Home

Biography

Address

Activities

Publications

Research

Links

Personal



Books

  1. A. Gribaumont, G. Latouche, and Y. Roggeman. Algorithmes, programmes et langage PASCAL. Un exposé progressif. De Boeck, Bruxelles, 1984. 280 pages.
  2. G. Latouche and V. Ramaswami. Introduction to Matrix Geometric Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia PA, 1999. 334 pages.
  3. D. Bini, G. Latouche, and B. Meini. Numerical Methods for Structured Markov Chains. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2005. 327 pages.

  4. G. Louchard and G. Latouche, editors. Probability Theory and Computer Science. Academic Press, London, 1983. 204 pages.
  5. P.-J. Courtois and G. Latouche, editors. PERFORMANCE '87, Bruxelles, 1987. IFIP WG 7.3, North--Holland, Amsterdam. 571 pages.
  6. P. Tran Gia, G. Latouche, and U. Herzog, editors. Applied probability Modelling in Telecommunication, volume 30:1--2 of Performance Evaluation, 1997. 110 pages.
  7. G. Gibson and G. Latouche, editors. SIGMETRICS '98 / PERFORMANCE '98, Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems, volume 26:1 of Performance Evaluation Review, Madison, 1998. ACM Press, New York. 281 pages.
  8. H. Kobayashi, G. Latouche, B. Sengupta, and K. Sohraby, editors. Advances in Computational Aspects of Teletraffic Models, volume 16:5 of IEEE Journal on Selected Areas in Communications, 1998. 211 pages.
  9. C. O'Cinneide, K. Meier-Hellstern, G. Latouche, V. Ramaswami, and S. Resnick, editors. A Collection of Papers in Honour of Marcel Neuts, volume 14:1--2 of Comm. Statist. --- Stochastic Models, 1998. 496 pages.
  10. G. Latouche and P. Taylor, editors. Advances in Algorithmic Methods for Stochastic Models. Notable Publications Inc., NJ, 2000.
  11. G. Latouche and P. Taylor, editors. Matrix-Analytic Methods: Theory and Applications, World Scientific, River Edge, NJ, 2002.
  12. Dario Bini, Beatrice Meini, and Guy Latouche, editors. Stochastic Models: Fifth International Conference on Matrix-Analytic Methods, volume 21:2--3 of Stochastic Models, 2005.
  13. Guy Latouche, Vaidyanathan Ramaswami, Jay Sethuraman, Karl Sigman, Mark~S. Squillante, and David~D. Yao, editors. Matrix-Analytic Methods in Stochastic Models<\I>, volume~27 of Springer Proceedings in Mathematics \& Statistics<\I>. Springer New York, NY, 2013. http://dx.doi.org/10.1007/978-1-4614-4909-6.

Published papers

1971--1975

  1. R. Devillers, J. Dumont, and G. Latouche. Tests de générateurs pseudo-aléatoires. Bulletin de la Classe des Sciences de l'Académie Royale de Belgique, 5e série, tome LIX:703--724, 1973.
  2. G. Latouche. Optimal allocation of priority in a M/M/1 queue with two types of customers. J. of Comput. Appl. Math., 1:85--91, 1975.

1976--1980

  1. G. Latouche. Optimal pricing policy for a queue a) without and b) with hysteresis in the arrival process. In M. Roubens, editor, Proceedings of the Second European Congress on Operations Research, pages 251--258, Stockholm, 1976. North--Holland, Amsterdam.
  2. J.-J. Dumont and G. Latouche. Analysis of a foreground-background system with two levels of priority among foreground jobs. In E. Morlet and D. Ribbens, editors, Proceedings of the International Computing Symposium, pages 299--304, Liège, 1977. North--Holland, Amsterdam.
  3. G. Latouche. Optimal partitioning of a finite buffer between two pairs of producer-consumer. In E. Morlet and D. Ribbens, editors, Proceedings of the International Computing Symposium, pages 305--313, Liège, 1977. North--Holland, Amsterdam.
  4. G. Latouche and G. Louchard. Return times in nearly completely decomposable stochastic processes. J. Appl. Probab., 15:251--267, 1978.
  5. J. P. Colard and G. Latouche. Algorithmic analysis of a Markovian model for a system with batch and interactive jobs. Opsearch, 17:12--32, 1980.
  6. G. Latouche. Exponential servers sharing a finite storage: comparison of space allocation policies. IEEE Trans. Comm., 28:910--915, 1980.
  7. G. Latouche. On the trade-off between queue congestion and server's reward in a M/M/1 queue. European J. Oper. Res., 4:203--214, 1980.
  8. G. Latouche and M. F. Neuts. Efficient algorithmic solutions to exponential tandem queues with blocking. SIAM J. Algebraic Discrete Methods, 1:93--106, 1980.
  9. J.-P. Colard, C. Glowacki, and G. Latouche. Modeling of office automation activities under TARO, a local network. In Proceedings of the International Symposium on Office Automation, pages 21--25, Montreal, 1980.

1981--1985

  1. G. Latouche. Algorithmic analysis of a multiprogramming multiprocessor computer system. J. Assoc. Comput. Mach., 28:662--679, 1981.
  2. G. Latouche. On a Markovian queue with weakly correlated interarrival times. J. Appl. Probab., 18:190--203, 1981.
  3. G. Latouche. Queues with paired customers. J. Appl. Probab., 18:684--696, 1981.
  4. M. Dehon and G. Latouche. A geometric interpretation of the relations between the exponential and generalized Erlang distributions. Adv. in Appl. Probab., 14:885--897, 1982.
  5. G. Latouche. A phase-type semi-Markov point process. SIAM J. Algebraic Discrete Methods, 3:77--90, 1982.
  6. G. Louchard and G. Latouche. Random times in nearly-completely decomposable, transient Markov chains. Cahiers Centre études Rech. Opér., 24:321--352, 1982.
  7. F. Gillent and G. Latouche. Semi-explicit solutions for M/PH/1-like queueing systems. European J. Oper. Res., 13:151--160, 1983.
  8. D. P. Gaver, P. A. Jacobs, and G. Latouche. The normal approximation and queue control for response times in a processor-shared computer system model. In Proceedings of the International Seminar on Modelling and Performance Evaluation Methodology, pages 487--503, Paris, 1983.
  9. D. P. Gaver, P. A. Jacobs, and G. Latouche. Finite birth-and-death models in randomly changing environments. Adv. in Appl. Probab., 16:715--731, 1984.
  10. G. Latouche, P. A. Jacobs, and D. P. Gaver. Finite Markov chain models skip-free in one direction. Naval Res. Logist., 31:571--588, 1984.
  11. G. Latouche. An exponential semi-Markov process, with applications to queueing theory. Comm. Statist. Stochastic Models, 1:137--169, 1985.
  12. B. Nicolas and G. Latouche. Blocking in tandem queues. Belgian J. Oper. Res. Stat. Comput. Sc., 25:29--38, 1985.

1986--1990

  1. M. F. Neuts and G. Latouche. The superposition of two PH-renewal processes. In J. Janssen, editor, Semi-Markov Models, Theory and Applications, pages 131--177. Plenum Press, New York, 1986.
  2. G. Latouche. Perturbation analysis of a phase-type queue with weakly correlated arrivals. Adv. in Appl. Probab., 20:896--912, 1986.
  3. G. Latouche. Un exemple d'utilisation informelle des méthodes de preuve d'algorithmes. TSI, 5:403--410, 1986.
    Also published in English as "An example of the informal use of algorithm proof methods" in Technology and Science of Informatics, 6:157--163, 1987.
  4. V. Ramaswami and G. Latouche. A general class of Markov processes with explicit matrix-geometric solutions. OR Spektrum, 8:209--218, 1986.
  5. G. Latouche. A note on two matrices occurring in the solution of quasi-birth-and-death processes. Comm. Statist. Stochastic Models, 3:251--257, 1987.
  6. G. Latouche. Distributions de type phase---tutorial. Cahiers Centre études Rech. Opér., 31:3--11, 1989.
  7. V. Ramaswami and G. Latouche. An experimental evaluation of the matrix-geometric method for the GI/PH/1 queue. Comm. Statist. Stochastic Models, 5:629--667, 1989.
  8. V. Ramaswami and G. Latouche. Modeling packet arrivals from asynchronous input lines. In M. Bonatti, editor, Teletraffic Science for New Cost-Effective Systems, Networks and Services. Proceedings of the 12th International Teletraffic Congress - ITC 12, pages 721--727. North--Holland, Amsterdam, 1989.
  9. T. E. Eliazov, V. Ramaswami, W. Willinger, and G. Latouche. Performance of an ATM switch: simulation study. In Proceedings of IEEE INFOCOM '90, pages 644--659, 1990. IEEE Press, Piscataway, NJ.
  10. G. Latouche. Sample path analysis of packet queues subject to periodic traffic. Computer Networks and ISDN Systems, 20:409--413, 1990.
  11. G. Louchard and G. Latouche. Geometric bounds on iterative approximations for nearly completely decomposable Markov chains. J. Appl. Probab., 27:521--529, 1990.
  12. G. Latouche. Comment les informaticiens définissent-ils l'informatique? REVUE de la Direction Générale de l'Organisation des Etudes, 30:33--39, 1990.

1991--1995

  1. G. Latouche. First passage times in nearly decomposable Markov chains. In W. J. Stewart, editor, Numerical Solutions for Markov Chains, pages 401--411. Marcel Dekker, New York, 1991.
  2. G. Latouche. A simple proof for the matrix-geometric theorem. Appl. Stochastic Models Data Anal., 8:25--29, 1992.
  3. G. Latouche and V. Ramaswami. A unified stochastic model for the arrival of packets from periodic sources. Performance Evaluation, 14:103--121, 1992.
  4. G. Latouche. On successive packet losses in systems with periodic input traffic. IEEE Trans. Communications, to appear.
  5. G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi-birth-and-death processes. J. Appl. Probab., 30:650--674, 1993.
  6. G. Latouche. Algorithms for infinite Markov chains with repeating columns. In C. D. Meyer and R. J. Plemmons, editors, Linear Algebra, Markov Chains and Queueing Models, pages 231--265. Springer-Verlag, New York, 1993.
  7. G. Latouche. Algorithms for evaluating the matrix G in Markov chains of PH/G/1 type. Cahiers Centre études Rech. Opér., 36:251--258, 1994.
  8. G. Latouche. Newton's iteration for nonlinear equations in Markov chains. IMA J. Numer. Anal., 14:583--598, 1994.
  9. M. Labbé and G. Latouche. Mathematical modelling of telecommunication networks. Nouvelles de la Science et des Technologies, 12:183--188, 1994.
  10. G. Latouche and V. Ramaswami. Expected passage times in homogeneous quasi-birth-and-death processes. Comm. Statist. Stochastic Models, 11:103--122, 1995.
  11. G. Latouche and P. J. Schweitzer. A Markov modulated, nearly completely decomposable M/M/1 queue. In W. J. Stewart, editor, Computations with Markov Chains, pages 39--48. Kluwer Academic Publishers, Boston, MA, 1995.
  12. G. Latouche and G. W. Stewart. Numerical methods for M/G/1 type queues. In W. J. Stewart, editor, Computations with Markov Chains, pages 571--581. Kluwer Academic Publishers, Boston, MA, 1995.
  13. G. Latouche and Y. Roggeman. L'aléatoire déterministe, le déterminisme stochastique. In J. Naisse, editor, Sciences et Hasard, pages 62--70. Fondation Lucia de Brouckère pour la Diffusion des Sciences, 1995.

1996--2000

  1. N. G. Bean, L. Bright, G. Latouche, C. E. M. Pearce, P. K. Pollet, and P. Taylor. The quasistationary behaviour of quasi-birth-and-death processes. Annals of Applied Probability, 7:134--155, 1997.
  2. G. Latouche and V. Ramaswami. The PH/PH/1 queue at epochs of queue size change. Queueing Systems Theory Appl., 25:97--114, 1997.
  3. G. Latouche and V. Ramaswami. Spatial point processes of phase type. In V. Ramaswami and P. Wirth, editors, Teletraffic Contributions for the Information Age. Proceedings of the 15th International Teletraffic Congress - ITC 15, pages 381 -- 390. Elsevier, North--Holland, Amsterdam, 1997.
  4. G. Latouche and J. Loris-Teghem. Les processus aléatoires en recherche opérationnelle. Nouvelles de la Science et des Technologies, 15:29--34, 1997.
  5. N. G. Bean, G. Latouche, and P. G. Taylor. Quasi-reversibility and quasi-birth-and-death processes. In A. Alfa and S. Chakravarthy, editors, Advances in Matrix Analytic Methods for Stochastic Models -- Proceedings of the 2nd International Workshop on Matrix-Analytic Methods, pages 115--133. Notable Publications Inc, NJ, July 1998.
  6. G. Latouche. Quasi-birth-and-death processes: Beyond stable queues. In A. Alfa and S. Chakravarthy, editors, Advances in Matrix Analytic Methods for Stochastic Models -- Proceedings of the 2nd International Workshop on Matrix-Analytic Methods, pages 79--92. Notable Publications Inc, NJ, July 1998.
  7. G. Latouche, C. Pearce, and P. Taylor. Invariant measures for quasi-birth-and-death processes. Comm. Statist. Stochastic Models, 14:443--460, 1998.
  8. Guy Latouche. Algorithmic methods in stochastic modeling: from the Poisson process to MAPs. In Dieter Baum, N. Müller, and R. Rödler, editors, MMB 99. Messung, Modellierung und Bewertung von Rechen- und Kommunikations systemen --- Proceedings of the 10th GI/ITG Special Interest Conference, 25--34. VDE Verlag, Berlin, 1999.
  9. M.-A. Remiche and G. Latouche. Asymptotic Poisson distribution in isotropic PH planar point processes. Comm. Statist. Stochastic Models, 16:259--272, 2000.
  10. G. Latouche and P. G. Taylor. Level-phase independence for GI/M/1-type Markov chains. J. Appl. Probab., 37:984--998, 2000.
  11. A. Haegemans, G. Latouche, and H. Leemans. How to interpret the condition number of the caudal characteristic of a QBD. In G. Latouche and P. Taylor, editors, Advances in Algorithmic Methods for Stochastic Models -- Proceedings of the 3rd International Conference on Matrix-Analytic Methods, pages 154--165. Notable Publications Inc, NJ, 2000.

2001--2005

  1. E. Manzi, M. Labbé, G. Latouche, and F. Maffioli. On Fishman's sampling plan for computing network reliability. IEEE Trans. Reliability, 50:41--46, 2001.
  2. A. da Silva Soares and G. Latouche. The group inverse of finite homogeneous QBD processes. Comm. Statist. Stochastic Models, 18:159--171, 2002.
  3. G. Latouche and P. G. Taylor. Truncation and augmentation of level-independent QBD processes. Stoch. Proc. Appl., 99:53--80, 2002.
  4. A. da Silva Soares and G. Latouche. Further results on the similarity between fluid queues and QBDs. In G. Latouche and P. Taylor, editors, Proceedings of the 4th International Conference on Matrix-Analytic Methods, pages 89--106. World Scientific, River Edge, NJ, 2002.
  5. G. Latouche and M.-A. Remiche. Convergence of the ratio "variance over mean" in the IPhP3. In G. Latouche and P. Taylor, editors, Proceedings of the 4th International Conference on Matrix-Analytic Methods, pages 209--218. World Scientific, River Edge, NJ, 2002.
  6. Guy Latouche. A Markov chains approach to the solution of algebraic Riccati equations. In Queueing Theory in the 21st Century: Proceedings of the Symposium on Queueing Theory and Its Applications, Nagoya, 21--23 January, pages 196--202, Nagoya, 2002.
  7. Guy Latouche and Marie-Ange Remiche. An MAP-based Poisson cluster model for Web traffic. Performance Evaluation, 49:359--370, 2002.
  8. D. Bini, G. Latouche, and B. Meini. Solving matrix polynomial equations arising in queueing problems. Linear Algebra Appl., 340:225--244, 2002.
  9. G. Latouche and P. G. Taylor. Drift conditions for matrix-analytic models. Mathematics of OR, 28:346--360, 2003.
  10. G. Latouche, M.-A. Remiche, and P. Taylor. Transient Markov arrival processes. Annals of Applied Probability, 13:628--640, 2003.
  11. D. A. Bini, G. Latouche, and B. Meini. Solving nonlinear matrix equations arising in Tree-Like stochastic processes. Linear Algebra Appl., 366:39--64, 2003.
  12. A. da Silva Soares and G. Latouche. A matrix-analytic approach to fluid queues with feedback control. In K. Al Begain and G. Bolch, editors, Proceedings of the 11th International Conference on Analytical and Stochastic Modelling Techniques and Applications, pages 190--198. SCS-Publishing House, 2004.
  13. G. Latouche and T. Takine. Markov renewal fluid queues. Journal of Applied Probability, 41:746--757, 2004. To appear.
  14. A. da~Silva Soares and Guy Latouche. A matrix-analytic approach to fluid queues with feedback control. I. J. of Simulation, 6:4--12, 2005. Also published in K.~Al-Begain and G.~Bolch, editors, Proceedings of the 11th International Conference on Analytical and Stochastic Modelling Techniques and Applications, pages 190--198. SCS-Publishing House, 2004.
  15. A. Badescu, L. Breuer, A. da Silva Soares, G. Latouche, M.-A. Remiche, and D. Stanford. Risk processes analyzed as fluid queues. Scandinavian Actuarial Journal, 105(2):127--141, 2005.
  16. D. Stanford, F. Avram, A. Badescu, L. Breuer, A. da Silva Soares, and G. Latouche. Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models. ASTIN Bulletin, 35:131--144, 2005.
  17. A. da Silva Soares and G. Latouche. Level-phase independence for fluid queues. Stochastic Models, 21:327--341, 2005.
  18. D. A. Stanford, G. Latouche, D. G. Woolford, D. Boychuk, and A. Hunchak. Erlangized fluid queues with application to uncontrolled fire perimeter. Stochastic Models, 21:631--642, 2005.
  19. T. Dzial, L. Breuer, A. da Silva Soares, G. Latouche, and M.-A. Remiche. Fluid queues to solve jump processes. Performance Evaluation, 62:132--146, 2005.

2006--2010

  1. A. da Silva Soares and G. Latouche. Matrix-analytic methods for fluid queues with finite buffers. Performance Evaluation, 63:295--314, 2006.
  2. D. A. Bini, B. Iannazzo, G. Latouche, and B. Meini. On the solution of Riccati equations arising in fluid queues. Linear Algebra Appl., 413:474--494, 2006.
  3. D. Stanford, W. Horn, and G. Latouche. Tri-layered QBD processes with boundary assistance for service resources. Stochastic Models, 22:361--382, 2006.
  4. G. Latouche. Structured Markov chains in applied probability and numerical analysis. In Amy N. Langville and William J. Stewart, editors, MAM 2006: Markov Anniversary Meeting, pages 69--78. Boson Press, Raleigh, NC, 2006.
  5. S. Van Lierde, A. da Silva Soares, and G. Latouche. Invariant measures for fluid queues. Stochastic Models, 24:133--151, 2008.
  6. S. Hautphenne, G. Latouche, and M.-A. Remiche. Newton's iteration for the extinction probability of a Markovian binary tree. Linear Algebra Appl., 428:2791--2804, 2008.
  7. A. da Silva Soares and G. Latouche. Fluid queues with level dependent evolution. European J. Oper. Res., 196:1041--1048, 2009.
  8. M. de Vega Rodrigo, G. Latouche, and M.-A. Remiche. Modeling bufferless packet-switching networks with packet dependencies. Computer Networks, 53:1450--1466, 2009.
  9. S. Hautphenne, G. Latouche, and M.-A. Remiche. Algorithmic approach to the extinction probability of branching processes. Methodol Comput Appl Probab, DOI 10.1007/s11009-009-9141-7, 2009, published on line.
  10. G. Latouche. Level-independent quasi-birth-and-death processes. In James J. Cochran, editor, Wiley Encyclopedia of Operations Research and Management Science. John Wiley, New York, To appear.
  11. S. Hautphenne, G. Latouche, and M.-A. Remiche. Transient features for Markovian binary trees. In VALUETOOLS '09: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, Lecture Notes of ICST, pages 1--9, Berlin, 2009. Springer-Verlag. doi 10.4108/ICST.VALUETOOLS2009.7428.
  12. G. Latouche and P. Taylor. A stochastic fluid model for an ad hoc mobile network. Queueing Systems, 63:109--129, 2009.
  13. M. de Vega Rodrigo, G. Latouche, and M.-A. Remiche. Blocking probability computation in reversible Markovian bufferless multi-server systems. Performance Evaluation, 53:1450--1466, 2010.
  14. N. Bean and G. Latouche. Approximations to QBDs with infinite blocks. Adv. in Appl. Probab., 42:1102--1125, 2010.

2011--2015

  1. G. Latouche, G. T. Nguyen, and Z. Palmowski. Two-buffer fluid models with multiple ON-OFF inputs and threshold assistance. In VALUETOOLS '11: Proceedings of the Fifth ICST Workshop on Tools for Solving Markov Chains, pages 456--462. ACM Digital Library, 2011.
  2. G. Latouche, G. T. Nguyen, and P. G. Taylor. Queues with boundary assistance: The effects of truncation. Queueing Systems, 69:175--197, 2011.
  3. S. Hautphenne and G. Latouche. Markovian trees subject to catastrophes: transient features and extinction probability. Stochastic Models, 27:569--590, 2011.
  4. Maria Govorun, Guy Latouche, and Marie-Ange Remiche. Profit test model for pension funds using matrix-analytic modeling. In Michele Vanmaele, Griselda Deelstra, Ann~De Schepper, Jan Dhaene, Steven Vanduffel, and David Vyncke, editors, Proceedings of the Actuarial and Financial Mathematics Conference --- Interplay Between Finance and Insurance, pages 87--94, Brussels, 2011. Koninklijke Vlaamse Academie van Belgie voor Wetenschappen en Kunsten. ISSN 978 90 6569 087 6.
  5. S. Hautphenne and G. Latouche. The Markovian binary tree applied to demography. J. Math. Biol., 64:1109--1135, 2012. DOI 10.1007/s00285-011-0437-1.
  6. Sarah Dendievel, Guy Latouche, and Marie-Ange Remiche. Stationary distribution of a perturbed QBD process. Performance Evaluation Review, 39:40, 2012.
  7. Maria Govorun, Guy Latouche, and Marie-Ange Remiche. Profits and risks of pension plans. Performance Evaluation Review, 39:41, 2012.
  8. A.~E. Krzesinski, G.~Latouche, and P.~G. Taylor. How do we encourage an egoist to act socially in an ad hoc mobile network? Computer Networks, 56:3499--3510, 2012. http://dx.doi.org/10.1016/j.comnet.2012.07.008.
  9. Guy Latouche, Giang~T. Nguyen, and Zbigniew Palmowski. Two-dimensional fluid queues with temporary assistance. In Guy Latouche, Vaidyanathan Ramaswami, Jay Sethuraman, Karl Sigman, Mark~S. Squillante, and David~D. Yao, editors, Matrix-Analytic Methods in Stochastic Models, volume~27 of Springer Proceedings in Mathematics \& Statistics, chapter~9, pages 187--207. Springer, New York, NY, 2013. doi : 10.1007/978-1-4614-4909-6\_9; arXiv: 1404.3996.
  10. Sophie Hautphenne, Guy Latouche, and Giang~T. Nguyen. Markovian trees subject to catastrophes: Would they survive forever? In Guy Latouche, Vaidyanathan Ramaswami, Jay Sethuraman, Karl Sigman, Mark~S. Squillante, and David~D. Yao, editors, Matrix-Analytic Methods in Stochastic Models, volume~27 of Springer Proceedings in Mathematics \& Statistics, chapter~5, pages 87--106. Springer, New York, NY, 2013. doi: 10.1007/978-1-4614-4909-6\_5.
  11. Maria Govorun, Guy Latouche, and Marie-Ange Remiche. Stability for fluid queues: characteristic inequalities. Stochastic Models, 29:64--88, 2013. doi: 10.1080/15326349.2013.750533.
  12. Sarah Dendievel, Guy Latouche, and Yuanyuan Liu. Poisson's equation for discrete-time quasi-birth-and-death processes. Performance Evaluation, 70:564--577, 2013. arXiv:1308.2444.
  13. Guy Latouche, Safieh Mahmoodi, and Peter~G. Taylor. Level-phase independent stationary distributions for GI/M/1-type Markov chains with infinitely-many phases. Performance Evaluation, 70:551--563, 2013.
  14. Sophie Hautphenne, Guy Latouche, and Giang~T. Nguyen. Extinction probabilities of branching processes with countably infinitely many types. Adv. in Appl. Probab., 45:1068--1082, 2013. arXiv: 1211.4129.
  15. Sophie Hautphenne, Guy Latouche, and Giang~T. Nguyen. On the nature of Phase-type Poisson distributions. Annals of Actuarial Science, 8:79--98, 2014. doi:10.1017/ S1748499513000122; arXiv: 1211.3324.
  16. Guy Latouche and Masakiyo Miyazawa. Product-form characterization for a two-dimensional reflecting random walk. Queueing Systems, 77:373--391, 2014. doi: 10.1007/s11134-013-9381-7.
  17. Maria Govorun and Guy Latouche. Modeling the effect of health: Phase-type approach. Eur. Actuar. J., 2014(4):197--218, 2014.
  18. Shuxia Jiang, Guy Latouche, and Yuanyuan Liu. Wavelet transforms for quasi-birth-and-death processes with a continuous phase set. Applied Mathematics and Computation, 252:354--376, 2015.
  19. Guy Latouche and Giang~T. Nguyen. Fluid approach to two-sided Markov-modulated Brownian motion. Queueing Systems, 80:105--125, 2015. doi: 10.1007/s11134-014-9432-8, arXiv:1403.2522.
  20. Guy Latouche and Giang~T. Nguyen. The morphing of fluid queues into Markov-modulated Brownian motion. Stochastic Systems, 5:62--86, 2015. doi: 10.1214/13-SSY133.
  21. Maria Govorun, Guy Latouche, and St\'ephane Loisel. Phase-type aging modeling for health dependent costs. Insurance: Mathematics and Economics, 62:173--183, 2015.

2016--

  1. Dario~A. Bini, Sarah Dendievel, Guy Latouche, and Beatrice Meini. Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues. Linear Algebra and its Applications, 502:387--419, 2016. doi: 10.1016/j.laa.2015.03.035, arXiv: 1502.07533.
  2. Sophie Hautphenne and Guy Latouche. Lyapunov exponents for branching processes in a random environment: The effect of information. Journal of Statistical Physics, 163:393--410, 2016. doi: 10.1007/s10955-016-1474-3; arXiv: 1411.7531.
  3. Eleonora Deiana, Guy Latouche, and Marie-Ange Remiche. Fluid flows with jumps at the boundary. In Qi-Ming He, G\'abor Horv\'ath, and Mikl\'os Telek, editors, Proceedings of the Ninth International Conference on Matrix-Analytic Methods in Stochastic Models, pages 35--37, Budapest, June 2016.
  4. Guy Latouche and Giang~T. Nguyen. Markov-modulated Brownian motion and the flip-flop fluid queue: A symbiotic ralationship. In Qi-Ming He, G\'abor Horv\'ath, and Mikl\'os Telek, editors, Proceedings of the Ninth International Conference on Matrix-Analytic Methods in Stochastic Models, pages 111--112, Budapest, June 2016.
  5. Guy Latouche and Giang~T. Nguyen. Feedback control: Markov-modulated Brownian motion with instantaneous change of phase. Performance Evaluation, 106:30--49, 2016. doi:http://dx.doi.org/10.1016/j.peva.2016.09.004; arXiv: 1603.01945.
  6. Dario~A. Bini, Sarah Dendievel, Guy Latouche, and Beatrice Meini. General solution of the Poisson equation for QBDs. SIAM J. Appl. Math., 76:2397--2417, 2016. doi: 10.1137/16M1065045, arXiv: 1604.04420.
  7. Sarah Dendievel and Guy Latouche. Perturbation analysis of Markov modulated fluid models. In Qi-Ming He, G\'abor Horv\'ath, and Mikl\'os Telek, editors, Proceedings of the Ninth International Conference on Matrix-Analytic Methods in Stochastic Models, pages 43--50, Budapest, June 2016.
  8. Sarah Dendievel and Guy Latouche. Approximation for time-dependent distributions in Markovian fluid models. Methodol. Comput. Appl. Probab., 19:285--309, 2017. doi: 10.1007/s11009-016-9480-0; arXiv: 1409.4989.
  9. Guy Latouche and Giang~T. Nguyen. Slowing time: Markov-modulated Brownian motion with a sticky boundary. Stochastic Models, 33:297--321, 2017. doi:10.1080/15326349.2017.1284000, arXiv: 1508.00922.
  10. Sarah Dendievel and Guy Latouche. Perturbation analysis of Markov modulated fluid models. Stochastic Models, To appear. arXiv: 1702.02427.
  11. Dario~A. Bini, Guy Latouche, and Beatrice Meini. Shift techniques for Quasi-Birth-and-Death processes: Canonical factorizations and matrix equations. Applied Numerical Mathematics, To appear. arXiv: 1601.07717.