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Typical implementation :

◮ Hamiltonian dynamics, spatially uniform systems at the macroscopic level of description.

◮ Evolution in the form of ODE’s

dXi

dt
= Fi (X1, ...Xn, λ)

λ accounts for such parameters as rate constants (chemistry), birth rates (biology). etc ...

Typically, no analytic solutions available in presence of nonlinearities.
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Qualitative analysis
Geometric view

Phase space

P0

Initial state

Pt

State at
time t

X1

X
2

Phase space trajectory

◮ Uniqueness theorem. Forbids
intersection of trajectories.

Invariant sets

Sets in phase space that are mapped onto themselves by the evolution laws. Simplest case :

◮ O-d sets : fixed points, solution of Fi (X1, ...Xn, λ) = 0 representing physically the steady
states of the system at hand

◮ 1-d sets : closed curves, representing periodic behavior.
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Qualitative analysis
Geometric view

High dimensional invariant sets

◮ Tori (quasi periodic behavior),

◮ Fractals (chaotic behavior).
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Qualitative analysis
Geometric view

Conservative and dissipative systems, attractors.
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X1

X
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Phase space trajectory

◮ Conservative system :|∆Γ0| = |∆Γt|.
(typical signature of Hamiltonian
dynamics)

attractor

∆ Γ 0

∆ Γ t

X1

X
2

Phase space trajectory

◮ Dissipative system :|∆Γt| < |∆Γ0|.
(for sufficiently long times)
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Qualitative analysis
Stability

Response to a perturbation removing the system from an initial ”reference” set s

Xi (t) = Xi,s + δxi (t)

◮ Stability : system remains in a neighborhood of Xi,s

◮ Assymptotic stability : δxi (t) → 0 as t → ∞

Self-organization viewed as a problem of loss of stability of the ”trivial” states (e.g., the fixed
points) and evolution towards more intricate attractors.
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Linear stability analysis

dXi

dt
= Fi ({Xj}, λ) j = 1, ...n

◮ Search for reference state, usually among the steady states

Fi ({Xj,s}, λ) = 0

◮ Linearize around {Xj,s}

Xj = Xj,s + δxj
dδxi

dt
=

∑

j

(
∂Fi

∂Xj

)

s

δxj
Solution in the form

δxi = uieωαt

◮ Determine the eigenvalues ωα (α = 1, ...n) of the operator (Jacobian matrix)

J
≈

=

(
∂Fi

∂Xj

)

s

as roots of the characteristic equation det
∣
∣
∣

(
∂Fi

∂Xj

)

s
− ωδkrij

∣
∣
∣ = 0
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Qualitative analysis
Linear stability analysis

In particular, parameter values λc at which the real part of one of the ωα’s changes sign :
Re ωα (λc) = 0
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Perturbation analysis
Bifurcation analysis

Bifurcation analysis

Parameter λc beyond which the steady state Xis becomes unstable :

◮ Perturbation δx will start to grow. Linearization around Xis will no longer be valid beyond
some stage.

◮ Take into account nonlinear terms in the equations ⇒ growth of the perturbation saturating,
leading to a new solution ?

Explore the vicinity of λc by seeking for new solutions bifurcating from the reference state.

dδxi

dt
=

∑

j

Jijδxj + NL (δx1, ...δxn)
︸ ︷︷ ︸

nonlinear part

expand δx in powers of a smallness
parameter.

δxj = ǫδx
(1)
j + ǫ2δx

(2)
j + · · ·

where ǫ (|ǫ| << 1) is related to the
distance from criticality, λ− λc

Asymptotic analysis

Explore limiting cases where some parameters (usually parameter ratios) → ∞ and variables
switch from small to large values in phase space.
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Application : Elimination of fast variables

Multivariate systems (tens or hundreds of variables in typical situation).
Reduction to a low-order dynamics in presence of widely separated time scales due to order of
magnitude differences in the values of parameters and/or state variables.

Some typical examples

◮ Catalytic reactions :

E
︸︷︷︸

enzyme

+ S
︸︷︷︸

substrate

k1

⇄

k
−1

C
︸︷︷︸

complex

k
→ E + P

︸︷︷︸

product

[C], [E] << S

k >> k1, k−1

◮ Combustion :

E >> kT

→ reactions proceed more slowly than does energy transport
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Application : Elimination of fast variables

Cast original equations, upon performing an appropriate change of variables and parameters, in
the form

dX

dt
= F (X, Y, ǫ) (slow variables)

ǫ
dY

dt
= G (X, Y, ǫ) (fast variables) (ǫ << 1)

Tikhonov theorem

Under appropriate conditions (G invertible) the limit ǫ → 0 can be taken and Y variables can be
eliminated :

G (X, Y, 0) = 0

⇒ Y = W (X) (”slow manifold” eq.)

⇒
dX

dt
= F (X,W (X)) = f (X)

Notice that elimination of fast variables
reduces the dimensionality of phase space.
In this sense the dynamics of fast variables
constitues a singular perturbation of the
slow variables.
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Application : Elimination of fast variables
Michaelis-Menten kinetic

Case study I : Michaelis-Menten kinetics

E
︸︷︷︸

enzyme

+ S
︸︷︷︸

substrate

k1

⇄

k
−1

C
︸︷︷︸

complex

k
→ E + P

︸︷︷︸

product

The evolution equations are

dS

dt
= −k1ES + k−1C

dE

dt
= −

dC

dt
= −k1ES + (k−1 + k)C

with E + C = Cst = E0

Quasi steady-state assumption for C :

1

k−1 + k

dC

dt
=

k1

k−1 + k
ES − C

k large, k1S/k finite, amount of S >> E or C
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Application : Elimination of fast variables
Michaelis-Menten kinetic

Left hand side multiplied by ǫ ≈ k−1 << 1. We take the limit ǫ → 0 (Tikhonov’s theorem). Thus

C ≈
k1

k−1 + k
ES or,

C ≈
k1

k−1 + k
(E0 − C)S

C ≈
E0S

k
−1+k

k1

+ S
=

E0S

K + S

where K is the Michaelis-Menten constant.

Substituting into original equations :

dS

dt
= −k1ES + k−1C ≈ kC

or

dS

dt
= −

kE0S

K + S
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Application : Elimination of fast variables
Derivation of the Hill function

Case study II : Derivation of the Hill function

Hill kinetics arises when E possesses multiple fixation sites such that, e.g.,

E + 2S ⇆ C → ...

A more elaborate way would be to decompose into steps,

E + S ⇆ C1

C1 + S ⇆ C2

...
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