


diseases and epidemics

* Infectious and non-infectious diseases -
* In non-infectious diseases, the

objective is to model the spread of the ﬁ<
disease and see when it becomes p \

dangerous - " [\

* In Infectious diseases, the objective Is e

Pre<clinical Studies

to look at how the disease spreads in .. A
a population il pEm— i

. we will look at modeling of infectious @ i
disease spread — contagion, o g el iy
e p | d em | CS etC Forecasting Invasion. This graphic depiction of a mathematical model developed by Vito Quaranta and Alexander Anderson predicts

Simulated tumor
whether a tumor will become invasive. The tumor is represented on a two-dimensional grid. Each virtual cell is accounted for on the grid
and its behavior (e.q., growth, movement, death) is tracked based on mathematical functions and partial differential equations. Solving
these equations in sequential time-steps generates a computer simulation of tumor growth and invasion. This approach has the poten-
tial to predict disease outcome based on precise quantities measured in the tumor of a specific patient. The model was described in:
Anderson et al. Cell. 2006 Dec 1;127(5):905-15. Courtesy of the journal Cell. Graphic by Dominic Doyle.




disease models — first models

Simplest possible epidemic model: population has susceptibles and
Infectives and the disease spreads through contact with the infectives.

SI model: S(t) + I(t) =
Mean-field model: — = —f(S I) — = f(S,I)

f(S,I) — Incidence of disease — increasing function of S and |
simplest model: f(S,I) = A(I)S = BIS — law of mass action

A(I)- force of infection — probability density a given susceptible
will contract disease
f — pairwise Infectious contact rate



disease models — first models

SIS model — model with recovery — bacterial infections give no immunity

SM +1() =N, = =—f(S,) +g(), 5 =f(S,D) —g(I)

dt
g(l) — recovery function = yI, v - rate of recovery — probability each
infective will recover in 5t is y8t + O(67%) — equivalent to saying amount
of time spent in the | class Is exponentially distributed with mean 1/y

Z_‘T‘ = —(Rou — 1)v; % = (Rou —1)v; Ry = BTN - basic reproductive ratio

R, - expected number of infectious contacts made by an infective in a
population of susceptibles



disease models — first models

du

dv
—=—(Rou—1)v; — = (Rou — v

stability analysis: fixed points for v = 0, any u

start with disease-free Initial state and see If it IS stable
If Ry, <1, stable — disease dies out If a new Infective Is introduced

If Ry, > 1, unstable — endemic — the disease remains in the population

with steady-state value of v=1 — -

Ry
the infective population follows a logistic equation with carrying capacity
1

1 — —
Ry



disease models - SIR

BSI I
- = = {Recovered}

classic paper by Kermack and McKendrick in 1927

simple compartmental” model that describes certain kinds of
diseases such as mumps, rubella, measles etc. where the epidemic
duration is much smaller than the life expectancy of the host

total population remains constant: N
number susceptible: S

number infectious: |

number recovered: R
S+1+R=N



disease models - SIR

BSI v1
- > T [Recovered}

ODE mean-field model for SIR:

© —pst; L sty Koy

Non-dimensionalizing the equations we get

du_ r _dv_(R 1)_dw_
dr ot g = Mot = U T =Y



disease models — SIR - analysis

BSI vI
- = = [Recovered}

The values of u, v and w are such that
O0<u<l,0<rv<],0<sw<t,u+v+w=1

v = 0 Is a fixed point for any value of u — no infection, no disease

u=1, v =0Is the disease-free Initial state
Everyone Is susceptible but no one Is infectious

let us look at the dynamics, the stability of these fixed points etc.



disease models — SIR - analysis

consider the disease-free initial state (1,0) (which is also
a steady-state for the system)

the Jacobian matrix for this system Is given by
_Rov _Rou
Rov Rou —1

so the state (1,0) Is stable (but not asymptotically stable)
for small perturbations if R, < 1; else it is unstable —
epidemic!



disease models — SIR - analysis

du r dv (R 1
— = —Ruv; — = u —1)v
drt 0 drt 0
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Figure 3.2 Phase plane for the SIR epidemic, in the cases Ry < 1 and



disease models — SIR - analysis

the size of the epidemic Is the number of people In R
Rewriting the equations as

dw 1 dv 1

du  Rou'du Rou
u = exp(—Ryw) starting from (1,0,0)

S o
.
since u, w are monotonic, bounded { | .
functions of t, they tend to limits i ,:
grrar e aan S T T
(1 —wy,0,w;) IS a final steady state " )

. Figure 3.3 The functions 1 —=wy and exp(—-HRow, ), for By < land R > 1.
|f 1 — Wl — eXp (_R 0 Wl) The intersection point determines the final size of the epidemic, if any.



disease models - SIR

R, gives a quick idea of how fast an epidemic can spread
It can be estimated from the initial per capita growth rate

r=(Ro—1)y
Disease Transmission R,
Measles Airborne 12-18
Pertussis Airborne droplet 12-17
Diphtheria Saliva 6—7
Smallpox Social contact 57
Polio Fecal-oral route 5-7
Rubella Airborne droplet 5-7
Mumps Airborne droplet 4-7
HIV/AIDS Sexual contact 2-5
SARS Airborne droplet 2-5[2]
(1918 pandems strain) Airborne droplet 237



http://en.wikipedia.org/wiki/Measles
http://en.wikipedia.org/wiki/Pertussis
http://en.wikipedia.org/wiki/Diphtheria
http://en.wikipedia.org/wiki/Smallpox
http://en.wikipedia.org/wiki/Polio
http://en.wikipedia.org/wiki/Rubella
http://en.wikipedia.org/wiki/Mumps
http://en.wikipedia.org/wiki/HIV
http://en.wikipedia.org/wiki/AIDS
http://en.wikipedia.org/wiki/SARS
http://en.wikipedia.org/wiki/Basic_reproduction_number
http://en.wikipedia.org/wiki/Influenza
http://en.wikipedia.org/wiki/Spanish_flu
http://en.wikipedia.org/wiki/Basic_reproduction_number

disease models - extensions

SIRS model — diseases which give only limited immunity

dS— SI + OR; dI— S I; dR— I — OR

SEIR model — diseases where there are latent infectives

dS dE dl
d ——ﬁSI d——ﬁSI —5E d——dE )/I —)/I

Similarly, MSIR - measles, SIR with carriers — Typhoid Mary” etc



disease models — with vital dynamics

SIR model with births and deaths
assume no vertical transmission — not true for AIDS etc
birth rate B, death rates c (due to disease), d (unrelated to disease)

birth rate etc depends on population model
assume B = bN, we get

a5 = bN IS —dS: al = [5IS [ —dI I'dR = vyl — dR
RO= ﬁ
d+c+y

Normally, y dominates the denominator — mean infectious period
much smaller than life expectancy of host



disease models — with vital dynamics

suppose d = b, ¢c = 0: steady-state for population, non-fatal disease

du b (1—w) —R dv_(R 0 dw 14 b
dt y+0b . oMYt o Ty ¥ b
endemic steady state exists If RO > 1 disease does not die out
! % 1 b 1
steady-state given by u* = RV = y+b (1 )
SIR endemic, A >1 Eﬂmﬂﬂﬂ
| o |
%uf gﬂ-ﬂ I:"x1
NN

figure 3.5 Numerical solution of Equations (3.4.12), for Ry > 1 (in fact
R = 10). We have taken v/b = 0.1, much larger than is realistic for most
liseases, so that the final infective fraction is large enough to be easily seen.
‘or Hy < 1 the disease dies out.



disease models — vaccination

suppose there Is a perfect vaccine, what proportion p of the population
needs to be vaccinated to remove threat of an epidemic?

INn the case of the simple SIR model, 1t is equivalent to moving a fraction
p to R, and keeping only g = 1-p in S initially. There will be no epidemic if
(9,0) is stable, which implies gRy < 1orp =p* =1 — R;?

In the endemic case with vital dynamics we have the following model:

dS—b N 1S dS'dI— 1S [ —dI I'dR—b N + vyl —dR

In this model, like in the SIR case, there Is no steady state with disease p
and it can be shown that it is sufficient to vaccinate p* of the population



disease models — vaccination

[Tnfection Ry p%
Disease Transmission R, Smallpox 3-5 6780 |
Measles Airborne 12-18 Measles 12-13 92
) : Pertussis (whooping cough) 13-17 92-94
Pertussis Airborne droplet 12-17 Rubella (German measles) 6-7 83-86 |
Diphtheria Saliva 67 | Chickenpox 9-10 #9-90
Smallpox Social contact 5-7 Diphtheria 4-6  75-83
Polio Fecal-oral route 5-7 Scarlet fever 5T  80-86
Rubella Airborne droplet 5-7 Mumps T T
P Poliomyelitis £ 83
Mumps Airborne droplet 4—7
HIV/AIDS Sexual contact 2-5
SARS Airborne droplet 2502
Influenza :
—3[3]
(1918 pandemic strain) SIS Clepi! =3



http://en.wikipedia.org/wiki/Measles
http://en.wikipedia.org/wiki/Pertussis
http://en.wikipedia.org/wiki/Diphtheria
http://en.wikipedia.org/wiki/Smallpox
http://en.wikipedia.org/wiki/Polio
http://en.wikipedia.org/wiki/Rubella
http://en.wikipedia.org/wiki/Mumps
http://en.wikipedia.org/wiki/HIV
http://en.wikipedia.org/wiki/AIDS
http://en.wikipedia.org/wiki/SARS
http://en.wikipedia.org/wiki/Basic_reproduction_number
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