LECTURE 5B: SPATIALLY EXTENDED SYSTEMS

THE DIFFUSION EQUATION

S.C. Nicolis

October - December 2010

Evolution laws in the form of partial differential equation supplemented with appropriate boundary conditions : illustration on the **diffusion equation**

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \qquad 0 \le x \le \ell$$

Steady-state solution

$$C_s\left(x\right) = \frac{C_2 - C_1}{\ell}x + C_1$$

where $C_{1}=C\left(0\right)$ and $C_{2}=C\left(\ell\right)$

Time dependent solution

We choose again the boundary conditions (2) and

$$C\left(x,0\right) = C_0\left(x\right)$$

as initial condition.

Consider the excess quantity

$$u\left(x,t\right) = C\left(x,t\right) - C_{s}\left(x\right)$$

u then satisfies

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

with

$$u(0) = u(\ell) = 0$$

$$u(x,0) = C_0 - C_s(x)$$

$$\equiv u_0(x)$$

Time dependent solution

 ϕ_m :eigenfunctions of the diffusion operator $\partial^2/\partial x^2$ (Diffusion operator is **dissipative**) :

$$\frac{d^2\phi_m(x)}{dx^2} = -k_m^2\phi_m(x)$$

Solutions in the form of an infinite series of ϕ_m 's

$$u(x,t) = \sum_{m} A_{m}(t) \phi_{m}(x)$$

fix the $A_{m}\left(0\right)$'s by requiring that

$$\sum_{m} A_{m}(0) \phi_{m}(x) = u(x,0) = u_{0}(x)$$

leading to

$$A_m(0) = \frac{\int_0^{\ell} dx \phi_m^*(x) u_0(x)}{\int_0^{\ell} dx \phi_m^*(x) \phi_m(x)}$$

Time dependent solution

and, finally

$$u(x,t) = \sum_{m} \frac{\int_{0}^{\ell} dx \phi_{m}^{*}(x) u_{0}(x)}{\int_{0}^{\ell} dx \phi_{m}^{*}(x) \phi_{m}(x)} e^{-Dk_{m}^{2} t} \phi_{m}(x)$$

or, by computing ϕ_m and k_m explicitely

$$u(x,t) = \sum_m \tfrac{2}{\ell} \left(\int_o^\ell dx \sin \, \tfrac{m\pi x}{\ell} u_0(x) \right) \sin \, \tfrac{m\pi x}{\ell} \mathrm{e}^{-D \, \tfrac{m^2 \pi^2}{\ell^2} t}$$

with m integer