can fill in the following diagrams in a unique way:

UxV 2o  UxV-2-8

bsl 'v bTi
SL” f Tﬂ g

thus, we have that both Idy and g o f make the following diagram commutative

b
UxV—"=T
gof o
B < Idp
r
and so, by uniqueness, g o f = Idy. In the same way, one proves that also f o g = Idg.

Actually, it can be proven that the tensor product of two vector spaces always exists.
Let us recall just how it is constructed. Let S = U x V and consider the free abelian
group generated by S: Z°. Define L as the subgroup generated by all the elements of
the following type:

(uv v+ U/) - (u> ’U) - (U, U/)
(u + ulv U) - (uv U) - (ulv U)
(Ukv U) - (u7 k‘U)
foru,u/ €U, v, €V, kek ThusU®V = @ and

bugv:UxV —UV: (u,v) — u®uv
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where u ® v is just the class of the generator (u,v) in the quotient. Note that U ® V is
generated by elements of the form u ® v, so that the generic element x € U ® V' has the
form

<00
T = E U; @ v;
i

for u; € U and v; € V, and this expression is not unique. For further details, we refer to
[Ro, Section 8.4].

Since k is a field, it is commutative, and therefore a k-vector space U is actually a
(k,k)-bimodule. Moreover, if u € U and k € k, we have that ku = uk. This implies that
also U ® V is a k-vector space, for U, V k-vector spaces, with scalar multiplication given
by

kx(U@V)—UeV:(kku®v)— ku®uv

and that the following identities hold:
Elu@v)=ku@u=uk®@v=u®kv=u®vk=(u®v)k (1.32)

forallu e U, v € V and k € k.
Let U, V and W be k-vector spaces. Recall that a function f: U x V — W is called
a k-bilinear map if for each v € U and v € V the functions

fu: V—W:v+— f(u,v)
fo: U — W:uvr— f(u,v)

are k-linear maps. Let us denote with hom(Q)(U, V; W) the space of k-bilinear maps from
U xV to W. Summing up what we have seen until now, the tensor product of two vector
spaces can be characterized as follows.

Theorem 1.3.3. ([Ka, Theorem II.1.1]) Given k-vector spaces U and V there exists
a k-vector space U @ V' and a bilinear map bygy: U XV — U ® V' such that, for all
k-vector spaces W, the linear map

(= o bygy): hom(U @ V,W) — hom® (U, V;W): f — fobygy

is an isomorphism of k-vector spaces. The vector space U @V is called the tensor product
of U and V' and it is unique up to isomorphism.

Proof. We already know that U ® V' and bygy exist and that U ® V is a k-vector space
and bygy is a k-biadditive map. Let us denote with simply b the map bygy. In view of
(1.32) we have that b is k-bilinear, as claimed.

Next, if f: U x V. — W is k-bilinear, then it is k-biadditive and so there exists a
unique morphism of abelian groups f: U®V — W such that fo b = f, by the universal
property of the tensor product. This fis also k-linear, for f is k-bilinear:

fE(u®wv)) = fbku,v)) = f(ku,v) = kf(u,v) = kf(u®v).

Hence, in order to conclude, it is enough to observe that if g: U ® V' — W is another
k-linear map such that

UxV UV

i

w
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commutes, then it is obviously Z-linear and so it has to coincide with f . O

Proposition 1.3.4. Let f: U — U’ and g: V — V' be k-linear maps. Then we have a
k-linear map
g UV —U@V:iuev— f(u)®g(v).

Furthermore, if f': U" — U" and ¢': V' — V" are other two k-linear maps, we have that
(f'@g)o(feg)=(fof)@(d og).
Proof. It’s enough to observe that the map
hUxV —U @V (u,v) — f(u)® g(v)

is k-bilinear to have that there exists a unique k-linear map h:U®V = U @V’ such
that hob=h, ie., h(u®v) = f(u) ® g(v).

Next, consider the following diagram, where h': U’ x V! — U” @ V" is defined as h
above:

UxV b

i w‘? - g
(f,9) T
£ bo(f,g)

Uxv LU oV
g
A 4
U// ® V//

Every slashed arrow exists and it is unique by the universal property of the tensor product,
and makes the corresponding diagram commute. Hence the map

§i=1o (b'of(ﬂn): UV —U"aViuevr— (ff®@d)o(f®g)(ue)
makes commutative the following diagram:

UxV UV
h'o

(m% //{/

U// ® V//

—_——

By the universal property of the tensor product again, we have that £ = b/ o (f, g) and,
by definition,

e~

W o g (ww) = (Fo ) ® (g 0 9))(u,v)
foralluc U, v e V. -

Corollary 1.3.5. The tensor product of k-vector spaces is a functor

Q: MxM— M.
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Proposition 1.3.6. ([Ka, Proposition I1.1.3]) Let U, V, W be k-vector spaces. There
are isomorphisms

UeV)eW=U (VeWw)
determined by (u @ v) @ W — u® (v w),

kevV=V=2Vek
determined by k @ v — kv and v — v ® 1, and
VeaWwW=weV
giwen by the flip vy defined by v (v ® w) = w ® v.

Proof. 1t is self evident that all the maps are bijections. Thus we only need to show that
they are well defined.
For all w € W define a map

fwu: UxV — U (VW)
(u,v) — u® (v w)

It is clearly k-bilinear, thus there exists a unique k-linear map that fills in the commutative
diagram:
bugv

UxV

fwl /,:/
£ fu
U (VeoW)

UV

~

Hence, we can define a map

a: UV)xW — U(VeW)

(2, w) — fu(2)

that is k-bilinear, too. Indeed, if we write 2 = Y, u; ® v;, then forall z e U@V, w e W,
h,k ek

a (k: <Zu1 ®Uz‘> ,hw> =a <Zku1 ®Uz‘,hw> = fuw (Zk“l ®Ui> -
l - Z klﬁ;(ui R v;) = Z kfhw(uz,vz') =
_ Z Rl © (0, © b)) = kh > (15 © (05 © w)) =
= kha (Zu ® vz-,w>
Therefore, there exists a (unique) k-linear map

a:(UV)egW —U(VaW): (u®v)@w— u® (vew).
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Next, define a function

t: VW — WV
(m,n) — nem

It is k-bilinear and thus factors through the tensor product:
=L VRW —WeV:imen— nem.
Finally, consider the k-linear morphism
i0: V —k®@V:iv— 1®wv.
If we can prove that the function
p:k@V —V:kE®Qur— kv

is well defined, then it follows easily that ps o i9 = Idy and iy o po = Idggy. However,
the assignment (k,v) — kv for k € k and v € V clearly defines a k-bilinear map from
k x V to V that factors through the tensor product and so py exists. ]

Corollary 1.3.7. The three canonical isomorphism of the previous proposition:

apyw: (URV)W —U(VaW): (u®v)@wr— u® (vew)
ly: k@V —V: kv kv
ry: Vk—V:iv®kr— kv

are natural in all components and satisfy the Azioms (1.9) and (1.10).

Summing up, we have just proved that (M, ®,k,a,l,r) is a monoidal category, where
the constraints are the ones given in the previous corollary. By Mac Lane’s Coherence
Theorem 1.2.10, we may omit all brackets from iterated tensor products and we may also
omit the constraints in any computation involving morphisms in M.

Now, fix a k-vector space V. Then the assignment

(—RV):M—=>M

that maps a vector space U into U ® V and a k-linear map g: U — U’ into the k-linear
map g V: UV =2 U' @V:u®v+— g(u) ®v defines a functor. Actually, in view of
Theorem 1.1.9, this functor is left adjoint to the representable functor

hom(V,—): M — M: W —— hom(V, W)
where the k-vector space structure on hom(V, W) is given by
(k9)(v) = kg(v) = g(kv) (1.33)
for all k € k, g € hom(V, W) and v € V. Indeed, we have the following result.

Proposition 1.3.8. ([Ka, Corollary 11.1.2]) For any triple (U, V,W) of k-vector spaces
there is a natural isomorphism of k-vector spaces

hom(U ® V, W) = hom (U, hom(V, W)).
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Proof. Recall that, by Theorem 1.3.3,
hom(U @ V, W) = hom® (U, V; W)

via the k-linear morphism that assigns to each f: U ® V' — W in hom(U ® V, W), the
composition f obygy, where bygy: U x V — U ® V is the canonical map.
Next, pick a k-bilinear map ¢g: U x V — W. We already know that for each u € U,

gu: V. — W:v+— g(u,v)
is a k-linear map, thus we can define a function:
g U — hom(V,W): ur— gy
that is k-linear, too. Indeed, for all v € V,

9" (k) (v) = gru(v) = glku,v) = k g, v) = k gu(v) = kg"(w)(v) "2 (k g" (w)) ().

This observation allows us to define another map:
¢: hom® (U, V; W) — hom(U, hom(V, W)): g — g*. (1.34)
As one can expect, the k-vector space structure on hom(2)(U, VW) is given by:
(kg)(u,v) = kg(u,v) (Vk ek,ueUwveV,gehom® (U, V;W)). (1.35)
Therefore, even 1 is k-linear, since for all u € U and v € V

U2 g g(u,v) =

(1.33)

(kg)*(u)(v) = (k g)(u,v)

=kg*(u)(v)
= (kg™)(u)(v),

for every k e k,u e Ujv € V,g € hom(2)(U, Vi, W).
Conversely, consider

(1.33)

(kg™ (u)(v) =

¢: hom(U, hom(V, W)) — hom® (U, V; W)
that maps g: U — hom(V, W) to

olg): UxV — W

(o) — glu)(v) (1.36)

Let us show that ¢ is the inverse of ¢. First of all, let g € hom(U, hom(V, W)). For
all w € U and v € V we have that

and so, for all u € U and g € hom (U, hom(V, W)), ¥(¢(g))(u) = g(u). That is, ¥ (¢(g)) =
g for every g € hom(U, hom(V, W)).
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On the other hand, for all f € hom(Q)(U, ViW),ueU,veV,

(1.34)
v =

fH(w)(v) = f(u,v).

Hence, ¢ o) = Idy ) 17y -
What we got, is that we have an isomorphism of k-vector spaces

hom(U @ V, W) = hom (U, hom(V, W)),

that is given by the composition of the two isomorphisms (— o bygy) and ¥. Let us
denote it by {uw .

Explicitly, we have that: if f: U ® V — W is a morphism in hom(U ® V, W), then
Euw (f): U — hom(V, W) is the k-linear map that assigns to each u € U the function

ow(f)w): V. — 1474

v o — flu®w) (1.37)

It remains to prove that £ is natural. To do that, pick two morphisms of k-vector
spaces

a:U—U
B: W — W’

and consider the diagram:

Sur,w

hom (U’ @ V, W) hom(U’, hom(V, W))

Bo(—)o(akV) hom(V,8)o(—)oc

hom(U @ V, W’) hom (U, hom(V, W’))

u,w’

where hom(V, §) is the function that assigns to each morphism ¢ in hom(V, W) the
morphism (o g in hom(V, W’). Let u be an element in U, v be an element in V| ¢ be in
hom(U’' @ V, W) and set

X (=) = (hom(V, B) o (§vrw () o ) (—)
Y (=)= (uw)(Bopo(a®V))(~)

Hence, we have that on one hand:

X (u)(v) = [(hom(V, 3) o (Evr,w ()
= {hom(V, ﬁ) [(€U' (@)(
= [Bo(Sorw (w)] (v
(

=B [(éUf,w(sD))( (w)()] "2
= Blpla(u) @v))

( ))]} (v) =
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on the other hand:

Y (u)(v) = Epwr (Bo o (a®V))(u)(w) "2

=(Bopo(a@V))(uev)=
= B lp(a(u) @ v)]

and so the diagram commutes and ¢ is natural. O

The previous proposition allows us to prove two more important properties of tensor
products. The first one is that it commutes with arbitrary direct sums. The second one
is that the functor — ® V' is right exact.

Proposition 1.3.9. ([Ka, Proposition I11.1.4]) Let {U;},.; be a family of k-vector spaces
and V' another k-vector space. Then we have that

(@UZ) RV=2PU V)

el el

Proof. By the universal property of the direct sum and Proposition 1.3.8 we have that

hom <<@ Ui> RV, W) =~ hom (@ U;,hom(V, W)> &~

el icl
~ Hhom(Ui, hom(V, W))
i€l
= [[hom(U; ® V, W) =
i€l

>~ hom (@(Ui ® V), W)

i€l

12

Call o the natural isomorphism given by the composition, i.e., for W k-vector space:

o : hom ((@ UZ-) ®V, W) — hom (@(Ui ® V),W)

el el
First, consider the case W = <EB Ui> ®V and set ¢ = « <Id(@‘ U_)®V). Then,
il e
; — A | :
consider the case W = @(UZ ® V) and set ¢ == « (Id@iez(Ui@)V))' The subscripts
1
are omitted in order to lighten the notation. We claim that ¢ and i are inverses one
another. Indeed, by naturality of «a:

Yoy =1oald) =ay)=1d,

poth=gpoa Y(Id) =a(p) =1d.
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Corollary 1.3.10. Let {u; | i € I} be a basis of the vector space U and {v; | j € J} be a
basis of V.. Then the set {u; @ v; | (i,7) € I x J} is a basis of the tensor product U @ V.
Consequently, we have dim(U ® V) = dim(U) dim(V).

Proof. In view of Proposition 1.3.6 and Proposition 1.3.9 we have that
UV = (@ﬂm) ® | Pko; | = P klu@vy).
iel jeJ (i,5)eIxJ
O

g

Proposition 1.3.11. Let U; / U, Us 0 be an exact sequence of k-vector
spaces. Then, for each vector space V, the following sequence is exact too:

1% 1%
oV 0,0V -2 U0V ——0
Proof. There exists a result that states that if R is a commutative ring and

f g

M,y

Mo M3 0

is a sequence of R-modules, then it is exact if and only if, for each R-module N, is exact
the sequence of Z-modules

hom(g,N) hom(f,N)

0

hom (M3, N) hom(Ms, N) hom (M, N),

where hom(f, N) represents the morphism of groups that maps A € hom(Mas, N) into
ho f € hom(M;,N) (for details, refer to [Ro, Section 7.3]).
Obviously, k is a commutative ring, thus

fev

oV % 0,ev-20 U0V 0
is exact if and only if
0 hom(Us @ V, W) "2V M) 4 (U @ v, W) 2BV o @ v, W)

is exact for every k-vector space W. However, if you set Z = hom(V, W) and look at the
following diagram:

hom g hom )
0 hom(Us @ V, W) "2V (U @ v, W) "YYW o 0 V, W)
ng,W\L £U2,Wl fUl,W\L
0 hom(Us, Z) —— 29Dy om(Us, 7) —2"Y2) yom (U, 2)

it is commutative by naturality of £ and the lower sequence is exact, since the sequence

Uy ! Us g Us 0 is by hypothesis. O
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Actually, everything we have seen until now about tensor product holds true in
the more general context of R-modules over a commutative ring R. However, k-vector
spaces have something more than a simple R-module: they are all free k-modules. This
guarantees that for each vector space V', the functor — ® V is ezxact.

Proposition 1.3.12. Every k-vector space is flat. This means that, if V is a k-vector
space and

f g

0 Uy Us Us 0

is a short exact sequence of k-vector spaces, then

0——=0 eV t,0V -2 0V —0
is a short exact sequence as well.

Proof. We just have to prove that if f: U — V is an injective morphism, then also
fOW:UW — VW is, for each W € Vect(k). However, if {e; | i € I} is a k-basis

for W, then
W =Pk
i€l
as k-vector spaces. In light of Proposition 1.3.6 and Proposition 1.3.9, we have the
following commutative diagram:

few

U W Vew
U® (:@ief k) ve (@:iel k)
Dicr(U ®Kk) Dicr(V @ k)

Dic/ U > DicrV

that means that f ® W is injective if and only if ¢ is injective, where ¢ is the codiagonal
morphism of the family f;: U; — V;, i € I, defined by fi(u) = f(u) for all u € U; = U.

Now, it is clear that ¢ is injective if and only if all f; are injective. Indeed, by
definition of ¢ the following diagram commutes:

U, s V.
DiciU—>BicrV

where €5 is the canonical inclusion of the s-factor. That implies that if ¢ is injective,
then also f; is, for all s € I. Conversely, if

(fi(ui))ier = o((wi)ier) = ©((vi)icr) = (fi(vi))ier
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then, taking the projection on the s-factor, we find that fs(us) = fs(vs) for all s € I. By
hypothesis on the f;, we have that us = vs for all s € I and so ¢ is injective.
As f is injective by hypothesis, ¢ is injective and so f @ W is. O

Remark 1.3.13. As a general fact, any functor preserves split morphisms: if f and g are
morphisms in a certain category € such that go f = Idqom(y), and if F': € — D is any
functor, then

F(g) © F(f) = F(g o f) = F(Iddom(f)> = IdF(dom(f))

In particular the tensor product functor does (in any monoidal category). In our case of
vector spaces then, an alternative proof of Proposition 1.3.12 could be given by employing
such a fact. Indeed, any monomorphism (it is just a synonym for monic) in the category
of vector spaces splits.

Let us just recall briefly why: let f: U — V be a monomorphism of vector spaces.
Pick a basis {e¢; | i € I} for U and consider its image in V: B = {f(e;) | i € I}. Complete
it to a basis for V: BUB’, and define g: V — U by setting g(f(e;)) :=e; for all i in T
and g(B’) = 0. This g is a well defined linear map and it is such that go f = Idy.

Now, since we have proved that M = Vect(k) is a monoidal category, we can consider
algebras and coalgebras in M. But as we said at the beginning of this section, algebras
and coalgebras in Vect(k) are nothing more than the usual k-algebras and k-coalgebras.
Moreover, we can consider modules and comodules as defined in Definition 1.2.14 and
these are the ordinary modules and comodules over (not necessarily commutative or
cocommutative) k-algebras and coalgebras. However, a quite interesting new concept
that we are going to introduce shortly is the one of bialgebras. Before, let us fix some
notations.

Remark 1.3.14. (Sweedler’ Sigma Notation) Consider the category of k-vector spaces
(M, ®,k,a,l,r). Let (C, A, e) be a coalgebra in M and let € C be an element. Sweedler’
Sigma Notation is a formal writing to denote the image through the comultiplication of a
general element of the coalgebra:

Zl‘ ®$(2)EC®C

Since A is coassociative and ¢ is a counit for A, the following equalities hold:

> ((Z (%‘u))(l) ® (w(l))(2)> ® () = Zw ® (2) ® 2(3)

@ \ew) (1.382)

%w(n@((z (%))(1) (= ) ) Zw ® 2(2) ® 2(3)

z(2))

Zﬁ(x(l)) L) =T = Zx(l) & $(2) (138b)

() (x)

Nevertheless, we will prefer a slightly less heavy variation of the ‘Sweedler’ Sigma
notation’:
Zx o =11®r2 (Voel),
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without summation symbols and too many parenthesis.

In the same way, let (IV, p) be a right C-comodule as defined in 1.2.14. For all n € N,
the following identities are immediate consequences of the definition and the formal
‘Sigma notation’ we introduced:

n) = Zn(o) ®ny =no @ ny (1.39a)

(n)
no @ ((n1)1 ® (n1)2) = ((no)o ® (n ) ) @n1 =ng ®@ny @ ng (1.39b)
noe(ni) = (1.39¢)

where 19 ® ((n1)1 ® (n1)2) = (N ® A)(p(n)) and ((no)o ® (no)1) ® n1 = (p @ C)(p(n)).

Let (A, m,u) be an algebra in M. We know that A ® A is an object in M as well.
Actually, it is an algebra too.

Proposition 1.3.15. Let (A,m,u) be an algebra in (M, ®,Kk, a,l,r) and define:
Mg = (M @m) o (asaiea)  ©(ARasa4)0 (ARDT®A)o (A ® (aA,A,A)_l) ©0a,n404

and ug = (u ® u) o Ag, where T is the twist: T(a®b) =b® a. Then (A® A, mg,ug) is
an algebra in M.

Proof. Indeed, since:
me((a®b)®@(c®d)) =ac®bd and ug(ly ®1k) =14® 14,
it is self evident that mg inherits all the properties of m:

me(mg((a®@b) ® (c®d) ® (z@y)) = (ac)r ® (bd)y =
=a(cr) @ b(dy) = mg((a®b) @mg((c®d) @ (z®Yy))),

me((ug ® (AR A))(k® (a®Db))) =k(a®Db),

(associativity)

(unity)
meg((A®A) ®ug)((a®b)®k)) = (a®b)k.

Dually, the same holds true for coalgebras.

Proposition 1.3.16. Let (C,A,¢) be a coalgebra in (M, ®,k,a,l,r) and define
Ag = (@14404) 0 (AQas4.4)0(ART® A)o (A ® (aA,A,A)A) ©aaa484°(A®A)

and eg =mgo (e ®@¢). Then (C @ C,Ag,ex) is a coalgebra in M.

Proof. Ag and eg are morphisms in M, since they are composition of morphisms in M.
The coassociativity of A guarantees that:

(A ® C) (Ag(z@y)) = (((z1); ® (Y1)1) ® ((21)3 @ (y1)2)) ® (T2 @ y2) =
=(210Y1) ® (12 ®y2) ® (23R y3) =

= (21 @ y1) ® (((x2)1 ® (y2)1) ® ((22)2 @ (y2)2)) =

= (C® Ag) (Ag(z ®@Y)).
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Moreover:

(co @ O)(Ag(z®y)) =c(z1)e(yr) @12 @2 = Lk @ @y = (lcac) (@ y)

and

(C@ea)(As(r®y)) =11 @y @e(a2)e(yz) =2 @y @ 1k = (roec) " ( ®Y).
0

Remark 1.3.17. That the tensor product of two algebras (or coalgebras) is an algebra (or
a coalgebra), is in fact mainly a consequence of the symmetry (given by the flip map 7)
of the tensor product of vector spaces. The same holds true in the monoidal category of
(say left) modules over a commutative ring. But unfortunately, there is no direct way to
endow a tensor product of two algebras (resp. coalgebras) with a structure of algebra
(resp. coalgebra), if the handled monoidal category is no longer symmetric (or at least
braided). This happens for instance in case of the category of bimodules over a non
commutative ring.

Assume now that A € M is an object equipped simultaneously with an algebra
structure (A, m,u) and a coalgebra structure (C, A, ¢).

Theorem 1.3.18. ([Ka, Theorem III1.2.1], [Sw, Proposition 3.1.1]) The following are
equivalent:

(1) A and e are morphisms of algebras.
(2) m and u are morphisms of coalgebras.

Proof. Observe that m and u are morphisms of coalgebras if and only if the following
diagrams commutes:

mA

AR A A A®A

(ARA)®AQA) ——>ABA
k i A k—4 oA
Akl () \LAA Ek\{(d)%q
k ®k A® A k
uUARU A

On the other hand, A and & are morphisms of algebras if and only if the following
diagrams commute:

AQA-SAE2A (A0 A) e (As A)

mAl (4) \LmA®A /zz\
A

AL A®A
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€A €A

Omitting the associative constraints we have that:
e (a) commutes if and only if
Agomyg=(ma@ma)oAgga=(ma@my)o(ldg@7®Idy) o (As @A) =
=maga o (Aa®Ay),
if and only if (i) commutes.

e (b) commutes if and only if €4 o myg =494 = Mg 0 (€4 ® £4), if and only if (iii)
commutes.

e (¢) commutes if and only if Ay ouy = (ug ® ug) o Ax = uaga, if and only if (i)
commutes.

e (d) commutes if and only if £4 o ug = g = Idy, if and only if (iv) commutes.
O

Definition 1.3.19. (Bialgebra)
A bialgebra is a quintuple (B, m,u, A, e) where (B, m,u) is an algebra and (B, A, ¢) is a
coalgebra verifying the equivalent conditions of Theorem 1.3.18.

Note that in a bialgebra (B, m,u, A, ¢) the following identities hold:

(zy)1 ® (2y)2 = 11 ® T2Y2

and
A(lg) =14 14, e(zy)=c(x)e(y), e(la) = 1.

Remark 1.3.20. Let (A, m,u) be an algebra with a morphism of algebras A: A - A® A,
called the comultiplication, and a morphism of algebras e: A — k, called the counit. If
(M, ppr) and (N, py) are right A-modules, then M ® N comes with a natural structure
of right A ® A-module:

(m®@n)-(a®@b)=m-a®mn-b,

extended by linearity. Indeed:
(m&@mn)-((@a®b)(c®d) =mlac) @n(bd) = (m&n)-(a®b)) - (c®d)),

(men)-(1®1)=men.

The comultiplication allows us to convert this structure into an A-module structure:

(m®@n)-a=(men)-Ala) Yme M,ne N,a€ A,
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extended, again, by linearity. In view of the fact that A is a morphism of algebras, we
have that:

(m®mn)-ab=(m®n)-Alab) = (m@mn) - Ala)) - A(b) = (m@n) - a) - b.
Via € we can give an A-module structure to k too:
k-a=ke(a).
Thus the tensor product over k restricts to a tensor structure on the category Mu, even
if A is not coassociative or € is not a counit for A.
The last Remark suggests a way to characterize bialgebras in terms of their categories

of modules.

Proposition 1.3.21. ([Ka, Proposition XI1.3.1]) Let (A, m,u) be an algebra with comul-
tiplication A and counit . (A, m,u,A,e) is a bialgebra if and only if (Ma,®,k,a,l,r)
is a monoidal category, where a, | and r are the same constraints of (M, ®,k,a,l,r).

Proof. Start assuming that (A, m,u, A, ) is a bialgebra. Obviously, a, [ and r are natural
and satisfy the Axioms (1.9) and (1.10). Hence we are left to prove that ap v p, Iy and
ryr are morphisms of right A-modules for all M, N and P in M 4. However, A-linearity is
a straightforward consequence of the coassociativity and counity of A and . In particular,
in view of (1.38a) and (1.38b), forallm e M, n€ N, pe€ P and z € A:

am,np([(m®n)@p]- ) =amnp((m-(z1)1@n-(r1)2) ®p-x2) =
) (1. 38&)

=m-(z1)1®(n-(1)2®p-
=m-z1®(n- (221 @p- (72)2) =
=aynNp((mM®n)® )

(1.38b)

Iy(lem) - x)=Iy(e(z) @m - x2) =m-e(x1)2 Iy1l®@m)- x

and

M((m®1)-x)=ry(m- -z ®@c(x2)) =m-x1(x2) (1.380) ry(m®1) - x

Proving the converse is immediate, too. Let m € M, n € N, p € P and x € A. We know
that the associative constraint is right A-linear, thus

apm N p([(m@n)@p| - 2)=aynp((men)@p)- =

By definition of the right A-action on the tensor product, this last relation can be
rewritten as:

(m@ (n@p)(AeA)(A(x) = (me (nep))(AeA)(A)).

Setting M = N = P = A and m = n = p = 1 gives coassociativity of A. In the same
way, since also the left and right unit constraints are A-linear, we have that:

m-e(xy)re =Ily(1@m) -x)=ly(1®@m) -z=m-x,
m-zre(xy) =ry(me1)-2)=ryme1)-z=m-z.

Setting again M = A and m = 1 we find that ¢ is a counit. O
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Example 1.3.22. Let X be a set and V' := kX = @, . x kx be the k-vector space with
basis X. Define

Alz)=z®z and e(x) =1k
for all x € X and extend them by k-linearity. Thus we have that

[avyy o (A@V)oAl(r) =2® (z®z) = (V& A)(A(r)),
@ V)(A(x) =z =(Vee)(A))
and so (kX, A ¢) is a coalgebra. Furthermore, assume that X is equipped with a unital
monoid structure, i.e., with an associative map pu: X x X — X having a left and right
unit u. Then (kX,m,u, A, ¢) is a bialgebra, where m denotes the k-linear extension of p
to kX.
Indeed, if we define the k-linear function

<oo <oo <oo
kX x kX — kX [ kiw, Y hjy; | = Y kihgu(a, ).
i J i,J

then it is clearly k-bilinear and thus there exists a unique k-linear map:

<o <oo

m:kX @kX — kX: > ki(zi @) — Y ki, yi).
% %

Since p is associative and unital, also m becomes associative and unital and so (kX, m, u)
is an algebra. For simplicity’s sake, denote pu(z,y) = zy. Since

Alzy) =zy @y = (z@z)(y ®y) = Alz)A(y)
e(ry) =1 =¢e(x)e(y)
we have that, actually, (kX,m,u, A, ¢) is a bialgebra as claimed.

The best known example of such a construction is the group algebra kG defined on a
group G. We will come back to the group algebra later.

Example 1.3.23. Consider k[T, the polynomial algebra of one indeterminate T'. Besides
the bialgebra structure inherited by the previous example (it can be seen as the vector
space with basis the monoid {T™ | n € N}), it can be equipped with another bialgebra
structure. Define

AT)=T®1+1®T and ¢T)=0

and extend them by induction using polynomial multiplication:
AT = A(TA(T) and £(T™) =0,

for all n € N. By construction, A and & are morphisms of algebras, coassociative and
counital respectively:

k[T @A) (AT) =Te114+1Te1+11T =(AK[T]) (A(T))
(rok[T)®@e)o A)T)=T = (lo(exKk[T]) o A)T)
Hence, k[T'] with this structure maps is again a bialgebra.
Moreover, take k[T, T~!], the Laurent polynomial algebra of one indeterminate 7. It

is a bialgebra as it was seen in Example 1.3.22, by taking the cyclic free abelian group
generated by {T'}.
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Chapter 2

The Structure Theorem for Hopf
modules

Throughout we will assume that M = (M, ®,k, a,, ) is the monoidal category of k-vector
spaces and that B = (B, m,u, A, ¢) is a bialgebra in M.

2.1 An equivalence between M2 and M

Lemma 2.1.1. (B, m) is a right B-module and ((B,m),A,¢) is a coalgebra within the
monoidal category (Mp,®,k,a,l,r).

Proof. First of all, (B,m) is trivially a right B-module and then an object in Mp.
Secondly, we have that A and ¢ are both right B-module morphisms, since they are
morphisms of algebras:

A(m) - b =m1b1 ® maby = (mb); ® (mb)2 = A(m - b),
g(m)-b=-¢e(m)e(b) =¢e(m-b)

and, finally, we have that ¢ is a counit for A and A is coassociative, because B is a

bialgebra. 0

Thus we can construct the category M5 := (Mp)~.
Remark 2.1.2. By virtue of the symmetry that arises from Theorem 1.3.18, we can also
consider the algebra ((B,A),m,u) within the monoidal category (M?, ®,k,a,l,7) and
then define MB := (MP)p. Nevertheless, we will see in Chapter 3 that our choice is a
matter of consistency.

Definition 2.1.3. (Hopf modules)
An object M in Ob (Mg) with two structures pys € hom(M), pprr: M @ B — M, and
pym € hom(Mp), ppr: M — M ® B, is called a (right) Hopf B-module (where the B-
module structure on M ® B is given through A, as in Remark 1.3.20). We will usually
refer to M as simply an Hopf module, without further specifications, and the right
B-action will be denoted by:

ppm(m®@b) :=m-b
for the sake of simplicity.
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Remark 2.1.4. Observe that if (M, uar, par) is an Hopf module, where we denote with
s the right B-action and with pps the right B-coaction, then pjs has to be a B-module
morphism, so that the following should commute:

MeoB-" (M®B)®B

122.7¢ l i#M@)B

M M®B

M

ie.,
pM(m . b) = (mo & ml) b= (m() ® ml) . A(b) =mg - by ® mqbs. (2.1)

Lemma 2.1.5. Let M be a k-vector space. Then M ® B becomes an Hopf module by
setting, for m € M and b,x € B

(m®Db) z:=m®e bz (2.2)
preB(M®Db) := (m & b1) & by (2.3)
Proof. Note that the following diagrams:

M®@B®@m MRB®u
_— _—

M®B®B® B M®B®B M®B®k M®B® B
MM@B@B\L l#lﬂ@B M\ lllh{@)B
M®B® B — M® B M® B

M® B Preb M®B® B M® B

-1
"M®B
pM@B\L ipA{®B®B pM®B\L \

are simply the diagrams that express that m and u are associative and unital, and A
and € are coassociative and counital, tensorized by M on the left. Moreover:

preB((M®Db)-2) = pyegp(m @bxr) =m e A(bx) =
=m® AD)A(z) = (Mm@ Ab)) -z =
= pmeB(mM®Db) - x,

so that pygp is a right B-module map. O

Define the space of coinvariants of an Hopf module M as the equalizer in M of:

PM
0—=MCE s M —=>M®B
i1

where
21 : M — M®B

m — m®1

ie.,
MC°B .= {me M| py(m)=m®e1}.
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Lemma 2.1.6. Let (B,m,u,A,¢) be a bialgebra in M and M be an Hopf module over
B. There is an isomorphism of k-vector spaces:

¢: homyws(k, M) — MCB
o —  o(1)

where the B-coaction on Kk is given through the unit u, dually with respect to the B-module
structure:
ki k—kQB: Ix— 1, ®1p

Proof. First of all, let us check that 1 is well defined. Since ¢ is a morphism of B-
comodules we have that
pr oo = (o® B)o p,

i.e., par(o(1)) = o(1) ® 1. Hence o(1) € M©°B and 1 is obviously k-linear. To show that
it is an isomorphism, let us exhibit an explicit inverse:

¢: MCB — homys(k, M)
m — Om

where o, is defined by ,,,(1) = m and extended by k-linearity. It is well defined because,
for all k € k,

py(om(k)) = kpar(m) = km @1 = (om @ B)(k @ 1) = (om © B)pk (k).

Moreover:
P(¥(0)) = 0o1): 1 = 0(1),
Y(p(m)) = om(1) =m,
and so it is the inverse map of 1. O

Next, consider the assignments

L:M—ME: M— M®B
R: Mg—>3\/[: P+ pCoB

that, on morphisms, operate as:

L(f): M@ B— N@B:m@b—s f(m)®b (V¥ f € homy(M, N))
R(g): PP — Q%P pr—s g(p) (Vg € homyz(PQ))

Theorem 2.1.7. The pair (L, R) is an adjunction with unit
mi: M — (M & B m—me1 (2.4)

and counit
ev: PP°P@B — P:p®b— pb (2.5)
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Proof. L is trivially a functor. In order to prove that also R is a functor, it’s enough to
verify that R(g) maps PC°P into QC°F for all g € homMg(P, Q) and for all P,Q € ME.

Thus, pick p € P8 and consider g(p). Since g is in particular a morphism of B-
comodules:

pq(9(p)) = (g ® B)(pp(p)) = (9@ B)(p®1) =g(p) ® 1

and so g(p) € Q°F.
Next, the counit ep is clearly well defined for each P € ME. On the other hand, we

need to show that the unit 7y, actually maps M into (M ® B)“°P for every M € M.
Hence, let m € M and consider

pM®B(m®1):(M®A)(m®1):m®1®l,

then m ® 1 € (M @ B)“°P. Moreover, 7y is obviously k-linear for all M € M, but we
have to show that ep is an Hopf module map, for all P € ME:
ep((p®b)-x) =ep(p@bzx) =p(br) = (pb)x =ep(p®Db) - x
pp(ep(p @ b)) = pp(pb) = pp(p) - b= pb1 @ by =
=(ep@B)(p@ b1 ®@b) =
= (ep ® B)(ppcopgp(p ® b))

for all p € P°B and b,z € B. Let us prove now that they are both natural:

e Let f: M — N be a morphism in M, we have that:

M- (M @ B)©°P m———sm®1
fl iR(f®B) 1 o l
N —— (N @ B)™P fm)—f(m)®1

since R(f ® B) = f ® B. Hence 7 is natural.

e Let g: P — (Q be a morphism in Mg. We have that:
Qo (R(g)®B) =pgo(9®B)=goup=R(g)oep
since g is a morphism of B-modules, so that € is natural.
It remains to prove that the Triangular Identities are satisfied:

NR(P) R(ep)

RLR(P) R(P)
I I

PCOB "IR(P) (PCOB ® B)COB €p PCOB

R(P)

Dt p@ 1 D
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for each P € Mg. Furthermore:

L(nar) €L(M)

L(M) LRL(M) L(M)

MeB™ 2 MeB)PeB Y peB

mAb——(mR1)b—(Mm®1)-b

but (m® 1) -b = m ® b and so even this last composition is the identity map, for all
M e M. O

Proposition 2.1.8. The unit n of the adjunction (L, R,n,€) of Theorem 2.1.7 is always
a natural isomorphism.

Proof. Let M be a k-vector space and consider ny: M — (M ® B)“°P. Let

<00
m:=Y m;®b € (Mo B)*".

(2
We know that pyrep(m) = m® 1. Le.,

<o

<00
Y omi@ ()1 @ (b= mi®@b®1. (2.6)
Apply M ® € ® B to both sides of (2.6) to get that:

<oo <00
Z’mi@)bi = Zmi&‘(bi) ® 1.

<oo
Hence m = nys (Z ™m; 5(bi)> and we showed that 7, is surjective. To prove that it is

(2
also injective consider the composition:

Yy = <(M®B)COBC—>M®B@>M®E§%M>

Ifny(m)=me1=n®1=mnp(n), then m =Yy (m®1) =Yy (n®1) =n and so ny
is injective. Note that actually the map 1y is the inverse map of n;; in M. O

What we ask now is if (and when) (L, R, 7, ¢€) is an equivalence of categories. The
answer to this question is the so called ‘Structure Theorem for Hopf modules’ and involves
the concept of Hopf algebra that we are going to introduce.
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2.2 Hopf algebras

Let (C,A,e) and (A, m,u) be a coalgebra and an algebra respectively and consider the
k-vector space H = homy(C, A). We can equip H with a structure of k algebra in the
following way ([Sw, Section 4.0]). Let f,g € H and consider the composition:

Frg= <c$C®C&A®ALA>

The map f*xg:=mo (f®g)oA is called the convolution product of f and g. We can
also consider the special map uoe: C — A.

Lemma 2.2.1. Within the above context, (H,*,uo¢e) is an associative unital algebra.

Proof. Let us start with the associativity of *. We should show that the following

comimutes:

HoHOH N HeoH fogoh—sfrgah

¥
H® * * (f*xg)*h

H @K H f®gxh——fx(gxh)

*

but, for all ¢ € C we have that:

((f*g) xh)(c) = (f*g)(c1)h(c2) = [f((c1)1)g((c1)2)]h(c2) (1.382)
1.38a)

= flenaleah(es) "= flenlg((e2))h((e2)2)] = (f * (g% ) (0).

Hence * is associative. Furthermore,

(1.38b)

(f x (uoe))(c) = fler) elea)u(ly) = flere(c)) f(e)
(woe) x f)(e) = eler)ull) f(ea) = Fle(er)en) "2 f(e)
for all ¢ € C' and f € H, so that it is also unital with unit u o e. O

Definition 2.2.2. (Antipode, Hopf algebra)
Let (B, m,u, A, ¢) be a bialgebra and let homy (B, B) be equipped with the structure of
algebra described in the previous lemma. An element s € homy(B, B) such that

sxld=uoe=1Id=*s (2.7)

is called an antipode for B. An Hopf algebra is a bialgebra B that admits an antipode.
Usually we indicate Hopf algebras with the capital letter H.

Remark 2.2.3. If B has an antipode, then it is unique, being a two-sided inverse. Moreover,
a k-linear map s: B — B is the antipode of B if and only if

blS(bQ) = E(b)lB = S(bl)bQ
for each b € B.
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Example 2.2.4. Let G be a group and kG be the group algebra on G. We know
(Example 1.3.22) that kG is a bialgebra in (M, ®,k, a,l,r) with structures given by, for
g9,h € G:

m(g®h) =gh u(ly) =1¢

Alg)=g®g ¢e(g) = Ik

Consider the k-linear map
5s: kG —kG: gr— g ! (2.8)

We have that, for all g € G, (uoe(g)) = 1 and

(sx1d)(g) =m((s®1d)(g® g)) =m(g~' ®@ g) =1
(Id*s)(g) =m((€ ®@s)(g®g)) =m(g® g™ ') = lg

so that, by k-linearity:
<oo <oo <oo
(5 %1d) <Z lcigi) = (Z k) 1, = (uoe) <Z k,-g,-) :

The first important thing about the antipode is that it is an antiendomorphism of H
as a bialgebra, as the following proposition states.

Proposition 2.2.5. Let (H,m,u,A,e,s) be a Hopf algebra. Then:

(1) som=moTo(s®s), (2.9a)
(2) sou=u, (2.9b)
(3) To(s®s)oA=Aos, (2.9¢)
(4) ecos=g¢, (2.9d)

where T denotes the twist:

7: H®QH — HRRH
Al — IQh

Proof. The idea that lies behind the proof of (1) and (3) is the same: we will endow
hom(H ® H, H) and hom(H, H ® H) with the algebra structure of Lemma 2.2.1, where
the structure of algebra on H ® H is given in Proposition 1.3.15 and the structure of
coalgebra in Proposition 1.3.16, i.e.,

(hol)(g® f)=hg®Lf ug(le) = 1g ® 1g
(2.10)
Ag(h®l)=(h ®11)® (ha ®1l2) eg(h®I1)=¢e(h)e(l)

Let us indicate with x such an algebra structure for both hom(H ® H, H) and hom(H, H®
H) indifferently.
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(1) Consider the following three maps:

X HoH —H:h®l— hl
Y:H®H — H: h®l+— s(l)s(h)
Z:H®H — H: h®l+— s(hl)

We are going to prove that Z x X =uoeg = X %Y, from which we deduce that
Z =Y by uniqueness of the inverse. For all h,l € H:

(Z*X)(h@l) = (mo(Z8 X)oAg)(hel) =

=(mo(Z®X))(®h)® (ha®12)) =
= m(s(hlll) X hglz) =

= S(hlll)hglg (;)

s((hl)1)(hl)y =
=(uoe)(hl) = (uoeg)(h®l)

where (*) is a consequence of the fact that A is a morphism of algebras. On the
other hand, for every h,l € H:

(XxY)h@1)=(mo(X®Y)oAg)(h®]I) (2.10)

)
=mo(X@Y)((hi®h)® ha®1)) =

=m(hl ® s(l2)s(h2)) =
2

7
= hllls(lz)s(hg) (:

= hls(hg) €(l) (2:7)

— (woe)(hl) = (uoew)(h®1)

~

(2) Note that € o u = Idg since ¢ is a morphism of algebras, then:

(2.7)
U=uoeou =

:(Id*s)ou:mo(ld@s)vou(g)

o(Id® s)oug =
_ 2)
=mo(ld®s)o(u®u)oAg =

=Sou

where in (**) we used the fact that A is a morphism of algebras and (A) follows
from:

(mo (Id® s) o (u®u)oAg)(k) = ku(lx)s(u(lk)) = s(u(k)) (Vk ek)

since all maps are k-linear.
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(3) We replicate the idea of (1). Consider the three maps:

X:H—H®H: h— h1 ® hg
Y:H— H®H: h— s(hy) ®s(hy)
Z:H— H®H: h— s(h); ®s(h),

and let us show that Zx X =ugoe=X*Y. Forall h € H:

A)(h

(Z*X)(h)=(mgo(Z®X)o =
= (mg o (Z®@ X))(h
= mg[(s(h1)1 @ s(h
)
(

1
)2

(hl 1(h2)1 ® s(h1)2(h

s(h1)h2)1 ® (s h1)h2)2—

(
= A((s +1d)(h)) &
Ale(h)1y) = e(h)(1® 1) = (ug 0 £)(h)

(X*xY)(h)=(mgo(X®Y)oA)(h) =
= (mg o (X ®Y))(h1 ® h) =
= mg[((h1)1 ® (h1)2) ® (s((h2)2) @ s((h2)1))] =

= (m)1s((h2)2) @ ()as((ha)y) 27

)
he) =
® ((h2)1 @ (h2)2)] =

b2y
)

=ch)(1®1) = (U® oe)(h)

where (xx) follows from the fact that A is a morphism of algebras.
(4) Apply € to both sides of (2.7) to get that:
o(Id«s) =couoe=ce.
Moreover, for all h € H,
(€ o (Id * 5))(h) = e(h1s(ha)) = e(hn)e(s(ha)) = e(s(h))
since all maps are k-linear and e(h;) € k.
O

The following lemma, that appears as an exercise in [Sw, Chapter 4], retrieve some
additional properties of the antipode.

Lemma 2.2.6. Let (H,m,u,A,e,s) be a Hopf algebra. Then, for all h € H:
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(1) 1@ h = hys(hs) ® hs
(2) 1@ h = s(h1)hs ® hs
(3) h®1=hy ® hos(hs)
(1) h® 1=l ® s(ha)hs

Proof. All the four properties are just the same check and they are a trivial consequence
of (1.38a) and (2.7), e.g.:

(1. 38&)

2.7
his(hs) ® hs (h1)1s((h1)e) ® he ) e(hi) 1y @ he = 1@ h.

2.3 The Structure Theorem for Hopf modules

The following theorem, commonly known as the Structure Theorem for Hopf modules,
answers to the question when the adjunction (L, R, 7, €) of Theorem 2.1.7 is an equivalence
of categories. For a less categorical approach refer to [Sw, Theorem 4.1.1] and [Ab,
Theorem 3.1.8].

Theorem 2.3.1. Let (H,m,u,A,¢e,s) be a Hopf algebra. Then the counit
ey MOPP 9 H— M:m@h—sm-h

of the adjunction (L,R,n,e) is a natural isomorphism. In particular, for each Hopf
module M on a Hopf algebra H,

M= MH o[
Proof. First of all, for every Hopf module M in Mg, consider the projection:
7o M — M m— mg - s(my) (2.11)

This map is well-defined as:

par(1(m)) = (mo - s(m1))o ® (mo - s(ma))1 ' =’

= (mo)o - s(m1)1 ® (mo)15(m1)2 ( =

(mo)o - s((m1)2) @ (mo)1s((m1)1)

2.7)

( (li&l)
0- s(mg) ® mqs(ms) &

)

)

-s(mg) ® e(mq)1 =
(m1 ®1=
( )®1

[
333

I
\]

so that 7 maps M into M°H . Now, we show that the map

B:=(r®@H)opy: M — MT @ H: m—s mg-s(m1) @ ma (2.12)
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is the inverse of the counit €ps. For every m € M

em(B(m)) = enr(mo - s(m1) @ ma) =

(2.7)
=mg - s(my)mg =

=mg-e(my)l =m.

On the other hand, for all n® h € M®°H" ® H,

2.1
Blen(n @ b)) = B(n-h) = (n-h)o - s((n- k))& (n- h)y =
=n- hlS(hQ) ® hs (2:9a)
=ne(hy) ® hg =
=n®h
where the third equality involves also the fact that n € MC°H, O

Actually, Theorem 2.3.1 retrieves just one side of an equivalence, in the sense that it
admits a converse. But before state it, we need some introductory considerations.

Remark 2.3.2. Let (H,m,u, A, ¢) be a bialgebra. If we consider the vector space H @ H,
we can equip it with the right H-action given by the multiplication on the second factor:
(z®@y)-h=zyh,

with the diagonal right H-coaction:

P ®Y) =21 @ Y1 ® T2y,

and with the left H-comodule structure given by:
po(z@y) =21 @22 @Y,

for all z,y,h € H. If we indicate with a full dot the given structures and with an empty
dot the trivial structures we can summarize in:

*H:® HY

The multiplication on the second factor is trivially an H-action, as the comultiplication of
the first factor is an H-coaction. Let us just prove that the diagonal coaction is actually
a coaction:

(H®H®A)(pp(r@y) = (HeHA) (21 @Y1 ©rays) =

=21 @Y1 @ (T2y2)1 @ (2y2)2 =

=71 ® Y1 @ (22)1(¥2)1 @ (72)2(y2)2 3

=21 QY1 ® Tay2 @ T3Y3
(P @ H) (21 @ y1 ® T2y2) =

(P @ H)(pg(r ®@y))

1.38a
= (21)1 ® (1)1 ® (21)2(y1)2 ® Tays 2

(
1 Q@Y1 X Toys @ T3Y3
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and:

re((H®H ®e¢)(r1 ®y1 @ T2y2)) =
re(r1 @ Y1 ® e(x2y2)) =
rprRyelk) =r®yY,

re((H© H®e)(pg(z ©y)))

for all z,y € H. Furthermore, we can equip (H @ H )COH ® H with the following
structures:

(r@y)@h)-l=(z@y)®h
p€H®H)C°H®H((x ®y)®h)=(z®y) ®h @ hs
pl(H®H)COH®H((x ®y) ® h) =1 &® (l‘g ®y) R h

for all z,y,h,l € H. The first one is clearly a right H-action, as the last two are

H-coactions. We should only prove that the image of pl( Hem)CH g is actually within

H® (H® H)°! @ H. Observe that it’s enough to verify that:
¢: (HoH)" — HeHoH)!
TRy — 1 ® (r2 @ Y)

is well defined. Hence let us concentrate on this last claim. Initially, consider the following
k-linear map:

VvV:(HRH) — (HIH)QH: 2®y— plgem(2®@y) — (20y@1).

Note that z € (H @ H)“°H if and only if ¢(z) = 0, so that ker(¢)) = (H @ H)“°?. Thus
we have the following exact sequence:

0—=(HeoH)™ —geog-Y~HeoH) oH

Since H, as k-vector space, is a free k-module, it is k-flat and so the functor H ® — is
exact. Hence we have another exact sequence:

0—=HeHe )~ HeHeoH) 1% He (HeH) o H),

from which we deduce that w € H ® (H @ H)°° if and only if w € H ® (H @ H) and
w € ker(H ® 1). Thus, let us apply H ® ¥ to z1 @ (z2 ® y):

(Hep)(r1 @ (2@ y)) =21 @ ((72)1 @ 41 @ (¥2)212) — (120 y ®@ 1)) =

1.38
21 ® (22)1 @Y1 ® (2)2y2) — (21 R 2@y R 1) (1.35)

= (

= (1)1 ®(21)2 @Y1 @ xayp) — (11 VT2 @Y 1) =
=(A®H® H)(p(gem(z®y) - (AHoH)(z@y®1) =
0

since z®@y € (H® H)°?. Hence £(2) € H® (H® H)°°! for all z € (H @ H)°H by
k-linearity.
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Lemma 2.3.3. The map egen: (H® H)COH ® H — H® H is a morphism with respect
to all the structures that occur in Remark 2.5.2.

r/ r/

Proof. We will indicate eggp with eg, pHéaH with p®l and p v/t

v/l with pdop in

(H(X)H) COH®H
order to lighten the notation.
That eg is linear with respect to the right H-action follows from Theorem 2.1.7. Let

us prove the other two linearities:

e Let us start with the right colinearity. We have to show that the following diagram
commutes:

(Ho H)®" o H © H®H

peoH\L ipgb

(Ho H)°" @ Hlo H

co®H
Actually, it does. Indeed:
(€2 @ H)(ptor((z®@y) @ h)) = (eg @ H)(x @y @ h1 @ h) =
=(x®y) -hi®@hy =
=z Qyh; ® hg
Po(ea((z®@y) ®h)) = pg((x ®@y) - h) = pg(z @ yh) =
=121 ® (yh)1 @ x2(yh)2 = 1 @ y1h1 @ T2y2hs =
=pp(z®y)(H®A)(1®h) =
=2z ®yh ® hy

since z @y € (H ® H)°°" and, by k-linearity, it holds for all z € (H @ H)“° and
heH.

e For the left H-colinearity, the following diagram should commute:

(Ho H)®" @ H © H®H

! 1
pCOH\L ip@»

H®|(HoH)®" ¢ H H® (H® H)

H®eg
but if we recall how the left H-coaction are defined, this is obvious:
pl(H®H)CoH®H((CC RY)Oh)=11® (22Q0y)@h
Phz®y) =21@1®Y

and this concludes the proof. O
Remark 2.3.4. Note that H ® H is a Hopf module with the right structures defined in
Remark 2.3.2:
pe((z®@y) - h) = py(z @ yh) = 21 ® (yh)1 @ Ta(yh)2 =
=71 ®@ y1h1 ® Tay2hs = (71 @ Y1 ® T2y2)(1 ® hy @ ho) =
= pp(z®@y)-h,
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for all z,y,h € H.

Theorem 2.3.5. Let (H,m,u,A,e) be a bialgebra and suppose that the adjunction
(L,R,n,€) of Theorem 2.1.7 is a category equivalence. Then the map s: H — H defined
by, for all h € H:

s(h) = (@ H®e) (u(h®1)) (2.13)
is an antipode. In particular, (H,m,u, A, e,s) is a Hopf algebra.
. 1 I ! !
Proof. Denote again €g := eggm, PTC/oH = sz{I®H)COH®H’ pg = p;{/®H and

Meneh =gl (hel)e HoH) ™ o H

for all h € H (summation understood). In view of Lemma 2.3.3 we know that eg is a
morphism of ‘Hopf bicomodules’ (meaning just a Hopf module with an additional left
comodule structure) with the structures given by the dots:

€: *(H® H)®" @ H® — *H® ® H?,

1

thus €5, is a morphism with respect to the same structures as well. Since it is H-linear,

B Eoy) = (zal) y) = (@21) 1y,

for all z,y € H, so that it is enough to work on elements of the form h ® 1. By the right
colinearity we get that:

(h1)' @ (h1)? @ (h)? @ hy = (eg' @ H)(ph(h® 1)) =
= Poon(eg' (h@ 1) =h' @ h* @ (1P)1 @ (h)s. (2.14)
for each h € H. On the other hand, by the left colinearity we have that:
i ® (h2)' @ (h2)® @ (h2)® = (H @ ¢5") (s (h @ 1))
= pon(€z' (h® 1))

for all h € H. Furthermore, relation (2.13) that defines s now rewrites as:

(M) @ (B2 @ h2 @Rk, (2.15)

s(h) =e(hY)h?e(h®) (Yhe H). (2.16)

Keeping in mind these three last identities, we are going to derive some properties of s
that will be used to prove that it is, actually, the convolution inverse of the identity.
Start by applying e ® H ® e ® H to both sides of (2.14). This becomes, for h € H:

s(h1) © ha = e((m1)") (m1)? e((h1)*) © hy =
=c(hHh2 @ e((h®)1) (h3)e = e(hHR> @ A3, (2.17)

Next, in view of the previous identity, apply H ® e ® H ® H to both sides of (2.15) and
obtain, for h € H:

hi ® s(ha) ® hs "2 hy @ e((ha)) (h)? ® (ha)? =
= (M)1e((h)) @R2 @ = eg'(h@1) (2.18)
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Relation (2.18) is one key to prove that s is an antipode. Indeed:

hol=eoleg (h®1) "2 hy @ s(ha)hs (2.19)

for each h € H, so that, applying € ® H to both sides:
e(h)1g = s(hy)he. (2.20)
Moreover, applying € o m to both sides of (2.19), we get also that:
e(h) = e(his(ha)hs) = e(s(h)) (Vh e H). (2.21)
The other key is the fact that, for h € H:
hi@s(hy) @ hy =ez'(h®1) e (Ho H)™ o H,

thus
(h1)1 ® (s(h2))1 ® (h1)2(s(h2))2 ® h3 = h1 ® 5(h2) ® 1 ® ha3.

Apply m ® H ® H to both sides:
(h15(h2))1 ® (h1s(h2))2 ® hz = h1s(h2) ® 1 ® h3
and then apply e ® H ® H:

hus(ha) © hy = e(hn) e(s(ha)) 1 ®@ hs "= 1@k (Vh € H).

As for relation (2.20), apply H ® € to this last identity:
hls(hQ) = €(h)1H (Vh S H),
to find out that s is also the right convolution inverse of the identity. O

Following [BW], we refer to the subsequent result as the ‘Structure Theorem for Hopf
modules’, because it is the complete formulation of the original one.

Theorem 2.3.6. ([BW, Theorem 15.5]) (Structure Theorem for Hopf modules) Let
(H,m,u,A,e) be a bialgebra in (M,®,k,a,l,7). Then, the following assertions are
equivalent:

1. The bialgebra H is a Hopf algebra.

2. For each Hopf H-module M € M, M = M®H ¢ H.
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Chapter 3

The Fundamental Structure
Theorem for quasi-Hopf
bimodules

3.1 Quasi-bialgebras

Recall that if we have an algebra with comultiplication and counit (A, m,u, A, ), then we
can equip the category of right A-modules with a tensor product (that is the restriction of
the tensor product between k-vector spaces) and a unit (the base field k itself): (M4, ®, k).
We have seen in Chapter 1, Proposition 1.3.21, that (M, ®,k, a, ¢, r) is monoidal if and
only if A is a bialgebra (Just for this section, we are going to indicate with ¢ the left unit
constraint and with r the right unit constraint, in order to avoid confusion). But if we
weaken our requests, e.g. don’t asking for coassociativity of A, we find out that there
exists a larger class of algebras such that the corresponding category of right A-modules
is monoidal.

Definition 3.1.1. (Quasi-bialgebra)
Let (A, m,u, A, €) be an algebra with comultiplication and counit as introduced in Remark
1.3.20. A is a quasi-bialgebra if (M4, ®,k, a, A, p) is monoidal.

Remark 3.1.2. Pay attention: we are not requesting that the constraints are the same
of the monoidal category (M, ®,k,a, ¥, r), as for the ordinary bialgebra. We are saying
that there exists constraints (a, A, p) such that they are natural isomorphisms of right
A-modules and satisfy the Pentagon and Triangle Axioms.

Theorem 3.1.3. Let (A, m,u, A, ) be an algebra with comultiplication and counit. A is
a quasi-bialgebra if and only if there exist an invertible element ® € A® A® A and two
invertible elements I, in A such that:

(AR A)(A(z)® = P(A R A)(A(x)) (3.1)
(e @ A)(A(x)) = lzl™t (3.2)
(A®e)(A(x)) = rar! (3.3)
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forallxz € A, and
(ARARA)P)ARARA)(P)=(PR1)(ARA®A)(P)(1® D) (3.4)
(ARe@ A) (@) =rel! (3.5)
Usually, we will write ® = ®! @ @20 &3 and ®~! = ¢! @ ¢? ® ¢ (summation understood).
Proof. Let us start by the ‘if’ part and assume that ®, [ and r exist. We can define:
apynp: (M@N)@P — M@ (N®P) (3.6)
(men)®@p +— (MR (nep)) ¢
v o

m®l — m-r (3.8)

These are morphism of right A-modules. Indeed:
armNp(((M@n)®@p)-a) =aunp(((men)@p)- (A® A)(Aa))) =
=(memep) (AeA)A@)e
=(m® (n®p))- (A2 A)(Aa))
—(me(nep) Pa=
=aynp((m®n)@p)-a

—

/\M((l & m) . a) = )\M(a(al) & (m . ag)) =

=m-e(ay)asl 3D la= Ayv(m) - a,

pu((m @1)-a) = par((m - a1) @ e(az)) =
=m-aie(ag)r - pyv(m) - a.
forallme M,ne N, pe P, a€ A. Moreover, since ®, [ and r are all invertibles, these
are bijective with inverses given by:
M®(NeP) — (M@ N)® P
menhep) — (men)ep) ¢!

Mf: M — keM

m +— (1®@m)-1!

M — M &k
m — (m®l)-r!

—1 X
X N,P -

Pt
Next, we show that they are natural. Pick three morphisms of right A-modules:
f:M— M, g: N— N and h: P — P’ and observe that:
(foemn)((menep) @)= (fo(@eh)(m o @ 2*ap- %)=
= (f(m- ‘1>1) ® (g(n-@%) @ h(p- @7))) =
= (f(m)- @' @ (g(n) - 2* @ h(p) - %))
=(f@(geh)((me(nhep))- ¢
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forallm € M, n € N, p € P since f, g and h are right A-linear. Hence the following
diagram commutes:

QM N,P

(M ®N)® P M ® (N ® P)

(f®g)®hl @) lf@(g@h)

(M’®N’)®P’Q—P7M’®(N’®P’)

M’ ,N’,

Furthermore, even the following diagrams commute, since f is right A-linear:

M®kﬂ>M m®1+&>m-r

f®kl o lf f®ﬂ{ If

! !
M @k ——=M f(m)®1lm>f(m)-r

k@M%M 1®m|&>m-l

ST

koM <M 1@ f(m)—= f(m)-]

M

It remains to prove that a, A and p satisfies the Axioms (1.9) and (1.10).
Pentagon: forallme M, ne N,pe P, g€ Q

AMR@N,P,Q

(m&n) @p)®q) (men)©(peq) (A0 A0 A)(P)
la]w,N,P@)Q
(me (o)) (AAA)(P) (A AR A)(®)

am,N,POQ (3.4)

(me((nop)©q) (Pe1)(A2A®A)(P)(1o )

TM(@(IN,P,Q

(m@mep)©q) (Pe1)——=(ma(nep)®q) (201)(A0 AR A)(P)

AM,N®P,Q

Triangle: for all m € M, ne N
mel)en—=Y s (me(1en) (Aoe® A)(P)
rM®ON M®lN

(m®n)-(rel) (man) (ARe® A)(P)(1®1)

(3.5)
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For the ‘only if’ part, assume that (M4, ®,k, a, A, p) is monoidal and define:

‘I’:aA,A,A(lA®1A®1A) (3.9a)
I=2a(1g ® 14) (3.9b)
r=pa(ls ® 1) (3.9¢)

Observe that, for each m € M right A-module, there exists a unique morphism of
A-modules
m:A— M:14—m

since every A-linear map from A into an A-module (right or left is the same) is uniquely
determined by the image of 14. Hence, by naturality of «, for all m € M, n € N and
p € P we have a commutative diagram:

QA AA

(ARA)® A AR (A® A)
(m@n)®p o m®(n@p)
(M@ N)® P o Me (N® P)

If we apply it to 14 ® 14 ® 14 we find that for allm € M, n € N, p € P:
(m® (nep) &= (me[{@p))(P) =amnr(men)®p). (3.10)

Note that, since « is a natural isomorphism, there exists an element ¢! ® ¢? ® ¢ in
A® A® A such that ag 4 4(¢' ® ¢? ® ¢?) =1 ® 1 ® 1. Thus:

1@1@l=asaa(azl s1@101) = (¢' @ (¢*®¢%) - @.
On the other hand, also a~! is a natural isomorphism and if we indicate with
¢' 0" @ =ayl (1elel),
then naturality implies that:
Aty p(m® (n@p)) = (men)@p)-(¢' @ ¢*© %)
forallm € M, n € N, p € P. Therefore:
10101=a3y (aaaa(101@1) =@ (¢' ©¢* @ ¢°)

and we deduce that ® is invertible, with two-sided inverse @' = ¢! ® ¢? ® ¢3. Moreover,
« is also right A-linear:

an, N, PRA

(M®N)®P)® A

(M®(N®P)® A

H(MQN)QP O KMQ(N®P)

(M®N)®P) (M ® (N ®P))

QM N,P
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so that:
(m® (n®p)) ®(A®A)(A(a) = apnp((men)@p)(A® A)(Ae) =
= ay,np((men)®@p) - (A®A)(Ala))) = (m® (n®p)) - (A®A)(Aa))® (3.11)

foralme M, n € N,pe P and a € A. Taking M = N = P = A and evaluating at
l®1®1, (3.11) gives:

P(ARA)(Aa) = (A® A)(Aa))d.
The same arguments that work for «, also work for A and p. Hence, naturality of A\ gives:
m-l=mAs(1®1)) =Ay(k@m)(1®1)) =Au(l®@m)

for all m € M and for all M € M 4. Since )\ is a natural isomorphism too, we have that
there exists [~! € A such that
1l =211

and
Loml™ = (k®m)(\3)(1)) = Ayf (L) = Ay (m)

for all m € M. Then, in particular:
L= 0 1) = (el ) =11

and
lel=X"0a1e)=\'O)=1cu"!

ensure that [ is invertible with two-sided inverse [~!. Moreover, A-linearity of A implies
that

m-la=Ay(l®m)-a=Au((1®@m)-(e® A)(Ala))) =m-e(ar)asl (3.12)
for every m € M and a € A. Choosing M = A and evaluating (3.12) at m = 1 gives:
la=(e® A)(A(a))l.
Analogously:
e for all m € M and for each M € My, pyy(m®@1) =m -7,
o exists 7! and it satisfies 1 @ r~! == p*(1);

e forallme M and a € A,

m-ra=pym®1)-a=py(mMel)- (A®e)(Aa))) =m-aje(az)r. (3.13)

Evaluating (3.13) at m = 1 gives:

ra=(A®e)(Aa))r.
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Next, we need to prove that also (3.4) and (3.5) are satisfied and, as one can expect,
these follow by the Pentagon and Triangle Axioms. By the Pentagon Axiom we have:

(A®aaa4)00a 494,40 (4,44 RA) =04 44040 CARAAA
and evaluating it at 1 ® 1 ® 1 we get:
(PR1NARARA)(P)(1IRP)=(ARARA)(P) (AR AR A)(D).
Instead, by the Triangle Axiom we know that:
(ARla)oapaga=ra®A
and evaluating it at 14 ® 1x ® 14 this gives:
(ARe A)P)(1®!]) =(rel),
i.e., the last axiom of quasi-bialgebra that misses. O

Remark 3.1.4. The equivalent conditions defining a quasi-bialgebra that we gave here
are not the traditional ones. Actually, the most common definition is: an algebra with
comultiplication and counit (A, m,u,A,¢) is a quasi-bialgebra if the category of left
A-modules is monoidal (cfr. [Ka, Definition XV.1.1]). With this definition, the axioms of
Theorem 3.1.3 become (cfr. [Ka, Proposition XV.1.2]):

(A A)(A(a)? = P(A® A)(Aa)) (3.14a)
(e ® A)(A(a)) =1 tal (3.14b)
(A®e)(Aa)) = r tar (3.14c)

for all a € A, and
(ARARA)P)(ARARA)(P)=(1P)(ARARA)(P)(P®1) (3.15a)
(ARe®A)(P)=roi! (3.15b)

Moreover, the constraints a, A and p need to be modified in:

apnp((men)@p)=e-(me (n@p))
Av(le@m)=1-m
pu(me1l)=7r-m

Nevertheless, the two definitions are equivalent. Indeed, these last axioms can be obtained
by substituting ®~! to ®, I™! to [ and r~! to r into the previous ones. Anyhow, for
coherence’s sake, from now on we will use this last ordinary axioms, instead of the ones
that appears in Theorem 3.1.3.

Theorem 3.1.3 shows that there is at least one substantial difference within bialgebras
and quasi-bialgebras: in a bialgebra we can always reassign parenthesis and renumber the
indices of the Sweedler’ Sigma Notation. In a quasi-bialgebra we can reassign parenthesis,
but we cannot renumber the indices: we should need coassociativity of A, that we have
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no more. What happens in the quasi-bialgebra case is that A is quasi-coassociative via
the Drinfel’d reassociator ®, i.e.:

P - [((a1)1 @ (a1)2) ® az] = [a1 @ ((a2)1 @ (az2)2)] - ®.

For the sake of completeness, we give also the definition of what a morphism of quasi-
bialgebras is.

Definition 3.1.5. (Quasi-bialgebra morphism)

A k-linear map f: A — A’ between two quasi-bialgebras (A,m,u, A, e, ®,l,r) and
(A",m/ o/ A e DT ') is a quasi-bialgebra morphism if it is an algebra morphism such
that:

e Preserves the comultiplication and counit, in the sense that the following diagrams

commute:
A ! A Aa—1L w
A o A/ XO/
k
AR A A A
© fef ®

e Preserves @, [ and 7, i.e.,
(fofeN@ =9 [fO=U f@)="

It is quite a heavy job to deal with ®, [ and r. Unfortunately, ® is what distinguish
quasi-bialgebras from bialgebras and so we cannot expect that there exists a way to get
rid of it, but, as we are going to show now, [ and r are not so fundamental and we can
do without them.

Theorem 3.1.6. ([Ka, Proposition XV.3.2]) Let (A, m,u, A, e, ®,1,r) be a quasi-bialgebra
and let '€ A® A be an invertible element. Define, for all a € A:

Ar(a) := FA(a)F™! (3.16)

and the elements:
Pr:=(10F) (A A)(F)®P(A® A)(F H(F1el) (3.17a)
Ip:=le® A)(F™1) (3.17b)
rpi=r(A®e)(Fh) (3.17¢)

Then (A,m,u, Ap,e,Pp,lp,TF) is a quasi-bialgebra denoted by Ap. We say that Ap is
obtained from A by twisting via the element F (cfr. [Drl, Remark on page 1422]).

Proof. We have to verify that Ap is a morphism of algebras (¢ has been not modified)
and that all five axioms of quasi-bialgebra are satisfied: (3.14) and (3.15). Let us begin
with Ap. Since A is a morphism of algebras:

Ar(a)Ap(b) = FA(a)F 'FAMBF! = FA(a)A(D)F~ = FA(ab)F~' = Ap(ab)
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and so Ap is a morphism of algebras, too. Next, let us show that (3.14) are satisfied.
(3.14a). For all a € A:

(3.16)
Dp(Ap © A)(Ar(a) "2
=(1F)(AQA)F)PAQA)(F HYF1e)(Fol)(A® A)(AF(a))(F_l ®1) =
— (19 F) (A0 A)(F)®(A® A)(F YA A)(FAQF YF'o1) =
— (19 F)(A® A)(F)®(A © A)(A)(A® A)(F Y (F L e1) PLY
— (1@ F)(A® A)(F)(A®A)(A@)DA® A (FYF ol) =
— (10 F)(A® A)(F)(A®A)A@F YA A)(F)SA e A)F Y F ' ol) =
— (19 F) (A2 A)(Ar) (1o F Y1 F)AoA)F)A®A)F HYF lel)=
— (A® Ap)(Ap(a))®F

(3.14b). For all a € A:
Ir(e ® A)(Ap(a) = (e @ A)(F (e ® A)(FA(@)F™') =

)
— e ® A)(A))(e ® A)(F ) T2
=ale@ A)(F) =

= alF
(3.14c). For all a € A:
rr(A®ce)(Ap(a)) =r(A®e)(F ) (A®e)(FA(@)F!) =
— r(Ae)(A)(Ase)(F ) T2
=ar(A@e)(F 1) =

=argp

In order to prove that (3.15a) is satisfied, we need to break it into smaller identities.
First of all, note that:

(AR AR A)(Pr) = (A2 A2 A) (10 F)(AA)(F)®A® AFHF1a1) =
— (10 (A2 A)(F)AR (A AA)F) AR A2 A)(®)ARA)(F Y Flolel)

and that:

(A®A® A)(Pr) = (A2 A2 A) (10 F)(AA)(F)®Ae AF HF1el) =
—(121@F)(A2A)(F)(A®A® A)(D)(A® AAA)F H(AeA)(F ) e1)

and also that:

(IeleF Y Felel)=FeF)=Felel)(1lele F1).
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Thus:
(AR AR AFR)(Pr)(AFr ® A® A)(PFp) =
=191 F)(AARA)(Pr)(FRF HAARA)(Pr)(F'elel) =

(1910 F) (10 (A0 A)(F)(A® (AR A)A)F)(AQ AR A)(D)
(A AA)@)(AeAAA(F H(AeAF Hel)(F'elel)

(3.15a)

®1®F)(1®(A®A)( ))(A@(A@A) JF)(1®P)ARA®A)(P) | (3.140)
(A DA AF (A AHF Heo)(F'elel) B
(

®1®F)(1®(A®A)( NIRP) (AR (ARA)A)F) AR AR A)(D) B
(A MA@ A(F Y@ )((AxAFHe ) (F'elel) -

1
1010 F)(1®(A® A)(F)(1e )

A@A@A)«A@A)( NA®A®A)(P)(A® A A) (A A)(F )

DA AF ) (Fleolol)

F)(1® o)

RF)ARA)(F)P(A@AF HF1o1)(Fel))
L @el(AAFHYe)F Tolol)
(1910 F) (19 (A A)(F)1®3)(1® (A AA)(F1)
ARA® A)(PF)
(AP e)(@o) (A AF He)(F'elel)
[ 101 F) (A A)(F)P(AQ AFHYF1el)(1eoF®l)
ARA® A)(PF)
(1@ F o) (19 F) (A0 A)(F)RAQA)(F )(Flel)ol)
=(100r) (AR AF® A)(PF)(Pr®1)

For the remaining axiom observe that:

®1®F)(1®(A®A)

1 (
A®A®A)((1®F )(1

(
(1
(@
(1
(
(
(
| (P@
[ (
(
(@
(
(
(
(
(

(AewA)(Pr) = (Ao A)((10 F)(A0A)(F)S(A o A)F ) (F ' o1) 2

(3.14b)

_[aeEen@E) e e @) E)rei™) ] G
Tl (A®a)ARA)(F Y (A2 (FHel) -
Qe EAE)Al PO (rel™t) ((3?2))

Tl TP re)(Aee)(FTH) ®1) -

=1l )rp®l)=(rp®lp)
U

Definition 3.1.7. (Twist equivalent quasi-bialgebras)

Two quasi-bialgebras (A4, m,u, A e, ®,1,7) and (A",m/ o', A", e/, &' ' ') are twist equiv-
alent if there exists F' € A’ ® A’ invertible and an isomorphism of quasi-bialgebras
f:A— Al

Proposition 3.1.8. Let (A,m,u,A,e,®,1,7) be a quasi-bialgebra and let F € A® A be
an invertible element. Then the triple:

(Ra ()007902) = (IdAM7Idka 902): (AMa ®7ka aa)‘vp) — (AFM>®ak> aFv)‘F7pF)7

5



where, here, @ is simply @ (but it will be useful to remember explicitly in which category
the tensor product has been done),

@a(M,N): R(M)®» R(N) — RIM @ N): m@n+— F~1. (m®n),
and
ap: (MON)OP —Mo(NOP): (mon)@p— p-(mo (nop))

MitkoM — M:10o0m——1lp-m
pr- MOk — M: mQl—rp-m

defines a monoidal functor between monoidal categories that is also an isomorphism.

Proof. Note that (A, m,u) and (Ap, m,u) are exactly the same algebra in (M, ®,k, a,l,r),
and so the categories 4M and 4,M coincides. Thus R = Id is trivially a well defined
functor and ¢y = Idg is an isomorphism between R(k) = k and k. Moreover, @9 is a
natural isomorphism of left Ap-modules. Indeed, the fact that:

@2(M,N)(a- (mon)) =e2(M,N)(Ap(a) - (mon)) =
= F1'Ap(a) - (m®n) =
=A(@)F™ ' - (m®en) =
=a-pa3(M,N)(mon)

forall m € M, n € N, a € A, shows that it is a morphism, and
Yo(M,N): RM @ N) — R(M)2o R(N): m®n +— F-(mon)

is an explicit inverse for ¢o(M, N), for each pair (M, N) in 42M. Furthermore, if we let
g: M — M’ and h: N — N’ be two morphisms of left A-modules, then for all m € M
and n € N:

R(g ® h)(p2(M,N)(m @n)) = Rg@h)(f*-m® f*-n)) =

where f1 ® f2:= F~!, so that the following diagram commutes:

SOQ(MvN)

R(M) @ R(N) R(M ® N)
R(g9)oR(h) R(g®h)

! ! / !
R(M")@ R(N'") AT R(M'® N')
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and ¢ is natural. Now, observe that (1.13), (1.14) and (1.15) are satisfied since:

ap(R(M),R(N),R(P))

(men)op! @ (ma(n2p))
p2(M,N)oR(P) R(M)@@2(N,P)
(F~'o1)-(men)on) (10F~1)®p-(mo(n@p))
@2(M,N®P)
¢2(M@N,P) (Ap@A)(F~H(ARF 1)@ p-(m@(n®p))
(3.17a)

(AQAR)(F~V)(F~1®1)-((m®n)®n) W B(AQAR)(F~1H)(F~11)-(m®n)®n)

1om l(e®@A)(F~ Y- (1@m)
soo@R(M>l TR(AM)
1om — 7D F~1.(1om)
and
mo1 P A gy (F Y (me 1)
R(M)@sool TR(pM)
mo1 F~l.(m®1)

‘pQ(Mrk)

so that, as claimed, (Idy¢, Idk, ¢2) is a monoidal functor.
Next, recall that (Theorem 3.1.6) (Ap,m,u, Ap,e,®pr,lp,rF) is a quasi-bialgebra,
too. Hence, in the same way as above, we can prove that

(L, Yo, ¥2): (a4 M, @0,k ap, Ap, pr) = ((Ap), M @k, (ap)p-1, (Ap) -1, (pF) p-1)
is a monoidal functor between monoidal categories, where L = Id ApMs 1o = Idg and
Yo(M,N): LLIM)® L(N) — L(M @ N): m@n+— F-(mon).

Observe now that (Ap)p-1 = A, (Pp)p-1 =, (Ip)p-1 =1 and (rp)p-1 = r. Therefore,
(AF)Ffl = A and

((4p) pr M, @ Kk, (ap) -1, (AR) p-1, (pP) p-1) = (aM, ®,k, o, A, p).

This implies that we have another monoidal functor that goes the other way with respect
to R. Furthermore, both compositions RL and LR are actually the identity of 4M, so
that R is an isomorphism of monoidal categories. O

Lemma 3.1.9. Let (A,m,u,A,e,®,l,7) be a quasi-bialgebra. Then (¢ ® ) o A =¢.
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Proof. For all a € A:

(e®e)(Aa)) = (e®¢e)(a1 ®az) =e(a1) e(az) = e(ay e(az)) =
S.glc)

—

e(r~tar) =

Now we are ready for take care of the elements [ and r.

Theorem 3.1.10. Every quasi-bialgebra (A,m,u, A e, ®,1,r) is twist equivalent to a
quasi-bialgebra (A',m/ o' A &', ®" I 1) such that v’ =1" = 1.

Proof. First of all, apply € ® € ® € to both sides of (3.15a). In view of Lemma 3.1.9, we
get that:
[(c@e®e) (@) =[c®e®e) (@)

Since @ is invertible:
(e®e®e)(P) =1.

Now, if we apply € @ k ® e to both sides of (3.15b) we find out that:
eMe(l™) = (e@e®e)(®) =1,

and so 0 :=e(r)"t = g(I)7!. Define F :=(r ®1). F € A® A is invertible with inverse
F~' =6 Yr @171, thus A is twist equivalent to (Ap,m,u, Ap,e,®p,lp,rr), by
Theorem 3.1.6. Moreover:

as desired. ]

Corollary 3.1.11. Let (A,m,u,A,e,®,1,r) be a quasi-bialgebra and let F' = 6(r ®@1).
Then there exists an isomorphism of monoidal categories between (AM, ®,k, a, A, p) and
(4, M, ®,k, ap, 0, 1), where £ and r are the same constraints of (M, ®,k,a,?,r).

Remark 3.1.12. In view of Theorem 3.1.10, we can always assume that in a quasi-bialgebra
(A, m,u,A,e,®,1,7) one has [ =1 = r. With this assumption, let (A, m,u, A, e, ®) and
(A", m/ v/, A €', @) be twist equivalent quasi-bialgebras. Then there exists F € A® A
invertible and an isomorphism of quasi-bialgebras ¢: A’ — Apr. Note that, by the
definitions we gave in Theorem 3.1.6, we have that

lp=1l®A)(F') and rp=r(A®e)(F ).
On the other hand we have also that:
l=1=r, '=1=+ and lr=ol)=1=p") =r1F.
Thus F satisfies:
(ARe)(F)=1=(e® A)(F).
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Hence we are led to give the following definition (cfr. [Ka, Definition XV.3.1]).

Definition 3.1.13. (Gauge transformation)
Let (A, m,u, A e, ®) be a quasi-bialgebra. A gauge transformation on A is an invertible
element F' of A ® A such that

(A®e)(F) =1 = (¢ ® A)(F). (3.18)

Remark 3.1.14. This twisting construction is due ultimately to Drinfel’d (cfr. [Drl]),
but the idea of introducing a proper terminology to refer to the elements that satisfy
the conditions of Definition 3.1.13 comes to us from [Ka] and [BCT]. In the literature,
a gauge transformation is also referred to as a twist simply, however we preferred to
distinguish between the action of twisting (the twist) and the element via which we twist
(the gauge transformation).

If we twist a quasi-bialgebra with trivial [, via a general invertible element F' in
A® A, we do not find a quasi-bialgebra with trivial [, r; but if we twist it with a gauge
transformati