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Evolution laws in the form of partial differential equation supplemented with appropriate
boundary conditions : illustration on the diffusion equation
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Steady-state solution
Cs (w) = %x + 0Oy

where C1 = C (0) and C2 = C (¥)

S.C. Nicolis Applied Dynamical Systems



Time dependent solution

We choose again the boundary conditions (2) and

C (z,0) = Co (x)

as initial condition.
Consider the excess quantity

u(z,t) = C(z,t) — Cs (x)

wu then satisfies
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with
uw(0) = u()=0
u(z,0) = Co—Cs(x)
= wo ()
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Time dependent solution

¢m :eigenfunctions of the diffusion operator 82/9x2 (Diffusion operator is dissipative) :

d?¢pm, ()

dx?

= —kpmém (2)

Solutions in the form of an infinite series of ¢n,'s
u(z,t) ZAm ) ¢m ()
fix the Ay, (0)'s by requiring that
5 A (0)6m (2) = 0 (2:0) = o 2
leading to

I dwei, (z)uo(x)

mO:
© JE dxgs, (2)dm ()
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Time dependent solution

and, finally

ldzd)* x)ug(x _ 2
u(z,t) =3, 71{? dz¢::((m))¢:,((z)) e Phunto, (z)

or, by computing ¢n, and ky, explicitely

(@, t) = 3, 2 ([} dosin 222ug(x)) sin 22Le

with m integer
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