Project II: Food recruitment in ant colonies

Reading

Papers that you can download from the website

An ant colony has the choice between two food sources in the experimental setup below.

Figure 1: Experimental setup

The following model can capture the phenomenon.

$$\frac{dC_1}{dt} = \Phi q_1 \frac{(k+C_1)^{\ell}}{(k+C_1)^{\ell} + (k+C_2)^{\ell}} - \nu C_1$$

$$\frac{dC_2}{dt} = \Phi q_2 \frac{(k+C_2)^{\ell}}{(k+C_1)^{\ell} + (k+C_2)^{\ell}} - \nu C_2$$
(1)

From the literature, justify the model, and relate the variables C_1 , C_2 and the parameters Φ , q_1 , q_2 , ℓ and ν to the characteristics of the specific biological system.

In your report, following a short introduction on the subject, the analysis of the model must deal with the following issues¹.

¹Whenever specific parameter values are needed, take $q_1 = 0.11, q_2 = 0.1, \nu = 0.01$ and Φ between 0 and 1.

• Show that eqs. (1) can be scaled in the following form

$$\frac{dc_1}{dt} = \phi q_1 \frac{(1+c_1)^{\ell}}{(1+c_1)^{\ell} + (1+c_2)^{\ell}} - c_1$$

$$\frac{dc_2}{dt} = \phi q_2 \frac{(1+c_2)^{\ell}}{(1+c_1)^{\ell} + (1+c_2)^{\ell}} - c_2$$
(2)

- What are the steady state solutions of the model (2) for $q_1 = q_2$ and for $\ell = 1$, $\ell = 2$. Include details of the calculations.
- What is the stability of these solutions for $\ell = 2$ (find the stability analytically and check by integrating the equations). Construct the bifurcation diagram of c_1 against ϕ , showing the stable branches in full lines and the unstable ones in dashed lines. Determine analytically the critical value ϕ^* where the bifurcation occurs.
- Comment on the biological meaning.
- What are the steady state solutions of the model for $q_1 > q_2$ and $\ell = 2$. Construct the bifurcation diagram of c_1 against ϕ . Find the stability of the different branches by integrating the full equations.
- Summarize the results in a Concluding section. Formulate some speculative remarks about how would you improve your model by i.e., taking into account three or more sources and a C-dependent flux of ants that would saturate with the concentration of pheromone.